WO2022215401A1 - 半導体装置及び車両 - Google Patents

半導体装置及び車両 Download PDF

Info

Publication number
WO2022215401A1
WO2022215401A1 PCT/JP2022/009347 JP2022009347W WO2022215401A1 WO 2022215401 A1 WO2022215401 A1 WO 2022215401A1 JP 2022009347 W JP2022009347 W JP 2022009347W WO 2022215401 A1 WO2022215401 A1 WO 2022215401A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
top plate
cooling
semiconductor device
communication
Prior art date
Application number
PCT/JP2022/009347
Other languages
English (en)
French (fr)
Inventor
貴裕 小山
大輝 吉田
裕一朗 日向
教文 山田
義博 立石
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202280006472.0A priority Critical patent/CN116235300A/zh
Priority to JP2023512866A priority patent/JP7552879B2/ja
Priority to EP22784386.9A priority patent/EP4199078A4/en
Publication of WO2022215401A1 publication Critical patent/WO2022215401A1/ja
Priority to US18/184,193 priority patent/US20230215780A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate

Definitions

  • the present invention relates to semiconductor devices and vehicles.
  • the semiconductor module is mounted on the cooling device. Thereby, the power semiconductor element can be efficiently and stably cooled.
  • the cooling device has multiple radiation fins formed in the top plate.
  • the cooling device is formed with an inlet and an outlet leading to the inside.
  • the coolant is circulated such that the coolant that has flowed into the cooling device from the inlet flows through the plurality of heat radiating fins inside the cooling device and flows out from the outlet.
  • the semiconductor module is placed on the front surface corresponding to the heat radiating fins of the top plate of the cooling device, heat is conducted from the semiconductor module to the heat radiating fins via the top plate.
  • the heat conducted to the radiating fins is radiated via the coolant circulating in the cooling device. As a result, the power semiconductor element is cooled.
  • the top plate of such a cooling device is thick to ensure rigidity and prevent liquid leakage due to corrosion by the refrigerant. However, if the top plate is too thick, the heat radiation performance will deteriorate, and the cooling performance of the cooling device will deteriorate.
  • a semiconductor module having a semiconductor chip and an insulated circuit board on which the semiconductor chip is mounted; and a cooling device having a side wall connection area to which an annular side wall is connected to the back surface of the top plate, wherein the top plate has a rectangular shape in plan view, and a plurality of cooling devices are provided at the center of the back surface along the longitudinal direction.
  • a cooling region in which fins are arranged is set, a first communication region and a second communication region are respectively set on both sides of the cooling region along the width direction, and the side wall connection region is on the back surface of the top plate
  • the cooling area is set in an annular shape including the cooling area, the first communication area, and the second communication area, and the thickness of the cooling area is thinner than the outer edge thickness of the outer edge area outside the side wall connection area of the top plate.
  • deterioration in cooling performance is suppressed, and deterioration in reliability of the semiconductor device and the vehicle including the semiconductor device can be prevented.
  • FIG. 1 is a perspective view of a semiconductor device according to a first embodiment
  • FIG. 1 is a diagram illustrating a cooling device included in a semiconductor device according to a first embodiment
  • FIG. 2 is a plan view of a cooling device included in the semiconductor device of the first embodiment
  • FIG. 2 is a cross-sectional view of a cooling device included in the semiconductor device of the first embodiment
  • FIG. It is a figure explaining the flow of the refrigerant
  • 3 is a cross-sectional view of another cooling device included in the semiconductor device of the first embodiment
  • FIG. FIG. 10 is a cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 1-1 of the first embodiment
  • FIG. 10 is an enlarged cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 1-1 of the first embodiment;
  • FIG. 10 is a cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 1-2 of the first embodiment;
  • FIG. 11 is a cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 1-3 of the first embodiment;
  • FIG. 7 is a cross-sectional view of a cooling device included in a semiconductor device according to a second embodiment;
  • FIG. 11 is a plan view of a cooling device included in a semiconductor device according to a second embodiment;
  • FIG. 13 is a cross-sectional view of a cooling device included in a semiconductor device of modification 2-1 of the second embodiment
  • FIG. 11 is a plan view of a cooling device included in a semiconductor device of modification 2-1 of the second embodiment
  • FIG. 11 is a cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 2-2 of the second embodiment
  • FIG. 11 is a cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 2-3 of the second embodiment
  • 1 is a schematic diagram of a vehicle
  • FIG. 1 is a diagram of an equivalent circuit included in a semiconductor device
  • front surface and “upper surface” represent the XY plane facing upward (+Z direction) in the semiconductor device 1 and the cooling devices 20 and 120 in the drawings.
  • up indicates the direction upward (+Z direction) in the semiconductor device 1 and the cooling devices 20 and 120 in the figures.
  • Back surface” and “lower surface” represent the XY plane facing downward (-Z direction) in the semiconductor device 1 and the cooling device 20 in the figures.
  • downward means the downward direction (-Z direction) in the semiconductor device 1 and the cooling devices 20 and 120 in the figures. Similar directions are meant in other drawings as needed.
  • FIG. 1 is a perspective view of the semiconductor device of the first embodiment.
  • a semiconductor device 1 includes a semiconductor module 10 and a cooling device 20 on which the semiconductor module 10 is mounted.
  • FIG. 4 can be referred to.
  • the semiconductor module 10 has an insulating circuit board 11 and a plurality of semiconductor chips 12 bonded to the front surface of the insulating circuit board 11 .
  • the semiconductor module 10 may also have wiring members (not shown) that electrically connect the front surface of the insulating circuit board 11 and the main electrodes of the semiconductor chip 12 .
  • Wiring members are, for example, bonding wires, bus bars, and lead frames.
  • the semiconductor module 10 may be arranged on a radiator plate and covered with a case.
  • the case may be bonded to the outer peripheral portion of the heat sink on which the semiconductor module 10 is arranged via an adhesive.
  • the inside of the case may be sealed with a sealing member.
  • the sealing member contains a thermosetting resin and a filler contained in the thermosetting resin as a filler.
  • Thermosetting resins are, for example, epoxy resins, phenolic resins, and maleimide resins.
  • Fillers are, for example, silicon oxide, aluminum oxide, boron nitride or aluminum nitride.
  • An example of such a sealing member includes an epoxy resin and a filler as a filler. Fillers are, for example, silicon dioxide, aluminum oxide, boron nitride or aluminum nitride.
  • the insulating circuit board 11 includes an insulating plate 11a, a circuit pattern 11b provided on the front surface of the insulating plate 11a, and a metal plate 11c provided on the back surface of the insulating plate 11a.
  • the insulating plate 11a and the metal plate 11c are rectangular in plan view. Also, the corners of the insulating plate 11a and the metal plate 11c may be R-chamfered or C-chamfered.
  • the size of the metal plate 11c is smaller than the size of the insulating plate 11a in plan view, and is formed inside the insulating plate 11a.
  • the insulating plate 11a is made of a material having insulating properties and excellent thermal conductivity. Such an insulating plate 11a is made of ceramics or insulating resin.
  • Ceramics are aluminum oxide, aluminum nitride, silicon nitride, and the like.
  • the insulating resin is a paper phenol substrate, a paper epoxy substrate, a glass composite substrate, a glass epoxy substrate, or the like.
  • the thickness of the insulating plate 11a is 0.2 mm or more and 2.5 mm or less.
  • the circuit pattern 11b is made of a highly conductive metal. Such metals are, for example, copper, aluminum, or alloys based on at least one of these. Moreover, the thickness of the circuit pattern 11b is 0.1 mm or more and 2.0 mm or less. Plating may be applied to the surface of the circuit pattern 11b in order to improve corrosion resistance. At this time, the plating material used is, for example, nickel, nickel-phosphorus alloy, nickel-boron alloy. Note that the circuit pattern 11b shown in FIG. 1 is an example. If necessary, the number, shape, size, etc. of the circuit pattern 11b may be appropriately selected.
  • the metal plate 11c has a smaller area than the insulating plate 11a and a larger area than the area where the circuit pattern 11b is formed, and has a rectangular shape like the insulating plate 11a. Also, the corners may be R-chamfered or C-chamfered.
  • the metal plate 11c is smaller than the insulating plate 11a and is formed on the entire surface of the insulating plate 11a except for the edges.
  • the metal plate 11c is mainly composed of a metal having excellent thermal conductivity.
  • the metal is, for example, copper, aluminum, or an alloy containing at least one of these.
  • the thickness of the metal plate 11c is 0.1 mm or more and 2.5 mm or less. Plating may be performed to improve the corrosion resistance of the metal plate 11c. At this time, the plating material used is, for example, nickel, nickel-phosphorus alloy, nickel-boron alloy.
  • insulating circuit board 11 for example, a DCB (Direct Copper Bonding) board, an AMB (Active Metal Brazed) board, or a resin insulating board can be used.
  • DCB Direct Copper Bonding
  • AMB Active Metal Brazed
  • the insulated circuit board 11 may be attached to the cooling device 20 via the joining member 14 .
  • the joining member 14 is solder, brazing material, or sintered metal.
  • Lead-free solder is used as the solder.
  • Lead-free solder is mainly composed of an alloy containing at least two of tin, silver, copper, zinc, antimony, indium, and bismuth, for example.
  • the solder may contain additives. Additives are, for example, nickel, germanium, cobalt or silicon. Additives in the solder improve wettability, gloss, and bonding strength, thereby improving reliability.
  • the brazing filler metal contains, for example, at least one of aluminum alloy, titanium alloy, magnesium alloy, zirconium alloy, and silicon alloy as its main component.
  • the insulated circuit board 11 can be joined by brazing using such a joining member 14 .
  • a metal sintered body has silver and a silver alloy as a main component, for example.
  • joining member 14 may be a thermal interface material.
  • Thermal interface materials are adhesives including, for example, elastomeric sheets, room temperature vulcanization (RTV) rubbers, gels, phase change materials, and the like.
  • the semiconductor chip 12 includes a power device element composed mainly of silicon.
  • the semiconductor chip 12 is a general term for the semiconductor chips 12a1 to 12a6 and 12b1 to 12b6. Also, the thickness of the semiconductor chip 12 is, for example, 40 ⁇ m or more and 250 ⁇ m or less.
  • a power device element is a switching element or a diode element.
  • Semiconductor chips 12a1-12a6 include switching elements. The switching element is, for example, an IGBT (Insulated Gate Bipolar Transistor) or a power MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • Such semiconductor chips 12a1 to 12a6 have, for example, drain electrodes (or collector electrodes) as main electrodes on the back surface, and gate and source electrodes (or emitter electrodes) as control electrodes and main electrodes on the front surface. are provided respectively.
  • Semiconductor chips 12b1-12b6 include diode elements. Diode elements are, for example, SBDs (Schottky Barrier Diodes), FWDs (Free Wheeling Diodes) such as PiN (P-intrinsic-N) diodes.
  • Such semiconductor chips 12b1 to 12b6 each have a cathode electrode as a main electrode on the back surface and an anode electrode as a main electrode on the front surface.
  • At least one of a switching element and a diode element is selected from the semiconductor chip 12 as necessary, and the back side thereof is mechanically and electrically bonded to a predetermined circuit pattern 11b by a bonding member 13.
  • the joining member 13 is solder or a metal sintered body.
  • Lead-free solder is used as the solder.
  • Lead-free solder is mainly composed of an alloy containing at least two of tin, silver, copper, zinc, antimony, indium, and bismuth, for example.
  • the solder may contain additives. Additives are, for example, nickel, germanium, cobalt or silicon. Additives in the solder improve wettability, gloss, and bonding strength, thereby improving reliability.
  • Metals used in the metal sintered body are, for example, silver and silver alloys.
  • an RC (Reverse-Conducting)-IGBT having both the functions of an IGBT and an FWD may be used (see semiconductor chips 12c1 to 12c6 in FIG. 11).
  • the semiconductor chip 12 may be a power MOSFET composed mainly of silicon carbide.
  • Such a semiconductor chip 12 has an input electrode (drain electrode) as a main electrode on the back surface, and a gate electrode as a control electrode and an output electrode (source electrode) as a main electrode on the front surface.
  • the cooling device 20 has an inlet through which the coolant flows inside and an outlet through which the coolant that has circulated inside flows out to the outside.
  • the semiconductor module 10 is cooled by discharging the heat from the cooling device 20 and the semiconductor module 10 through the coolant.
  • Water, antifreeze (ethylene glycol aqueous solution), and long-life coolant (LLC), for example, are used as the coolant.
  • Such a cooling device 20 has a rectangular shape including long sides 20a and 20b and short sides 20c and 20d in plan view. Further, the cooling device 20 is formed with fastening holes 20e at least at four corners in plan view.
  • the fastening hole 20e is a through hole into which a boss or the like of an external device on which the semiconductor device 1 is mounted is inserted and fastened to the external device.
  • FIG. 1 shows a case where three semiconductor modules 10 are mounted in the central portion of the front surface of such a cooling device 20 along long sides 20a and 20b.
  • the number of semiconductor modules 10 is not limited to three.
  • the arrangement position and size of the semiconductor module 10 are not limited to those shown in FIG.
  • the cooling device 20 may also include a pump and a heat dissipation device (radiator).
  • the pump causes the coolant to flow into the inlet of the cooling device 20, and the coolant that has flowed out of the outlet to flow into the inlet again, thereby circulating the coolant.
  • the radiator radiates the heat of the coolant to which the heat from the semiconductor module 10 is conducted to the outside.
  • FIG. 2 is a diagram for explaining the cooling device included in the semiconductor device of the first embodiment
  • FIG. 3 is a plan view of the cooling device included in the semiconductor device of the first embodiment
  • 4 is a cross-sectional view of a cooling device included in the semiconductor device of the first embodiment.
  • FIG. 3 transparently shows the internal configuration of the cooling device 20 in plan view.
  • 4 is a cross-sectional view taken along the dashed-dotted line XX in FIG. 3.
  • the cooling device 20 has a top plate 21 , a side wall 22 annularly connected to the back surface of the top plate 21 , and a bottom plate 23 facing the top plate 21 and connected to the back surface of the side wall 22 .
  • the top plate 21 has a rectangular shape surrounded by long sides 20a, 20b and short sides 20c, 20d in plan view, and fastening holes 20e are formed at the four corners. Corners of the top plate 21 may be R-processed in plan view.
  • the top plate 21 is divided into a flow path area 21a and outer edge areas 21e and 21f, as shown in FIG.
  • a side wall 22 is connected to the back surface of the top plate 21, as will be described later.
  • the channel region 21 a is a region surrounded by the side walls 22 .
  • the channel region 21a is further divided into a cooling region 21b and communication regions 21c and 21d parallel to the long sides 20a and 20b.
  • the cooling area 21b is a central rectangular area parallel to the long sides 20a and 20b (longitudinal direction) of the top plate 21 .
  • a plurality of semiconductor modules 10 are arranged in a row along the Y direction in a cooling area 21b on the front surface of the top plate 21 .
  • the arrangement positions of the semiconductor modules 10 are indicated by dashed lines.
  • a plurality of radiating fins 24f are formed in the cooling region 21b on the back surface of the top plate 21.
  • the maximum thickness T1 is 2.0 mm or more and 5.0 mm or less.
  • the minimum thickness T2 is 40% or more and 60% or less of the thickness T1, for example, 0.8 mm or more and 3.2 mm or less.
  • a plurality of heat radiating fins 24f extend so as to connect between the cooling area 21b on the back surface of the top plate 21 and the bottom plate 23.
  • the height (length in the Z direction) of the plurality of radiation fins 24f is 1.5 mm or more and 15.0 mm or less. Preferably, it is 2.0 mm or more and 12.0 mm or less.
  • FIG. 3 shows a plane of the heat radiation fins 24f
  • FIG. 5 shows a side surface of the heat radiation fins 24f.
  • FIG. 5 schematically shows the radiating fins 24f and does not necessarily match FIG.
  • the number of heat radiation fins 24f arranged along the long sides 20a and 20b is greater than the number of heat radiation fins 24f arranged along the short sides 20c and 20d.
  • the cooling region 21b includes a region in which the radiation fins 24f are provided and flow paths between the radiation fins 24f.
  • the interval between the adjacent radiation fins 24f may be narrower than the width of the radiation fins 24f themselves.
  • the radiation fins 24f have upper and lower ends in the ⁇ Z directions. The upper ends of the heat radiation fins 24f are thermally and mechanically connected to the back surface of the top plate 21. As shown in FIG.
  • the upper ends of the radiation fins 24f are formed integrally with the top plate 21, that is, the radiation fins 24f integrally protrude from the back surface of the top plate 21 in the -Z direction.
  • the lower ends of the radiation fins 24f are fixed to the front surface of the bottom plate 23 (inside the cooling device 20).
  • the extending direction of the radiation fins 24f with respect to the Z direction is substantially orthogonal to the main surfaces of the top plate 21 and the bottom plate 23, respectively.
  • the radiation fins 24f may each be pin fins.
  • each of the plurality of radiation fins 24f has a rectangular cross-sectional shape parallel to the main surface of the top plate 21 . In FIG. 3, it forms a rhombus.
  • the plurality of radiation fins 24f are arranged on the top plate 21 so that none of the sides of the rectangle are perpendicular to the main flow direction of the coolant in the cooling part 24a when coolant flows into the cooling part 24a, which will be described later. may be placed in the cooling region 21b of In the present embodiment, the main flow direction of the coolant in the cooling region 21b is the X direction (the direction parallel to the short sides 20c and 20d).
  • the plurality of radiation fins 24f are arranged in the cooling area 21b so that none of the sides of the rectangle are perpendicular to the X direction.
  • the plurality of radiation fins 24f are arranged so that none of the sides of the rectangle are orthogonal to the X direction, one diagonal line is inclined with respect to the Y direction, and the other diagonal line is inclined with respect to the X direction. may be placed in Compared to the case where the plurality of radiation fins 24f are arranged in the cooling area 21b so that one side of the rectangle is orthogonal to the distribution direction, any one of the above-described configurations also provides cooling. The flow velocity loss of the coolant flowing through the portion 24a can be reduced, and the heat radiation efficiency can be enhanced.
  • the radiation fins 24f form a rhombus whose short sides 20c and 20d are shorter than their long sides 20a and 20b on the XY plane shown in FIG.
  • the radiation fins 24f may have a rhombic cross section with a side length of 0.5 mm or more and 0.8 mm or less. Each corner of the rhombic cross section may be rounded.
  • the cross-sectional shape of each of the plurality of radiation fins 24f may be polygonal, for example, square.
  • each of the plurality of radiation fins 24f may have a circular cross-sectional shape, for example, a perfect circle.
  • the plurality of radiation fins 24f may be arranged in a predetermined pattern in the cooling region 21b.
  • the plurality of radiation fins 24f are arranged in a zigzag arrangement as shown in FIG.
  • the plurality of radiation fins 24f may be arranged in a square pattern in the cooling region 21b.
  • the communication areas 21c and 21d are areas adjacent to both sides of the cooling area 21b on the top plate 21 and along the cooling area 21b. Therefore, the communication regions 21c and 21d are regions from the cooling region 21b to the side walls 22 (on the long sides 20a and 20b). In the case of FIG. 3, the communicating regions 21c and 21d are trapezoidal. Depending on the range surrounded by the side wall 22, the communicating regions 21c and 21d may be, for example, rectangular, semicircular, or mountain-like with a plurality of peaks. Further, corners of the communicating regions 21c and 21d may be rounded so as to have a curvature in plan view. In this case, the connecting portions of the side walls 22 forming the communication regions 21c and 21d are rounded.
  • the coolant flowing through the communication regions 21c and 21d can easily flow without staying at the smooth corners. As a result, it is possible to prevent such corrosion of the corners. Also, the communicating regions 21c and 21d do not necessarily have to be symmetrical. Although the details will be described later, the outflow port 23b and the inflow port 23a are formed near the short sides 20c and 20d in correspondence with the communication regions 21c and 21d, respectively. In addition, the outflow port 23b and the inflow port 23a are formed at the center of the communication regions 21c and 21d in the X direction.
  • the communication regions 21c and 21d may have a shape that facilitates the outflow and inflow of the coolant with respect to the outflow port 23b and the inflow port 23a.
  • the communication region 21c may have a shape that narrows as it approaches the outflow port 23b so as to force the refrigerant into the outflow port 23b.
  • the outer edge areas 21e and 21f are areas on the top plate 21 outside the flow path area 21a (the cooling area 21b and the communication areas 21c and 21d). That is, the outer edge regions 21e and 21f are regions from the side wall 22 of the top plate 21 to the outer edge of the top plate 21 in plan view.
  • the fastening hole 20e and the fastening reinforcing portion 20e1 described above are formed in the outer edge regions 21e and 21f.
  • the thickness of the outer edge regions 21 e and 21 f of the top plate 21 is the maximum thickness T 1 of the top plate 21 .
  • At least the cooling region 21b of the top plate 21 has a thickness T2, which is thinner than the thickness T1 of the outer edge regions 21e and 21f.
  • the communicating regions 21c and 21d of the top plate 21 also have the thickness T2.
  • the front surface of the top plate 21 on which the semiconductor modules 10 are mounted is flat without a step in the thickness direction (Z direction) and forms the same plane.
  • a cooling area 21b and communication areas 21c and 21d on the back surface of the top plate 21 are recessed toward the front surface.
  • the side wall 22 is annularly formed on the back surface of the top plate 21 so as to surround the cooling area 21b and the communication areas 21c and 21d.
  • the upper ends of the side walls 22 in the +Z direction are fixed to the back surface of the top plate 21 .
  • the lower ends of the side walls 22 in the ⁇ Z direction are fixed to the front surface of the bottom plate 23 .
  • the side wall 22 has a portion parallel to the short sides 20c and 20d along the cooling region 21b, a portion parallel to the long sides 20a and 20b along the communication regions 21c and 21d, and these portions. It has 6 sides including connecting parts. Corners of joints on the inner side of the annular side wall 22 may be rounded.
  • the side wall 22 does not have to be composed of six sides as long as it includes a rectangular cooling area 21b in a plan view and communication areas 21c and 21d on both sides of the cooling area 21b.
  • the height of the side wall 22 (the length in the Z direction) corresponds to the height of the plurality of radiation fins 24f, and is, for example, 1.5 mm or more and 15.0 mm or less. Preferably, it is 2.0 mm or more and 12.0 mm or less.
  • the height of the side wall 22 differs between the outer edge regions 21e and 21f and the communication regions 21c and 21d, the height of the communication regions 21c and 21d is referred to.
  • the height of the side wall 22 on the side of the communication regions 21c and 21d is the same as the height on the side of the communication regions 21c and 21d, and the thickness T1 of the top plate 21 on the side of the outer edge regions 21e and 21f to the height of the side wall 22 on the side of the communication regions 21c and 21d.
  • the height may be the length obtained by subtracting the thickness T2 of the top plate 21 .
  • the thickness (length in the X direction) of the side wall 22 is such that it is held between the top plate 21 and the bottom plate 23 as will be described later, and the strength of the cooling device 20 is maintained while the cooling performance is not lowered. For example, it is 1.0 mm or more and 3.0 mm or less.
  • a fastening reinforcing portion 20e1 formed around the fastening hole 20e may be formed on the back surface of the top plate 21 (inside the cooling device 20).
  • the fastening reinforcing portion 20e1 is formed with a through hole corresponding to the fastening hole 20e and is a screw frame.
  • the side walls 22 are sandwiched between the top plate 21 and the bottom plate 23 to maintain the strength of the cooling device 20 . Therefore, the height of the fastening reinforcing portion 20 e 1 is substantially the same as the height of the side wall 22 . More specifically, the height of the fastening reinforcing portion 20e1 is substantially the same as the height of the side wall 22 on the side of the outer edge region 21e.
  • the height of the fastening reinforcing portion 20e1 may be substantially the same as the height obtained by subtracting (T1-T2), which is the height of the stepped portion 21g described later, from the height of the plurality of heat radiating fins 24f.
  • the width of the fastening reinforcement portion 20e1 (the length in the radial direction from the center of the fastening hole 20e in plan view) is 0.7 times or more and 2.0 times or less the diameter of the fastening hole 20e.
  • the bottom plate 23 has a flat plate shape and has the same shape as the top plate 21 in plan view. That is, the bottom plate 23 has a rectangular shape surrounded by long sides and short sides in a plan view, and fastening holes corresponding to the top plate 21 are formed at the four corners. The corners of the bottom plate 23 may also be rounded. Further, the bottom plate 23 has parallel surfaces on the front surface and the back surface. The back surface of the bottom plate 23 is flat without a step and forms the same plane. Furthermore, the back surface of the bottom plate 23 and the front surface of the top plate 21 may also be parallel. The bottom plate 23 is formed with an inflow port 23a and an outflow port 23b through which the coolant flows in and out.
  • the inlet 23a is formed on the long side 20b side and the short side 20d side corresponding to the communication region 21d.
  • the outflow port 23b is formed on the long side 20a side and the short side 20c side corresponding to the communication region 21c. That is, the inflow port 23 a and the outflow port 23 b are formed at points symmetrical with respect to the center point of the bottom plate 23 .
  • the fastening reinforcing portion 20e1 is connected around the fastening hole of the bottom plate 23. As shown in FIG.
  • the bottom plate 23 needs to have a thickness that does not degrade the cooling performance while maintaining the strength of the cooling device 20 as a whole.
  • the thickness T3 of the bottom plate 23 is 1.0 times or more and 5.0 times or less the thickness T1 of the outer edge regions 21e and 21f of the top plate 21 . More preferably, it is 2.0 times or more and 3.0 times or less. It is preferable that the thickness T3 of the bottom plate 23 is, for example, 2.0 mm or more and 10.0 mm or less.
  • a flow path portion 24 surrounded by the top plate 21, the side walls 22, and the bottom plate 23 is configured inside the cooling device 20 configured in this manner.
  • the passage portion 24 is further divided into a cooling portion 24a corresponding to the cooling region 21b and communication portions 24b and 24c corresponding to the communication regions 21c and 21d.
  • a plurality of radiation fins 24f connecting the top plate 21 and the bottom plate 23 extend to the cooling portion 24a.
  • the communicating portions 24 b and 24 c are composed of communicating regions 21 c and 21 d of the top plate 21 , side walls 22 and bottom plate 23 .
  • the communicating portion 24c is connected to the cooling portion 24a.
  • the coolant that has flowed in from the inflow port 23a flows through the communicating portion 24c to the cooling portion 24a.
  • the communicating portion 24b is connected to the cooling portion 24a. Refrigerant from the cooling portion 24a flows into the communication portion 24b and flows out from the outlet 23b. In addition, the flow of the coolant in the cooling device 20 will be described later.
  • the cooling device 20 includes outer edge regions 21e and 21f of the top plate 21, the outside of the side walls 22, the bottom plate 23, and screw frames 24d and 24e.
  • Each of the cooling devices 20 is mainly composed of a metal with excellent thermal conductivity.
  • the metal is, for example, copper, aluminum, or an alloy containing at least one of these.
  • Plating may be performed to improve the corrosion resistance of the cooling device 20 .
  • the plating material used is, for example, nickel, nickel-phosphorus alloy, nickel-boron alloy.
  • the top plate 21 on which the plurality of radiating fins 24f are formed is formed by, for example, forging or casting (die casting). In the case of forging, the top plate 21 having the plurality of heat radiating fins 24f and the side walls 22 formed thereon is obtained by pressurizing a block-shaped member containing the metal as a main component using a mold to plastically deform it.
  • a molten die cast material is poured into a predetermined mold, cooled, and taken out from the mold to obtain the top plate 21 having the plurality of radiating fins 24f and the side walls 22 formed thereon.
  • the die-cast material at this time is, for example, an aluminum-based alloy.
  • the top plate 21 on which the plurality of radiating fins 24f and the side walls 22 are formed may be formed by cutting a block-shaped member containing the metal as a main component.
  • the bottom plate 23 is joined to the plurality of radiating fins 24 f of the top plate 21 and the side walls 22 .
  • the joining at this time is performed by brazing. Therefore, the rear surface, which is the end portion of the side wall 22 extending from the main surface (back surface) of the top plate 21, and the end portion of the radiating fins 24f are joined to the front surface of the bottom plate 23 via brazing filler metal.
  • the brazing material used in the brazing process has a melting point lower than that of the die-cast material.
  • a brazing material is, for example, an alloy containing aluminum as a main component.
  • the fastening reinforcing portion 20e1 may also be separately formed on the top plate 21 and joined to the bottom plate 23 by brazing. Further, in the present embodiment, a case is shown in which a plurality of radiation fins 24f are connected to the top plate 21. As shown in FIG. Not limited to this case, a plurality of radiating fins 24f may be formed in a region of the bottom plate 23 corresponding to the cooling region 21b. As described above, the cooling device 20 is obtained.
  • FIG. 5 is a diagram for explaining the flow of coolant in the cooling device of the first embodiment. Note that FIG. 5 corresponds to FIG. Also, the dashed arrows in FIG. 5 indicate the direction in which the coolant flows. The same applies to the dashed arrows in FIG.
  • a drainage head 23d1 is attached to the inflow port 23a via an annular rubber packing 23c1 surrounding the inflow port 23a for circulating the refrigerant.
  • a drainage pipe 23e1 is attached to the drainage head 23d1.
  • a drainage head 23d2 is also attached to the outflow port 23b via an annular rubber packing 23c2 surrounding the outflow port 23b.
  • a drain pipe 23e2 is attached to the drain head 23d2.
  • the pumps are connected to drain pipes 23e1 and 23e2.
  • the coolant that has flowed in from the inflow port 23a flows into the communicating portion 24c and spreads within the communicating portion 24c.
  • the refrigerant flowing from the communicating portion 24c spreads to the short side 20c (Y direction) side and also spreads to the long side 20a (X direction) side.
  • the coolant flows in from the inflow port 23a it spreads directly toward the long side 20a (X direction). In this manner, the coolant flows into the entire side portion of the cooling portion 24a facing the long side 20b.
  • Heat generated from the semiconductor module 10 is conducted through the top plate 21 to the plurality of radiation fins 24f.
  • the refrigerant receives heat from the plurality of heat radiation fins 24f when flowing between the plurality of heat radiation fins 24f.
  • the thickness T2 of the cooling region 21b of the top plate 21 is configured to be thinner than the thickness T1 of the outer edge regions 21e and 21f. That is, the distance from the front surface of the cooling region 21b of the top plate 21 to the plurality of heat radiation fins 24f is shortened. Therefore, the heat of the semiconductor module 10 is easily conducted to the plurality of radiation fins 24f. A large amount of heat can be conducted to the coolant flowing through the gaps between the heat radiating fins 24f, thereby improving the cooling performance.
  • the refrigerant that has received heat in this way flows into the communicating portion 24b from the side facing the long side 20a of the cooling portion 24a, and flows out from the outlet 23b. .
  • the coolant flows out while containing the heat conducted from the plurality of radiating fins 24f.
  • the refrigerant that has flowed out is cooled by the heat radiating device and is again introduced into the cooling device 20 through the inlet 23a by the pump.
  • the heat of the semiconductor modules 10 is discharged to the outside through the circulation of the coolant through the cooling device 20, thereby cooling the semiconductor modules 10. As shown in FIG.
  • the thickness T2 of the communication regions 21d and 21c is also thinner than the thickness T1 of the outer edge regions 21e and 21f. That is, the volume (cross-sectional area) of the cooling portion 24a and the communication portions 24b and 24c increases. Therefore, the pressure loss of the refrigerant flowing through the cooling portion 24a and the communication portions 24b, 24c is reduced, and the refrigerant flows at a substantially constant flow rate without deceleration through the cooling portion 24a and the communication portions 24b, 24c. becomes easier. Since the flow rate of the coolant between the plurality of heat radiating fins 24f does not decrease, a decrease in cooling capacity is prevented.
  • the semiconductor device 1 has a semiconductor module 10 having a semiconductor chip 12 and an insulating circuit board 11 on which the semiconductor chip 12 is mounted, and a top plate 21 on which the semiconductor module 10 is arranged. and a cooling device 20 having a side wall connection region 22 a to which the annular side wall 22 is connected to the rear surface of the cooling device 20 .
  • the top plate 21 has a rectangular shape in plan view, and a cooling region 21b in which a plurality of heat radiating fins 24f are arranged in the center of the back surface along the longitudinal direction is set, and the cooling area 21b along the lateral direction is set. Communicating areas 21c and 21d are set on both sides of the area 21b.
  • the side wall connection region 22a is annularly set on the back surface of the top plate 21 including the cooling region 21b and the communication regions 21c and 21d. It is thinner than the thickness T1 of the outer edge regions 21e and 21f outside from. Therefore, the distance from the front surface of the cooling region 21b of the top plate 21 to the plurality of heat radiation fins 24f is shortened. Then, the heat of the semiconductor module 10 can be easily conducted to the plurality of heat radiating fins 24f, and the cooling performance of the coolant can be improved. Therefore, deterioration in reliability of the semiconductor device 1 can be prevented.
  • the cooling performance of the cooling device 20 can be further improved, and a decrease in reliability of the semiconductor device 1 can be suppressed.
  • Modifications of the thickness of the communication regions 21c and 21d of the top plate 21 will be described below.
  • the semiconductor device 1 described in the modified example has the same configuration as the semiconductor device 1 already described. However, only the thicknesses of the communicating regions 21c and 21d of the top plate 21 of the cooling device 20 are different. In the description of the modified example, only the changed parts will be mainly described.
  • the cooling device 20 includes a top plate 21, a side wall 22 annularly connected to the back surface of the top plate 21, and a bottom plate 23 facing the top plate 21 and connected to the back surface of the side wall 22. It is structured as a unit including The cooling device 20 does not necessarily have to have such a configuration. Another example of the cooling device 20 will be described with reference to FIG. FIG. 6 is a cross-sectional view of another cooling device included in the semiconductor device of the first embodiment. 6 is a cross-sectional view of cooling device 120 and corresponds to the cross-sectional view of FIG.
  • the cooling device 120 also includes a top plate 21 , a side wall 22 annularly connected to the back surface of the top plate 21 , and a bottom plate 23 facing the top plate 21 and connected to the back surface of the side wall 22 .
  • the side wall 22 and the bottom plate 23 are integrally formed separately.
  • the cooling device 120 is configured by separately attaching a bottom plate 23 having side walls 22 to the top plate 21 described with reference to FIGS.
  • the side walls 22 are connected to the side wall connecting regions 22a on the side of the connecting regions 21c and 21d of the outer edge regions 21e and 21f of the top plate 21. It is attached.
  • the side wall connecting region 22 a is set in the entire region where the annular side wall 22 is connected to the back surface of the top plate 21 . Therefore, in plan view, the side wall connection region 22a and the side wall 22 of the top plate 21 correspond to the same position.
  • the semiconductor device 1 including such a cooling device 120 is shipped with the semiconductor module 10 joined to the top plate 21 on which a plurality of radiation fins 24f are formed.
  • a bottom plate 23 having side walls 22 is attached to the top plate 21 to which the semiconductor module 10 is joined.
  • the side walls 22 are connected to the side wall connection regions 22a of the top plate 21 .
  • the semiconductor device 1 including the cooling device 120 is obtained.
  • cooling device 20 included in the semiconductor device 1 of the first embodiment will be described below.
  • the cooling device 20 will be described as an example.
  • the modification here can be similarly applied to the cooling device 120 shown in FIG. 6, and the same effect can be obtained.
  • FIG. 7 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device of Modification 1-1 of the first embodiment
  • FIG. 8 is a semiconductor device of Modification 1-1 of the first embodiment
  • 3 is an enlarged cross-sectional view of a main part of a cooling device included in the device
  • FIG. 7 shows an enlarged view of the vicinity of the communication region 21c of the top plate 21 of FIG. 4
  • FIG. 8 shows an enlarged view of FIG.
  • the communicating region 21c of the top plate 21 will be explained, and the explanation of the communicating region 21d will be omitted.
  • the configuration of the communication region 21c can also be applied to the communication region 21d of the top plate 21 in the same manner.
  • the thickness of the communicating region 21c of the top plate 21 is such that the outer edge region side portion 21c2 on the outer edge region 21e side is thicker than the cooling region side portion 21c1 on the cooling region 21b side.
  • the thickness of the outer edge region side portion 21c2 of the top plate 21 is the same as the thickness T1 of the outer edge region 21e.
  • the thickness of the cooling area side portion 21c1 of the top plate 21 is the same as the thickness T2 of the cooling area 21b.
  • the outer edge region side portion 21c2 and the cooling region side portion 21c1 of the top plate 21 are connected by a stepped portion 21g.
  • the stepped portion 21g is connected with an inclination.
  • the inclination is preferably 10 degrees or more and 45 degrees or less, more preferably 20 degrees or more and 30 degrees or less, with respect to the front surface (XY plane) of the communicating region 21c of the top plate 21 .
  • the thickness of the communication region 21c of the top plate 21 increases from the thickness T2 of the cooling region side 21c1 to the thickness T1 of the outer edge region side 21c2 via the stepped portion 21g. .
  • a stepped portion 21g having a height (length in the Z direction) obtained by subtracting the thickness T2 of the cooling region side portion 21c1 from the thickness T1 of the outer edge region side portion 21c2 is formed on the back surface of the top plate 21 .
  • the height (T1-T2) of the step portion 21g may be 0.4 times or more and 0.6 times or less the thickness T1 of the outer edge region side portion 21c2.
  • the height (T1-T2) of the stepped portion 21g may be 0.8 mm or more and 3.2 mm or less.
  • the length of the stepped portion 21g (the length in the direction parallel to the front surface of the top plate 21, the length in the X direction) is 1.0 times or more and 5.0 times or less the height of the stepped portion 21g. It's okay. More preferably, it is 1.7 times or more and 2.8 times or less.
  • the top plate 21 and the side wall 22 are joined at a substantially right angle. There is a possibility that the coolant that flows through such a communication portion 24b will stay in this corner portion. If the coolant stays in a predetermined place in the cooling device 20, the staying place will corrode and the possibility of opening a hole increases. In particular, since the thickness T2 of the communication region 21c of the top plate 21 is thinner than the thickness T1 of the outer edge region 21e, it is conceivable that the time required for corrosion and holes to open is shortened.
  • the intersection point between the top plate 21 and the side wall 22 is the intersection point O
  • the intersection point between the outer edge region side portion 21c2 and the stepped portion 21g is the intersection point D
  • the cooling region side portion 21c1 and the stepped portion 21g is the position P
  • the position corresponding to the end of the outer edge region 21e side (or the outer edge region 21f side) of the outlet 23b (or the inlet 23a) from the side wall 22 is the position P
  • the cooling region 21b to the outlet 23b ( Alternatively, the position Q corresponds to the end of the inlet 23a) on the side of the cooling region 21b.
  • such an outer edge region side portion 21c2 has a length R from the intersection point O to the intersection point D of the top plate 21 and the side wall 22 that is the same as the thickness T1 of the outer edge region 21e of the top plate 21. , or the thickness is preferably equal to or greater than T1. Therefore, the intersection point D of the outer edge region side portion 21c2 can extend from the side wall 22 to the position P. As shown in FIG. Also, the intersection point E of the cooling region side portion 21c1 may be between the position P and the position Q corresponding to the outflow port 23b (or the inflow port 23a).
  • the stepped portion 21g enters a position corresponding to the outflow port 23b (or the inflow port 23a), thereby improving the flow of the coolant between the outflow port 23b (or the inflow port 23a) and the cooling region 21b.
  • the stepped portion 21g may be provided so as to be positioned at the edge of the side wall 22, and the range of the cooling area side portion 21c1 may be maintained as long as possible.
  • the connecting portion between the outer edge region side portion 21c2 and the stepped portion 21g may be R-chamfered as shown in FIG.
  • the connecting portion By chamfering the connecting portion, the cross-sectional area of the communicating portion 24b can be maintained as large as possible while maintaining the length R in FIG.
  • the outer edge area side portion 21c2 of the top plate 21 is positioned between the side walls 22 and forms an R surface at the connection point with the stepped portion 21g, thereby reducing the pressure loss of the refrigerant flowing through the communication portion 24b. Therefore, it is possible to prevent holes from forming in the communicating portion 24b.
  • FIG. 9 is a cross-sectional view of a main part of a cooling device included in a semiconductor device of modification 1-2 of the first embodiment. 9 shows an enlarged view of the vicinity of the communication region 21c of the top plate 21 of FIG.
  • Modification 1-2 is the case where stepped portion 21g is formed in the vicinity of cooling region 21b in top plate 21 in Modification 1-1. That is, the outer edge region side portion 21c2 of the top plate 21 extends toward the cooling region 21b side more than the outer edge region side portion 21c2 of the modified example 1-1. Also, the cooling area side portion 21c1 of the top plate 21 is shorter than the cooling area side portion 21c1 of Modification 1-1.
  • the outer edge region side portion 21c2 of the top plate 21 extends toward the cooling region 21b side more than the outer edge region side portion 21c2 of Modified Example 1-1.
  • the cross-sectional area of the communicating portion 24b becomes narrower than that of the cooling device 20 shown in FIGS. That is, the flow velocity of the refrigerant flowing through the communicating portion 24b increases, and the pressure of the refrigerant flowing increases. For this reason, the foreign matter present in the communication portion 24b is easily discharged from the outlet 23b together with the refrigerant.
  • the vicinity of the side wall 22 of the top plate 21 has the thickness T1. As a result, even if the coolant stays in the connecting portion of the communication region 21 c of the top plate 21 with the side wall 22 , holes are less likely to form.
  • the intersection point between the top plate 21 and the side wall 22 is the intersection point O
  • the intersection point between the outer edge region side portion 21c2 and the stepped portion 21g is the intersection point D
  • the cooling region side portion is the intersection point E
  • the position corresponding to the end portion of the outflow port 23b (or the inflow port 23a) on the outer edge region 21e side (or the outer edge region 21f side) from the side wall 22 is the position P
  • the cooling region 21b corresponds to the end of the outflow port 23b (or the inflow port 23a) on the side of the cooling region 21b.
  • the cooling region side portion 21c1 is too short (with respect to the X direction) and the stepped portion 21g is too close to the cooling region 21b of the top plate 21, the thermal conductivity of the cooling region 21b of the top plate 21 is reduced. There is a risk of However, in Modification 1-2, as shown in FIG. 8, the cooling region side portion 21c1 is equal to or thicker than the thickness T2 of the cooling region 21b of the top plate 21 from the cooling region 21b. long. In the top plate 21, for example, the intersection point E of the cooling area side portion 21c1 can extend from the cooling area 21b to the position Q. As shown in FIG.
  • the cooling region side portion 21c1 exceeds the position Q, the top plate 21 above the outlet 23b has a thickness of T2, and the flow velocity of the coolant flowing through the outlet 23b may not increase sufficiently. Therefore, by extending the intersection E of the cooling region side portion 21c1 of the top plate 21 to the position Q, the flow velocity of the coolant can be reliably increased. Further, the intersection point D of the outer edge region side portion 21c2 may be between the position P and the position Q corresponding to the outflow port 23b (or the inflow port 23a).
  • part of the stepped portion 21g enters a position corresponding to the outflow port 23b (or the inflow port 23a), thereby further improving the flow of the coolant between the outflow port 23b (or the inflow port 23a) and the cooling region 21b. can be done.
  • FIG. 10 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device according to Modification 1-3 of the first embodiment. 10 shows an enlarged view of the vicinity of the communicating region 21c of the top plate 21 of FIG. Also in FIG. 10, as in FIG. 6, the intersection point of the top plate 21 and the side wall 22 is the intersection point O, and the side wall 22 is closer to the outer edge region 21e (or the outer edge region 21f) of the outflow port 23b (or the inflow port 23a). ) is the position P, and the position Q is the end of the cooling region 21b to the cooling region 21b side of the outflow port 23b (or the inflow port 23a).
  • two stepped portions 21g1 and 21g2 are formed in the communication region 21c of the top plate 21.
  • the portion 21c3 and the outer edge region side portion 21c2 are thickened.
  • the cooling region side portion 21c1 of the top plate 21 has a thickness of T2, and the outer edge region side portion 21c2 has a thickness of T1.
  • the thickness of the intermediate portion 21c3 is thicker than the thickness T2 and thinner than the thickness T1.
  • intersection point D The intersection point of the outer edge region side portion 21c2 and the stepped portion 21g2 closest to the outer edge region 21e is defined as an intersection point D
  • intersection point E the intersection point of the cooling region side portion 21c1 and the stepped portion 21g1 closest to the cooling region 21b is defined as an intersection point E.
  • the cooling device 20 of Modification 1-3 As in Modification 1-1, holes due to corrosion are less likely to form. Further, in the cooling device 20 of Modification 1-3, the cross-sectional area of the communication portion 24b is narrower than in the cooling device 20 of Modification 1-1. Therefore, in the cooling device 20 of Modification 1-3, it is possible to eliminate foreign matter inside and improve the cooling performance more than in the case of the cooling device 20 of Modification 1-1.
  • the cross-sectional area of the communicating portion 24b is larger than in the cooling device 20 of Modification 1-2. Therefore, in the cooling device 20 of Modification 1-3, the pressure loss to the refrigerant flowing through the communication portion 24b can be reduced more than in the cooling device 20 of Modification 1-2, and the cooling performance is improved. be able to.
  • cooling device 20 of Modification 1-3 holes are less likely to form due to corrosion, foreign matter can be discharged, pressure loss to the refrigerant can be reduced, and cooling performance can be improved. A decrease in reliability of the cooling device 20 can be further suppressed.
  • the intermediate portion 21c3 of the top plate 21 preferably corresponds to the outflow port 23b (or the inflow port 23a) when viewed from the side. That is, at least part of the intermediate portion 21c3 may be between the position P and the position Q corresponding to the outflow port 23b (or the inflow port 23a).
  • the stepped portion 21g1 of the top plate 21 preferably corresponds to the cooling region 21b side of the outflow port 23b in a side view. That is, in the top plate 21, the intersection point E of the stepped portion 21g1 is located on the cooling region 21b side from the position Q corresponding to the end of the outflow port 23b on the cooling region 21b side in a side view.
  • intersection point D of the stepped portion 21g2 is located on the outer edge region 21e side from the position P corresponding to the end portion of the outflow port 23b on the outer edge region 21e side in a side view. Therefore, the flow velocity of the refrigerant flowing through the outlet 23b can be increased more reliably than in the case of Modification 1-1.
  • stepped portions 21g1 and 21g2 are provided in the communicating region 21c of the top plate 21, and the stepped portions 21g1 and 21g2 have three different height portions. .
  • the number of stepped portions may be three or more, and each stepped portion may have four or more portions with different heights.
  • FIG. 11 is a cross-sectional view of a cooling device included in the semiconductor device of the second embodiment.
  • FIG. 12 is a plan view of a cooling device included in the semiconductor device of the second embodiment.
  • the semiconductor device 1 according to the second embodiment will be described using the cooling device 120 described with reference to FIG. It is also possible to apply the cooling device 20 described with reference to FIG. 4 to the semiconductor device 1 of the second embodiment.
  • the semiconductor device 1 In order to reduce the size of the semiconductor device 1, priority is given to reducing the size of the cooling area 21b while maintaining the size of the semiconductor module 10.
  • FIG. If the cooling area 21b provided with the heat radiating fins 24f is reduced in size, the semiconductor module 10 is arranged on the cooling area 21b, but there is a range protruding from the cooling area 21b. In other words, the radiation fins 24f do not exist directly below the region of the semiconductor module 10 protruding from the cooling region 21b.
  • the semiconductor device 1 generates thermal stress due to the difference in linear expansion coefficient between the semiconductor module 10 (semiconductor chip 12 and insulating circuit board 11) and the cooling device 120 (top plate 21).
  • the linear expansion coefficient of the top plate 21 eg, aluminum
  • the linear expansion coefficient of the sealing member eg, epoxy resin
  • the semiconductor device 1 (cooling device 120 ) is increased.
  • the sealing member may peel off from the vicinity of the insulated circuit board 11 . This leads to deterioration in reliability of the semiconductor device 1 .
  • the relaxation plate 25 is provided on the back surface of the top plate 21 (the surface facing the bottom plate 23).
  • the relief plate 25 is formed along the width direction of the top plate 21 . That is, the outer (outer edge regions 21e, 21f side) end of the relaxation plate 25 is positioned on the side wall 22 of the top plate 21, and the inner end E1 is positioned inside the outer edge E2 of the insulated circuit board 11 (protruding region). 21h, 21i).
  • the relaxation plate 25 is arranged in such protruding regions 21h and 21i when the radiating fins 24f are not provided in the protruding regions 21h and 21i from the cooling region 21b of the semiconductor module 10.
  • FIG. 11 and 12 the semiconductor module 10 protrudes from both edges (in the ⁇ X direction) of the cooling region 21b.
  • relief plates 25 are provided in protruding regions 21h and 21i on both sides of the cooling region 21b.
  • the relief plate 25 is provided on the top plate 21 corresponding to the one protruding region.
  • the end portion E1 of the relaxation plate 25 may be positioned within the protruding regions 21h and 21i inside the outer edge portion E2 of the insulating circuit board 11, and may be in contact with the outermost heat radiation fins 24f.
  • the end E1 of the relaxation plate 25 is within the protruding regions 21h and 21i and is spaced (outwardly) from the outermost radiation fins 24f.
  • the end portion E1 of the relaxation plate 25 does not enter inside the outermost radiation fins 24f (protruding regions 21h and 21i). If the end portion E1 of the relaxation plate 25 gets inside the outermost heat radiation fins 24f, the cooling performance of the cooling region 21b is deteriorated.
  • the combined lamination thickness T3 of the relaxation plate 25 and the top plate 21 of the communication region 21c is the same as the thickness T1.
  • the lamination thickness T3 the thickness of the relaxation plate 25
  • the thermal stress generated in the cooling device 120 can be further relaxed.
  • the relaxation plate 25 is too thick, the pressure loss of the coolant flowing through the cooling portion 24a and the communicating portions 24b and 24c will increase.
  • the heat dissipation of the coolant flowing through the communication regions 21c and 21d from the front surface of the top plate 21 is also deteriorated. Therefore, the thickness of the relaxation plate 25 may be selected such that the lamination thickness T3 is the maximum thickness T1.
  • the relaxation plate 25 is separately attached to the top plate 21, as an example.
  • the relief plate 25 may be formed integrally with the outer edge regions 21 e and 21 f of the top plate 21 .
  • a modified example of the relaxation plate 25 included in the cooling device 120 of the semiconductor device 1 of the second embodiment will be described below.
  • the cooling device 120 will be described as an example.
  • the modification here can be similarly applied to the cooling device 20 shown in FIG. 4, and the same effect can be obtained.
  • FIG. 13 is a cross-sectional view of a cooling device included in a semiconductor device of modification 2-1 of the second embodiment.
  • FIG. 14 is a plan view of a cooling device included in a semiconductor device of modification 2-1 of the second embodiment.
  • the relaxation plate 25 is provided on the back surface of the top plate 21 so as to extend from the side wall 22 to the protruding regions 21h and 21i from the cooling region 21b of the semiconductor module 10 .
  • thermal stress generated in the cooling device 120 can be relaxed, and distortion of the cooling device 120 (semiconductor device 1) can be suppressed.
  • the relaxation plate 25 should be formed on the back surface of the top plate 21 corresponding to at least the protruding regions 21h and 21i from the cooling region 21b of the semiconductor module 10 .
  • the relief plate 25 is formed within a range corresponding to the protruding regions 21h and 21i on the back surface of the top plate 21.
  • the thermal stress generated in the cooling device 120 can be relaxed, and the distortion of the cooling device 120 (semiconductor device 1) can be suppressed.
  • the relaxation plate 25 is not provided between the outer edge E2 of the insulating circuit board 11 and the side wall 22 on the back surface of the top plate 21 . Therefore, it is possible to suppress an increase in pressure loss in the refrigerant flowing through the cooling portion 24a and the communicating portions 24b and 24c. Furthermore, it is possible to suppress a decrease in the heat dissipation of the coolant flowing from the front surface of the top plate 21 through the communication regions 21c and 21f.
  • the corner portion of the relaxation plate 25 on the side of the bottom plate 23 may be R-chamfered. This makes it easier for the coolant to flow between the cooling portion 24a and the communicating portions 24b and 24c. That is, the pressure loss of the refrigerant is maintained to be reduced, the residence time of the refrigerant by the relaxation plate 25 is reduced, and even if the refrigerant is accumulated, it is possible to extend the time until holes are formed due to corrosion. That is, holes are less likely to form in the connection portion of the top plate 21 with the relief plate 25 .
  • the thickness of communicating regions 21c and 21d of top plate 21 may be changed as described in modifications 1-1, 1-2 and 1-3.
  • FIG. 15 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device according to Modification 2-2 of the second embodiment. 15 corresponds to Modification 1-1 (FIG. 7) and Modification 1-2 (FIG. 9), and shows an enlarged view of the periphery including the relief plate 25.
  • FIG. 15 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device according to Modification 2-2 of the second embodiment. 15 corresponds to Modification 1-1 (FIG. 7) and Modification 1-2 (FIG. 9), and shows an enlarged view of the periphery including the relief plate 25.
  • FIG. 15 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device according to Modification 2-2 of the second embodiment. 15 corresponds to Modification 1-1 (FIG. 7) and Modification 1-2 (FIG. 9), and shows an enlarged view of the periphery including the relief plate 25.
  • FIG. 15 is a fragmentary cross-sectional view of
  • the end portion of the relaxation plate 25 on the side of the outer edge region 21e is positioned on the side wall 22 on the back surface of the top plate 21 .
  • the end portion E1 of the relaxation plate 25 is positioned within the protruding region 21h.
  • the relaxation plate 25 has a different thickness, like the top plate 21 of Modification 1-2. That is, the relaxation plate 25 of the modified example 2-2 has an outer edge on the outer edge region 21e side than the cooling region side portion 21c1 on the cooling region 21b side in the total lamination thickness of the top plate 21 and the relaxation plate 25 of the communication region 21c.
  • the region side portion 21c2 is configured to be thicker.
  • the combined thickness of the top plate 21 and the relaxation plate 25 of the outer edge region side portion 21c2 is the same as the thickness T1 of the outer edge region 21e.
  • the thickness of the cooling area side portion 21c1 of the top plate 21 is the same as the thickness T2 of the cooling area 21b.
  • the outer edge region side portion 21c2 and the cooling region side portion 21c1 of the relaxation plate 25 are connected by a stepped portion 21g.
  • the stepped portion 21g is connected with an inclination.
  • the inclination is preferably 10 degrees or more and 45 degrees or less, more preferably 20 degrees or more and 30 degrees or less, with respect to the front surface (XY plane) of the communication region 21c of the relaxation plate 25 .
  • the lamination thickness of the communication region 21c of the top plate 21 and the relaxation plate 25 increases from the thickness T2 of the cooling region side portion 21c1 to the thickness of the outer edge region side portion 21c2 via the stepped portion 21g when proceeding from the cooling region 21b to the outer edge region 21e. thickness T1.
  • the stepped portion 21g is formed with a height (length in the Z direction) obtained by subtracting the thickness T2 of the cooling region side portion 21c1 from the thickness T1 of the outer edge region side portion 21c2.
  • the height (T1-T2) of the step portion 21g may be 0.4 times or more and 0.6 times or less the thickness T1 of the outer edge region side portion 21c2.
  • the height (T1-T2) of the stepped portion 21g may be 0.8 mm or more and 3.2 mm or less.
  • the length of the stepped portion 21g (the length in the direction parallel to the front surface of the top plate 21, the length in the X direction) is 1.0 times or more and 5.0 times or less the height of the stepped portion 21g. It's okay. More preferably, it is 1.7 times or more and 2.8 times or less.
  • the top plate 21 and the relief plate 25 are made to have such thicknesses, so that the communication region 21c of the top plate 21 is connected to the side wall 22 in the same manner as in Modified Example 1-1 (FIG. 7). Even if the refrigerant stays in the part, it is possible to extend the time until holes are formed due to corrosion. That is, holes are less likely to form in the connecting portion of the communication region 21 c of the top plate 21 with the side wall 22 .
  • the outer edge region side portion 21c2 has a length R from the intersection point O to the intersection D of the top plate 21 and the side wall 22. It is preferably the same as the thickness T1 of the outer edge region 21e of 21 or greater than or equal to the thickness T1 (here, the length R indicates the case of being greater than or equal to the thickness T1). Therefore, the intersection point D of the outer edge region side portion 21c2 can extend from the side wall 22 to the position P. As shown in FIG.
  • the connecting portion between the outer edge region side portion 21c2 and the stepped portion 21g may be rounded.
  • the connecting portion By chamfering the connecting portion, the cross-sectional area of the communicating portion 24b can be kept as large as possible while maintaining the length R.
  • the outer edge area side portion 21c2 of the top plate 21 is positioned between the side walls 22 and forms an R surface at the connection point with the stepped portion 21g, thereby reducing the pressure loss of the refrigerant flowing through the communication portion 24b. Therefore, it is possible to prevent holes from forming in the communicating portion 24b.
  • a stepped portion 21g may be formed in the mitigation plate 25 in the vicinity of the cooling region 21b in the same manner as in Modification 1-2 (FIG. 9). That is, the outer edge region side portion 21c2 of the relaxation plate 25 may extend toward the cooling region 21b side more than the outer edge region side portion 21c2 in FIG. Also, the cooling region side portion 21c1 of the relaxation plate 25 is shorter than the cooling region side portion 21c1 of FIG. As a result, the cross-sectional area of the communicating portion 24b becomes narrower than that of the cooling device 120 of FIG. That is, the flow velocity of the refrigerant flowing through the communicating portion 24b increases, and the pressure of the refrigerant flowing increases.
  • the foreign matter present in the communication portion 24b is easily discharged from the outlet 23b together with the refrigerant.
  • the vicinity of the side wall 22 of the top plate 21 and the relief plate 25 has the thickness T1.
  • the cooling region side portion 21c1 is too short (with respect to the X direction) and the stepped portion 21g is too close to the cooling region 21b of the top plate 21 and the relaxation plate 25, the cooling region 21b of the top plate 21 There is a possibility that thermal conductivity may decrease.
  • the cooling region side portion 21c1 is the same as the thickness T2 of the cooling region 21b of the top plate 21 from the cooling region 21b, or the thickness Longer than T2.
  • the intersection point E of the cooling area side portion 21c1 can extend from the cooling area 21b to the position Q. As shown in FIG.
  • the cooling region side portion 21c1 exceeds the position Q, the top plate 21 above the outlet 23b has a thickness of T2, and the flow velocity of the coolant flowing through the outlet 23b may not increase sufficiently. Therefore, by extending the intersection E of the cooling region side portion 21c1 of the top plate 21 and the relaxation plate 25 to the position Q, the flow velocity of the coolant can be reliably increased. Further, the intersection point D of the outer edge region side portion 21c2 may be between the position P and the position Q corresponding to the outflow port 23b (or the inflow port 23a).
  • part of the stepped portion 21g enters a position corresponding to the outflow port 23b (or the inflow port 23a), thereby further improving the flow of the coolant between the outflow port 23b (or the inflow port 23a) and the cooling region 21b. can be done.
  • the cooling device 120 of the modified example 2-2 it is possible to improve the cooling performance as compared with the cooling device 120 of FIG. .
  • FIG. 16 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device according to Modification 2-3 of the second embodiment. 16 corresponds to modification 1-3 (FIG. 10) and shows an enlarged view of the surroundings including the relaxation plate 25.
  • FIG. 16 is a fragmentary cross-sectional view of a cooling device included in a semiconductor device according to Modification 2-3 of the second embodiment. 16 corresponds to modification 1-3 (FIG. 10) and shows an enlarged view of the surroundings including the relaxation plate 25.
  • the thickness of the relief plate 25 is made different in the same way as the top plate 21 of the modified example 1-3 (FIG. 10). That is, in Modification 2-3, two stepped portions 21g1 and 21g2 are formed in the communication region 21c between the top plate 21 and the relief plate 25, as in Modification 1-3 (FIG. 10). In the cooling device 120 of the modified example 2-3 as well, in the communicating region 21c of the top plate 21 and the relaxation plate 25, as it progresses from the cooling region 21b to the outer edge region 21e, from the cooling region side 21c1, every stepped portion 21g1, 21g2 In addition, the intermediate portion 21c3 and the side portion 21c2 of the outer edge region are thickened.
  • the cooling region side portion 21c1 of the top plate 21 has a thickness of T2, and the outer edge region side portion 21c2 has a thickness of T1.
  • the thickness of the intermediate portion 21c3 is thicker than the thickness T2 and thinner than the thickness T1.
  • the intersection point of the outer edge region side portion 21c2 and the stepped portion 21g2 closest to the outer edge region 21e is defined as an intersection point D
  • the intersection point of the cooling region side portion 21c1 and the stepped portion 21g1 closest to the cooling region 21b is defined as an intersection point E.
  • the cross-sectional area of the communicating portion 24b is larger than in the case where the stepped portion 21g of the cooling device 120 of Modification 2-2 is formed in the vicinity of the cooling region 21b. Therefore, in the cooling device 120 of Modification 2-3, the pressure loss to the refrigerant flowing through the communication portion 24b can be reduced more than in Modification 2-2, and the cooling performance can be improved. .
  • cooling device 120 of the modified example 2-3 holes are less likely to form due to corrosion, foreign matter can be discharged, pressure loss to the refrigerant can be reduced, and cooling performance can be improved. A decrease in reliability of the cooling device 120 can be further suppressed.
  • the intermediate portion 21c3 of the top plate 21 preferably corresponds to the outflow port 23b (or the inflow port 23a) when viewed from the side. Therefore, the flow velocity of the coolant flowing through the outlet 23b can be increased more reliably than in the modification 2-2.
  • two stepped portions 21g1 and 21g2 are provided in the communication region 21c of the relief plate 25, and the stepped portions 21g1 and 21g2 have three different height portions. .
  • the number of stepped portions may be three or more, and each stepped portion may have four or more portions with different heights.
  • FIG. 17 is a schematic diagram of a vehicle.
  • Vehicle 30 is a vehicle that uses electric power to generate at least a portion of the propulsion force.
  • the vehicle 30 is an electric vehicle in which all propulsive force is generated by an electric drive device such as a motor, or a hybrid vehicle that uses both an electric drive device such as a motor and an internal combustion engine that is driven by fuel such as gasoline. be.
  • the vehicle 30 includes a control device 31 (external device) that controls power-driven devices such as motors.
  • the semiconductor device 1 is provided in the control device 31 .
  • the semiconductor device 1 may control the power supplied to the power driven device.
  • FIG. 18 is a diagram of an equivalent circuit included in the semiconductor device.
  • the semiconductor device 1 of the first and second embodiments functions as a three-phase AC inverter circuit having output terminals U, V, and W, and may be part of an in-vehicle unit that drives the motor of the vehicle 30. .
  • FIG. 18 shows a case where the semiconductor chips 12c1 to 12c6 included in the semiconductor device 1 are RC-IGBTs including the functions of the semiconductor chips 12a1 to 12a6 and 12b1 to 12b6 shown in FIG.
  • the semiconductor chips 12c1, 12c2 and 12c3 may constitute an upper arm, and the semiconductor chips 12c4, 12c5 and 12c6 may constitute a lower arm.
  • a set of semiconductor chips 12c1 and 12c4 may constitute a leg (U phase).
  • a set of semiconductor chips 12c2 and 12c5 and a set of semiconductor chips 12c3 and 12c6 may similarly constitute legs (V phase, W phase).
  • the emitter electrode may be electrically connected to the input terminal N1, and the collector electrode may be electrically connected to the output terminal U, respectively.
  • the emitter electrode may be electrically connected to the output terminal U, and the collector electrode may be electrically connected to the input terminal P1.
  • the emitter electrodes may be electrically connected to the input terminals N2 and N3, respectively, and the collector electrodes may be electrically connected to the output terminals V and W, respectively.
  • the emitter electrodes may be electrically connected to the output terminals V and W, respectively, and the collector electrodes may be electrically connected to the input terminals P2 and P3, respectively.
  • Each of the semiconductor chips 12c1 to 12c6 may be alternately switched by signals input to corresponding control terminals.
  • each of the semiconductor chips 12c1-12c6 may generate heat during switching.
  • the input terminals P1, P2, P3 may be connected to the positive pole of the external power supply, the input terminals N1, N2, N3 may be connected to the negative pole of the external power supply, and the output terminals U, V, W may be connected to the load.
  • Input terminals P1, P2, P3 may be electrically connected to each other, and other input terminals N1, N2, N3 may also be electrically connected to each other.
  • semiconductor device 10 semiconductor module 11 insulating circuit board 11a insulating plate 11b circuit pattern 11c metal plate 12, 12a1 to 12a6, 12b1 to 12b6, 12c1 to 12c6 semiconductor chip 13 joining member (solder) 14 Joining member (brazing material) 20, 120 Cooling device 20a, 20b Long side 20c, 20d Short side 20e Fastening hole 20e1 Fastening reinforcing part 21 Top plate 21a Channel area 21b Cooling area 21c, 21d Communication area 21c1 Cooling area side 21c2 Outer edge area side 21c3 Intermediate part 21e, 21f Outer edge regions 21g, 21g1, 21g2 Stepped portions 21h, 21i Protruding region 22 Side wall 22a Side wall connection region 23 Bottom plate 23a Inlet 23b Outlet 23c1, 23c2 Rubber packing 23d1, 23d2 Drain head 23e1, 23e2 Drain pipe 24 Flow path 24a cooling portion 24b, 24c communicating portion 24d, 24e screw frame 24f radiation fin 25 relaxation plate 30 vehicle 31 control device

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

剛性及び腐食耐性を確保しつつ、冷却性能の低下を抑制することができる。 天板(21)は、平面視で矩形状を成し、長手方向に沿って裏面の中央部に複数の放熱フィン(24f)が配置される冷却領域(21b)が設定され、冷却領域(21b)の両側に連通領域(21c,21d)がそれぞれ設定されている。側壁(22)は、天板(21)の裏面に冷却領域(21b)と連通領域(21c,21d)とを含んで環状に接続されている。天板(21)の冷却領域(21b)の厚さ(T2)は天板(21)の側壁(22)から外側の外縁領域(21e,21f)の厚さ(T1)よりも薄い。このため、天板(21)の冷却領域(21b)のおもて面から複数の放熱フィン(24f)までの距離が短くなる。そして、半導体モジュール(10)の熱が複数の放熱フィン(24f)に対して伝導しやすくなり、冷媒による冷却能力が向上する。

Description

半導体装置及び車両
 本発明は、半導体装置及び車両に関する。
 パワー半導体素子を含む半導体モジュールの信頼性を保つために、半導体モジュールを冷却装置に搭載する。これにより、パワー半導体素子を効率的、安定的に冷却することができる。
 冷却装置は、天板内には複数の放熱フィンが形成されている。また、冷却装置には内部に通じる流入口及び流出口が形成されている。冷却装置内に流入口から流入した冷媒が、冷却装置内部の複数の放熱フィンの間を流通し、流出口から流出するように、冷媒を循環させる。冷却装置の天板の放熱フィンに対応するおもて面に半導体モジュールを配置すると、放熱フィンは天板を介して半導体モジュールから熱が伝導される。放熱フィンに伝導した熱は冷却装置内を循環する冷媒を介して放熱される。この結果、パワー半導体素子が冷却される。
特開2005-079386号公報 特開2010-212577号公報
 このような冷却装置の天板は、剛性を確保するため、及び、冷媒での腐食による液漏れを防ぐために厚く構成される。しかし、天板は厚くなりすぎると放熱性が低下してしまい、冷却装置の冷却性能が低下してしまう。
 本発明は、このような点に鑑みてなされたものであり、剛性及び腐食耐性を確保しつつ、冷却性能の低下を抑制することができる半導体装置及びこのような半導体装置を含む車両を提供することを目的とする。
 本発明の一観点によれば、半導体チップと前記半導体チップが実装された絶縁回路基板とを有する半導体モジュールと、前記半導体モジュールがおもて面に配置される天板を有し、前記天板の裏面に環状の側壁が接続される側壁接続領域が設定された冷却装置と、を備え、前記天板は、平面視で矩形状を成し、長手方向に沿って裏面の中央部に複数のフィンが配置される冷却領域が設定され、短手方向に沿った前記冷却領域の両側に第1連通領域及び第2連通領域がそれぞれ設定され、前記側壁接続領域は、前記天板の前記裏面に前記冷却領域と前記第1連通領域と前記第2連通領域とを含んで環状に設定され、前記冷却領域の厚さは前記天板の前記側壁接続領域から外側の外縁領域の外縁厚さよりも薄い、半導体装置が提供される。
 また、上記半導体装置を含む車両が提供される。
 開示の技術によれば、冷却性能の低下が抑制されて、半導体装置並びに半導体装置を含む車両の信頼性の低下を防止することができる。
 本発明の上記及び他の目的、特徴及び利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
第1の実施の形態の半導体装置の斜視図である。 第1の実施の形態の半導体装置に含まれる冷却装置を説明する図である。 第1の実施の形態の半導体装置に含まれる冷却装置の平面図である。 第1の実施の形態の半導体装置に含まれる冷却装置の断面図である。 第1の実施の形態の冷却装置における冷媒の流れを説明する図である。 第1の実施の形態の半導体装置に含まれる別の冷却装置の断面図である。 第1の実施の形態の変形例1-1の半導体装置に含まれる冷却装置の要部断面図である。 第1の実施の形態の変形例1-1の半導体装置に含まれる冷却装置の要部拡大断面図である。 第1の実施の形態の変形例1-2の半導体装置に含まれる冷却装置の要部断面図である。 第1の実施の形態の変形例1-3の半導体装置に含まれる冷却装置の要部断面図である。 第2の実施の形態の半導体装置に含まれる冷却装置の断面図である。 第2の実施の形態の半導体装置に含まれる冷却装置の平面図である。 第2の実施の形態の変形例2-1の半導体装置に含まれる冷却装置の断面図である。 第2の実施の形態の変形例2-1の半導体装置に含まれる冷却装置の平面図である。 第2の実施の形態の変形例2-2の半導体装置に含まれる冷却装置の要部断面図である。 第2の実施の形態の変形例2-3の半導体装置に含まれる冷却装置の要部断面図である。 車両の模式図である。 半導体装置に含まれる等価回路の図である。
 以下、図面を参照して、実施の形態について説明する。なお、以下の説明において、「おもて面」及び「上面」とは、図の半導体装置1及び冷却装置20,120において、上側(+Z方向)を向いたX-Y面を表す。同様に、「上」とは、図の半導体装置1及び冷却装置20,120において、上側(+Z方向)の方向を表す。「裏面」及び「下面」とは、図の半導体装置1及び冷却装置20において、下側(-Z方向)を向いたX-Y面を表す。同様に、「下」とは、図の半導体装置1及び冷却装置20,120において、下側(-Z方向)の方向を表す。必要に応じて他の図面でも同様の方向性を意味する。「おもて面」、「上面」、「上」、「裏面」、「下面」、「下」、「側面」は、相対的な位置関係を特定する便宜的な表現に過ぎず、本発明の技術的思想を限定するものではない。例えば、「上」及び「下」は、必ずしも地面に対する鉛直方向を意味しない。つまり、「上」及び「下」の方向は、重力方向に限定されない。また、以下の説明において「主成分」とは、80vol%以上含む場合を表す。
 [第1の実施の形態]
 まず、半導体装置について図1を用いて説明する。図1は、第1の実施の形態の半導体装置の斜視図である。半導体装置1は、半導体モジュール10と半導体モジュール10が搭載された冷却装置20とを含む。なお、半導体モジュール10は図4を参照することができる。
 半導体モジュール10は、絶縁回路基板11と絶縁回路基板11のおもて面に接合された複数の半導体チップ12とを有している。また、半導体モジュール10は、絶縁回路基板11のおもて面と半導体チップ12の主電極とを電気的に接続する配線部材(図示を省略)を有してもよい。配線部材は、例えば、ボンディングワイヤ、バスバー、リードフレームである。
 また、半導体モジュール10は、これらが放熱板上に配置されて、ケースにより覆われてもよい。ケースは、半導体モジュール10が配置された放熱板の外周部に接着剤を介して接合されてもよい。また、ケース内が封止部材で封止されてもよい。なお、封止部材は、熱硬化性樹脂とフィラーとして熱硬化性樹脂に含有される充填剤とを含んでいる。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂、マレイミド樹脂である。充填剤は、例えば、酸化シリコン、酸化アルミニウム、窒化ホウ素または窒化アルミニウムである。このような封止部材の一例として、エポキシ樹脂と充填剤としてフィラーとを含んでいる。フィラーは、例えば、二酸化シリコン、酸化アルミニウム、窒化ホウ素または窒化アルミニウムである。
 絶縁回路基板11は、絶縁板11aと絶縁板11aのおもて面に設けられた回路パターン11bと絶縁板11aの裏面に設けられた金属板11cとを含んでいる。絶縁板11a及び金属板11cは、平面視で矩形状である。また、絶縁板11a及び金属板11cは、角部がR面取り、C面取りされていてもよい。金属板11cのサイズは、平面視で、絶縁板11aのサイズより小さく、絶縁板11aの内側に形成されている。絶縁板11aは、絶縁性を備え、熱伝導性に優れた材質により構成されている。このような絶縁板11aは、セラミックスまたは絶縁樹脂により構成されている。セラミックスは、酸化アルミニウム、窒化アルミニウム、窒化珪素等である。絶縁樹脂は、紙フェノール基板、紙エポキシ基板、ガラスコンポジット基板、ガラスエポキシ基板等である。絶縁板11aの厚さは、0.2mm以上、2.5mm以下である。
 回路パターン11bは、導電性に優れた金属により構成されている。このような金属は、例えば、銅、アルミニウム、または、少なくともこれらの一種を主成分とする合金である。また、回路パターン11bの厚さは、0.1mm以上、2.0mm以下である。回路パターン11bの表面に対して、耐食性を向上させるために、めっき処理を行ってもよい。この際、用いられるめっき材は、例えば、ニッケル、ニッケル-リン合金、ニッケル-ボロン合金である。なお、図1に示す回路パターン11bは一例である。必要に応じて、回路パターン11bの個数、形状、大きさ等を適宜選択してもよい。
 金属板11cは、絶縁板11aよりも面積が小さく、回路パターン11bが形成されている領域の面積よりも広く、絶縁板11aと同様に矩形状を成している。また、角部がR面取り、C面取りされていてもよい。金属板11cは、絶縁板11aのサイズより小さく、絶縁板11aの縁部を除いた全面に形成されている。金属板11cは、熱伝導性に優れた金属を主成分として構成されている。金属は、例えば、銅、アルミニウムまたは、少なくともこれらの一種を含む合金である。また、金属板11cの厚さは、0.1mm以上、2.5mm以下である。金属板11cの耐食性を向上させるために、めっき処理を行ってもよい。この際、用いられるめっき材は、例えば、ニッケル、ニッケル-リン合金、ニッケル-ボロン合金である。
 このような構成を有する絶縁回路基板11として、例えば、DCB(Direct Copper Bonding)基板、AMB(Active Metal Brazed)基板、樹脂絶縁基板を用いることができる。
 絶縁回路基板11は、冷却装置20に対して、接合部材14を介して取り付けてもよい。接合部材14は、はんだ、ろう材、または、金属焼結体である。はんだは、鉛フリーはんだが用いられる。鉛フリーはんだは、例えば、錫、銀、銅、亜鉛、アンチモン、インジウム、ビスマスの少なくとも2つを含む合金を主成分とする。さらに、はんだには、添加物が含まれてもよい。添加物は、例えば、ニッケル、ゲルマニウム、コバルトまたはシリコンである。はんだは、添加物が含まれることで、濡れ性、光沢、結合強度が向上し、信頼性の向上を図ることができる。ろう材は、例えば、アルミニウム合金、チタン合金、マグネシウム合金、ジルコニウム合金、シリコン合金の少なくともいずれかを主成分とする。絶縁回路基板11は、このような接合部材14を用いたろう付け加工で接合することができる。金属焼結体は、例えば、銀及び銀合金を主成分とする。または、接合部材14は、サーマルインターフェースマテリアルであってよい。サーマルインターフェースマテリアルは、例えば、エラストマーシート、RTV(Room Temperature Vulcanization)ゴム、ゲル、フェイズチェンジ材などを含む接着材である。このようなろう材またはサーマルインターフェースマテリアルを介して冷却装置20に取り付けることで、半導体モジュール10の放熱性を向上させることができる。
 半導体チップ12は、シリコンを主成分として構成されるパワーデバイス素子を含んでいる。なお、半導体チップ12は、半導体チップ12a1~12a6,12b1~12b6の総称である。また、半導体チップ12の厚さは、例えば、40μm以上、250μm以下である。パワーデバイス素子は、スイッチング素子またはダイオード素子である。半導体チップ12a1~12a6は、スイッチング素子を含む。スイッチング素子は、例えば、IGBT(Insulated Gate Bipolar Transistor)、パワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor)である。このような半導体チップ12a1~12a6は、例えば、裏面に主電極としてドレイン電極(または、コレクタ電極)を、おもて面に、制御電極及び主電極としてゲート電極及びソース電極(または、エミッタ電極)をそれぞれ備えている。半導体チップ12b1~12b6は、ダイオード素子を含む。ダイオード素子は、例えば、SBD(Schottky Barrier Diode)、PiN(P-intrinsic-N)ダイオード等のFWD(Free Wheeling Diode)である。このような半導体チップ12b1~12b6は、裏面に主電極としてカソード電極を、おもて面に主電極としてアノード電極をそれぞれ備えている。
 半導体チップ12は、必要に応じて、スイッチング素子及びダイオード素子の少なくともいずれかが選択されて、その裏面側が所定の回路パターン11b上に接合部材13により機械的、かつ、電気的に接合される。接合部材13は、はんだ、または、金属焼結体である。はんだは、鉛フリーはんだが用いられる。鉛フリーはんだは、例えば、錫、銀、銅、亜鉛、アンチモン、インジウム、ビスマスの少なくとも2つを含む合金を主成分とする。さらに、はんだには、添加物が含まれてもよい。添加物は、例えば、ニッケル、ゲルマニウム、コバルトまたはシリコンである。はんだは、添加物が含まれることで、濡れ性、光沢、結合強度が向上し、信頼性の向上を図ることができる。金属焼結体で用いられる金属は、例えば、銀及び銀合金である。
 また、半導体チップ12に代えて、IGBT及びFWDの機能を合わせ持つRC(Reverse-Conducting)-IGBTを用いてもよい(図11の半導体チップ12c1~12c6を参照)。または、半導体チップ12は、炭化シリコンを主成分として構成されるパワーMOSFETであってもよい。このような半導体チップ12は、裏面に主電極として入力電極(ドレイン電極)を、おもて面に、制御電極としてゲート電極及び主電極として出力電極(ソース電極)をそれぞれ備えている。
 また、必要に応じて、半導体チップ12に代わり、または、半導体チップ12と共に、例えば、リードフレーム、外部接続端子(ピン端子、コンタクト部品等)、電子部品(サーミスタ、電流センサ)を配置してもよい。
 冷却装置20は、冷媒を内部に流入する流入口と内部を流通した冷媒を外部に流出する流出口とを備えている。冷却装置20、半導体モジュール10からの熱を冷媒を介して排出することで、半導体モジュール10を冷却する。なお、冷媒は、例えば、水、不凍液(エチレングリコール水溶液)、ロングライフクーラント(LLC)が用いられる。このような冷却装置20は、平面視で、長辺20a,20b及び短辺20c,20dを含む矩形状を成している。また、冷却装置20は、平面視で、少なくとも、四隅に締結孔20eがそれぞれ形成されている。締結孔20eは、貫通孔であり、半導体装置1が実装される外部の装置のボス等が挿入されて、外部の装置に締結される。図1では、このような冷却装置20のおもて面の中央部に長辺20a,20bに沿って、3つの半導体モジュール10が搭載されている場合を示している。半導体モジュール10の個数は、3つに限らない。また、半導体モジュール10は冷却装置20の中央部(後述する冷却領域)に配置されるのであれば、半導体モジュール10の配置位置並びにサイズは、図1の場合に限らない。また、冷却装置20は、ポンプと放熱装置(ラジエータ)とを備えてもよい。ポンプは、冷却装置20の流入口に冷媒を流入し、流出口から流出した冷媒を再び流入口に流入して冷媒を循環させる。放熱装置は、半導体モジュール10からの熱が伝導された冷媒の熱を外部に放熱させる。
 次に、この冷却装置20の詳細について、図2~図4を用いて説明する。図2は、第1の実施の形態の半導体装置に含まれる冷却装置を説明する図であり、図3は、第1の実施の形態の半導体装置に含まれる冷却装置の平面図であり、図4は、第1の実施の形態の半導体装置に含まれる冷却装置の断面図である。なお、図3は、冷却装置20を平面視で内部の構成を透視的に示している。図4は、図3の一点鎖線X-Xにおける断面図である。
 冷却装置20は、天板21と、天板21の裏面に環状に接続された側壁22と、天板21に対向し、側壁22の裏面に接続された底板23と、を有している。天板21は、平面視で長辺20a,20b及び短辺20c,20dで四方が囲まれた矩形状を成し、四隅に締結孔20eがそれぞれ形成されている。平面視で天板21の角部は、R加工が施されていてもよい。
 また、天板21は、図3に示されるように、流路領域21aと外縁領域21e,21fとに区分される。なお、後述するように、天板21の裏面に側壁22が接続される。流路領域21aは、側壁22で囲まれる領域である。流路領域21aは、さらに、長辺20a,20bに平行に、冷却領域21bと、連通領域21c,21dとに区分される。冷却領域21bは、天板21の長辺20a,20b(長手方向)に平行な中央の矩形状の領域である。天板21のおもて面の冷却領域21bに複数の半導体モジュール10がY方向に沿って一列に配置されている。なお、図3では、半導体モジュール10の配置位置を破線で示している。天板21の裏面の冷却領域21bには、複数の放熱フィン24fが形成されている。天板21の厚さ(Z方向の長さ)は、後述するように領域により異なるものの、最大の厚さT1は、2.0mm以上、5.0mm以下である。また、最小の厚さT2は、厚さT1の40%以上、60%以下であり、例えば、0.8mm以上、3.2mm以下である。
 複数の放熱フィン24fは、天板21の裏面の冷却領域21bと底板23との間を接続するように延在する。複数の放熱フィン24fの高さ(Z方向の長さ)は、1.5mm以上、15.0mm以下である。好ましくは、2.0mm以上、12.0mm以下である。なお、図3では、放熱フィン24fの平面を示し、図5では、放熱フィン24fの側面を示している。但し、図5では、放熱フィン24fを模式的に示しており、必ずしも図3に一致するものではない。冷却領域21bにおいて、長辺20a,20b方向に配置された放熱フィン24fの数は、短辺20c,20dの方向に配置された放熱フィン24fの数よりも多い。冷却領域21bは、放熱フィン24fが設けられた領域と、放熱フィン24fの間の流路とが含まれる。なお、隣接する放熱フィン24f同士の間隔は、放熱フィン24f自体の幅よりも狭くてもよい。放熱フィン24fは、±Z方向における上端と下端とを有する。放熱フィン24fの上端は、天板21の裏面に熱的及び機械的に接続される。放熱フィン24fの上端は、天板21と一体的に構成されており、すなわち、放熱フィン24fは天板21の裏面から一体的に-Z方向に突出している。他方、放熱フィン24fの下端は、底板23のおもて面(冷却装置20の内側)に固着されている。また、放熱フィン24fのZ方向に対する延伸方向は、天板21及び底板23のそれぞれの主面と略直交する。放熱フィン24fは、それぞれピンフィンであってよい。また、複数の放熱フィン24fは、それぞれ、天板21の主面に平行な断面の形状が矩形である。図3では、菱形を成している。これにより、放熱フィン24fの当該断面形状が円形の場合に比べて、冷媒に接触する放熱フィン24fの表面積を大きくすることができ、放熱効率を高めることができる。
 また、複数の放熱フィン24fは、後述する冷却部24aに冷媒が流入された場合に、冷却部24aにおける冷媒の主たる流通方向に対して当該矩形のいずれの辺も直交しないように、天板21の冷却領域21bに配置されてもよい。本実施の形態では、冷却領域21bにおける冷媒の主たる流通方向は、X方向(短辺20c,20dに平行方向)である。複数の放熱フィン24fは、当該矩形の何れの辺もX方向に直交しないように、冷却領域21bに配置されている。より具体的には、複数の放熱フィン24fは、当該矩形のどの辺もX方向に直交せず、1つの対角線がY方向(長辺20a,20b)に平行になり、他の1つの対角線がX方向に平行になるように配置されている。または、複数の放熱フィン24fは、当該矩形の何れの辺もX方向に直交せず、1つの対角線がY方向に対して傾斜して、他の1つの対角線がX方向に対して傾斜するように配置されてもよい。複数の放熱フィン24fが、上記の流通方向に対して上記の矩形のいずれかの辺が直交するように冷却領域21bに配置されている場合に比べて、上述したいずれかの構成によっても、冷却部24aを流通する冷媒の流速損失を小さくすることができ、放熱効率を高めることができる。
 また、放熱フィン24fは、図3に示されるX-Y面において、長辺20a,20bの方向よりも短辺20c,20dの方向に短い菱形を成す。放熱フィン24fは、菱形の断面のそれぞれの辺の長さが0.5mm以上、0.8mm以下であってもよい。菱形の断面のそれぞれの角部において、R加工が施されていてもよい。なお、複数の放熱フィン24fは、それぞれ、当該断面形状が多角形であってもよく、例えば、正方形であってもよい。または、複数の放熱フィン24fは、それぞれ、当該断面形状が円形であってもよく、例えば、真円であってよい。また、複数の放熱フィン24fは、冷却領域21bにおいて、所定のパターンを形成するように配列されていてもよい。複数の放熱フィン24fは、図3に示すように千鳥配列されている。複数の放熱フィン24fは、冷却領域21bにおいて、正方配列されていてもよい。
 連通領域21c,21dは、天板21において冷却領域21bの両側に隣接し、冷却領域21bに沿った領域である。よって、連通領域21c,21dは、冷却領域21bから(長辺20a,20b側の)側壁22までの領域である。図3の場合、連通領域21c,21dは、台形状を成している。なお、側壁22の囲む範囲によっては、連通領域21c,21dは、例えば、矩形状、半円形状、複数のピークを備える山なり状であってもよい。また、平面視で、連通領域21c,21dの角部は、曲率を持つようにR面取りされていてもよい。これは、連通領域21c,21dを構成する側壁22のつなぎ目にR加工が施される。連通領域21c,21dを流通する冷媒が滑らかな角部に留まらずに流れやすくなる。これにより、このような角部の腐食の発生を防止することができる。また、連通領域21c,21dは、必ずしも、対称な形状でなくてもよい。また、詳細は後述するものの、流出口23b及び流入口23aは連通領域21c,21dに対応して、それぞれ、短辺20c,20d寄りに形成される。また、流出口23b及び流入口23aは、連通領域21c,21dのX方向に対して中心部に形成される。連通領域21c,21dは、流出口23b及び流入口23aに対して冷媒の流出並びに流入が容易となるような形状であってもよい。例えば、連通領域21cは、流出口23bに対して冷媒を追い込むように、流出口23bに近づくに連れて狭まるような形状でもよい。
 外縁領域21e,21fは、天板21において流路領域21a(冷却領域21b及び連通領域21c,21d)の外側の領域である。すなわち、外縁領域21e,21fは、平面視で天板21の側壁22から天板21の外縁までの領域である。既述の締結孔20e及び締結補強部20e1は、外縁領域21e,21fに形成されている。天板21の外縁領域21e,21fの厚さは、天板21における最大の厚さT1である。
 このような天板21の少なくとも冷却領域21bの厚さは厚さT2であって、外縁領域21e,21fの厚さT1よりも薄く構成されている。但し、ここでは、天板21の連通領域21c,21dもまた厚さT2である。また、天板21の半導体モジュール10が搭載されるおもて面は、厚さ方向(Z方向)に段差がなく平坦面で形成され、同一平面を成している。天板21の裏面の冷却領域21b及び連通領域21c,21dがおもて面側に窪んでいる。
 側壁22は、天板21の裏面に、冷却領域21b及び連通領域21c,21dを囲んで環状に形成されている。側壁22の+Z方向の上端は、天板21の裏面に固着されている。また、側壁22の-Z方向の下端は、底板23のおもて面に固着されている。側壁22は、図3の場合では、冷却領域21bに沿った短辺20c,20dに平行な部分と、連通領域21c,21dに沿った長辺20a,20bに平行な部分と、これらの部分を接続する部分とを含む6つの辺を備えている。環状の側壁22の内側のつなぎ目の角部はR加工が施されてもよい。側壁22は、平面視で矩形状の冷却領域21bを含み、冷却領域21bの両側に連通領域21c,21dを含めば、6つの辺で構成されていなくてもよい。また、側壁22の高さ(Z方向の長さ)、は、複数の放熱フィン24fの高さに対応しており、例えば、1.5mm以上、15.0mm以下である。好ましくは、2.0mm以上、12.0mm以下である。なお、外縁領域21e,21f側と連通領域21c,21d側とで側壁22の高さが異なる場合は、連通領域21c,21d側の高さを指す。この場合、連通領域21c,21d側の側壁22の高さは、連通領域21c,21d側の高さに、外縁領域21e,21f側の天板21の厚さT1から連通領域21c,21d側の天板21の厚さT2を差し引いた分の長さを加えた高さであってよい。また、側壁22の厚さ(X方向の長さ)は、後述するように天板21と底板23とに挟持されて、冷却装置20の強度を保ちつつ、冷却性能を低下させない程度の幅であって、例えば、1.0mm以上、3.0mm以下である。
 また、天板21の裏面(冷却装置20の内側)には、締結孔20eの周囲に形成された締結補強部20e1が形成されていてよい。締結補強部20e1は、締結孔20eに対応した貫通孔が形成されており、ねじ枠である。側壁22は、天板21と底板23とに挟持されて、冷却装置20の強度を保つ。そのため、締結補強部20e1の高さは、側壁22の高さと略同一である。より具体的には、締結補強部20e1の高さは、側壁22の外縁領域側21e側の高さと略同一である。また、締結補強部20e1の高さは、複数の放熱フィン24fの高さから後述する段差部21gの高さである(T1-T2)を差し引いた高さと略同一であってよい。締結補強部20e1の幅(平面視で締結孔20eの中心から径方向の長さ)は、締結孔20eの直径の0.7倍以上、2.0倍以下である。
 底板23は、平板状を成し、平面視で、天板21と同一の形状を成している。すなわち、底板23は、平面視で長辺及び短辺で四方が囲まれた矩形状を成し、四隅に天板21に対応した締結孔がそれぞれ形成されている。また、底板23の角部もまたR加工が施されてもよい。また、底板23は、おもて面及び裏面が平行な面を成している。そして、底板23の裏面は、段差がなく平坦面で形成され、同一平面を成している。さらに、底板23の裏面と天板21のおもて面も、平行であってよい。底板23は、冷媒が流入し、流出される流入口23a及び流出口23bがそれぞれ形成されている。流入口23aは、連通領域21dに対応して、長辺20b側であって、短辺20d側に形成されている。流出口23bは、連通領域21cに対応して、長辺20a側であって、短辺20c側に形成されている。すなわち、流入口23a及び流出口23bは底板23の中心点に対して点対称となる位置にそれぞれ形成されている。このような底板23が側壁22に接続されると、締結補強部20e1が底板23の締結孔の周りに接続される。底板23は、冷却装置20の全体の強度を保ちつつ、冷却性能を低下させない程度の厚さを要する。また、底板23は、後述するように流入口23a及び流出口23bに排水管が取り付けられるための強度を要する。このため、底板23の厚さT3は、天板21の外縁領域21e,21fの厚さT1の1.0倍以上、5.0倍以下である。より好ましくは、2.0倍以上、3.0倍以下である。底板23の厚さT3は、例えば、2.0mm以上、10.0mm以下であることが好ましい。
 このように構成される冷却装置20の内部は、天板21と側壁22と底板23とで囲まれる流路部24が構成される。流路部24は、さらに、冷却領域21bに対応する冷却部24aと連通領域21c,21dに対応する連通部24b,24cとを分けられる。冷却部24aには、天板21と底板23とを接続する複数の放熱フィン24fが延在している。連通部24b,24cは、天板21の連通領域21c,21d、側壁22、底板23で構成されている。連通部24cは冷却部24aに接続されている。流入口23aから流入された冷媒が連通部24cから冷却部24aに流通する。連通部24bは冷却部24aに接続されている。冷却部24aからの冷媒が、連通部24bに流れ込み、流出口23bから流出する。なお、冷却装置20における冷媒の流れについては後述する。また、冷却装置20は、天板21の外縁領域21e,21fと側壁22の外側と底板23とねじ枠24d,24eが構成される。
 冷却装置20は、それぞれ、熱伝導性に優れた金属を主成分として構成されている。金属は、例えば、銅、アルミニウム、または、少なくともこれらの一種を含む合金である。冷却装置20の耐食性を向上させるために、めっき処理を行ってもよい。この際、用いられるめっき材は、例えば、ニッケル、ニッケル-リン合金、ニッケル-ボロン合金である。また、複数の放熱フィン24fが形成された天板21は、例えば、鍛造、鋳造(ダイカスト)により形成される。鍛造の場合、ブロック状の上記金属を主成分とする部材を金型を用いて加圧し、塑性変形させることで、複数の放熱フィン24f及び側壁22が形成された天板21が得られる。ダイカストの場合、溶融したダイカスト材を所定の鋳型に流し込み、冷却した後、鋳型から取り出すことで、複数の放熱フィン24f及び側壁22が形成された天板21が得られる。また、この際のダイカスト材は、例えば、アルミニウム系の合金である。または、複数の放熱フィン24fや側壁22が形成された天板21は、ブロック状の上記金属を主成分とする部材を切削加工により形成してもよい。
 天板21の複数の放熱フィン24f及び側壁22に対して底板23を接合する。この際の接合は、ろう付け加工によりそれぞれ行われる。したがって、天板21の主面(裏面)から延伸した側壁22の端部である裏面、及び放熱フィン24fの端部がそれぞれろう材を介して、底板23のおもて面に接合される。ろう付け加工で用いられるろう材は、天板21が鋳造により形成された場合には、ダイカスト材よりも融点が低い材料が用いられる。このようなろう材は、例えば、アルミニウムを主成分とする合金である。
 なお、天板21に対して締結補強部20e1も別途形成しておき、底板23にろう付け加工により接合してもよい。また、本実施の形態では、複数の放熱フィン24fが天板21に接続している場合を示している。この場合に限らず、複数の放熱フィン24fを底板23の冷却領域21bに対応する領域に形成してもよい。以上により、冷却装置20が得られる。
 次に、冷却装置20における冷媒の流れについて、図5(並びに図3)を用いて説明する。図5は、第1の実施の形態の冷却装置における冷媒の流れを説明する図である。なお、図5は、図4に対応している。また、図5の破線の矢印は、冷媒の流れる方向を示している。図3の破線の矢印も同様である。
 冷却装置20の内部は、既述の通り、ポンプにより冷媒が循環される。冷媒を循環させるにあたり、流入口23aには、流入口23aの周りを取り囲む環状のゴムパッキン23c1を介して、排水ヘッド23d1が取り付けられる。排水ヘッド23d1には排水管23e1が取り付けられている。また、流出口23bにも、流出口23bの周りを取り囲む環状のゴムパッキン23c2を介して、排水ヘッド23d2が取り付けられる。排水ヘッド23d2には排水管23e2が取り付けられている。ポンプは排水管23e1,23e2に接続されている。
 流入口23aから流入された冷媒は、図3に示されるように、連通部24cに流入し、連通部24c内に広がる。連通部24cから流入した冷媒は短辺20c(Y方向)側に広がりつつ、長辺20a(X方向)側にも広がる。また、冷媒は、流入口23aから流入されると、直接、長辺20a(X方向)側に広がる。このようにして、冷却部24aの長辺20bに対向する側部全体に冷媒が流入する。
 冷却部24aの(長辺20b側の)側部に流入した冷媒は、図5に示されるように、複数の放熱フィン24fの間を長辺20a(X方向)側に流通する。発熱した半導体モジュール10からの熱が天板21を介して複数の放熱フィン24fに伝導する。冷媒は、複数の放熱フィン24fの間を流通する際に、複数の放熱フィン24fから受熱する。冷却装置20では、天板21の冷却領域21bの厚さT2は、外縁領域21e,21fの厚さT1より薄く構成されている。つまり、天板21の冷却領域21bのおもて面から複数の放熱フィン24fまでの距離が短くなっている。このため、半導体モジュール10の熱が複数の放熱フィン24fに対して伝導しやすくなる。放熱フィン24f同士の隙間を流通する冷媒に対して多くの熱を伝導させることができるようになり、冷却性能が向上する。
 このように受熱した冷媒は、図3(並びに図5)に示されるように、冷却部24aの長辺20aに対向する側部から連通部24bに流入して、流出口23bから外部に流出する。この際、冷媒は複数の放熱フィン24fから伝導された熱を含んで流出される。流出した冷媒は放熱装置で冷却されて再びポンプにより流入口23aから冷却装置20に流入される。冷却装置20に対する冷媒の循環により、半導体モジュール10の熱が外部に排出されることで半導体モジュール10が冷却される。
 また、冷却装置20では、天板21の冷却領域21bに加えて、連通領域21d,21cの厚さT2もまた、外縁領域21e,21fの厚さT1より薄く構成されている。つまり、冷却部24a及び連通部24b,24cの体積(断面積)が増加する。このため、冷却部24a及び連通部24b,24cを流通する冷媒に対する圧力損失が低減されて、冷媒は、冷却部24a及び連通部24b,24cを流速が減速することなく略一定の流速で流通し易くなる。冷媒の複数の放熱フィン24fの間の流量が低下することがないため、冷却能力の低下が防止される。
 上記半導体装置1は、半導体チップ12と半導体チップ12が実装された絶縁回路基板11とを有する半導体モジュール10と、半導体モジュール10がおもて面に配置される天板21を有し、天板21の裏面に環状の側壁22が接続される側壁接続領域22aが設定された冷却装置20と、を備える。この際、天板21は、平面視で矩形状を成し、長手方向に沿って裏面の中央部に複数の放熱フィン24fが配置される冷却領域21bが設定され、短手方向に沿った冷却領域21bの両側に連通領域21c,21dがそれぞれ設定されている。側壁接続領域22aは、天板21の裏面に冷却領域21bと連通領域21c,21dとを含んで環状に設定され、天板21の冷却領域21bの厚さT2は天板21の側壁接続領域22aから外側の外縁領域21e,21fの厚さT1よりも薄い。このため、天板21の冷却領域21bのおもて面から複数の放熱フィン24fまでの距離が短くなる。そして、半導体モジュール10の熱が複数の放熱フィン24fに対して伝導しやすくなり、冷媒による冷却能力が向上する。したがって、半導体装置1の信頼性の低下を防止することできる。
 このような冷却装置20では、天板21の連通領域21c,21dの厚さを薄くすることで冷却装置20の冷却性能をより向上させ、半導体装置1の信頼性の低下を抑制することができる。以下では、天板21の連通領域21c,21dの厚さの変形例について説明する。なお、変形例で説明する半導体装置1は、既述の半導体装置1と同様の構成を成している。但し、冷却装置20の天板21の連通領域21c,21dの厚さのみが異なっている。変形例の説明では、変更箇所のみを中心に説明する。
 なお、上記の冷却装置20は、天板21と、天板21の裏面に環状に接続された側壁22と、天板21に対向し、側壁22の裏面に接続された底板23と、を一体的に含んで一纏まりとなって構成されている。冷却装置20は、必ずしも、このような構成でなくてもよい。冷却装置20の別の例について、図6を用いて説明する。図6は、第1の実施の形態の半導体装置に含まれる別の冷却装置の断面図である。なお、図6は、冷却装置120の断面図であって、図4の断面図に対応する。
 冷却装置120もまた、天板21と、天板21の裏面に環状に接続された側壁22と、天板21に対向し、側壁22の裏面に接続された底板23と、を含んでいる。冷却装置120の場合は、別途、側壁22と底板23とが一体的に形成されている。冷却装置120は、図2~図4で説明した天板21に、側壁22が形成された底板23を別途取り付けることで構成される。なお、天板21に、側壁22が形成された底板23を天板21に取り付ける際には、側壁22が天板21の外縁領域21e,21fの連通領域21c,21d側の側壁接続領域22aに取り付けられる。側壁接続領域22aは、天板21の裏面に環状の側壁22が接続される領域全体に設定される。このため、平面視で、天板21の側壁接続領域22a及び側壁22は同じ位置に対応することになる。
 例えば、このような冷却装置120を含む半導体装置1は、複数の放熱フィン24fが形成された天板21に半導体モジュール10が接合された状態で出荷される。出荷先で、半導体モジュール10が接合された天板21に、側壁22が形成された底板23を取り付ける。この際、側壁22は、天板21の側壁接続領域22aに接続される。これにより、冷却装置120を含む半導体装置1が得られる。
 以下では、第1の実施の形態の半導体装置1に含まれる冷却装置20の変形例について説明する。ここでは、冷却装置20を例に挙げて説明する。また、ここでの変形例は、図6に示した冷却装置120に対して同様に適用でき、同様の効果が得られる。
 [変形例1-1]
 変形例1-1の冷却装置20について、図7及び図8を用いて説明する。図7は、第1の実施の形態の変形例1-1の半導体装置に含まれる冷却装置の要部断面図であり、図8は、第1の実施の形態の変形例1-1の半導体装置に含まれる冷却装置の要部拡大断面図である。なお、図7は、図4の天板21の連通領域21c近傍を拡大して示しており、図8は、図7をさらに拡大して示している。また、以降の変形例では、天板21の連通領域21cについて説明し、連通領域21dの説明を省略する。天板21の連通領域21dの方も連通領域21cの構成を同様に適用することができる。
 変形例1-1では、天板21の連通領域21cの厚さにおいて、冷却領域21b側の冷却領域側部21c1よりも外縁領域21e側の外縁領域側部21c2の方が厚く構成されている。天板21の外縁領域側部21c2の厚さは、外縁領域21eの厚さT1と同一である。天板21の冷却領域側部21c1の厚さは、冷却領域21bの厚さT2と同一である。
 天板21の外縁領域側部21c2と冷却領域側部21c1とが段差部21gにより接続されている。また、段差部21gは、傾斜を成して接続している。この場合の傾斜は、天板21の連通領域21cのおもて面(X-Y面)に対して、10度以上、45度以下が好ましく、20度以上、30度以下がより好ましい。天板21の連通領域21cの厚さは、冷却領域21bから外縁領域21eに進むと、冷却領域側部21c1の厚さT2から段差部21gを経て外縁領域側部21c2の厚さT1に厚くなる。天板21の裏面には、外縁領域側部21c2の厚さT1から冷却領域側部21c1の厚さT2を差し引いた高さ(Z方向の長さ)の段差部21gが形成されている。段差部21gの高さ(T1-T2)は、外縁領域側部21c2の厚さT1の0.4倍以上、0.6倍以下であってよい。例えば、段差部21gの高さ(T1-T2)は、0.8mm以上、3.2mm以下であってよい。段差部21gの長さ(天板21のおもて面に平行な方向の長さ、X方向の長さ)は、段差部21gの高さの1.0倍以上、5.0倍以下であってよい。より好ましくは、1.7倍以上、2.8倍以下である。
 図4に示した冷却装置20の連通部24bでは、天板21と側壁22とは略直角に接合されている。このような連通部24bに流通する冷媒は、この角部に滞留してしまう可能性がある。冷媒が冷却装置20内で所定の箇所に滞留してしまうと、滞留箇所が腐食し、穴が開いてしまう可能性が高まる。特に、天板21の連通領域21cの厚さT2は、外縁領域21eの厚さT1よりも薄いために、腐食して孔が開くまでの時間が短くなることが考えられる。
 変形例1-1では、天板21の連通領域21cの厚さにおいて、冷却領域21b側の冷却領域側部21c1よりも外縁領域21e側の外縁領域側部21c2の方を厚く構成している。これにより、天板21の連通領域21cの側壁22との接続部分に冷媒が滞留しても腐食により孔が空くまでの時間を延ばすことができる。すなわち、天板21の連通領域21cの側壁22との接続部分に孔が空きにくくなる。
 図7に示されるように、側面視で、天板21と側壁22との交点を交点O、外縁領域側部21c2と段差部21gとの交点を交点D、冷却領域側部21c1と段差部21gとの交点を交点E、側壁22から流出口23b(あるいは流入口23a)の外縁領域21e側(あるいは外縁領域21f側)の端部に対応する位置を位置P、冷却領域21bから流出口23b(あるいは流入口23a)の冷却領域21b側の端部に対応する位置Qとする。このような外縁領域側部21c2は、図7に示されるように、天板21と側壁22との交点Oから交点Dまでの長さRが天板21の外縁領域21eの厚さT1と同じ、または、厚さT1以上であることが望ましい。このため、外縁領域側部21c2の交点Dは、側壁22から位置Pまでの間に及ばせることができる。また、冷却領域側部21c1の交点Eは、流出口23b(あるいは流入口23a)に対応する位置Pと位置Qとの間であってよい。こうすることで、段差部21gの一部が流出口23b(あるいは流入口23a)に対応する位置に入り、流出口23b(あるいは流入口23a)と冷却領域21bの冷媒の流れを良くすることができる。他方、既述の通り、天板21の連通領域21c及び冷却領域21bの厚さT2を、天板21の外縁領域21eの厚さT1よりも薄くすることで、冷却部24a及び連通部24b,24cを流通する冷媒に対する圧力損失を低減している。このため、天板21において、段差部21gを側壁22の際(きわ)に位置するように設け、できる限り冷却領域側部21c1の範囲を長く維持してもよい。
 また、外縁領域側部21c2と段差部21gとの接続箇所は、図8に示されるように、R面取りされてもよい。接続箇所がR面取りされることで、図7の長さRを維持しつつ、連通部24bの断面積を少しでも広く維持することができる。このため、天板21において外縁領域側部21c2が、側壁22の際に位置し、段差部21gとの接続箇所にR面を成すことで、連通部24bを流通する冷媒に対する圧力損失の低減を維持し、連通部24bに孔が空きにくくすることができる。
 したがって、変形例1-1の冷却装置20では、図4の冷却装置20と同様に冷却性能の向上を図ることができると共に、冷却装置20の信頼性の低下をさらに抑制することができるようになる。
 [変形例1-2]
 変形例1-2の冷却装置20について、図9を用いて説明する。図9は、第1の実施の形態の変形例1-2の半導体装置に含まれる冷却装置の要部断面図である。なお、図9は、図4の天板21の連通領域21c近傍を拡大して示している。
 変形例1-2では、変形例1-1において天板21において段差部21gが冷却領域21bの近傍に形成されている場合である。すなわち、天板21の外縁領域側部21c2が変形例1-1の外縁領域側部21c2よりも冷却領域21b側に延伸している。また、天板21の冷却領域側部21c1は変形例1-1の冷却領域側部21c1よりも短い。
 図4及び図7の冷却装置20では、内部にゴミ、空気、泡といった異物が入り込んでしまうことがある。このような異物が冷却装置20内に存在していると、冷媒の流通の妨げとなり、流速が低下して、冷却性能が低下してしまうおそれがある。
 変形例1-2では、天板21の外縁領域側部21c2が変形例1-1の外縁領域側部21c2よりも冷却領域21b側に延伸している。これにより、連通部24bの断面積が図4及び図7の冷却装置20よりも狭くなる。すなわち、このような連通部24bを流通する冷媒の流速が増加し、冷媒により流れる圧力が増加する。このため、連通部24bに存在する異物が冷媒と共に流出口23bから排出されやすくなる。また、変形例1-2でも、天板21の側壁22の近傍が厚さT1とされている。これにより、天板21の連通領域21cの側壁22との接続部分に冷媒が滞留しても孔が空きにくい。
 図7と同様、図9に示されるように、側面視で、天板21と側壁22との交点を交点O、外縁領域側部21c2と段差部21gとの交点を交点D、冷却領域側部21c1と段差部21gとの交点を交点E、側壁22から流出口23b(あるいは流入口23a)の外縁領域21e側(あるいは外縁領域21f側)の端部に対応する位置を位置P、冷却領域21bから流出口23b(あるいは流入口23a)の冷却領域21b側の端部に対応する位置を位置Qとする。このような冷却領域側部21c1が(X方向に対して)短すぎて、段差部21gが天板21の冷却領域21bに近すぎる場合、天板21の冷却領域21bの熱伝導性が低下してしまうおそれがある。しかし、本変形例1-2では、冷却領域側部21c1は、図8に示されるように、冷却領域21bから天板21の冷却領域21bの厚さT2と同じ、または、厚さT2よりも長い。天板21において、例えば、冷却領域側部21c1の交点Eは、冷却領域21bから位置Qまでの間に及ばせることができる。仮に、冷却領域側部21c1が、位置Qを超えてしまうと、流出口23b上の天板21は厚さT2となり、流出口23b上を流通する冷媒の流速が十分に増加しない場合がある。そこで、天板21の冷却領域側部21c1の交点Eは、位置Qまでの間に及ばせることで、確実に冷媒の流速を増加させることができる。また、外縁領域側部21c2の交点Dは、流出口23b(あるいは流入口23a)に対応する位置Pと位置Qとの間であってよい。こうすることで、段差部21gの一部が流出口23b(あるいは流入口23a)に対応する位置に入り、流出口23b(あるいは流入口23a)と冷却領域21bの冷媒の流れをさらに良くすることができる。
 したがって、変形例1-2の冷却装置20では、連通部24bに孔が空きにくくなり、異物を排出できるようになり、冷却性能の向上を図ることができると共に、冷却装置20の信頼性の低下をさらに抑制することができるようになる。
 [変形例1-3]
 変形例1-3の冷却装置20について、図10を用いて説明する。図10は、第1の実施の形態の変形例1-3の半導体装置に含まれる冷却装置の要部断面図である。なお、図10は、図4の天板21の連通領域21c近傍を拡大して示している。また、図10でも、図6と同様、側面視で、天板21と側壁22との交点を交点O、側壁22から流出口23b(あるいは流入口23a)の外縁領域21e側(あるいは外縁領域21f)の端部に対応する位置を位置P、冷却領域21bから流出口23b(あるいは流入口23a)の冷却領域21b側の端部に対応する位置Qとする。
 変形例1-3の冷却装置20では、天板21の連通領域21cにおいて2つの段差部21g1,21g2が形成されている場合である。すなわち、変形例1-3の冷却装置20では、天板21の連通領域21cでは、冷却領域21bから外縁領域21eに進むに連れて、冷却領域側部21c1から、段差部21g1,21g2ごとに中間部21c3、外縁領域側部21c2でそれぞれ厚くなっている。天板21の冷却領域側部21c1は厚さT2であり、外縁領域側部21c2は厚さT1である。中間部21c3の厚さは厚さT2より厚く、厚さT1よりも薄い。外縁領域側部21c2と最も外縁領域21e側にある段差部21g2との交点を交点D、冷却領域側部21c1と最も冷却領域21b側にある段差部21g1との交点を交点Eとする。
 このような変形例1-3の冷却装置20では、変形例1-1と同様に、腐食による孔が空きにくくなる。また、変形例1-3の冷却装置20は、変形例1-1の冷却装置20の場合よりも、連通部24bの断面積が狭くなる。このため、変形例1-3の冷却装置20では、変形例1-1の冷却装置20の場合よりも、内部の異物を排除でき、冷却性能を向上することができる。
 また、変形例1-3の冷却装置20では、変形例1-2の冷却装置20の場合よりも、連通部24bの断面積が広くなる。このため、変形例1-3の冷却装置20では、変形例1-2の冷却装置20の場合よりも、連通部24bを流通する冷媒に対する圧力損失を低減することができ、冷却性能を向上することができる。
 したがって、変形例1-3の冷却装置20では、腐食により孔が空きにくくなり、異物を排出でき、また、冷媒に対する圧力損失を低減できるようになり、冷却性能の向上を図ることができると共に、冷却装置20の信頼性の低下をさらに抑制することができるようになる。
 なお、変形例1-3の冷却装置20では、天板21の中間部21c3が、側面視で、流出口23b(あるいは流入口23a)に対応することが好ましい。すなわち、中間部21c3の少なくとも一部は、流出口23b(あるいは流入口23a)に対応する位置Pと位置Qとの間であってよい。天板21の段差部21g1は、側面視で、流出口23bより冷却領域21b側に対応することが好ましい。すなわち、天板21において、段差部21g1の交点Eは、側面視で、流出口23bの冷却領域21b側の端部に対応する位置Qから冷却領域21b側に位置する。また、段差部21g2の交点Dは、側面視で、流出口23bの外縁領域21e側の端部に対応する位置Pから外縁領域21e側に位置することが好ましい。このため、流出口23b上を流通する冷媒の流速を変形例1-1の場合よりも確実に増加させることができる。
 また、変形例1-3では、天板21の連通領域21cに2つの段差部21g1,21g2が設けられ、段差部21g1,21g2ごとに高さの異なる部分が3箇所ある場合を説明している。この場合に限らず、段差部の個数は3つ以上であって、段差部ごとに高さの異なる部分が4箇所以上あってもよい。
 [第2の実施の形態]
 第2の実施の形態では、半導体モジュール10が、放熱フィン24fが設けられた冷却領域21bを超えて天板21に配置された半導体装置1について図11及び図12を用いて説明する。図11は、第2の実施の形態の半導体装置に含まれる冷却装置の断面図である。図12は、第2の実施の形態の半導体装置に含まれる冷却装置の平面図である。なお、第2の実施の形態の半導体装置1は、図6で説明した冷却装置120を用いて説明する。第2の実施の形態の半導体装置1に、図4で説明した冷却装置20を同様に適用することも可能である。
 半導体装置1は、小型化を図るために、半導体モジュール10のサイズが維持されて冷却領域21bの縮小化が優先される。放熱フィン24fが設けられている冷却領域21bが縮小化されると、半導体モジュール10は冷却領域21b上に配置されるものの、冷却領域21bをはみ出した範囲が生じる。すなわち、半導体モジュール10の冷却領域21bをはみ出した領域の直下には放熱フィン24fが存在しない。また、半導体装置1は、熱サイクル試験において、半導体モジュール10(半導体チップ12及び絶縁回路基板11)と冷却装置120(天板21)との線膨張係数の差により、熱応力が発生する。なお、天板21(例えば、アルミニウム)の線膨張係数は、2.4×10―5/℃程度、封止部材(例えば、エポキシ樹脂)の線膨張係数は、1.4×10―5/℃程度である。
 半導体モジュール10の冷却領域21bをはみ出した領域(はみ出し領域21h,21i)の直下に放熱フィン24fが存在しない場合、放熱フィン24fが存在する場合と比べて、熱応力による半導体装置1(冷却装置120)に生じる歪み量(変化量)が増加してしまう。この結果、封止部材で冷却装置120を封止する場合には、絶縁回路基板11の近傍から封止部材の剥離が生じてしまうおそれがある。これにより半導体装置1の信頼性の低下に繋がる。
 そこで、半導体装置1の冷却装置120では、天板21の裏面(底板23に対向する面)に緩和板25が設けられている。緩和板25は、天板21の短手方向に沿って形成されている。すなわち、緩和板25の外側(外縁領域21e,21f側)の端部を、天板21の側壁22に位置し、内側の端部E1を絶縁回路基板11の外縁部E2よりも内側(はみ出し領域21h,21i)に位置する。このように、緩和板25を半導体モジュール10の冷却領域21bからはみ出し領域21h,21iに設けることで、冷却装置120に生じる熱応力を緩和して、冷却装置120(半導体装置1)の歪みを抑制することができる。
 なお、緩和板25がこのようなはみ出し領域21h,21iに配置されるのは、半導体モジュール10の冷却領域21bからのはみ出し領域21h,21iに放熱フィン24fが設けられていない場合である。第2の実施の形態では、図11及び図12に示されるように、半導体モジュール10は冷却領域21bの(±X方向の)両縁部からはみ出している。このため、緩和板25を冷却領域21bの両側のはみ出し領域21h,21iに設けている。半導体モジュール10が冷却領域21bの(±X方向の)片方の縁部のみからはみ出している場合には、緩和板25は片方のはみ出した領域に対応して天板21に設けられる。
 緩和板25の端部E1は、絶縁回路基板11の外縁部E2よりも内側のはみ出し領域21h,21i内に位置すればよく、最外部の放熱フィン24fに接していてもよい。ここでは、緩和板25の端部E1が、はみ出し領域21h,21i内であって、最外部の放熱フィン24fから(外側に)離間している場合を示している。但し、緩和板25の端部E1は、最外部の放熱フィン24f(はみ出し領域21h,21i)よりも内側に入り込むことはない。緩和板25の端部E1が、最外部の放熱フィン24fよりも内側に入り込んでしまうと、冷却領域21bの冷却性能が低下してしまう。
 ここでは、緩和板25と連通領域21cの天板21とを合わせた積層厚さT3が厚さT1と同じである場合を示している。積層厚さT3(緩和板25の厚さ)を厚くすることで、冷却装置120に生じる熱応力をより緩和することができる。但し、緩和板25の厚さが厚すぎる場合には、冷却部24a及び連通部24b,24cを流通する冷媒に対する圧力損失が増加してしまう。さらには、天板21のおもて面から連通領域21c,21dを流通する冷媒に対する放熱性も低下してしまう。このため、積層厚さT3が最大厚さT1となるように、緩和板25の厚さを選択してよい。
 第2の実施の形態では、緩和板25は、天板21に別途取り付けられている場合を例示している。緩和板25は、天板21の外縁領域21e,21fに対して一体的に形成されていてもよい。
 以下では、第2の実施の形態の半導体装置1の冷却装置120に含まれる緩和板25の変形例について説明する。ここでも、冷却装置120を例に挙げて説明する。また、ここでの変形例は、図4に示した冷却装置20に対して同様に適用でき、同様の効果が得られる。
 [変形例2-1]
 変形例2-1の半導体装置1について、図13及び図14を用いて説明する。図13は、第2の実施の形態の変形例2-1の半導体装置に含まれる冷却装置の断面図である。図14は、第2の実施の形態の変形例2-1の半導体装置に含まれる冷却装置の平面図である。
 既述の通り、緩和板25は、天板21の裏面において、側壁22から半導体モジュール10の冷却領域21bからのはみ出し領域21h,21iに及んで設けられている。これにより、冷却装置120に生じる熱応力を緩和して、冷却装置120(半導体装置1)の歪みを抑制することができる。つまり、緩和板25は、少なくとも、半導体モジュール10の冷却領域21bからのはみ出し領域21h,21iに対応して天板21の裏面に形成されていればよい。例えば、図13及び図14に示されるように、緩和板25は、天板21の裏面のはみ出し領域21h,21iに対応する範囲内に形成されている。この場合でも、冷却装置120に生じる熱応力を緩和して、冷却装置120(半導体装置1)の歪みを抑制することができる。さらに、天板21の裏面において絶縁回路基板11の外縁部E2から側壁22の間に緩和板25が設けられていない。このため、冷却部24a及び連通部24b,24cを流通する冷媒に対する圧力損失の増加を抑制することができる。さらには、天板21のおもて面から連通領域21c,21fを流通する冷媒に対する放熱性の低下を抑制することができる。
 また、緩和板25の底板23側の角部は、R面取りされていてもよい。これにより、冷却部24aと連通部24b,24cとの間で冷媒が流通しやすくなる。すなわち、冷媒の圧力損失の低減が維持されて、冷媒の緩和板25による滞留時間が減り、冷媒が滞留しても腐食により孔が空くまでの時間を延ばすことができる。すなわち、天板21の緩和板25との接続部分に孔が空きにくくなる。
 なお、変形例2-1において、変形例1-1,1-2,1-3で説明したように天板21の連通領域21c,21dの厚さを変化させてもよい。
 [変形例2-2]
 変形例2-2の半導体装置1について、図15を用いて説明する。図15は、第2の実施の形態の変形例2-2の半導体装置に含まれる冷却装置の要部断面図である。なお、図15は、変形例1-1(図7)及び変形例1-2(図9)に対応しており、緩和板25を含む周囲を拡大して示している。
 変形例2-2では、緩和板25の外縁領域21e側の端部は、天板21の裏面の側壁22に位置している。緩和板25の端部E1は、はみ出し領域21h内に位置する。さらに、変形例2-2では、緩和板25を変形例1-2の天板21と同様に厚さを異ならせている。すなわち、変形例2-2の緩和板25は、連通領域21cの天板21及び緩和板25を合わせた積層厚さにおいて、冷却領域21b側の冷却領域側部21c1よりも外縁領域21e側の外縁領域側部21c2の方が厚く構成されている。外縁領域側部21c2の天板21及び緩和板25を合わせた積層厚さは、外縁領域21eの厚さT1と同一である。天板21の冷却領域側部21c1の厚さは、冷却領域21bの厚さT2と同一である。
 緩和板25の外縁領域側部21c2と冷却領域側部21c1とが段差部21gにより接続されている。また、段差部21gは、傾斜を成して接続している。この場合の傾斜は、緩和板25の連通領域21cのおもて面(X-Y面)に対して、10度以上、45度以下が好ましく、20度以上、30度以下がより好ましい。天板21及び緩和板25の連通領域21cの積層厚さは、冷却領域21bから外縁領域21eに進むと、冷却領域側部21c1の厚さT2から段差部21gを経て外縁領域側部21c2の厚さT1に厚くなる。段差部21gは、変形例1-1と同様に、外縁領域側部21c2の厚さT1から冷却領域側部21c1の厚さT2を差し引いた高さ(Z方向の長さ)で形成されている。変形例2-2でも、段差部21gの高さ(T1-T2)は、外縁領域側部21c2の厚さT1の0.4倍以上、0.6倍以下であってよい。例えば、段差部21gの高さ(T1-T2)は、0.8mm以上、3.2mm以下であってよい。段差部21gの長さ(天板21のおもて面に平行な方向の長さ、X方向の長さ)は、段差部21gの高さの1.0倍以上、5.0倍以下であってよい。より好ましくは、1.7倍以上、2.8倍以下である。
 変形例2-2でも、天板21及び緩和板25をこのような厚さとすることで、変形例1-1(図7)と同様に、天板21の連通領域21cの側壁22との接続部分に冷媒が滞留しても腐食により孔が空くまでの時間を延ばすことができる。すなわち、天板21の連通領域21cの側壁22との接続部分に孔が空きにくくなる。
 また、変形例2-2でも、変形例1-1(図7)と同様に、外縁領域側部21c2は、天板21と側壁22との交点Oから交点Dまでの長さRが天板21の外縁領域21eの厚さT1と同じ、または、厚さT1以上であることが望ましい(ここでは、長さRは、厚さT1以上である場合を示している)。このため、外縁領域側部21c2の交点Dは、側壁22から位置Pまでの間に及ばせることができる。
 また、変形例2-2でも、変形例1-2(図9)と同様に、天板21において、例えば、冷却領域側部21c1の端部E1は、冷却領域21bから外縁部E2までの間に及ばせることができる。仮に、冷却領域側部21c1が、位置Qを超えてしまうと、流出口23b上の天板21は厚さT1よりも薄くなり、流出口23b上を流通する冷媒の流速が十分に増加しない場合がある。そこで、天板21の冷却領域側部21c1の端部E1は、外縁部E2までの間に及ばせることで、確実に冷媒の流速を増加させることができる。
 また、変形例2-2でも、外縁領域側部21c2と段差部21gとの接続箇所は、R面取りされてもよい。接続箇所がR面取りされることで、長さRを維持しつつ、連通部24bの断面積を少しでも広く維持することができる。このため、天板21において外縁領域側部21c2が、側壁22の際に位置し、段差部21gとの接続箇所にR面を成すことで、連通部24bを流通する冷媒に対する圧力損失の低減を維持し、連通部24bに孔が空きにくくすることができる。
 また、変形例2-2において、図示を省略するものの、変形例1-2(図9)と同様に、緩和板25において段差部21gが冷却領域21bの近傍に形成されてもよい。すなわち、緩和板25の外縁領域側部21c2が図15の外縁領域側部21c2よりも冷却領域21b側に延伸してもよい。また、緩和板25の冷却領域側部21c1は図15の冷却領域側部21c1よりも短い。これにより、連通部24bの断面積が図15の冷却装置120よりも狭くなる。すなわち、このような連通部24bを流通する冷媒の流速が増加し、冷媒により流れる圧力が増加する。このため、連通部24bに存在する異物が冷媒と共に流出口23bから排出されやすくなる。また、この場合でも、天板21及び緩和板25の側壁22の近傍が厚さT1とされている。これにより、天板21の連通領域21cの側壁22との接続部分に冷媒が滞留しても孔が空きにくい。
 また、このような冷却領域側部21c1が(X方向に対して)短すぎて、段差部21gが天板21及び緩和板25の冷却領域21bに近すぎる場合、天板21の冷却領域21bの熱伝導性が低下してしまうおそれがある。しかし、緩和板25において段差部21gが冷却領域21bの近傍に形成される場合、冷却領域側部21c1は、冷却領域21bから天板21の冷却領域21bの厚さT2と同じ、または、厚さT2よりも長い。天板21において、例えば、冷却領域側部21c1の交点Eは、冷却領域21bから位置Qまでの間に及ばせることができる。仮に、冷却領域側部21c1が、位置Qを超えてしまうと、流出口23b上の天板21は厚さT2となり、流出口23b上を流通する冷媒の流速が十分に増加しない場合がある。そこで、天板21及び緩和板25の冷却領域側部21c1の交点Eは、位置Qまでの間に及ばせることで、確実に冷媒の流速を増加させることができる。また、外縁領域側部21c2の交点Dは、流出口23b(あるいは流入口23a)に対応する位置Pと位置Qとの間であってよい。こうすることで、段差部21gの一部が流出口23b(あるいは流入口23a)に対応する位置に入り、流出口23b(あるいは流入口23a)と冷却領域21bの冷媒の流れをさらに良くすることができる。
 したがって、変形例2-2の冷却装置120では、図11の冷却装置120よりも冷却性能の向上を図ることができると共に、冷却装置120の信頼性の低下をさらに抑制することができるようになる。
 [変形例2-3]
 変形例2-3の半導体装置1について、図16を用いて説明する。図16は、第2の実施の形態の変形例2-3の半導体装置に含まれる冷却装置の要部断面図である。なお、図16は、変形例1-3(図10)に対応しており、緩和板25を含む周囲を拡大して示している。
 変形例2-3では、緩和板25を変形例1-3(図10)の天板21と同様に厚さを異ならせている。すなわち、変形例2-3では、変形例1-3(図10)と同様に、天板21及び緩和板25の連通領域21cにおいて2つの段差部21g1,21g2が形成されている場合である。変形例2-3の冷却装置120でも、天板21及び緩和板25の連通領域21cでは、冷却領域21bから外縁領域21eに進むに連れて、冷却領域側部21c1から、段差部21g1,21g2ごとに中間部21c3、外縁領域側部21c2でそれぞれ厚くなっている。天板21の冷却領域側部21c1は厚さT2であり、外縁領域側部21c2は厚さT1である。中間部21c3の厚さは厚さT2より厚く、厚さT1よりも薄い。外縁領域側部21c2と最も外縁領域21e側にある段差部21g2との交点を交点D、冷却領域側部21c1と最も冷却領域21b側にある段差部21g1との交点を交点Eとする。
 このような変形例2-3の冷却装置120でも、変形例2-2と同様に、腐食による孔が空きにくくなる。また、変形例2-3の冷却装置120は、変形例2-2の冷却装置120の場合よりも、連通部24bの断面積が狭くなる。このため、変形例2-3の冷却装置120では、変形例2-2の冷却装置120の場合よりも、内部の異物を排除でき、冷却性能を向上することができる。
 また、変形例2-3の冷却装置20では、変形例2-2の冷却装置120の段差部21gが冷却領域21bの近傍に形成された場合よりも、連通部24bの断面積が広くなる。このため、変形例2-3の冷却装置120では、変形例2-2のこの場合よりも、連通部24bを流通する冷媒に対する圧力損失を低減することができ、冷却性能を向上することができる。
 したがって、変形例2-3の冷却装置120では、腐食により孔が空きにくくなり、異物を排出でき、また、冷媒に対する圧力損失を低減できるようになり、冷却性能の向上を図ることができると共に、冷却装置120の信頼性の低下をさらに抑制することができるようになる。
 なお、変形例2-3の冷却装置120でも、天板21の中間部21c3が、側面視で、流出口23b(あるいは流入口23a)に対応することが好ましい。このため、流出口23b上を流通する冷媒の流速を変形例2-2の場合よりも確実に増加させることができる。
 また、変形例2-3では、緩和板25の連通領域21cに2つの段差部21g1,21g2が設けられ、段差部21g1,21g2ごとに高さの異なる部分が3箇所ある場合を説明している。この場合に限らず、段差部の個数は3つ以上であって、段差部ごとに高さの異なる部分が4箇所以上あってもよい。
 ところで、上記の第1,第2の実施の形態の半導体装置1を含む装置の一例として、車両の場合について、図17を用いて説明する。図17は、車両の模式図である。車両30は、少なくとも一部の推進力を、電力を用いて発生する車両である。一例としての車両30は、全ての推進力をモーター等の電力駆動機器で発生させる電気自動車、または、モーター等の電力駆動機器と、ガソリン等の燃料で駆動する内燃機関とを併用するハイブリッド車である。
 車両30は、モーター等の電力駆動機器を制御する制御装置31(外部装置)を備える。制御装置31には、半導体装置1が設けられている。半導体装置1は、電力駆動機器に供給する電力を制御してよい。
 次に、半導体装置1に含まれる等価回路について、図18を用いて説明する。図18は、半導体装置に含まれる等価回路の図である。第1,第2の実施の形態の半導体装置1は、出力端子U,V,Wを有する三相交流インバータ回路として機能し、車両30のモーターを駆動する車載用ユニットの一部であってよい。
 なお、図18では、半導体装置1に含まれる半導体チップ12c1~12c6は、それぞれ、図1に示される半導体チップ12a1~12a6,12b1~12b6の機能を含むRC-IGBTである場合を示している。
 半導体装置1において、半導体チップ12c1,12c2,12c3は上アームを、半導体チップ12c4,12c5,12c6は下アームを構成してよい。一組の半導体チップ12c1,12c4はレグ(U相)を構成してよい。一組の半導体チップ12c2,12c5、一組の半導体チップ12c3,12c6も同様にレグ(V相、W相)を構成してよい。
 半導体チップ12c6において、エミッタ電極が入力端子N1に、コレクタ電極が出力端子Uに、それぞれ電気的に接続してよい。半導体チップ12c3において、エミッタ電極が出力端子Uに、コレクタ電極が入力端子P1に、それぞれ電気的に接続してよい。同様に、半導体チップ12c5,12c4において、エミッタ電極がそれぞれ入力端子N2,N3に、コレクタ電極がそれぞれ出力端子V,Wに、電気的に接続してよい。さらに、半導体チップ12c2,12c1において、エミッタ電極がそれぞれ出力端子V,Wに、コレクタ電極がそれぞれ入力端子P2,P3に、電気的に接続してよい。
 各半導体チップ12c1~12c6は、対応する制御端子に入力される信号により交互にスイッチングされてよい。本実施の形態において、各半導体チップ12c1~12c6はスイッチング時に発熱してよい。入力端子P1,P2,P3は外部電源の正極に、入力端子N1,N2,N3は外部電源の負極に、出力端子U,V,Wは負荷にそれぞれ接続してよい。入力端子P1,P2,P3は互いに電気的に接続されてよく、また、他の入力端子N1,N2,N3も互いに電気的に接続されてよい。
 上記については単に本発明の原理を示すものである。さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成及び応用例に限定されるものではなく、対応するすべての変形例及び均等物は、添付の請求項及びその均等物による本発明の範囲とみなされる。
 1 半導体装置
 10 半導体モジュール
 11 絶縁回路基板
 11a 絶縁板
 11b 回路パターン
 11c 金属板
 12,12a1~12a6,12b1~12b6,12c1~12c6 半導体チップ
 13 接合部材(はんだ)
 14 接合部材(ろう材)
 20,120 冷却装置
 20a,20b 長辺
 20c,20d 短辺
 20e 締結孔
 20e1 締結補強部
 21 天板
 21a 流路領域
 21b 冷却領域
 21c,21d 連通領域
 21c1 冷却領域側部
 21c2 外縁領域側部
 21c3 中間部
 21e,21f 外縁領域
 21g,21g1,21g2 段差部
 21h,21i はみ出し領域
 22 側壁
 22a 側壁接続領域
 23 底板
 23a 流入口
 23b 流出口
 23c1,23c2 ゴムパッキン
 23d1,23d2 排水ヘッド
 23e1,23e2 排水管
 24 流路部
 24a 冷却部
 24b,24c 連通部
 24d,24e ねじ枠
 24f 放熱フィン
 25 緩和板
 30 車両
 31 制御装置

Claims (34)

  1.  半導体チップと前記半導体チップが実装された絶縁回路基板とを有する半導体モジュールと、
     前記半導体モジュールがおもて面に配置される天板を有し、前記天板の裏面に環状の側壁が接続される側壁接続領域が設定された冷却装置と、
     を備え、
     前記天板は、平面視で矩形状を成し、長手方向に沿って裏面の中央部に複数のフィンが配置される冷却領域が設定され、短手方向に沿った前記冷却領域の両側に第1連通領域及び第2連通領域がそれぞれ設定され、
     前記側壁接続領域は、前記天板の前記裏面に前記冷却領域と前記第1連通領域と前記第2連通領域とを含んで環状に設定され、
     前記冷却領域の厚さは前記天板の前記側壁接続領域から外側の外縁領域の外縁厚さよりも薄い、
     半導体装置。
  2.  前記天板の前記おもて面は同一平面を成しており、
     前記天板の裏面において前記冷却領域が前記外縁領域よりも前記おもて面側に窪んでいる、
     請求項1に記載の半導体装置。
  3.  前記天板の前記第1連通領域及び前記第2連通領域のそれぞれの厚さは、前記冷却領域側の冷却領域側部よりも前記外縁領域側の外縁領域側部が厚い、
     請求項1または2に記載の半導体装置。
  4.  前記第1連通領域及び前記第2連通領域の前記冷却領域側部の厚さは、前記天板の前記冷却領域の厚さと同じであり、
     前記第1連通領域及び前記第2連通領域の前記外縁領域側部の厚さは、前記天板の前記外縁領域の厚さと同じである、
     請求項3に記載の半導体装置。
  5.  前記第1連通領域及び前記第2連通領域に前記冷却領域と前記外縁領域との間に1以上の段差部が設けられ、
     前記第1連通領域及び前記第2連通領域の前記天板の厚さは、前記冷却領域から前記外縁領域に進むに連れて、前記段差部ごとに厚くなる、
     請求項3または4に記載の半導体装置。
  6.  前記段差部は、前記天板における前記側壁接続領域の際に設けられている、
     請求項5に記載の半導体装置。
  7.  前記段差部は、前記冷却領域と前記第1連通領域との境界近傍、前記冷却領域と前記第2連通領域との境界近傍にそれぞれ設けられている、
     請求項5に記載の半導体装置。
  8.  前記冷却装置は、さらに、前記天板の前記側壁接続領域に接続される前記側壁と前記天板に対向し、前記側壁の裏面に形成された底板とを有し、
     前記天板、前記側壁、前記底板とで冷媒が流される流路部を構成する、
     請求項3乃至7のいずれかに記載の半導体装置。
  9.  前記底板の前記第1連通領域に対応する領域に、前記流路部に冷媒が流入される流入口が形成され、
     前記底板の前記第2連通領域に対応する領域に、前記流路部から前記冷媒が流出される流出口が形成されている、
     請求項8に記載の半導体装置。
  10.  前記第1連通領域の前記外縁領域側部は、側面視で、前記側壁から少なくとも前記流入口の前記外縁領域側の端部に対応する位置まで及び、
     前記第2連通領域の前記外縁領域側部は、側面視で、前記側壁から少なくとも前記流出口の前記外縁領域側の端部に対応する位置まで及ぶ、
     請求項9に記載の半導体装置。
  11.  前記第1連通領域の前記冷却領域側部は、側面視で、前記冷却領域から少なくとも前記流入口の前記冷却領域側の端部に対応する位置まで及び、
     前記第2連通領域の前記冷却領域側部は、側面視で、前記冷却領域から少なくとも前記流出口の前記冷却領域側の端部に対応する位置まで及ぶ、
     請求項9または10に記載の半導体装置。
  12.  前記段差部は、前記第1連通領域及び前記第2連通領域において異なる高さを接続するように傾斜を成している、
     請求項5乃至11のいずれかに記載の半導体装置。
  13.  前記段差部の傾斜角は前記天板の前記第1連通領域及び前記第2連通領域の裏面に対して10度以上、45度以下である、
     請求項12に記載の半導体装置。
  14.  前記傾斜角は、さらに、20度以上、30度以下である、
     請求項13に記載の半導体装置。
  15.  前記段差部と前記異なる高さとの接続箇所はR面を成している、
     請求項12乃至14のいずれかに記載の半導体装置。
  16.  前記半導体モジュールは、前記天板の前記おもて面の前記冷却領域に配置されている、
     請求項1または2に記載の半導体装置。
  17.  前記冷却領域の前記短手方向の幅は、前記絶縁回路基板の前記短手方向の幅よりも狭く、
     前記絶縁回路基板は前記天板の前記おもて面に前記冷却領域の前記短手方向の少なくとも一方の外縁部から前記第1連通領域及び前記第2連通領域の少なくとも一方にはみ出して配置され、
     前記天板の前記裏面の前記絶縁回路基板の前記冷却領域からはみ出した部分に対応する範囲内に緩和板が設けられている、
     請求項16に記載の半導体装置。
  18.  前記緩和板は、さらに、前記天板の前記裏面において前記短手方向に沿って前記側壁接続領域まで延伸している、
     請求項17に記載の半導体装置。
  19.  前記天板及び前記緩和板を合わせた積層厚さの全体は、前記天板の前記外縁領域の厚さと同じである、
     請求項17または18に記載の半導体装置。
  20.  前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方の前記天板及び前記緩和板を合わせた積層厚さは、前記冷却領域側の冷却領域側部よりも前記外縁領域側の外縁領域側部が厚い、
     請求項18に記載の半導体装置。
  21.  前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方の前記冷却領域側部の前記積層厚さは、前記天板の前記冷却領域の厚さと同じであり、
     前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方の前記外縁領域側部の前記積層厚さは、前記天板の前記外縁領域の厚さと同じである、
     請求項20に記載の半導体装置。
  22.  前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方に前記冷却領域と前記外縁領域との間に1以上の段差部が設けられ、
     前記積層厚さは、前記冷却領域から前記外縁領域に進むに連れて、前記段差部ごとに厚くなる、
     請求項20または21に記載の半導体装置。
  23.  前記段差部は、前記天板における前記側壁接続領域の際に設けられている、
     請求項22に記載の半導体装置。
  24.  前記段差部は、前記冷却領域と前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方との境界近傍にそれぞれ設けられている、
     請求項22に記載の半導体装置。
  25.  前記冷却装置は、さらに、前記天板の前記側壁接続領域に接続される前記側壁と前記天板に対向し、前記側壁の裏面に形成された底板とを有し、
     前記天板、前記側壁、前記底板とで冷媒が流される流路部を構成する、
     請求項16乃至23のいずれかに記載の半導体装置。
  26.  前記底板の前記第1連通領域に対応する領域に、前記流路部に冷媒が流入される流入口が形成され、
     前記底板の前記第2連通領域に対応する領域に、前記流路部から前記冷媒が流出される流出口が形成されている、
     請求項25に記載の半導体装置。
  27.  前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方の前記外縁領域側の外縁領域側部は、側面視で、前記側壁から少なくとも前記流入口または前記流出口の前記外縁領域側の端部に対応する位置まで及ぶ、
     請求項26に記載の半導体装置。
  28.  前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方の前記冷却領域側の冷却領域側部は、側面視で、前記冷却領域から少なくとも前記流入口または前記流出口の前記冷却領域側の端部に対応する位置まで及ぶ、
     請求項26または27に記載の半導体装置。
  29.  前記段差部は、前記絶縁回路基板がはみ出した側の前記第1連通領域及び前記第2連通領域の少なくとも一方において異なる高さを接続するように傾斜を成している、
     請求項22乃至24のいずれかに記載の半導体装置。
  30.  平面視で、前記天板及び前記底板は同一形状を成している、
     請求項1乃至29のいずれかに記載の半導体装置。
  31.  前記天板の前記外縁領域の少なくとも四隅に締結孔がそれぞれ形成されている、
     請求項1乃至30のいずれかに記載の半導体装置。
  32.  前記天板の前記裏面の前記締結孔の周囲に形成され、前記底板のおもて面に接続された締結補強部がそれぞれ形成されている、
     請求項31に記載の半導体装置。
  33.  前記天板の前記冷却領域の厚さは前記外縁領域の厚さの40%以上、60%以下である、
     請求項1乃至32のいずれかに記載の半導体装置。
  34.  請求項1乃至33のいずれかに記載の半導体装置を含む車両。
PCT/JP2022/009347 2021-04-07 2022-03-04 半導体装置及び車両 WO2022215401A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280006472.0A CN116235300A (zh) 2021-04-07 2022-03-04 半导体装置以及车辆
JP2023512866A JP7552879B2 (ja) 2021-04-07 2022-03-04 半導体装置及び車両
EP22784386.9A EP4199078A4 (en) 2021-04-07 2022-03-04 SEMICONDUCTOR DEVICE AND VEHICLE
US18/184,193 US20230215780A1 (en) 2021-04-07 2023-03-15 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021065157 2021-04-07
JP2021-065157 2021-04-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/184,193 Continuation US20230215780A1 (en) 2021-04-07 2023-03-15 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2022215401A1 true WO2022215401A1 (ja) 2022-10-13

Family

ID=83545879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009347 WO2022215401A1 (ja) 2021-04-07 2022-03-04 半導体装置及び車両

Country Status (5)

Country Link
US (1) US20230215780A1 (ja)
EP (1) EP4199078A4 (ja)
JP (1) JP7552879B2 (ja)
CN (1) CN116235300A (ja)
WO (1) WO2022215401A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079386A (ja) 2003-09-01 2005-03-24 Toshiba Corp パワー半導体応用装置
JP2010212577A (ja) 2009-03-12 2010-09-24 Aisin Aw Co Ltd 半導体モジュール
JP2014176892A (ja) * 2013-03-15 2014-09-25 Uacj Corp 熱交換器
JP2020092250A (ja) * 2018-11-22 2020-06-11 富士電機株式会社 半導体モジュール、車両および製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11129310B2 (en) * 2018-11-22 2021-09-21 Fuji Electric Co., Ltd. Semiconductor module, vehicle and manufacturing method
JP7367418B2 (ja) * 2019-09-13 2023-10-24 富士電機株式会社 半導体モジュールおよび車両
JP7463825B2 (ja) * 2020-04-27 2024-04-09 富士電機株式会社 半導体モジュールおよび車両

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079386A (ja) 2003-09-01 2005-03-24 Toshiba Corp パワー半導体応用装置
JP2010212577A (ja) 2009-03-12 2010-09-24 Aisin Aw Co Ltd 半導体モジュール
JP2014176892A (ja) * 2013-03-15 2014-09-25 Uacj Corp 熱交換器
JP2020092250A (ja) * 2018-11-22 2020-06-11 富士電機株式会社 半導体モジュール、車両および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199078A4

Also Published As

Publication number Publication date
EP4199078A4 (en) 2024-04-24
US20230215780A1 (en) 2023-07-06
JPWO2022215401A1 (ja) 2022-10-13
CN116235300A (zh) 2023-06-06
EP4199078A1 (en) 2023-06-21
JP7552879B2 (ja) 2024-09-18

Similar Documents

Publication Publication Date Title
JP3676719B2 (ja) 水冷インバータ
JP6168152B2 (ja) 電力用半導体モジュール
JP5627499B2 (ja) 半導体モジュールを備えた半導体装置
EP3573097B1 (en) Cooling apparatus, semiconductor module, vehicle, and manufacturing method
JP2002315357A (ja) インバータ装置
US11018076B2 (en) Cooling apparatus, semiconductor module, and vehicle
JPWO2014045766A1 (ja) 半導体装置及び半導体装置の製造方法
JP2008124430A (ja) パワー半導体モジュール
JP3646665B2 (ja) インバータ装置
US20200170147A1 (en) Semiconductor module, vehicle and manufacturing method
JP2008042074A (ja) 半導体装置及び電力変換装置
JP6642731B2 (ja) 半導体モジュール及び電力変換装置
CN108695261B (zh) 电力用半导体装置及其制造方法以及电力变换装置
WO2020184053A1 (ja) 半導体装置
JP7463825B2 (ja) 半導体モジュールおよび車両
JP5349572B2 (ja) 放熱装置及び放熱装置の製造方法
JP2011103369A (ja) パワー半導体モジュール及びその製造方法
JP7424489B2 (ja) 冷却装置および半導体モジュール
JP2016100442A (ja) 半導体モジュール及び半導体装置
US20230154820A1 (en) Power semiconductor device and power conversion device
WO2022215401A1 (ja) 半導体装置及び車両
JP7367394B2 (ja) 半導体モジュール、車両および製造方法
KR20210120355A (ko) 양면 냉각형 파워 모듈
JP4935783B2 (ja) 半導体装置および複合半導体装置
JP2021044527A (ja) 半導体モジュールおよび車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512866

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022784386

Country of ref document: EP

Effective date: 20230316

NENP Non-entry into the national phase

Ref country code: DE