WO2023179058A1 - 一种7Ni用钢及其生产方法 - Google Patents

一种7Ni用钢及其生产方法 Download PDF

Info

Publication number
WO2023179058A1
WO2023179058A1 PCT/CN2022/132289 CN2022132289W WO2023179058A1 WO 2023179058 A1 WO2023179058 A1 WO 2023179058A1 CN 2022132289 W CN2022132289 W CN 2022132289W WO 2023179058 A1 WO2023179058 A1 WO 2023179058A1
Authority
WO
WIPO (PCT)
Prior art keywords
residual
steel
heating
temperature
sent
Prior art date
Application number
PCT/CN2022/132289
Other languages
English (en)
French (fr)
Inventor
谯明亮
吴俊平
翟冬雨
刘心阳
杨柳
陈萌
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023179058A1 publication Critical patent/WO2023179058A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the technical field of steel production, and in particular to a 7Ni steel and its production method.
  • Nickel-based steel has high alloy content and excellent product quality.
  • 7Ni steel is container steel with a nickel content of 7%.
  • how to reduce the manufacturing cost of 7Ni steel is a key step for enterprises to obtain a good market competitive advantage.
  • the present invention aims at the above technical problems, overcomes the shortcomings of the existing technology, and provides a 7Ni steel whose chemical composition and mass percentage are as follows: C: 0.030% ⁇ 0.060%, Si: 0.05% ⁇ 0.30%, Mn: 0.70% ⁇ 1.0%, P ⁇ 0.005%, S ⁇ 0.002%, residual Nb ⁇ 0.0050%, residual V ⁇ 0.003%, residual Ti ⁇ 0.005%, Ni: 6.50% ⁇ 7.50%, Cr ⁇ 0.05%, Mo: 0.20% ⁇ 0.30 %, Cu ⁇ 0.05%, Al: 0.020% ⁇ 0.050%, Mg: 0.0008% ⁇ 0.0020%, N ⁇ 0.0060%, H ⁇ 0.0002%, the balance is Fe and inevitable impurities.
  • the aforementioned 7Ni steel has the following chemical composition and mass percentage: C: 0.030% ⁇ 0.050%, Si: 0.05% ⁇ 0.20%, Mn: 0.70% ⁇ 0.9%, P ⁇ 0.005%, S ⁇ 0.002 %, residual Nb ⁇ 0.0050%, residual V ⁇ 0.003%, residual Ti ⁇ 0.005%, Ni: 6.50% ⁇ 7.30%, Cr ⁇ 0.05%, Mo: 0.20% ⁇ 0.25%, Cu ⁇ 0.050%, Al: 0.020% ⁇ 0.040%, Mg: 0.0008% ⁇ 0.0018%, N ⁇ 0.0050%, H ⁇ 0.0002%, the balance is Fe and inevitable impurities.
  • the aforementioned 7Ni steel has the following chemical composition and mass percentage: C: 0.035% ⁇ 0.055%, Si: 0.15% ⁇ 0.25%, Mn: 0.80% ⁇ 0.90%, P ⁇ 0.005%, S ⁇ 0.002 %, residual Nb ⁇ 0.0050%, residual V ⁇ 0.003%, residual Ti ⁇ 0.005%, Ni: 6.80% ⁇ 7.20%, Cr ⁇ 0.05%, Mo: 0.22% ⁇ 0.28%, Cu ⁇ 0.050%, Al: 0.025% ⁇ 0.045%, Mg: 0.0010% ⁇ 0.0018%, N ⁇ 0.0060%, H ⁇ 0.0002%, the balance is Fe and inevitable impurities.
  • the aforementioned 7Ni steel has the following chemical composition and mass percentage: C: 0.040% ⁇ 0.060%, Si: 0.20% ⁇ 0.30%, Mn: 0.80% ⁇ 1.0%, P ⁇ 0.005%, S ⁇ 0.002 %, residual Nb ⁇ 0.0050%, residual V ⁇ 0.003%, residual Ti ⁇ 0.005%, Ni: 6.80% ⁇ 7.50%, Cr ⁇ 0.05%, Mo: 0.25% ⁇ 0.30%, Cu ⁇ 0.050%, Al: 0.025% ⁇ 0.050%, Mg: 0.0010% ⁇ 0.0020%, N ⁇ 0.0060%, H ⁇ 0.0002%, the balance is Fe and inevitable impurities.
  • Another object of the present invention is to provide a method for producing 7Ni steel, which includes the following steps:
  • the molten steel is sent to refining for deoxidation, alloying and desulfurization. After the composition temperature is consistent, it is sent to RH for vacuum treatment.
  • the vacuum degree is ⁇ 3.0mbar.
  • the vacuum holding time is 20 to 25 minutes. After vacuum treatment, 200 to 220 meters of magnesium and aluminum are simmered. Wire;
  • the cast billet is processed and sent to the heating furnace for heating.
  • the heating process of the heating furnace is: heating to 600°C at a heating speed of 10 ⁇ 15°C/min, heating to 600 ⁇ 1000°C at a heating speed of 5 ⁇ 7°C/min, and heating to 600 ⁇ 1000°C at a heating speed of 2 °C/min Heating to 1000 ⁇ 1100°C, holding at 1100°C for 20 minutes and then exiting the heating furnace;
  • the second opening temperature is 800 ⁇ 950°C
  • the final rolling temperature is 800 ⁇ 900°C
  • the red return temperature is 400 ⁇ 600°C
  • the grinding depth in step S3 is 1 to 2 mm, and the spraying thickness is 0.1 to 0.3 mm.
  • the present invention has studied the factors affecting the surface quality of steel types, carried out corresponding development and applications, and solved the problem of steel types through a series of process improvements such as smelting, rolling and heat treatment.
  • the technological problem of intergranular cracks has been solved, and the advantages of batch smelting and manufacturing of steel grades have been obtained.
  • the manufacturing stability has been greatly improved, the manufacturing cost has been greatly reduced, and the market competitiveness of the product has been effectively improved;
  • magnesium metallurgical technology is used to improve the morphology of inclusions, improve the cleanliness of the product, and avoid the occurrence of intergranular cracks caused by the accumulation of inclusions on the surface;
  • a unique anti-oxidation coating is used for spraying, which avoids secondary oxidation of the cast slab during the heating process, reduces the generation of oxide scale on the surface of the cast slab during the rolling process, and improves the surface quality of the rolled steel plate.
  • the phase change temperature of high nickel steel in the present invention is 570°C, and the end temperature is 730°C.
  • the present invention uses different heating rates to perform heating process quality, reduces linear expansion and thermal conductivity, and avoids the phase change stress caused by the heating process. The occurrence of intergranular cracks;
  • the low-temperature heat treatment process used in the present invention can effectively avoid the trend of intergranular oxidation cracks during the rolling process, avoid the occurrence of intergranular cracks during the austenitization process due to widening, and effectively reduce the batch cracks of quenched and tempered steel plates. incidence;
  • the nickel-molybdenum alloy is added to the converter in the form of scrap steel without affecting the calorific value.
  • the addition of the nickel-molybdenum alloy effectively reduces the solidification of molten steel, meets the requirements for low-temperature tapping, and is conducive to the removal of carbon and phosphorus elements. , which increases the smelting speed.
  • Figure 1 is a metallographic structure diagram of Example 1.
  • the chemical composition and mass percentage of a 7Ni steel provided in this embodiment are as follows: C: 0.043%, Si: 0.16%, Mn: 0.79%, P: 0.003%, S: 0.0011%, Nb: 0.0030% (residual ), V: 0.002% (residual), Ti: 0.002% (residual), Ni: 7.1%, Cr: 0.02%, Mo: 0.23%, Cu: 0.030%, Al: 0.029%, Mg: 0.0017%, N: 0.0036%, H: 0.00017%, the balance is Fe and inevitable impurities.
  • the preparation method includes the following steps:
  • the molten steel is sent to refining for deoxidation, alloying and desulfurization operations. After the composition temperature is consistent, it is sent to RH for vacuum treatment. The vacuum degree is ⁇ 3.0mbar. The vacuum holding time is 21 minutes. After vacuum treatment, 210 meters of magnesium aluminum wire is simmered;
  • the molten steel After the molten steel is refining, it is sent to continuous casting for casting.
  • the casting speed is 0.9m/min, the superheat degree is 27°C, and electromagnetic stirring and dynamic light reduction processes are used.
  • the slab After the slab is out of continuous casting, it is cooled in an insulation pit for 48 hours. Carry out surface inspection. After the cast billet passes the surface inspection, it will be mechanically ground with a grinding depth of 1.6mm. After grinding, the cast billet will be sprayed with high-temperature antioxidant paint with a spray thickness of 0.1mm;
  • the cast billet is processed and sent to the heating furnace for heating.
  • the heating process of the heating furnace is: heating to 600°C at a heating speed of 13°C/min, heating to 600 ⁇ 1000°C at a heating speed of 6°C/min, and heating to 600 ⁇ 1000°C at a heating speed of 2°C/min. to 1000 ⁇ 1100°C, keep at 1100°C for 20 minutes and then exit the heating furnace;
  • S5 is rolled using a two-stage rolling process, with the second opening temperature being 880°C, the final rolling temperature being 850°C, and the red return temperature being 460°C;
  • quenching temperature is 780°C, holding time is 22 minutes, tempering is performed after quenching, tempering temperature is 630°C, holding time is 12 minutes, air cooling;
  • the chemical composition and mass percentage of a 7Ni steel provided in this embodiment are as follows: C: 0.0430%, Si: 0.09%, Mn: 0.779%, P: 0.002%, S: 0.0012%, Nb: 0.0020% (residual ), V: 0.002% (residual), Ti: 0.003% (residual), Ni: 6.96%, Cr: 0.02%, Mo: 0.21%, Cu: 0.010%, Al: 0.038%, Mg: 0.0014%, N: 0.0046%, H: 0.00017%, the balance is Fe and inevitable impurities.
  • the preparation method includes the following steps:
  • the molten steel is sent to refining for deoxidation, alloying and desulfurization operations. After the composition temperature is consistent, it is sent to RH for vacuum treatment. The vacuum degree is ⁇ 3.0mbar. The vacuum holding time is 23 minutes. After vacuum treatment, 220 meters of magnesium aluminum wire is simmered;
  • the molten steel After the molten steel is refining, it is sent to continuous casting for casting.
  • the casting speed is 0.7m/min, the superheat degree is 26°C, and electromagnetic stirring and dynamic light reduction processes are used.
  • the slab After the slab is out of continuous casting, it is cooled in an insulation pit for 48 hours. Carry out surface inspection. After the cast billet passes the surface inspection, it will be mechanically ground with a grinding depth of 1.9mm. After grinding, the cast billet will be sprayed with high-temperature antioxidant paint with a spray thickness of 0.13mm;
  • the cast billet is processed and sent to the heating furnace for heating.
  • the heating process of the heating furnace is: heating to 600°C at a heating speed of 14°C/min, heating to 600 ⁇ 1000°C at a heating speed of 5.7°C/min, and heating to 600 ⁇ 1000°C at a heating speed of 2°C/min. to 1000 ⁇ 1100°C, keep at 1100°C for 20 minutes and then exit the heating furnace;
  • the chemical composition and mass percentage of a 7Ni steel provided in this embodiment are as follows: C: 0.056%, Si: 0.260%, Mn: 0.93%, P: 0.002%, S: 0.0013%, Nb: 0.003% (residual ), V: 0.002% (residual), Ti: 0.002% (residual), Ni: 7.3%, Cr: 0.02%, Mo: 0.29%, Cu: 0.020%, Al: 0.041%, Mg: 0.0016%, N : 0.0036%, H: 0.00011%, the balance is Fe and inevitable impurities.
  • the preparation method includes the following steps:
  • the molten steel is sent to refining for deoxidation, alloying and desulfurization operations. After the composition temperature is consistent, it is sent to RH for vacuum treatment. The vacuum degree is ⁇ 3.0mbar. The vacuum holding time is 24 minutes. After vacuum treatment, 210 meters of magnesium aluminum wire is simmered;
  • the molten steel After the molten steel is refining, it is sent to continuous casting for casting.
  • the casting speed is 0.7m/min, the superheat degree is 27°C, and electromagnetic stirring and dynamic light reduction processes are used.
  • the slab After the slab is out of continuous casting, it is cooled in an insulation pit for 48 hours. Carry out surface inspection. After the cast billet passes the surface inspection, it will be mechanically ground with a grinding depth of 1.2mm. After grinding, the cast billet will be sprayed with high-temperature antioxidant paint with a spray thickness of 0.2mm;
  • the cast billet is processed and sent to the heating furnace for heating.
  • the heating process of the heating furnace is: heating to 600°C at a heating speed of 13°C/min, heating to 600 ⁇ 1000°C at a heating speed of 6°C/min, and heating to 600 ⁇ 1000°C at a heating speed of 2°C/min. to 1000 ⁇ 1100°C, keep at 1100°C for 20 minutes and then exit the heating furnace;
  • S5 is rolled using a two-stage rolling process, with a second opening temperature of 860°C, a final rolling temperature of 830°C, and a red return temperature of 420°C;
  • quenching temperature is 766°C, holding time is 28 minutes, tempering is performed after quenching, tempering temperature is 590°C, holding time is 12 minutes, air cooling;
  • the invention is simple to operate, the production process can be stably executed, and the effect is remarkable. It is also suitable for other nickel varieties with nickel addition of 5.5% to 9.5%, and has obvious economic and safety benefits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明公开了一种7Ni用钢及其生产方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.030%~0.060%,Si:0.05%~0.30%,Mn:0.70%~1.0%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.50%~7.50%,Cr≤0.05%,Mo:0.20%~0.30%,Cu≤0.05%,Al:0.020%~0.050%,Mg:0.0008%~0.0020%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。通过冶炼、轧制、热处理等一系类的工艺改进,解决了钢种晶间裂纹的工艺难题,获得了钢种批量冶炼制造的优势,制造稳定性得到了大幅度的提升,制造成本获得了大幅度的降低。

Description

一种7Ni用钢及其生产方法 技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种7Ni用钢及其生产方法。
背景技术
随着我国钢铁冶金技术的不断发展,钢铁企业品牌竞争优势越来越明显。为了提高竞争力,企业不断开发品种用钢,镍系钢合金含量高,产品质量优异,但目前存在成本高,低端市场应用浪费的情况,其中7Ni用钢是镍含量7%的容器用钢,如何降低7Ni用钢制造成本,是企业取得良好的市场竞争优势的关键一步。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种7Ni用钢,其化学成分及质量百分比如下:C:0.030%~0.060%,Si:0.05%~0.30%,Mn:0.70%~1.0%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.50%~7.50%,Cr≤0.05%,Mo:0.20%~0.30%,Cu≤0.05%,Al:0.020%~0.050%,Mg:0.0008%~0.0020%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。
本发明进一步限定的技术方案是:
前所述的一种7Ni用钢,其化学成分及质量百分比如下:C:0.030%~0.050%,Si:0.05%~0.20%,Mn:0.70%~0.9%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.50%~7.30%,Cr≤0.05%,Mo:0.20%~0.25%,Cu≤0.050%,Al:0.020%~0.040%,Mg:0.0008%~0.0018%,N≤0.0050%,H≤0.0002%,余量为Fe和不可避免的杂质。
前所述的一种7Ni用钢,其化学成分及质量百分比如下:C:0.035%~0.055%,Si:0.15%~0.25%,Mn:0.80%~0.90%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.80%~7.20%,Cr≤0.05%,Mo:0.22%~ 0.28%,Cu≤0.050%,Al:0.025%~0.045%,Mg:0.0010%~0.0018%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。
前所述的一种7Ni用钢,其化学成分及质量百分比如下:C:0.040%~0.060%,Si:0.20%~0.30%,Mn:0.80%~1.0%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.80%~7.50%,Cr≤0.05%,Mo:0.25%~0.30%,Cu≤0.050%,Al:0.025%~0.050%,Mg:0.0010%~0.0020%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。
本发明的另一目的在于提供一种7Ni用钢生产方法,包括以下步骤:
S1、铁水脱硫后送至转炉冶炼,采用顶底复吹工艺冶炼,镍钼合金随废钢一起加入转炉,并且计入废钢重量,供氧80%进行倒渣,冶炼终点温度1580~1620℃,成分满足要求进行出钢操作;
S2、钢水送至精炼进行脱氧合金化及脱硫操作,成分温度符合后送至RH进行真空处理,真空度≤3.0mbar,真空保持时间20~25分钟,真空处理后煨入200~220米镁铝线;
S3、钢水精炼处理结束后送至连铸进行浇铸,浇铸速度0.6~1.3m/min,过热度25~35℃,采用电磁搅拌及动态轻压下工艺,铸坯出连铸后进行保温坑堆冷48小时后进行表检,铸坯表检合格后采用机械修磨,修磨后的铸坯采用高温抗氧化涂料进行喷涂;
S4、铸坯处理好送至加热炉进行加热,加热炉加热过程为:加热速度10~15℃/min加热至600℃,加热速度5~7℃/min加热至600~1000℃,加热速度2℃/min加热至1000~1100℃,1100℃保温20min后出加热炉;
S5、采用二阶段轧制工艺轧制,二开温度800~950℃,终轧800~900℃,返红温度400~600℃;
S6、淬火温度760~790℃,保温时间10~30分钟,淬火后进行回火处理, 回火温度550~650℃,保温时间10~15分钟,空冷;
S7、热处理后的钢板表检、性能检测合格后标识、入库、发货。
前所述的一种7Ni用钢生产方法,步骤S3中修磨深度1~2mm,喷涂厚度0.1~0.3mm。
本发明的有益效果是:
(1)本发明通过对钢种机理的深入研究,研究了影响钢种表面质量的因素,进行了相应的开发应用,通过冶炼、轧制、热处理等一系类的工艺改进,解决了钢种晶间裂纹的工艺难题,获得了钢种批量冶炼制造的优势,制造稳定性得到了大幅度的提升,制造成本获得了大幅度的降低,有效提升了产品的市场竞争力;
(2)本发明中采用镁冶金技术改善了夹杂物形态,提升了产品的洁净度,避免了夹杂物物在表面集聚导致晶间裂纹的发生;
(3)本发明中通过降低氮、氢气体含量及磷硫含量,提高钢的碳含量,减少了硫化锰夹杂及气体含量对钢表面质量的恶化,添加少量的铌,起到了固氮、固碳的作用,从而减少表面晶间裂纹的发生率;
(4)本发明中采用独特的抗氧化涂料进行喷涂,避免了加热过程中铸坯的二次氧化,减少了轧制过程中铸坯表面氧化铁皮的生成量,提升了轧制钢板的表面质量;
(5)本发明中高镍钢的相变温度570℃,结束温度是730℃,本发明通过不同的升温速率进行加热工艺质量,降低了线膨胀及导热系数,避免了加热过程的相变应力导致的晶间裂纹的发生;
(6)本发明中加热出钢温度过高会导致铸坯表面的高温氧化裂纹,这种裂纹随着奥氏体的粗大会越发明显,因此,低温出钢有效避免了铸坯表面高温晶 间裂纹;
(7)本发明中采用低温热处理工艺,可有效避免轧制过程中的沿晶氧化裂纹趋势,避免因宽化导致奥氏体化过程中晶间裂纹的发生,有效降低调质钢板的批量裂纹发生率;
(8)本发明中镍钼合金按废钢形势加入转炉,不影响热量值,同时因为镍钼合金的加入,有效降低了钢水的凝固定,满足了低温出钢的要求,有利于去除碳磷元素,提升了冶炼速度。
附图说明
图1为实施例1的金相组织图。
具体实施方式
实施例1
本实施例提供的一种7Ni用钢,其化学成分及质量百分比如下:C:0.043%,Si:0.16%,Mn:0.79%,P:0.003%,S:0.0011%,Nb:0.0030%(残余),V:0.002%(残余),Ti:0.002%(残余),Ni:7.1%,Cr:0.02%,Mo:0.23%,Cu:0.030%,Al:0.029%,Mg:0.0017%,N:0.0036%,H:0.00017%,余量为Fe和不可避免的杂质。
制备方法包括以下步骤:
S1、铁水脱硫后送至转炉冶炼,采用顶底复吹工艺冶炼,镍钼合金随废钢一起加入转炉,并且计入废钢重量,供氧80%进行倒渣,冶炼终点温度1602℃,成分满足要求进行出钢操作;
S2、钢水送至精炼进行脱氧合金化及脱硫操作,成分温度符合后送至RH进行真空处理,真空度≤3.0mbar,真空保持时间21分钟,真空处理后煨入210米镁铝线;
S3、钢水精炼处理结束后送至连铸进行浇铸,浇铸速度0.9m/min,过热度 27℃,采用电磁搅拌及动态轻压下工艺,铸坯出连铸后进行保温坑堆冷48小时后进行表检,铸坯表检合格后采用机械修磨,修磨深度1.6mm,修磨后的铸坯采用高温抗氧化涂料进行喷涂,喷涂厚度0.1mm;
S4、铸坯处理好送至加热炉进行加热,加热炉加热过程为:加热速度13℃/min加热至600℃,加热速度6℃/min加热至600~1000℃,加热速度2℃/min加热至1000~1100℃,1100℃保温20min后出加热炉;
S5、采用二阶段轧制工艺轧制,二开温度880℃,终轧850℃,返红温度460℃;
S6、淬火温度780℃,保温时间22分钟,淬火后进行回火处理,回火温度630℃,保温时间12分钟,空冷;
S7、热处理后的钢板表检、性能检测合格后标识、入库、发货。
实施例2
本实施例提供的一种7Ni用钢,其化学成分及质量百分比如下:C:0.0430%,Si:0.09%,Mn:0.779%,P:0.002%,S:0.0012%,Nb:0.0020%(残余),V:0.002%(残余),Ti:0.003%(残余),Ni:6.96%,Cr:0.02%,Mo:0.21%,Cu:0.010%,Al:0.038%,Mg:0.0014%,N:0.0046%,H:0.00017%,余量为Fe和不可避免的杂质。
制备方法包括以下步骤:
S1、铁水脱硫后送至转炉冶炼,采用顶底复吹工艺冶炼,镍钼合金随废钢一起加入转炉,并且计入废钢重量,供氧80%进行倒渣,冶炼终点温度1586℃,成分满足要求进行出钢操作;
S2、钢水送至精炼进行脱氧合金化及脱硫操作,成分温度符合后送至RH进行真空处理,真空度≤3.0mbar,真空保持时间23分钟,真空处理后煨入220 米镁铝线;
S3、钢水精炼处理结束后送至连铸进行浇铸,浇铸速度0.7m/min,过热度26℃,采用电磁搅拌及动态轻压下工艺,铸坯出连铸后进行保温坑堆冷48小时后进行表检,铸坯表检合格后采用机械修磨,修磨深度1.9mm,修磨后的铸坯采用高温抗氧化涂料进行喷涂,喷涂厚度0.13mm;
S4、铸坯处理好送至加热炉进行加热,加热炉加热过程为:加热速度14℃/min加热至600℃,加热速度5.7℃/min加热至600~1000℃,加热速度2℃/min加热至1000~1100℃,1100℃保温20min后出加热炉;
S5、采用二阶段轧制工艺轧制,二开温度910℃,终轧890℃,返红温度580℃;
S6、淬火温度780℃,保温时间16分钟,淬火后进行回火处理,回火温度590℃,保温时间13分钟,空冷;
S7、热处理后的钢板表检、性能检测合格后标识、入库、发货。
实施例3
本实施例提供的一种7Ni用钢,其化学成分及质量百分比如下:C:0.056%,Si:0.260%,Mn:0.93%,P:0.002%,S:0.0013%,Nb:0.003%(残余),V:0.002%(残余),Ti:0.002%(残余),Ni:7.3%,Cr::0.02%,Mo:0.29%,Cu:0.020%,Al:0.041%,Mg:0.0016%,N:0.0036%,H:0.00011%,余量为Fe和不可避免的杂质。
制备方法包括以下步骤:
S1、铁水脱硫后送至转炉冶炼,采用顶底复吹工艺冶炼,镍钼合金随废钢一起加入转炉,并且计入废钢重量,供氧80%进行倒渣,冶炼终点温度1606℃,成分满足要求进行出钢操作;
S2、钢水送至精炼进行脱氧合金化及脱硫操作,成分温度符合后送至RH进行真空处理,真空度≤3.0mbar,真空保持时间24分钟,真空处理后煨入210米镁铝线;
S3、钢水精炼处理结束后送至连铸进行浇铸,浇铸速度0.7m/min,过热度27℃,采用电磁搅拌及动态轻压下工艺,铸坯出连铸后进行保温坑堆冷48小时后进行表检,铸坯表检合格后采用机械修磨,修磨深度1.2mm,修磨后的铸坯采用高温抗氧化涂料进行喷涂,喷涂厚度0.2mm;
S4、铸坯处理好送至加热炉进行加热,加热炉加热过程为:加热速度13℃/min加热至600℃,加热速度6℃/min加热至600~1000℃,加热速度2℃/min加热至1000~1100℃,1100℃保温20min后出加热炉;
S5、采用二阶段轧制工艺轧制,二开温度860℃,终轧830℃,返红温度420℃;
S6、淬火温度766℃,保温时间28分钟,淬火后进行回火处理,回火温度590℃,保温时间12分钟,空冷;
S7、热处理后的钢板表检、性能检测合格后标识、入库、发货。
实施例1-3的各项力学性能如下表:
Figure PCTCN2022132289-appb-000001
本发明操作简单,生产工艺得以稳定执行,效果显著,同时也适用于镍添加5.5%~9.5%的其它镍系品种,具有明显的经济效益和安全效益。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

  1. 一种7Ni用钢,其特征在于:其化学成分及质量百分比如下:C:0.030%~0.060%,Si:0.05%~0.30%,Mn:0.70%~1.0%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.50%~7.50%,Cr≤0.05%,Mo:0.20%~0.30%,Cu≤0.05%,Al:0.020%~0.050%,Mg:0.0008%~0.0020%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种7Ni用钢,其特征在于:其化学成分及质量百分比如下:C:0.030%~0.050%,Si:0.05%~0.20%,Mn:0.70%~0.9%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.50%~7.30%,Cr≤0.05%,Mo:0.20%~0.25%,Cu≤0.050%,Al:0.020%~0.040%,Mg:0.0008%~0.0018%,N≤0.0050%,H≤0.0002%,余量为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种7Ni用钢,其特征在于:其化学成分及质量百分比如下:C:0.035%~0.055%,Si:0.15%~0.25%,Mn:0.80%~0.90%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.80%~7.20%,Cr≤0.05%,Mo:0.22%~0.28%,Cu≤0.050%,Al:0.025%~0.045%,Mg:0.0010%~0.0018%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种7Ni用钢,其特征在于:其化学成分及质量百分比如下:C:0.040%~0.060%,Si:0.20%~0.30%,Mn:0.80%~1.0%,P≤0.005%,S≤0.002%,残余Nb≤0.0050%,残余V≤0.003%,残余Ti≤0.005%,Ni:6.80%~7.50%,Cr≤0.05%,Mo:0.25%~0.30%,Cu≤0.050%,Al:0.025%~0.050%,Mg:0.0010%~0.0020%,N≤0.0060%,H≤0.0002%,余量为Fe和不可避免的杂质。
  5. 一种7Ni用钢生产方法,其特征在于:应用于权利要求1-4任意一项,包括以下步骤:
    S1、铁水脱硫后送至转炉冶炼,采用顶底复吹工艺冶炼,镍钼合金随废钢一起加入转炉,并且计入废钢重量,供氧80%进行倒渣,冶炼终点温度1580~1620℃,成分满足要求进行出钢操作;
    S2、钢水送至精炼进行脱氧合金化及脱硫操作,成分温度符合后送至RH进行真空处理,真空度≤3.0mbar,真空保持时间20~25分钟,真空处理后煨入200~220米镁铝线;
    S3、钢水精炼处理结束后送至连铸进行浇铸,浇铸速度0.6~1.3m/min,过热度25~35℃,采用电磁搅拌及动态轻压下工艺,铸坯出连铸后进行保温坑堆冷48小时后进行表检,铸坯表检合格后采用机械修磨,修磨后的铸坯采用高温抗氧化涂料进行喷涂;
    S4、铸坯处理好送至加热炉进行加热,加热炉加热过程为:加热速度10~15℃/min加热至600℃,加热速度5~7℃/min加热至600~1000℃,加热速度2℃/min加热至1000~1100℃,1100℃保温20min后出加热炉;
    S5、采用二阶段轧制工艺轧制,二开温度800~950℃,终轧800~900℃,返红温度400~600℃;
    S6、淬火温度760~790℃,保温时间10~30分钟,淬火后进行回火处理,回火温度550~650℃,保温时间10~15分钟,空冷;
    S7、热处理后的钢板表检、性能检测合格后标识、入库、发货。
  6. 根据权利要求5所述的一种7Ni用钢生产方法,其特征在于:所述步骤S3中修磨深度1~2mm,喷涂厚度0.1~0.3mm。
PCT/CN2022/132289 2022-03-24 2022-11-16 一种7Ni用钢及其生产方法 WO2023179058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210297097.1 2022-03-24
CN202210297097.1A CN114686760A (zh) 2022-03-24 2022-03-24 一种7Ni用钢及其生产方法

Publications (1)

Publication Number Publication Date
WO2023179058A1 true WO2023179058A1 (zh) 2023-09-28

Family

ID=82139626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132289 WO2023179058A1 (zh) 2022-03-24 2022-11-16 一种7Ni用钢及其生产方法

Country Status (2)

Country Link
CN (1) CN114686760A (zh)
WO (1) WO2023179058A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686760A (zh) * 2022-03-24 2022-07-01 南京钢铁股份有限公司 一种7Ni用钢及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241419A (ja) * 2010-05-17 2011-12-01 Sumitomo Metal Ind Ltd 低温用厚鋼板およびその製造方法
CN104674110A (zh) * 2015-02-09 2015-06-03 北京科技大学 一种压力容器用低温钢板及其生产方法
CN113046655A (zh) * 2021-02-01 2021-06-29 南京钢铁股份有限公司 一种低温韧性优异的宽厚规格管线钢及其制造方法
CN114686760A (zh) * 2022-03-24 2022-07-01 南京钢铁股份有限公司 一种7Ni用钢及其生产方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133312A (ja) * 1984-12-03 1986-06-20 Kawasaki Steel Corp 高じん性低温用鋼板の製造方法
KR102043523B1 (ko) * 2017-12-24 2019-11-12 주식회사 포스코 용접부 인성이 우수한 저온용 강재 및 그 제조방법
CN110129676A (zh) * 2019-05-27 2019-08-16 南京钢铁股份有限公司 一种LNG储罐用7Ni钢板及生产工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011241419A (ja) * 2010-05-17 2011-12-01 Sumitomo Metal Ind Ltd 低温用厚鋼板およびその製造方法
CN104674110A (zh) * 2015-02-09 2015-06-03 北京科技大学 一种压力容器用低温钢板及其生产方法
CN113046655A (zh) * 2021-02-01 2021-06-29 南京钢铁股份有限公司 一种低温韧性优异的宽厚规格管线钢及其制造方法
CN114686760A (zh) * 2022-03-24 2022-07-01 南京钢铁股份有限公司 一种7Ni用钢及其生产方法

Also Published As

Publication number Publication date
CN114686760A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
CN100462466C (zh) 一种生产低温高韧性钢及其钢板的方法
WO2023179059A1 (zh) 一种9Ni用钢及其生产方法
CN101368251B (zh) 一种大厚度临氢设备用钢板及其生产工艺
CN109266970B (zh) 高氮高铬塑料模具钢及其冶炼和热处理方法
CN104762559B (zh) 一种临氢设备用钢板的生产方法
CN108330378A (zh) 一种临氢设备用14Cr1MoR钢的生产方法
WO2022227396A1 (zh) 一种高效焊接桥梁钢及其制造方法
CN103361561B (zh) 接箍料用无缝钢管的制备方法
CN110004371B (zh) 一种耐磨钢及冶炼方法
CN113046652B (zh) 一种420MPa级耐候桥梁钢及其制造方法
CN110273105B (zh) 一种高速工具钢及其制备方法
CN101219434A (zh) 一种基于薄板坯连铸连轧流程生产汽车车轮用钢的方法
CN108559925A (zh) 模具钢及其制备方法
CN110184528A (zh) 一种高温模拟焊后热处理条件下具有优异性能的q345r钢板及其制造方法
CN112981232B (zh) 一种连铸坯成材低压缩比高探伤质量要求的12Cr2Mo1VR钢板及生产工艺
CN114411068A (zh) 用于汽车涡轮壳、排气管的耐热钢及其制备方法
CN110184529A (zh) 一种中低温压力容器封头用碳素钢板及其制造方法
CN115181911B (zh) 特厚Q500qE桥梁钢板及其生产方法
WO2023179058A1 (zh) 一种7Ni用钢及其生产方法
CN109518079A (zh) 一种临氢设备用15CrMoR钢板的生产方法
CN115011878A (zh) 一种高耐硫酸露点腐蚀圆钢及其制备方法
CN114150222B (zh) 一种大厚度低温压力容器用钢板及其制造方法
WO2023179057A1 (zh) 一种09MnNiDR用钢及其生产方法
CN115261746B (zh) 特厚Q420qE桥梁钢板及其生产方法
CN110565024A (zh) 含铌钛550MPa级厚规格耐候钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933109

Country of ref document: EP

Kind code of ref document: A1