WO2022215240A1 - レーザ装置およびその制御方法 - Google Patents

レーザ装置およびその制御方法 Download PDF

Info

Publication number
WO2022215240A1
WO2022215240A1 PCT/JP2021/014966 JP2021014966W WO2022215240A1 WO 2022215240 A1 WO2022215240 A1 WO 2022215240A1 JP 2021014966 W JP2021014966 W JP 2021014966W WO 2022215240 A1 WO2022215240 A1 WO 2022215240A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
ratio
intensity
laser
laser light
Prior art date
Application number
PCT/JP2021/014966
Other languages
English (en)
French (fr)
Inventor
晃久 金堂
賢宜 木村
準 三浦
昌義 西田
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to PCT/JP2021/014966 priority Critical patent/WO2022215240A1/ja
Priority to JP2023512616A priority patent/JPWO2022215240A1/ja
Priority to CN202180095510.XA priority patent/CN116964882A/zh
Publication of WO2022215240A1 publication Critical patent/WO2022215240A1/ja
Priority to US18/465,228 priority patent/US20240006847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06256Controlling the frequency of the radiation with DBR-structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06837Stabilising otherwise than by an applied electric field or current, e.g. by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30

Definitions

  • the present invention relates to a laser device and its control method.
  • the frequency of laser light is controlled by using two or more frequency filters having transmission characteristics in which the transmittance changes periodically with respect to the frequency of input light.
  • Patent Document 1 A technique has been disclosed (Patent Document 1).
  • the two or more frequency filters are designed to be out of phase with each other. In this control, at the control target frequency of the laser light, the transmitted light of the frequency filter having a larger change in transmittance with respect to the change in frequency is used for control.
  • a frequency filter that has a transmission characteristic that periodically changes with respect to frequency has a small change in transmittance with respect to a change in frequency in a frequency band near the extreme value of the transmission characteristic, and the accuracy of control decreases.
  • Such a frequency band is also called a dead band.
  • Patent Document 1 by setting two or more frequency filters so that they are out of phase with each other and selecting a frequency filter that is not in the dead band at the frequency of the control target, it is possible to suppress a decrease in control accuracy.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a laser device and a method of controlling the same that can suppress deterioration in control accuracy of the frequency of laser light.
  • one aspect of the present invention provides a light source unit that varies the frequency of output laser light, and a monitor that corresponds to a frequency equivalent to the frequency of the laser light.
  • a laser unit for obtaining a value
  • a control unit for controlling the frequency of the laser light by supplying power corresponding to a control amount to the laser unit, wherein the monitor unit is a first frequency filter and a second frequency filter having a transmission characteristic in which the transmittance periodically changes with respect to the frequency of the input light and having a relative phase shift;
  • a first detector that detects a first intensity corresponding to the intensity of the laser beam after passing through the frequency filter, and a second intensity corresponding to the intensity of the laser beam after the laser beam has passed through the second frequency filter.
  • the control unit acquires a target frequency that is a control target of the frequency of the laser light, and a second detection unit that corresponds to the ratio of the first intensity to the intensity of the laser light 1 ratio and a second ratio corresponding to the ratio of the second intensity to the intensity of the laser light are obtained, and the first ratio, the second ratio, and the sum of the first ratio and the second ratio are obtained.
  • a fourth ratio which is the difference between the first ratio and the second ratio, is set as a monitor value corresponding to the frequency of the laser light, and the first to fourth A laser device that obtains a target value corresponding to the target frequency based on any one of the ratios, and controls the control amount so that the absolute value of the difference between the target value and the monitor value becomes small.
  • the control unit may calculate the first ratio or the second ratio by applying a correction coefficient to the first intensity, the second intensity, or the intensity of the laser beam.
  • the control unit may convert the first intensity, the second intensity, and the intensity of the laser beam into digital signals, and calculate the first ratio or the second ratio by digital calculation.
  • the transmittance of the first and second frequency filters may vary sinusoidally with frequency variation.
  • the controller converts a function of frequency indicating the transmission characteristic of the first frequency filter or the transmission characteristic of the second frequency filter from the first intensity or the second intensity and the intensity of the laser beam to a sine function of frequency. to calculate the first ratio or the second ratio.
  • the laser section may vary the frequency of the laser light using a vernier effect.
  • the control unit may control the frequency of the laser light by supplying power corresponding to the control amount to the laser unit.
  • a temperature controller having an installation surface on which the light source unit and the first frequency filter and the second frequency filter are installed; may be installed on the same installation surface.
  • the control unit prioritizes the ratios to be set as the monitor values corresponding to the frequency of the laser beam based on the rate of change of the ratios with respect to the frequency change in the target value among the first to fourth ratios. You may choose.
  • the control unit prioritizes ratios to be set as monitor values corresponding to the frequency of the laser light, among the first to fourth ratios, based on an S/N ratio of the ratio to the frequency change in the target value. can be selected.
  • the control unit prioritizes a ratio set as a monitor value corresponding to the frequency of the laser light based on a rate of change of the ratio with respect to the frequency change in the target value and an S/N, among the first to fourth ratios. You can rank them and select them.
  • the control temperature of the temperature controller, the first ratio or the second ratio, or the monitor value may be corrected so as to offset the longitudinal deviation.
  • a temperature controller having an installation surface on which the light source unit and the first and second frequency filters are installed; and an environmental temperature sensor that detects the environmental temperature of the first and second frequency filters. Further, the controller controls the temperature controller so as to cancel changes in the transmission characteristics of the first frequency filter and the second frequency filter due to the environmental temperature, based on the environmental temperature detected by the environmental temperature sensor. and the first or second ratio or monitor value may be corrected.
  • a control method for a laser device including a light source unit that varies the frequency of output laser light, comprising: a first acquisition step of acquiring a target frequency as a control target for the frequency of the laser light; and a first frequency filter and a second frequency filter having a transmission characteristic in which the transmittance periodically changes with respect to the frequency of the input light, and having a relative phase shift.
  • a second obtaining step of obtaining the first ratio, the second ratio, a third ratio that is the sum of the first ratio and the second ratio, and the first ratio and the second ratio a setting step of setting a monitor value corresponding to a frequency equivalent corresponding to the frequency of the laser light from any one of a fourth ratio that is a difference between a third acquisition step of acquiring a target value corresponding to the target frequency; and an adjustment step of adjusting a control amount so that the absolute value of the difference between the target value and the monitor value becomes smaller. It is a control method of the device.
  • the present invention it is possible to suppress the deterioration of the control accuracy of the frequency of the laser light.
  • FIG. 1 is a diagram showing the configuration of a laser device according to Embodiment 1.
  • FIG. FIG. 2 is a diagram showing the configuration of the light source section.
  • 3 is a block diagram illustrating the configuration of a control unit according to the first embodiment;
  • FIG. 4 is a diagram showing a frequency discrimination curve.
  • FIG. 5 is an explanatory diagram of the margin.
  • FIG. 6 is a diagram showing the relationship between ⁇ and margin.
  • FIG. 7 is a diagram showing temperature-dependent changes in the frequency discrimination curve in the comparative example.
  • FIG. 8 is a diagram showing temperature-dependent changes in the frequency discrimination curve in the embodiment.
  • 9 is a flowchart illustrating a control method by a control unit according to the first embodiment;
  • FIG. 10 is a flow chart showing a control method for performing correction according to the environmental temperature.
  • FIG. 11 is a flow chart showing a control method in the laser device of the fourth modified example.
  • FIG. 12 is a flow chart showing another example of the control method in the laser device of the fourth modified example.
  • FIG. 13 is a flow chart showing part of a control method in a laser device of a further modified example of the fourth modified example.
  • FIG. 14 is a flow chart showing part of a control method in a laser device of a further modified example of the fourth modified example.
  • FIG. 1 is a diagram showing the configuration of a laser device according to Embodiment 1.
  • the laser device 1 includes a modularized laser section 2 and a control section 3 that executes control steps for controlling the operation of the laser section 2 .
  • the laser unit 2 and the control unit 3 are configured separately in FIG. 1, they may be integrated into a module.
  • the laser unit 2 changes the frequency of the output laser light to any one of a plurality of frequencies, and outputs the laser light of the frequency.
  • the laser unit 2 includes a light source unit 4, a semiconductor optical amplifier (SOA) 5, a planar lightwave circuit (PLC) 6, a photodetector unit 7, a temperature sensor 8, and a temperature controller. and a vessel 9.
  • the planar lightwave circuit 6 and the photodetector 7 constitute a monitor 10 .
  • FIG. 2 is a diagram showing the configuration of the light source section.
  • the light source unit 4 is, for example, a laser using a vernier effect, and outputs laser light L1 under the control of the control unit 3 .
  • the light source unit 4 includes a laser main unit 41 that changes the frequency of the output laser light L1, and a changing unit 42 .
  • the changing unit 42 has three micro-heaters that generate heat according to the power supplied from the control unit 3, and locally heats the laser main unit 41, thereby increasing the laser light L1 output from the laser main unit 41. change the frequency of
  • the laser body 41 includes first and second waveguides 43 and 44 respectively formed on a common base B1.
  • the base B1 is made of, for example, n-type InP.
  • An n-side electrode 45 containing, for example, AuGeNi and making ohmic contact with the base B1 is formed on the rear surface of the base B1.
  • the first waveguide section 43 has an embedded waveguide structure.
  • the first waveguide section 43 includes a waveguide section 431 , a semiconductor lamination section 432 and a p-side electrode 433 .
  • the waveguide portion 431 is formed in the semiconductor lamination portion 432 so as to extend in the z-direction.
  • a gain section 431a and a DBR (Distributed Bragg Reflector) type diffraction grating layer 431b are arranged in the first waveguide section 43 .
  • the gain section 431a is an active layer having a multiple quantum well structure made of InGaAsP and an optical confinement layer.
  • the diffraction grating layer 431b is composed of a sampling diffraction grating made of InGaAsP and InP.
  • the semiconductor laminated portion 432 is configured by laminating InP-based semiconductor layers, and has the function of a clad portion for the waveguide portion 431 and the like.
  • the p-side electrode 433 is arranged on the semiconductor lamination section 432 along the gain section 431a.
  • a SiN protective film (not shown) is formed on the semiconductor lamination portion 432 .
  • the p-side electrode 433 is in contact with the semiconductor lamination portion 432 through an opening (not shown) formed in the SiN protective film.
  • the DBR heater 421 which is a micro-heater, is arranged on the SiN protective film of the semiconductor laminated portion 432 along the diffraction grating layer 431b.
  • the DBR heater 421 generates heat according to the power supplied from the control unit 3, and heats the diffraction grating layer 431b. Further, by controlling the electric power supplied to the DBR heater 421 by the controller 3, the temperature of the diffraction grating layer 431b changes and the refractive index thereof changes.
  • the second waveguide section 44 includes a two-branch section 441 , two arm sections 442 and 443 and a ring-shaped waveguide 444 .
  • the 2-branch portion 441 is composed of a 1 ⁇ 2-type branch waveguide including a 1 ⁇ 2-type multimode interference (MMI) waveguide 441a, and the 2-port side is connected to each of the two arm portions 442 and 443. 1 port side is connected to the first waveguide portion 43 side. That is, the two arm portions 442 and 443 are integrated at one end by the two-branch portion 441 and optically coupled to the diffraction grating layer 431b.
  • MMI multimode interference
  • the arm portions 442 and 443 both extend in the z-direction and are arranged so as to sandwich the ring-shaped waveguide 444 . These arm portions 442 and 443 are optically coupled to the ring waveguide 444 with the same coupling coefficient ⁇ as the ring waveguide 444 .
  • the value of ⁇ is, for example, 0.2.
  • the arm portions 442 and 443 and the ring-shaped waveguide 444 constitute a ring resonator filter RF1. Also, the ring resonator filter RF1 and the two-branching portion 441 constitute a reflecting mirror M. As shown in FIG.
  • the RING heater 422 which is a micro-heater is ring-shaped and arranged on a SiN protective film (not shown) formed so as to cover the ring-shaped waveguide 444 .
  • the RING heater 422 generates heat according to the power supplied from the controller 3 and heats the ring waveguide 444 . Further, the temperature of the ring-shaped waveguide 444 changes by controlling the power supplied to the RING heater 422 by the controller 3, and the refractive index thereof changes.
  • the Phase heater 423 which is a micro-heater is arranged on a part of the SiN protective film (not shown) of the arm part 443 .
  • a region of the arm portion 443 below the Phase heater 423 functions as a phase adjustment portion 445 that changes the phase of light.
  • the phase heater 423 generates heat according to the power supplied from the control section 3 and heats the phase adjustment section 445 .
  • the control unit 3 controls the power supplied to the phase heater 423, thereby changing the temperature of the phase adjusting unit 445 and changing its refractive index.
  • the first and second waveguide portions 43 and 44 described above constitute an optical resonator C composed of the diffraction grating layer 431b and the reflecting mirror M optically connected to each other. Also, the gain section 431a and the phase adjustment section 445 are arranged in the optical resonator C. As shown in FIG.
  • the diffraction grating layer 431b generates a first comb-like reflection spectrum having periodic reflection characteristics at predetermined frequency intervals.
  • the ring resonator filter RF1 produces a second comb-like reflection spectrum having periodic reflection characteristics at predetermined frequency intervals.
  • the second comb-like reflection spectrum has a peak with a full width at half maximum narrower than that of the first comb-like reflection spectrum, and a frequency interval different from the frequency interval of the first comb-like reflection spectrum. and have periodic reflection characteristics.
  • the frequency interval (free spectral range: FSR) between the peaks of the first comb-shaped reflection spectrum is 373 GHz.
  • the full width at half maximum of each peak is 43 GHz.
  • the frequency spacing (FSR) between peaks of the second comb reflection spectrum is 400 GHz.
  • the full width at half maximum of each peak is 25 GHz. That is, the full width at half maximum (25 GHz) of each peak of the second comb reflection spectrum is narrower than the full width at half maximum (43 GHz) of each peak of the first comb reflection spectrum.
  • the light source unit 4 is configured such that one of the peaks of the first comb-shaped reflection spectrum and one of the peaks of the second comb-shaped reflection spectrum can be superimposed on the frequency axis. .
  • Such superposition is performed by using at least one of the DBR heater 421 and the RING heater 422.
  • the DBR heater 421 heats the diffraction grating layer 431b to change its refractive index by the thermo-optical effect to form the first comb-like pattern.
  • the RING heater 422 heats the ring-shaped waveguide 444 to change its refractive index to change the second comb-shaped reflection spectrum on the frequency axis. It can be realized by performing at least one of moving and changing as a whole.
  • the cavity length of the optical cavity C is set so that the cavity mode spacing (longitudinal mode spacing) is 25 GHz or less. In this setting, the cavity length of the optical cavity C is 1800 ⁇ m or more, and narrowing of the linewidth of the oscillating laser light can be expected.
  • the frequency of the resonator mode of the optical resonator C is changed by heating the phase adjustment unit 445 using the phase heater 423 to change the refractive index, thereby moving the frequency of the resonator mode as a whole on the frequency axis. can be fine-tuned by That is, the phase adjustment section 445 is a section for actively controlling the optical path length of the optical resonator C.
  • the light source unit 4 causes the control unit 3 to inject a current from the n-side electrode 45 and the p-side electrode 433 to the gain unit 431a to cause the gain unit 431a to emit light.
  • the peak of the spectral component of the second comb reflection spectrum and one of the resonator modes of the optical resonator C oscillate at the same frequency, for example, 193.4 THz, and are configured to output laser light L1. .
  • the light source unit 4 can change the frequency of the laser light L1 using the vernier effect. That is, when the power supplied from the control unit 3 is adjusted to control the DBR heater 421, the comb-shaped reflection spectrum shifts on the frequency axis. Similarly, controlling the RING heater 422 shifts its comb reflection spectrum on the frequency axis. Similarly, controlling the Phase heater 423 shifts its spectrum on the frequency axis.
  • a laser oscillation state is formed at a frequency f1 where the reflection peak of the DBR, the resonator mode of the optical resonator C, and the reflection peak of the RING coincide.
  • the DBR heater 421 and the RING heater 422 respectively set the frequency positions at which the reflection spectra of the DBR and RING peak based on the supplied power.
  • the Phase heater 423 sets the frequency position at which the resonator mode peaks, based on the supplied power.
  • the frequency of the laser light L1 is set to frequency f2. It can be adjusted to f2.
  • the power supplied to each heater can be controlled using the current as a control amount. That is, the control unit 3 controls the frequency of the laser light L1 by supplying power corresponding to the current, which is the control amount, to the light source unit 4 .
  • the DBR heater 421 and the RING heater 422 are feedforward controlled so that the comb-like reflection spectra of the DBR and the RING overlap at the second frequency.
  • the phase heater 423 is feedback-controlled so that one of the resonator modes matches the second frequency.
  • the control method is not limited to this.
  • the semiconductor optical amplifier 5 has an embedded waveguide structure including an active core layer made of the same material and structure as the first waveguide section 43 . However, the diffraction grating layer 431b is not provided.
  • the semiconductor optical amplifier 5 is optically coupled to the light source section 4 by a spatial coupling optical system (not shown).
  • a laser beam L1 output from the light source unit 4 is input to the semiconductor optical amplifier 5 .
  • the semiconductor optical amplifier 5 When supplied with a current from the control unit 3, the semiconductor optical amplifier 5 amplifies the laser light L1 and outputs it as a laser light L2.
  • the semiconductor optical amplifier 5 may be monolithically configured together with the light source section 4 on the base section B1.
  • the planar lightwave circuit 6 is optically coupled to the arm portion 442 by a spatial coupling optical system (not shown). A portion of the laser light L3 generated by laser oscillation in the light source section 4 is input to the planar lightwave circuit 6 via the arm section 442 in the same manner as the laser light L1. Note that the laser beam L3 has the same frequency as the laser beam L1 and has an intensity corresponding to the intensity of the laser beam L1.
  • the planar lightwave circuit 6 includes an optical branching section 61, an optical waveguide 62, an optical waveguide 63 having a frequency filter 63a which is a ring resonator type optical filter, and an optical waveguide having a frequency filter 64a which is a ring resonator type optical filter. a wave path 64;
  • the frequency filter 63a is an example of a first frequency filter
  • the frequency filter 64a is an example of a second frequency filter.
  • the optical splitter 61 splits the input laser beam L3 into three laser beams L4, L5, and L6.
  • the optical waveguide 62 guides the laser beam L4 to a later-described PD (Photo Diode) 73 in the photodetector 7 .
  • the optical waveguide 63 guides the laser beam L5 to a PD 71 in the photodetector 7, which will be described later.
  • the optical waveguide 64 guides the laser light L6 to a PD 72 in the photodetector 7, which will be described later.
  • the frequency filter 63a has a transmission characteristic in which the transmittance changes periodically with respect to the frequency of the input light, and transmits the laser light L5 with a transmittance corresponding to the frequency of the laser light L5. Then, the laser light L5 transmitted through the frequency filter 63a is input to the PD71. That is, the frequency filter 63a is a waveguide frequency filter.
  • the frequency filter 63a an etalon filter or MZI (Mach-Zehnder Interferometer) filter having periodic transmission characteristics with respect to the frequency of input light may be used.
  • the frequency filter 64a has a transmission characteristic in which the transmittance changes periodically with respect to the frequency of the input light, and transmits the laser light L6 with a transmittance corresponding to the frequency of the laser light L6. Then, the laser light L6 transmitted through the frequency filter 64a is input to the PD72.
  • the frequency filter 64a an etalon filter or an MZI filter having periodic transmission characteristics with respect to the frequency of input light may be used.
  • the transmission characteristics of the frequency filters 63a and 64a have the same period. Further, as will be described in detail later, the transmission characteristics of the frequency filters 63a and 64a are relatively out of phase.
  • the photodetector 7 includes PDs 71, 72, and 73, and executes a detection step.
  • the PD 73 receives a laser beam L4 (having the same frequency as the laser beam L1 output from the light source unit 4 and having an intensity corresponding to the intensity of the laser beam L1), and responds to the intensity of the laser beam L4.
  • An electrical signal is output to the control unit 3 .
  • the PD 71 receives the laser beam L5 that has passed through the frequency filter 63a and outputs an electrical signal to the controller 3 according to the intensity of the laser beam L5.
  • the PD 72 receives the laser beam L6 that has passed through the frequency filter 64a and outputs an electrical signal to the controller 3 according to the intensity of the laser beam L6.
  • the electrical signals output from the PDs 71, 72, and 73 are used for frequency lock control by the controller 3 (control for setting the frequency of the laser light L1 output from the light source 4 to a target frequency).
  • the PD 71 is an example of a first detector that detects a first intensity, which is the intensity of the laser beam L5 corresponding to the intensity after the laser beam L1 has passed through the frequency filter 63a.
  • the PD 72 is an example of a second detector that detects a second intensity, which is the intensity of the laser beam L6 corresponding to the intensity of the laser beam L1 after passing through the frequency filter 64a.
  • the PD 73 is an example of a third detector that detects a third intensity that is the intensity of the laser beam L4 corresponding to the intensity of the laser beam L1.
  • the temperature sensor 8 is composed of, for example, a thermistor or the like, is mounted on the installation surface 91 of the temperature controller 9, and detects the ambient temperature of the light source section 4 and the planar lightwave circuit 6.
  • the temperature sensor 8 may be arranged outside the temperature controller 9 to detect the temperature of the environment in which the laser device 1 is arranged as the ambient temperature.
  • the temperature sensor 8 outputs an electrical signal containing information on the detected temperature to the control unit 3 .
  • the temperature controller 9 is composed of, for example, a TEC (Thermo Electric Cooler) including a Peltier element.
  • the light source unit 4 , the semiconductor optical amplifier 5 , the planar lightwave circuit 6 , the photodetector unit 7 and the temperature sensor 8 are mounted on the temperature controller 9 .
  • the temperature controller 9 controls the temperatures of the light source section 4, the semiconductor optical amplifier 5, the planar lightwave circuit 6, the photodetector section 7, and the temperature sensor 8 according to the supplied power.
  • the control unit 3 controls the power supplied to the temperature controller 9 based on temperature information detected by the temperature sensor 8 so that the temperature of the light source unit 4 is kept constant. It is preferable to control the temperature of the light source unit 4 so as to keep it at a constant temperature, in order to suppress fluctuations in the frequency of the laser light L1 that depend on the operating conditions and the external environment temperature.
  • the temperature sensor 8 is mounted on the light source unit 4, the semiconductor optical amplifier 5, the planar lightwave circuit 6, the light detection unit 7, and the temperature sensor 8 in the temperature controller 9.
  • the first region It may be placed on Ar1.
  • the temperature sensor 8 may be arranged close to the light source section 4 or placed on the light source section 4 .
  • the temperature sensor 8 may be placed in the second area Ar2 and arranged close to the planar lightwave circuit 6 .
  • FIG. 3 is a block diagram showing the configuration of the control unit.
  • the control unit 3 is connected to, for example, a high-level control device (not shown) having a user interface, and controls the operation of the light source unit 4 according to instructions from the user via the high-level control device.
  • FIG. 3 mainly shows a configuration for executing frequency lock control as the configuration of the control unit 3 .
  • the control unit 3 includes analog-digital converters (ADCs) 31, 32, 33, 34, a computing unit 35, a storage unit 36, and a current source 37.
  • ADCs analog-digital converters
  • the ADC 31 converts the analog electrical signal input from the PD 71 into a digital signal (voltage signal) and outputs the digital signal (voltage signal) to the computing section 35 .
  • the ADC 32 converts the analog electrical signal input from the PD 72 into a digital signal (voltage signal) and outputs the digital signal (voltage signal) to the computing section 35 .
  • the ADC 33 converts the analog electric signal input from the PD 73 into a digital signal (voltage signal) and outputs the digital signal (voltage signal) to the calculation section 35 .
  • the ADC 34 converts the analog electrical signal input from the temperature sensor 8 into a digital signal (voltage signal) and outputs the digital signal (voltage signal) to the calculation unit 35 .
  • the arithmetic unit 35 that performs digital arithmetic performs various kinds of arithmetic processing for the control executed by the control unit 3, and is composed of, for example, a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array).
  • the storage unit 36 stores various programs, data, etc. used by the calculation unit 35 to perform calculation processing. and a portion composed of, for example, a RAM (Random Access Memory) used for storing the results of arithmetic processing of the arithmetic unit 35 and the like.
  • the control function of the control unit 3 is implemented in software by the functions of the calculation unit 35 and the storage unit 36 .
  • the current source 37 supplies electric power for controlling the frequency of the laser light L1 to the light source section 4 based on the instruction from the calculation section 35 .
  • the calculator 35 instructs the current source 37 to use the current value as the controlled variable.
  • the current source 37 supplies the light source section 4 with a current of the indicated current value.
  • the calculation unit 35 includes, as functional units, a target frequency setting unit 351, a discrimination curve selection unit 352, a target value acquisition unit 353, a monitor value calculation unit 354, a difference acquisition unit 355, a PID control unit 356, a DBR A /RING power setting unit 357 is provided. These functional units are realized through the cooperation of software and hardware resources.
  • the target frequency setting unit 351 performs a first acquisition step of acquiring and setting a target frequency as a target value in controlling the frequency of the laser light L1, for example, according to an instruction from a higher-level control device.
  • the discrimination curve selector 352 acquires the set target frequency, and selects one of the first frequency discrimination curve, the second frequency discrimination curve, the third frequency discrimination curve, and the fourth frequency discrimination curve based on the target frequency. choose one.
  • the first frequency discrimination curve corresponds to transmission characteristics of the frequency filter 63a.
  • the second frequency discrimination curve corresponds to the transmission characteristic of the frequency filter 64a.
  • the third frequency discrimination curve is indicated by the sum of the first frequency discrimination curve and the second frequency discrimination curve.
  • the fourth frequency discrimination curve is indicated by the difference between the first frequency discrimination curve and the second frequency discrimination curve.
  • FIG. 4 shows a first frequency discrimination curve C1, a second frequency discrimination curve C2, a third frequency discrimination curve C3, and a fourth frequency discrimination curve C4 normalized so that the amplitude value varies between -1 and 1.
  • FIG. 4 is a diagram showing; The horizontal axis is the frequency, normalized so that the half period of the discrimination curve is 1. The vertical axis represents the first, second, third, and fourth ratios of the first frequency discrimination curve C1, the second frequency discrimination curve C2, the third frequency discrimination curve C3, and the fourth frequency discrimination curve C4, respectively. is the corresponding ratio.
  • the phase shift ⁇ is set to ⁇ /2.
  • Regions C11, C21, C31, and C41 are regions in which, unlike the dead zone, the rate of change in ratio to frequency is large in the first to fourth frequency discrimination curves C1 to C4, and control accuracy can be increased.
  • the regions C11, C21, C31, and C41 are set so as not to overlap each other in terms of frequency.
  • the discrimination curve selection unit 352 selects a frequency discrimination curve corresponding to one of the regions C11, C21, C31, C41 including the target frequency based on the target frequency. For example, if the target frequency is included in region C11, discrimination curve selection section 352 selects first frequency discrimination curve C1. In selecting the frequency discrimination curve, it is preferable to select a frequency discrimination curve with a higher rate of change in ratio to frequency. In the case of FIG. 4, it is preferable to select a frequency discrimination curve with a smaller absolute value of the ratio at the target frequency from among the plurality of frequency discrimination curves.
  • the target value acquisition unit 353 performs a third acquisition step of acquiring the target value by applying the target frequency to the frequency discrimination curve selected by the discrimination curve selection unit 352 .
  • the target frequency is f_tgt
  • the target value R_tgt is acquired by applying the first frequency discrimination curve C1.
  • the monitor value calculator 354 performs a second obtaining step of obtaining the first ratio and the second ratio from the digital signals input from the ADCs 31, 32, and 33, and also performs a step of calculating the third ratio or the fourth ratio. conduct. Then, a setting step of setting any one of the first ratio, the second ratio, the third ratio, and the fourth ratio as the monitor value R_mon corresponding to the frequency of the laser light L1 is performed.
  • the monitor value R_mon is an example of the frequency equivalent. In this example, the target frequency and the frequency of the laser beam L1 are located in the same region (for example, region C11). Just do it.
  • the first ratio is the ratio of the first intensity detected by PD71 to the third intensity detected by PD73. Further, as an equivalent to the ratio, the first ratio may be the ratio of the intensity obtained by applying the correction coefficient to the first intensity detected by the PD 71 to the intensity obtained by applying the correction coefficient to the third intensity detected by the PD 73. Also, as the amount corresponding to the ratio, the first ratio may be a ratio calculated using an intensity obtained by applying a correction coefficient to either the first intensity or the third intensity. Below, the first ratio may be described as PD1/PD3.
  • the second ratio is the ratio of the second intensity detected by PD72 to the third intensity detected by PD73.
  • the first ratio may be the ratio of the intensity obtained by applying the correction factor to the second intensity detected by the PD 72 to the intensity obtained by applying the correction factor to the third intensity detected by the PD 73.
  • the second ratio may be a ratio calculated using an intensity obtained by applying a correction coefficient to either the second intensity or the third intensity.
  • the second ratio may be described as PD2/PD3.
  • the correction coefficients for the first intensity, the second intensity, or the third intensity are obtained in advance by experiments or the like, and are stored in the storage unit 36 in the form of table data, relational expressions, or the like. Read and use.
  • the correction coefficient may be determined according to, for example, the operating conditions of the laser device 1, the temperature detected by the temperature sensor 8, and the like. Also, the correction coefficient may be determined so as to be suitable for applying a normalized frequency discrimination curve.
  • Application of the correction factor to the first intensity, second intensity, or third intensity is, for example, application by any of the following operations: addition, subtraction, multiplication, division.
  • the third ratio is the sum of the first ratio and the second ratio.
  • the fourth ratio is the difference between the first ratio and the second ratio. Accordingly, the third ratio or the fourth ratio can include correction factors for the first intensity, the second intensity, or the third intensity.
  • the difference acquisition unit 355 calculates and acquires the difference between the target value R_tgt acquired by the target value acquisition unit 353 and the monitor value R_mon calculated by the monitor value calculation unit 354 .
  • the PID control unit 356 calculates the indicated value of the current value based on the difference between the target value R_tgt and the monitor value R_mon, outputs the indicated value to the current source 37, and performs proportional-integral-derivative (PID) control, PI control, or the like. feedback control. That is, PID control unit 356 executes an adjustment step of adjusting the current value (control amount) so that the absolute value of the difference between target value R_tgt and monitor value R_mon becomes small.
  • PID proportional-integral-derivative
  • the DBR/RING power setting unit 357 sets power to be supplied to each of the DBR heater 421 and the RING heater 422 based on the target frequency set by the target frequency setting unit 351 .
  • the DBR/RING power setting unit 357 can set a current value based on the set power, output an instruction of the current value to the current source 37, and perform feedforward control of the DBR heater 421 and the RING heater 422. .
  • the degree of margin is a parameter that serves as an evaluation index of resistance to lateral deviation of the frequency monitor/control system.
  • FIG. 5 is an explanatory diagram of the degree of margin.
  • FIG. 5 shows a fifth frequency discrimination curve C5 and a sixth frequency discrimination curve C6, which are sine functions normalized so that the amplitude value varies between -1 and 1.
  • Regions C51 and C61 are regions in which the rate of change in ratio to frequency is large in the fifth and sixth frequency discrimination curves C5 and C6, unlike the dead zone, and control accuracy can be increased.
  • the regions C51 and C61 are set so as not to overlap each other in terms of frequency.
  • the margin can be defined as the frequency difference between the point closest to the extremum of the switching points of the two frequency discrimination curves and the center of the dead zone, that is, the extremum (minimum value in FIG. 5) of the frequency discrimination curve. . It can be said that the larger the margin is, the more the frequency of the laser light L1 can be monitored in a region farther from the dead band in terms of frequency.
  • the margin is ⁇ /2.
  • FIG. 6 is a diagram showing the relationship between ⁇ and margin.
  • a line M1 indicates the relationship between ⁇ and the margin when two of the first and second frequency discrimination curves shown in Equations (1) and (2) are used.
  • a line M2 indicates the relationship between ⁇ and the margin when three of the first to third frequency discrimination curves represented by equations (1) to (3) are used. The line M2 overlaps the line M1 when ⁇ is 90 degrees or less.
  • a line M3 indicates the relationship between ⁇ and the margin when three of the first, second, and fourth frequency discrimination curves shown in equations (1), (2), and (4) are used. The line M3 overlaps the line M1 when ⁇ is 90 degrees or more.
  • a line M4 indicates the relationship between ⁇ and the margin when four of the first to fourth frequency discrimination curves shown in equations (1) to (4) are used.
  • the line M4 overlaps the line M3 when ⁇ is 60 degrees or less, and overlaps the line M2 when ⁇ is 120 degrees or more.
  • FIG. 7 is a diagram showing temperature-dependent changes in the frequency discrimination curve in the comparative embodiment.
  • the comparative mode is a mode in which the laser apparatus 1 performs frequency control using only the first and second frequency discrimination curves.
  • FIG. 7 shows a fifth frequency discrimination curve C5 and a sixth frequency discrimination curve C6 as in FIG.
  • the phase shift between the fifth frequency discrimination curve C5 and the sixth frequency discrimination curve C6 is ⁇ /2.
  • the points on the fifth frequency discrimination curve C5 corresponding to four exemplary target frequencies are indicated by solid white circles.
  • the frequency discrimination curve C5A shows a state in which the fifth frequency discrimination curve C5 shifts to the positive frequency side due to temperature changes
  • the frequency discrimination curve C5B shows a state in which the fifth frequency discrimination curve C5 shifts to the negative frequency side due to temperature changes. It shows a state of slipping to the side.
  • Regions C5F, C5AF, and C5BF indicate dead zones in the fifth frequency discrimination curve C5, frequency discrimination curve C5A, and frequency discrimination curve C5B, respectively.
  • the lateral shift causes the state of the frequency discrimination curve C5A
  • the point on the most negative side among the four target frequencies overlaps the dead zone C5AF due to the lateral shift, as indicated by the dashed white circle.
  • the lateral shift results in the state of the frequency discrimination curve C5B the point on the most positive side among the four target frequencies overlaps the dead band C5BF due to the lateral shift, as indicated by the dashed white circle. This indicates that the comparative configuration is less resistant to lateral slip.
  • FIG. 8 is a diagram showing temperature dependent changes in the frequency discrimination curve in the embodiment.
  • FIG. 8 shows first to fourth frequency discrimination curves C1 to C4 as in FIG.
  • the frequency discrimination curve C1A shows a state in which the first frequency discrimination curve C1 shifts to the positive frequency side due to temperature changes
  • the frequency discrimination curve C1B shows a state in which the first frequency discrimination curve C1 shifts to the negative frequency side due to temperature changes. It shows a state of being laterally shifted.
  • Regions C1F, C1AF, and C1BF indicate dead zones in the first frequency discrimination curve C1, frequency discrimination curve C1A, and frequency discrimination curve C1B, respectively.
  • step S101 the target frequency setting unit 351 sets the target frequency as the target value of the frequency of the laser light L1.
  • the DBR/RING power setting unit 357 sets power to be supplied to each of the DBR heater 421 and the RING heater 422 based on the target frequency set by the target frequency setting unit 351, An instruction value of a current value corresponding to the power is output to the current source 37 .
  • the discrimination curve selection unit 352 selects any one of the first frequency discrimination curve, the second frequency discrimination curve, the third frequency discrimination curve, and the fourth frequency discrimination curve based on the target frequency. select. For example, among the first frequency discrimination curve, the second frequency discrimination curve, the third frequency discrimination curve, and the fourth frequency discrimination curve, the frequency discrimination curve with the largest change rate at the target frequency set in step S101 is selected. Alternatively, the amplitude value of each frequency discrimination curve may be normalized to vary between -1 and 1, and then the frequency discrimination curve having the smallest absolute value at the target frequency may be selected.
  • step S103 the target value acquiring unit 353 acquires and determines the target value R_tgt corresponding to the target frequency based on the first frequency discrimination curve. do.
  • step S104 the monitor value calculator 354 calculates and sets a monitor value R_mon corresponding to the frequency of the laser light L1 based on the first frequency discrimination curve. After that, the flow proceeds to step S111.
  • step S105 the target value acquiring unit 353 acquires and determines the target value R_tgt corresponding to the target frequency based on the second frequency discrimination curve. do.
  • step S106 the monitor value calculator 354 calculates and sets a monitor value R_mon corresponding to the frequency of the laser light L1 based on the second frequency discrimination curve. After that, the flow proceeds to step S111.
  • step S107 the target value acquiring unit 353 acquires and determines the target value R_tgt corresponding to the target frequency based on the third frequency discrimination curve. do.
  • step S108 the monitor value calculator 354 calculates and sets a monitor value R_mon corresponding to the frequency of the laser light L1 based on the third frequency discrimination curve. After that, the flow proceeds to step S111.
  • step S109 the target value acquiring unit 353 acquires and determines the target value R_tgt corresponding to the target frequency based on the fourth frequency discrimination curve. do.
  • step S110 the monitor value calculator 354 calculates and sets a monitor value R_mon corresponding to the frequency of the laser light L1 based on the fourth frequency discrimination curve. After that, the flow proceeds to step S111.
  • step S111 the difference obtaining unit 355 calculates and obtains the difference between the target value R_tgt and the monitor value R_mon (target value R_tgt ⁇ monitor value R_mon).
  • step S112 the PID control unit 356 calculates a current value instruction value that reduces the absolute value of the difference between the target value R_tgt and the monitor value R_mon.
  • step S ⁇ b>113 the PID control unit 356 outputs the calculated instruction value to the current source 37 .
  • step S114 the PID control unit 356 determines whether
  • step S115 the control unit 3 confirms the discrimination curve selected by the discrimination curve selection unit 352. If it is confirmed that the first frequency discrimination curve has been selected (step S115, curve 1), the flow returns to step S104. If it is confirmed that the second frequency discrimination curve has been selected (step S115, curve 2), the flow returns to step S106. If it is confirmed that the third frequency discrimination curve has been selected (step S115, curve 3), the flow returns to step S108. If it is confirmed that the fourth frequency discrimination curve has been selected (step S115, curve 4), the flow returns to step S110.
  • step S114 when the PID control unit 356 determines that
  • the configuration and control of the laser device are more complicated than when the number of frequency filters is increased. increase in height is suppressed.
  • the detector for detecting the intensity of the laser light is shared to some extent with respect to the frequency discrimination curve, it is not necessary to switch the detector each time the frequency discrimination curve is switched. As a result, it is possible to prevent the control from becoming unstable when switching the frequency discrimination curve.
  • the first ratio or the second ratio can be calculated by applying a correction coefficient to the first intensity, the second intensity, or the third intensity.
  • the first ratio, the second ratio, and the third ratio and the fourth ratio are calculated according to the operating conditions of the laser device 1, the temperature detected by the temperature sensor 8, and the appropriateness of application to the frequency discrimination curve. can do.
  • a correction coefficient is set so as to correct the temperature-dependent lateral shift of the frequency filter, or a temperature-dependent longitudinal shift of the frequency filter is corrected.
  • a correction coefficient can be set.
  • the vertical shift of the frequency filter means that the transmission characteristic of the frequency filter shifts in the transmittance axis direction.
  • the vertical deviation can cause the target frequency to be uncontrollable or an unattainable target value to be set.
  • the first intensity, the second intensity, or the third intensity is adjusted using a correction coefficient to the frequency discrimination curve, which is a sinusoidal function of frequencies. may be corrected to fit
  • the temperature sensor 8 is placed in the first region Ar1, and a second temperature sensor is placed separately from the temperature sensor 8 (first temperature sensor).
  • correction is performed so as to correct at least one of lateral shift and vertical shift of the frequency filter based on the temperature information detected by the second temperature sensor.
  • a coefficient may be set.
  • the second temperature sensor may be placed in the second region Ar2, or may be placed closer to the planar lightwave circuit 6 than the light source unit 4 is. In addition, it may be placed in a different place from the laser unit 2 (for example, outside the housing when the laser unit 2 is housed in the housing).
  • the transmission characteristics of the frequency filters 63a and 64a are periodic functions that are not sinusoidal functions of frequencies
  • a function for converting into sinusoidal functions using fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) is May be guided and used.
  • FFT fast Fourier transform
  • IFFT inverse fast Fourier transform
  • the digital signals converted by the ADCs 31 and 32 are stored for one cycle or more, subjected to FFT, components other than the FSR of the frequency filters 63a and 64a are removed, and converted to a sine function by IFFT.
  • IFFT inverse fast Fourier transform
  • the frequency transmission characteristic of the MZI filter can be handled as a sinusoidal change with respect to the frequency change
  • FFT and IFFT are applied to the sinusoidal function. No need to convert.
  • ring resonator type filters are used as the frequency filters 63a and 64a, if the Q value of the frequency transmission characteristic of the filter is small, it can be treated as a sinusoidal change with respect to frequency change.
  • the single temperature controller 9 controls the temperature of both the light source section 4 and the planar lightwave circuit 6. Therefore, the temperature controllers are provided for the light source section 4 and the planar lightwave circuit 6, respectively. Low power consumption and low cost can be realized compared to the provision.
  • the control unit 3 mainly controls the power supplied to the temperature controller 9 so that the light source unit 4 is kept at a constant temperature, or controls the power supplied to the light source unit 4 to control the output of the light source unit 4.
  • the frequency filters 63a and 64a of the planar lightwave circuit 6 are likely to undergo temperature-dependent lateral displacement.
  • the laser device 1 since the laser device 1 has a configuration that is highly resistant to lateral displacement, it is suitable for suppressing deterioration in control accuracy.
  • the third ratio and the fourth ratio include information on both the first ratio reflecting the characteristics of the frequency filter 63a and the second ratio reflecting the characteristics of the frequency filter 64a.
  • the first ratio or the second ratio is calculated by applying a correction coefficient to the first intensity, the second intensity, or the third intensity.
  • a correction factor may be applied when obtaining the target value.
  • This correction coefficient is obtained in advance by experiment or the like and stored in the storage unit 36, and can be set according to the operating conditions of the laser device 1 and the temperature detected by the temperature sensor 8 or the second temperature sensor. can be done.
  • the target value may be obtained from the target frequency using a method similar to the method of converting a function other than a sine function to a sine function using FFT and IFFT.
  • the calculation of the sum and the difference for calculating the third ratio and the fourth ratio is performed by the digital calculation of the calculation unit 35, but the calculation of the sum and the difference may be performed by an analog circuit.
  • the use of digital arithmetic can reduce the number of elements used and the scale of the circuit, as well as realize cost reduction. Also, if an analog circuit is used, it is possible to prevent loss of information due to quantization during digitization.
  • the first modification of the laser device 1 may further include a temperature sensor for detecting the environmental temperature of the frequency filters 63a and 64a. Then, based on the environmental temperature detected by the environmental temperature sensor, the computing unit 35 controls the temperature controlled by the temperature controller 9 and the first ratio or the first ratio so as to cancel out changes due to the environmental temperature in the transmission characteristics of the frequency filters 63a and 64a. 2 ratio may be corrected.
  • the environmental temperature sensor is composed of, for example, a thermistor.
  • the position of the environmental temperature is not particularly limited as long as it is located at a position where the environmental temperature of the frequency filters 63a and 64a can be detected. It may be arranged outside the housing, or may be provided in the control unit 3, for example.
  • the environment temperature sensor outputs an electric signal including information on the detected temperature to the ADC of the control unit 3 .
  • the ADC converts the analog electrical signal input from the environmental temperature sensor into a digital signal and outputs the digital signal to the computing section 35 .
  • the temperature of the frequency filters 63a and 64a will change even if the temperature controller 9 is controlled so that the light source unit 4 has a constant temperature, and the first to fourth frequency discrimination curves , it is laterally or vertically shifted.
  • Similar vertical or horizontal slippage can also be caused by other factors.
  • Other factors include, for example, changes in the amount of heat generated by the semiconductor optical amplifier 5 (SOA heat amount) due to changes in the intensity of the laser beam L2, and changes over time in the frequency filters 63a and 64a due to long-term use of the laser device 1. .
  • the frequency characteristics of the frequency filters 63a and 64a may change over time as the laser device 1 is used for a long period of time and nears the end of its product life. Such an unintended change in the characteristics of the frequency filters 63a and 64a over a long period of time is hereinafter referred to as deterioration.
  • Lateral or vertical deviations due to changes in environmental temperature and correction thereof will be mainly described, but lateral or vertical deviations caused by other factors can also be corrected in the same manner.
  • the calculation unit 35 determines the light source unit 4 based on the environmental temperature of the frequency filters 63a and 64a detected by the environmental temperature sensor.
  • a temperature correction coefficient for correcting the target temperature of the ambient temperature (control target temperature of the temperature controller 9) is set.
  • the frequency filters 63a and 64a are arranged so that the temperature changes according to the control of the temperature controller 9. FIG. As a result, since the thermal influence of the temperature controller 9 on the frequency filters 63a and 64a changes by correcting the target temperature, the temperatures of the frequency filters 63a and 64a also change.
  • the temperature correction coefficient is set so as to cancel the change in the transmission characteristics of the frequency filters 63a and 64a due to the environmental temperature, the horizontal or vertical shift of the first to fourth discrimination curves due to the environmental temperature can be corrected. can be reduced.
  • the offsetting is not limited to the case of completely canceling the lateral or vertical deviation due to the environmental temperature of the first to fourth discrimination curves, but is offset so that the lateral or vertical deviation is less than when the target temperature is not corrected. It also includes so-called abatement.
  • the application of the correction coefficient is, for example, application by any one of addition, subtraction, multiplication, and division.
  • Table 1 shows an example of the relationship between the environmental temperature and the temperature correction coefficient. These relationships are obtained, for example, when the laser device 1 is manufactured, shipped, or calibrated during maintenance.
  • the temperature correction coefficient is expressed as LD offset temperature.
  • the target temperature for the light source unit 4 is a predetermined value higher than 35.degree. C. and lower than 80.degree.
  • the LD offset temperature is 0°C.
  • the LD offset temperature is ⁇ T1 [°C].
  • the environmental temperature is 80° C.
  • the LD offset temperature is ⁇ T2 [° C.].
  • Both ⁇ T1 and ⁇ T2 are used for correction by being added to the target temperature.
  • ⁇ T1 is, for example, a positive value
  • ⁇ T2 is, for example, a negative value.
  • the first relational information includes table data or a relational expression in which environmental temperatures and temperature correction coefficients are associated with each other.
  • the LD offset temperature when the ambient temperature is a value other than ⁇ 5° C., 35° C., or 80° C. may be stored in the storage unit 36 as table data or a relational expression.
  • 35° C., and 80° C. may be calculated by interpolation from the LD offset temperature.
  • the environmental temperature when the LD offset temperature is 0° C. may be referred to as the reference temperature below. For Table 1, the reference temperature is 35°C.
  • the same measures can be taken when horizontal or vertical deviation occurs due to changes in the SOA heat generation amount or deterioration of the frequency filters 63a and 64a.
  • the temperature correction coefficient is determined by similarly determining the relationship between the SOA heat value or the SOA current value (current value supplied to the semiconductor optical amplifier 5) and the temperature correction coefficient for the deviation due to the change in the SOA heat value. be done.
  • the temperature correction coefficient is determined by similarly determining the relationship between some amount reflecting the degree of deterioration and the temperature correction coefficient.
  • Some amount that reflects the degree of deterioration is, for example, the number of environmental temperature fluctuations, which is the total number of times that the temperature fluctuates beyond a predetermined range.
  • the time which is the accumulated time during which the laser device 1 is under operating conditions within a predetermined range.
  • a predetermined function obtained by weighting the number of environmental temperature fluctuations and the total amount of time during which the laser device 1 satisfies predetermined operating conditions is used as a deterioration function, and the deterioration function is output as an amount reflecting the degree of deterioration. value can be used.
  • the final correction coefficient for the target temperature of the temperature controller 9 may be the sum of the temperature correction coefficients determined for each factor of lateral or vertical deviation.
  • the discrimination curve as shown in FIG. 4 may shift not only in the frequency axis direction but also in the ratio axis direction due to environmental temperature changes.
  • the occurrence of such a shift also called a vertical shift, causes a decrease in the accuracy of frequency locking.
  • the calculation unit 35 may set a ratio correction coefficient according to the environmental temperature, and correct the first ratio or the second ratio by the ratio correction coefficient.
  • the storage unit 36 stores second relationship information indicating the relationship between the environmental temperature and the ratio correction coefficient.
  • the second relational information includes table data or a relational expression in which environmental temperatures and ratio correction coefficients are associated with each other.
  • the calculation unit 35 refers to the storage unit 36 to set the ratio correction coefficient.
  • the ratio correction coefficient is set so as to cancel out the longitudinal deviation according to the environmental temperature. As a result, it is possible to suppress a decrease in accuracy of frequency locking.
  • the ratio correction coefficient may be set based on the maximum point or minimum point of the transmission characteristics of the frequency filter 63a or 64a.
  • the ratio correction coefficient may be set so that the polar point of the vertically shifted first or second frequency discrimination curve coincides with the polar point of the first or second frequency discrimination curve at the reference temperature.
  • the amplitude of the vertically shifted frequency discrimination curve is matched to the original frequency discrimination curve by applying a ratio correction factor.
  • the extreme point is a maximum point or a minimum point.
  • the application of the ratio correction factor is, for example, application by any operation of addition, subtraction, multiplication, or division. is set as a combination of the amplitude correction factor and the offset correction factor.
  • the pair of maximum and minimum values of the vertically shifted first or second frequency discrimination curve coincides with the corresponding pair of maximum and minimum values of the first or second frequency discrimination curve at the reference temperature.
  • a ratio correction factor is set so that
  • the calculation unit 35 may set a ratio correction coefficient according to the SOA heat generation amount, and correct the first ratio or the second ratio by the ratio correction coefficient.
  • the storage unit 36 stores third relationship information indicating the relationship between the SOA heat generation amount and the ratio correction coefficient.
  • the third relational information includes table data or a relational expression in which the SOA calorific value and the ratio correction coefficient are associated with each other.
  • the calculation unit 35 refers to the storage unit 36 to set the ratio correction coefficient.
  • the ratio correction coefficient is set so as to cancel out the longitudinal deviation according to the SOA heat value. As a result, it is possible to suppress a decrease in accuracy of frequency locking.
  • the ratio correction coefficient may be set based on the maximum point or minimum point of the transmission characteristics of the frequency filter 63a or 64a.
  • the ratio correction coefficient may be set so that the polar point of the longitudinally shifted first or second frequency discrimination curve coincides with the polar point of the first or second frequency discrimination curve for the reference SOA calorific value. . This means that the amplitude of the vertically shifted frequency discrimination curve is matched to the original frequency discrimination curve by applying a ratio correction factor. Note that the extreme point is a maximum point or a minimum point.
  • the reference SOA calorific value is the SOA calorific value when the laser beam L2 has the reference intensity, and is obtained, for example, during calibration during manufacture, shipment, maintenance, or the like of the laser device 1 .
  • the application of the ratio correction factor is, for example, application by any operation of addition, subtraction, multiplication, or division. is set as a combination of the amplitude correction factor and the offset correction factor.
  • a ratio correction factor is set such that
  • the calculation unit 35 may set a ratio correction coefficient according to the amount reflecting the degree of deterioration, and correct the first ratio or the second ratio by the ratio correction coefficient.
  • the storage unit 36 stores fourth relationship information indicating the relationship between the amount reflecting the degree of deterioration and the ratio correction coefficient.
  • the fourth relational information includes table data or a relational expression in which the amount reflecting the degree of deterioration and the ratio correction coefficient are associated with each other.
  • the calculation unit 35 refers to the storage unit 36 to set the ratio correction coefficient.
  • the ratio correction coefficient is set so as to cancel out the longitudinal shift caused by deterioration of the frequency filters 63a and 64a. As a result, it is possible to suppress a decrease in accuracy of frequency locking.
  • the ratio correction coefficient may be set based on the maximum point or minimum point of the transmission characteristics of the frequency filter 63a or 64a.
  • the ratio correction coefficient is set so that the pole point of the first or second frequency discrimination curve that is longitudinally shifted due to deterioration coincides with the pole point of the first or second frequency discrimination curve when the laser device 1 is manufactured. You may This means that the amplitude of the frequency discrimination curve vertically shifted due to deterioration is matched with the original frequency discrimination curve by applying the ratio correction coefficient. Note that the extreme point is a maximum point or a minimum point.
  • the application of the ratio correction factor is, for example, an application by any operation of addition, subtraction, multiplication, or division.
  • a ratio correction factor is set such that the local minima match.
  • FIG. 10 is a flow chart showing a control method when making corrections according to the environmental temperature.
  • the flowchart of FIG. 10 is obtained by adding steps S201 to S203 to the flowchart of FIG.
  • step S201 the control unit 3 acquires the environmental temperature. Subsequently, in step S202, the controller 3 acquires the target temperature. Subsequently, in step S203, the control unit 3 sets correction coefficients, that is, temperature correction coefficients and ratio correction coefficients. Control then proceeds to step S102.
  • frequency control at the reference temperature can be always applied even if the environmental temperature changes. Tolerance to vertical shift is further increased.
  • the third and fourth ratios obtained from the calculation of the first and second ratios are optimally corrected even if individual correction coefficients are not prepared. It works. As a result, even if the environmental temperature changes, it is possible to achieve frequency control equivalent to that of the reference temperature by simply correcting the first ratio and the second ratio.
  • different correction coefficients may be set for the first ratio and the second ratio. As a result, even if the effects of stray light are different between the first ratio and the second ratio, optimum correction can be performed.
  • the monitor correction factor may be applied to the monitor value.
  • This monitor coefficient is set so as to cancel out the vertical deviation according to the environmental temperature.
  • the positions of the steps for executing steps S201 to S203 are not limited to the above.
  • the deviation of the frequency discrimination curve is corrected to match the frequency discrimination curve at the reference temperature. Therefore, it is effective to perform such a step relating to deviation correction before the step of calculating and setting the monitor value R_mon corresponding to the frequency of the laser light L1, which is step S104, S106, S108, or S110. be done.
  • the controller 3 determines the frequency of the laser light based on the rate of change of the first to fourth ratios with respect to the frequency change of the target value.
  • the ratios set as monitor values may be selected by prioritizing them.
  • the controller 3 determines the frequency of the laser light based on the S/N (signal-to-noise ratio) of the ratio of the frequency change at the target value among the first to fourth ratios.
  • the ratio set as the monitor value corresponding to may be selected by prioritizing it.
  • the laser light L5 transmitted through the frequency filter 63a and the electrical signal output from the PD 71 to which the laser light L5 is input may include noise due to the effects of stray light and electrical noise, and the S/N may deteriorate.
  • the laser light L6 transmitted through the frequency filter 64a and the electrical signal output from the PD 72 to which the laser light L6 is input may contain noise due to the effects of stray light and electrical noise, and the S/N may deteriorate.
  • the relative intensity of the stray light with respect to the laser beam L5 or the laser beam L6 changes over time due to deterioration, and the S/N ratio may deteriorate.
  • the frequency of the laser light fluctuates, and the frequency stability may decrease. Therefore, if a frequency discrimination curve with a low S/N ratio is selected at a low priority even if the rate of change in the ratio is large, deterioration of the S/N ratio can be prevented or suppressed. Degradation can be prevented or suppressed.
  • the controller 3 determines the frequency of the laser light based on the rate of change of the first to fourth ratios with respect to the frequency change at the target value and the S/N. It is also possible to prioritize the ratios set as monitor values to be selected. This makes it possible to select a more appropriate frequency discrimination curve.
  • a frequency discrimination curve whose rate of change is greater than a first threshold for the rate of change and whose S/N is higher than a second threshold for the S/N has the highest priority, and the curve whose rate of change is the first.
  • Frequency discrimination curves that are below the threshold but have S/N higher than a second threshold may be ranked second, and so on.
  • predetermined functions obtained by weighting the rate of change and the S/N as parameters may be used as evaluation functions, and priority may be given in descending order of the value of the evaluation function.
  • Such ranking rules can be set, for example, according to the required specifications for the laser device.
  • the degree of S/N can be quantitatively evaluated by converting it into the fluctuation range of the frequency of the laser light (frequency stability).
  • Prioritization of the above three types is obtained, for example, at the time of manufacture of the laser device 1 of the second to fourth modifications and at the time of shipment calibration. and stored in the storage unit 36 as table data or the like. Moreover, it may be rewritten during maintenance of the laser device 1 of the modified example.
  • the S/N can also be obtained by monitoring the electrical signal output from the PD 71 and the electrical signal output from the PD 72 . It can also be obtained from the measurement of the frequency stability of the laser light L1.
  • FIG. 11 is a flowchart showing part of the control method in the laser device of the fourth modification. This flowchart shows only the parts that replace steps S101 and S102 of the flowchart shown in FIG. After returning in FIG. 11, the control flow proceeds to steps S103 to S115 in FIG.
  • step S301 the target frequency setting unit 351 sets the target frequency as the target value of the frequency of the laser light L1.
  • step S302 the discrimination curve selection unit 352 acquires priority order information based on the "change rate at the target frequency" from the table data stored in the storage unit 36.
  • the table data T1 stores priority order information based on the "change rate at the target frequency".
  • frequencies are associated with channel numbers (CH), and it is assumed here that the target frequency corresponds to channel n.
  • the priority of curve 4 (fourth frequency discrimination curve) is first, followed by curve 2 (second frequency discrimination curve), curve 3 (third frequency discrimination curve), curve 1 ( 1st frequency discrimination curve).
  • the discrimination curve selection unit 352 acquires the S/N of each curve at the target frequency from the storage unit 36.
  • the relative intensity of the stray light with respect to the laser beam L5 or the laser beam L6 may depend on the operating conditions and temperature of the laser device 1, and may change over time. In order to consider the influence of these dependencies and changes over time on the S/N, not only the S/N obtained from the storage unit 36 but also the operating conditions, the temperature detected by the temperature sensor 8, the environmental temperature, the degree of deterioration, etc. The information may also be used to estimate the current S/N of each curve, which may be used in subsequent steps.
  • the operating conditions specifically include the conditions of power supplied to the DBR heater 421, the RING heater 422, and the Phase heater 423, the operating conditions of the semiconductor optical amplifier 5, and the like.
  • step S304 the discrimination curve selection unit 352 converts the degree of S/N into frequency stability.
  • step S305 the discrimination curve selection unit 352 determines whether the frequency stability of curve 4, which is the first priority curve, is within the allowable range (or higher than a predetermined threshold). If it is within the allowable range (step S305, Yes), in step S306, the discrimination curve selection unit 352 selects curve 4, which is the curve with the highest priority, and returns. If not within the allowable range (step S305, No), the flow proceeds to step S307.
  • step S307 the discrimination curve selection unit 352 determines whether the frequency stability of curve 2, which is the curve with the second priority, is within the allowable range. If it is within the allowable range (step S307, Yes), in step S308, the order of the first and second priority curves is exchanged, and the process proceeds to step S306. In step S306, the discrimination curve selection unit 352 selects curve 2, which is the curve with the highest priority after the replacement, and returns.
  • step S307 If it is not within the allowable range (step S307, No), the flow proceeds to step S309, the calculation unit 35 transitions to an error state, and the flow ends.
  • FIG. 12 is a flowchart showing part of another example of the control method in the laser device of the fourth modified example. This flowchart replaces step S302 of the flowchart shown in FIG. 11 with steps S402a, S402b, and S402c. Other steps S301 and S301 to S309 are the same as in FIG. 11, so description thereof is omitted.
  • step S402a the discrimination curve selection unit 352 acquires the control target value data of curves 1 and 2 around the target frequency (channel n) from the table data T2 stored in the storage unit .
  • the control target value data corresponds to the first ratio and the second ratio.
  • step S402b the discrimination curve selection unit 352 calculates the rate of change of the control target value (ratio) for each of the four curves.
  • step S402c the discrimination curve selection unit 352 prioritizes each curve by setting a higher priority to each curve as the rate of change increases. After that, steps S303 to S309 are executed as appropriate.
  • the current S/N of each curve is estimated using not only the S/N obtained from the storage unit 36 but also information such as the operating conditions, the temperature detected by the temperature sensor 8, the environmental temperature, and the degree of deterioration. Therefore, the degree of S/N may be converted into frequency stability to determine the priority of curves.
  • the control unit 3 measures the frequency stability of the current laser light L1, accurately evaluates the degree of S/N, and determines the first to fourth ratios. can be prioritized and selected. By using measured rather than estimated values of frequency stability, more appropriate S/N-based ranking and selection of frequency discrimination curves are possible for the required specifications. Also, it is possible to more reliably prevent or suppress a decrease in frequency stability.
  • the current frequency stability can be obtained by monitoring the degree of fluctuation of the electrical signal output from the PD 71 and the electrical signal output from the PD 72 .
  • FIGS. 13 and 14 are flowcharts showing a part of the control method in the laser device of the further modified example of the fourth modified example, and are flowcharts for prioritizing based on the rate of change and S/N.
  • the flowchart of FIG. 13 shows only the parts that replace steps S101 and S102 of the flowchart shown in FIG. After returning in FIG. 13, the control flow proceeds to steps S104, S106, S108 or S110, and S111-S113 in FIG.
  • FIG. 14 shows only steps S114 and S115 of the flowchart shown in FIG. 9 and the portion to be replaced with "end".
  • the target frequency setting unit 351 sets the target frequency as the target value of the frequency of the laser light L1.
  • step S502 the discrimination curve selection unit 352 acquires priority order information based on the "change rate at the target frequency" from the table data stored in the storage unit 36.
  • the table data T3 stores priority order information based on the "rate of change at the target frequency".
  • frequencies are associated with channel numbers (CH), and it is assumed here that the target frequency corresponds to channel n.
  • the priority of curve 4 (fourth frequency discrimination curve) is first, followed by curve 2 (second frequency discrimination curve), curve 3 (third frequency discrimination curve), curve 1 ( 1st frequency discrimination curve).
  • step S503 the discrimination curve selection unit 352 selects curve 4, which is the curve with the highest priority, and returns.
  • step S514 the PID control unit 356 determines whether
  • step S515 the discrimination curve selection unit 352 determines whether the frequency stability of curve 4, which is the curve with the highest priority, is within the allowable range (or higher than a predetermined threshold). If it is within the allowable range (step S515, Yes), the flow ends. If not within the allowable range (step S515, No), the flow proceeds to step S516.
  • step S516 the discrimination curve selection unit 352 determines whether this step is executed for the first time. If it is not the first time (step S516, No), the flow proceeds to step S517, the calculation unit 35 transitions to an error state, and the flow ends.
  • step S518 the order of the first and second priority curves is switched, and the process proceeds to step S519.
  • step S519 the discrimination curve selection unit 352 selects curve 2, which is the curve with the highest priority after the replacement.
  • step S520 the target value acquiring unit 353 acquires and determines the target value R_tgt corresponding to the target frequency based on the selected curve 2.
  • FIG. Flow then returns to step S106 depending on which curve 2 is selected.
  • the present invention is not limited by the above embodiments.
  • the present invention also includes those configured by appropriately combining the respective constituent elements described above. Further effects and modifications can be easily derived by those skilled in the art. Therefore, broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

レーザ装置は、レーザ光の目標周波数を取得し、レーザ光が第1周波数フィルタを透過した後のレーザ光の強度に対応する第1強度を検出し、レーザ光が第2周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出し、レーザ光の強度を検出し、レーザ光の強度に対する第1強度の比に相当する第1比と、レーザ光の強度に対する第2強度の比に相当する第2比と、を取得し、第1比、第2比、第1比と第2比との和である第3比、および第1比と第2比との差である第4比のいずれか一つからレーザ光の周波数に相当する周波数相当量に対応するモニタ値を設定し、第1乃至第4比の当該いずれか一つに基づいて、前記目標周波数に相当する目標値を取得し、目標値とモニタ値との差の絶対値が小さくなるように制御量を調整する。

Description

レーザ装置およびその制御方法
 本発明は、レーザ装置およびその制御方法に関する。
 出力するレーザ光の周波数を可変とするレーザ装置において、入力する光の周波数に対して透過率が周期的に変化する透過特性を有する2以上の周波数フィルタを用いて、レーザ光の周波数を制御する技術が開示されている(特許文献1)。この2以上の周波数フィルタは、互いに位相がずれるように設計されている。この制御では、レーザ光の制御目標の周波数において、周波数の変化に対する透過率の変化が大きい方の周波数フィルタの透過光を制御に使用している。
特開2019-140304号公報
 周波数に対して周期的に変化する透過特性を有する周波数フィルタは、その透過特性の極値の付近の周波数帯では、周波数の変化に対する透過率の変化が小さく、制御の精度が低下する。このような周波数帯は不感帯とも呼ばれる。
 特許文献1の技術では、2以上の周波数フィルタを互いに位相がずれるように設定して、制御目標の周波数において不感帯ではない周波数フィルタを選択することで、制御精度の低下を抑制できるとされている。
 しかしながら、特許文献1の技術を用いたとしても、周波数フィルタの透過特性が意図しない原因によって周波軸方向にずれる、いわゆる横ずれが生じると、制御目標の周波数が、選択した周波数フィルタの不感帯と意図せずに重なってしまうおそれがある。これにより制御の精度が低下するおそれがある。このような意図しない原因としては、周波数フィルタの温度の変動や経時変化が考えられる。
 本発明は、上記に鑑みてなされたものであって、レーザ光の周波数の制御精度の低下を抑制できるレーザ装置およびその制御方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様は、出力するレーザ光の周波数を可変とする光源部と、前記レーザ光の周波数に相当する周波数相当量に対応するモニタ値を取得するためのモニタ部と、を備えるレーザ部と、制御量に対応する電力を前記レーザ部に供給することによって前記レーザ光の周波数を制御する制御部と、を備え、前記モニタ部は、入力する光の周波数に対して透過率が周期的に変化する透過特性を有し、かつ位相が相対的にずれている第1周波数フィルタおよび第2周波数フィルタと、前記レーザ光が前記第1周波数フィルタを透過した後のレーザ光の強度に対応する第1強度を検出する第1検出部と、前記レーザ光が前記第2周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出する第2検出部と、を少なくとも備え、前記制御部は、前記レーザ光の周波数の制御目標となる目標周波数を取得し、前記レーザ光の強度に対する前記第1強度の比に相当する第1比と、前記レーザ光の強度に対する前記第2強度の比に相当する第2比と、を取得し、前記第1比、前記第2比、前記第1比と前記第2比との和である第3比、および前記第1比と前記第2比との差である第4比のいずれか一つを前記レーザ光の周波数に相当するモニタ値として設定し、前記第1乃至第4比の当該いずれか一つに基づいて、前記目標周波数に相当する目標値を取得し、前記目標値と前記モニタ値との差の絶対値が小さくなるように前記制御量を制御するレーザ装置である。
 前記制御部は、前記第1比または前記第2比を、前記第1強度、前記第2強度、または前記レーザ光の強度に補正係数を適用して算出してもよい。
 前記制御部は、前記第1強度、前記第2強度、および前記レーザ光の強度をデジタル信号に変換し、デジタル演算によって前記第1比または前記第2比を算出してもよい。
 前記第1および第2周波数フィルタの透過率は、周波数の変化に対し正弦関数的に変化しもよい。
 前記制御部は、前記第1強度または前記第2強度、および前記レーザ光の強度から、前記第1周波数フィルタの透過特性または前記第2周波数フィルタの透過特性を示す周波数の関数を周波数の正弦関数に変換して、前記第1比または前記第2比を算出してもよい。
 前記レーザ部は、バーニア効果を利用して前記レーザ光の周波数が可変とされていてもよい。
 前記制御部は、前記制御量に対応する電力を前記レーザ部に供給することによって前記レーザ光の周波数を制御してもよい。
 前記光源部と、第1周波数フィルタおよび第2周波数フィルタとが設置される設置面を有する温度制御器をさらに備え、前記光源部、前記第1周波数フィルタおよび第2周波数フィルタは、前記温度制御器の同一の前記設置面に設置されてもよい。
 前記制御部は、前記第1乃至第4比のうち、前記目標値における周波数変化に対する比の変化率に基づいて、前記レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択してもよい。
 前記制御部は、前記第1乃至第4比のうち、前記目標値における周波数変化に対する比のS/Nに基づいて、前記レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択してもよい。
 前記制御部は、前記第1乃至第4比のうち、前記目標値における周波数変化に対する比の変化率およびS/Nに基づいて、前記レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択してもよい。
 前記光源部と前記第1周波数フィルタおよび第2周波数フィルタとが設置される設置面を有する温度制御器をさらに備え、前記制御部は、前記第1周波数フィルタおよび第2周波数フィルタの透過特性の横ずれまたは縦ずれを相殺するように、前記温度制御器の制御温度、および、前記第1比もしくは第2比、またはモニタ値を補正してもよい。
 前記光源部と前記第1周波数フィルタおよび第2周波数フィルタとが設置される設置面を有する温度制御器と、前記第1周波数フィルタおよび第2周波数フィルタの環境温度を検出する環境温度センサと、をさらに備え、前記制御部は、前記環境温度センサが検出した前記環境温度に基づいて、前記第1周波数フィルタおよび第2周波数フィルタの透過特性の環境温度による変化を相殺するように、前記温度制御器の制御温度、および、前記第1比もしくは第2比、またはモニタ値を補正してもよい。
 本発明の一態様は、出力するレーザ光の周波数を可変とする光源部を備えるレーザ装置の制御方法であって、前記レーザ光の周波数の制御目標となる目標周波数を取得する第1取得ステップと、入力する光の周波数に対して透過率が周期的に変化する透過特性を有し、かつ位相が相対的にずれている第1周波数フィルタおよび第2周波数フィルタのうち、前記レーザ光が前記第1周波数フィルタを透過した後のレーザ光の強度に対応する第1強度を検出し、前記レーザ光が前記第2周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出し、前記レーザ光の強度を検出する検出ステップと、前記レーザ光の強度に対する前記第1強度の比に相当する第1比と、前記レーザ光の強度に対する前記第2強度の比に相当する第2比と、を取得する第2取得ステップと、前記第1比、前記第2比、前記第1比と前記第2比との和である第3比、および前記第1比と前記第2比との差である第4比のいずれか一つから前記レーザ光の周波数に相当する周波数相当量に対応するモニタ値を設定する設定ステップと、前記第1乃至第4比の当該いずれか一つに基づいて、前記目標周波数に相当する目標値を取得する第3取得ステップと、前記目標値と前記モニタ値との差の絶対値が小さくなるように制御量を調整する調整ステップと、を含むレーザ装置の制御方法である。
 本発明によれば、レーザ光の周波数の制御精度の低下を抑制できるという効果を奏する。
図1は、実施形態1に係るレーザ装置の構成を示す図である。 図2は、光源部の構成を示す図である。 図3は、実施形態1に係る制御部の構成を示すブロック図である。 図4は、周波数弁別カーブを示す図である。 図5は、余裕度の説明図である。 図6は、φと余裕度との関係を示す図である。 図7は、比較形態における周波数弁別カーブの温度依存変化を示す図である。 図8は、実施形態における周波数弁別カーブの温度依存変化を示す図である。 図9は、実施形態1に係る制御部による制御方法を示すフローチャートである。 図10は、環境温度に応じた補正を行う場合の制御方法を示すフローチャートである。 図11は、第4変形例のレーザ装置における制御方法を示すフローチャートである。 図12は、第4変形例のレーザ装置における制御方法の別の一例を示すフローチャートである。 図13は、第4変形例のさらなる変形例のレーザ装置における制御方法の一部を示すフローチャートである。 図14は、第4変形例のさらなる変形例のレーザ装置における制御方法の一部を示すフローチャートである。
 以下に、図面を参照して、本発明を実施するための形態(以下、実施形態)について説明する。なお、以下に説明する実施形態によって本発明が限定されるものではない。さらに、図面の記載において、同一の部分には適宜同一の符号を付している。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率等は、現実と異なる場合がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、図中で適宜xyz座標軸を示し、これにより方向を説明する。
(実施形態1)
 〔レーザ装置の概略構成〕
 図1は、実施形態1に係るレーザ装置の構成を示す図である。
 レーザ装置1は、モジュール化されたレーザ部2と、当該レーザ部2の動作を制御する制御ステップを実行する制御部3と、を備える。
 なお、図1では、レーザ部2と制御部3とを別体で構成しているが、一体にモジュール化しても構わない。
 〔レーザ部の構成〕
 レーザ部2は、制御部3による制御の下、出力するレーザ光の周波数を複数の周波数のうちいずれか周波数のレーザ光に可変とし、当該周波数のレーザ光を出力する。このレーザ部2は、光源部4と、半導体光増幅器(Semiconductor Optical Amplifier:SOA)5と、平面光波回路(Planar Lightwave Circuit:PLC)6と、光検出部7と、温度センサ8と、温度制御器9と、を備える。平面光波回路6と光検出部7とはモニタ部10を構成する。
 図2は、光源部の構成を示す図である。
 光源部4は、たとえばバーニア効果を利用したレーザであり、制御部3による制御の下、レーザ光L1を出力する。この光源部4は、出力するレーザ光L1の周波数を可変とするレーザ本体部41と、変更部42と、を備える。変更部42は、制御部3から供給される電力に応じて発熱する3つのマイクロヒータを有し、レーザ本体部41を局所的に加熱することで、レーザ本体部41から出力されるレーザ光L1の周波数を変更する。
 レーザ本体部41は、共通の基部B1上にそれぞれ形成された第1,第2の導波路部43,44を備える。ここで、基部B1は、たとえばn型InPからなる。そして、基部B1の裏面には、たとえばAuGeNiを含んで構成され、当該基部B1とオーミック接触するn側電極45が形成されている。
 第1の導波路部43は、埋め込み導波路構造を有している。この第1の導波路部43は、導波路部431と、半導体積層部432と、p側電極433と、を備える。
 導波路部431は、半導体積層部432内にz方向に延伸するように形成されている。
 また、第1の導波路部43内には、利得部431aと、DBR(Distributed Bragg Reflector)型の回折格子層431bとが配置されている。
 ここで、利得部431aは、InGaAsPからなる多重量子井戸構造と光閉じ込め層とを有する活性層である。また、回折格子層431bは、InGaAsPとInPとからなる標本化回折格子で構成されている。
 半導体積層部432は、InP系半導体層が積層して構成されており、導波路部431に対してクラッド部の機能等を備える。
 p側電極433は、半導体積層部432上において、利得部431aに沿うように配置されている。なお、半導体積層部432上には、SiN保護膜(図示略)が形成されている。そして、p側電極433は、当該SiN保護膜に形成された開口部(図示略)を介して半導体積層部432に接触している。
 ここで、マイクロヒータであるDBRヒータ421は、半導体積層部432のSiN保護膜上において、回折格子層431bに沿うように配置されている。そして、DBRヒータ421は、制御部3から供給される電力に応じて発熱し、回折格子層431bを加熱する。また、制御部3がDBRヒータ421に供給する電力を制御することによって回折格子層431bの温度が変化し、その屈折率が変化する。
 第2の導波路部44は、2分岐部441と、2つのアーム部442,443と、リング状導波路444と、を備える。
 2分岐部441は、1×2型の多モード干渉型(MMI)導波路441aを含む1×2型の分岐型導波路で構成され、2ポート側が2つのアーム部442,443のそれぞれに接続されるとともに1ポート側が第1の導波路部43側に接続されている。すなわち、2分岐部441により、2つのアーム部442,443は、その一端が統合され、回折格子層431bと光学的に結合される。
 アーム部442,443は、いずれもz方向に延伸し、リング状導波路444を挟むように配置されている。これらアーム部442,443は、リング状導波路444といずれも同一の結合係数κでリング状導波路444と光学的に結合している。κの値は、たとえば0.2である。そして、アーム部442,443とリング状導波路444とは、リング共振器フィルタRF1を構成している。また、リング共振器フィルタRF1と2分岐部441とは、反射ミラーMを構成している。
 ここで、マイクロヒータであるRINGヒータ422は、リング状であり、リング状導波路444を覆うように形成されたSiN保護膜(図示略)上に配置されている。そして、RINGヒータ422は、制御部3から供給される電力に応じて発熱し、リング状導波路444を加熱する。また、制御部3がRINGヒータ422に供給する電力を制御することによってリング状導波路444の温度が変化し、その屈折率が変化する。
 上述した2分岐部441、アーム部442,443、およびリング状導波路444は、いずれも、InGaAsPからなる光導波層44aがInPからなるクラッド層によって挟まれたハイメサ導波路構造を有している。
 ここで、マイクロヒータであるPhaseヒータ423は、アーム部443の一部のSiN保護膜(図示略)上に配置されている。当該アーム部443のうちPhaseヒータ423の下方の領域は、光の位相を変化させる位相調整部445として機能する。そして、Phaseヒータ423は、制御部3から供給される電力に応じて発熱し、位相調整部445を加熱する。また、制御部3がPhaseヒータ423に供給する電力を制御することによって位相調整部445の温度が変化し、その屈折率が変化する。
 以上説明した第1,第2の導波路部43,44は、互いに光学的に接続された回折格子層431bと反射ミラーMとにより構成される光共振器Cを構成している。また、利得部431aと位相調整部445とは、光共振器C内に配置される。
 回折格子層431bは、所定の周波数間隔で周期的な反射特性を有する第1の櫛状反射スペクトルを生成する。一方、リング共振器フィルタRF1は、所定の周波数間隔で周期的な反射特性を有する第2の櫛状反射スペクトルを生成する。
 ここで、第2の櫛状反射スペクトルは、第1の櫛状反射スペクトルのピークの半値全幅よりも狭い半値全幅のピークを有し、第1の櫛状反射スペクトルの周波数間隔とは異なる周波数間隔で周期的な反射特性を有する。
 各櫛状反射スペクトルの特性について例示すると、第1の櫛状反射スペクトルのピーク間の周波数間隔(自由スペクトル領域:FSR)は373GHzである。また、各ピークの半値全幅は43GHzである。一方、第2の櫛状反射スペクトルのピーク間の周波数間隔(FSR)は400GHzである。また、各ピークの半値全幅は25GHzである。すなわち、第2の櫛状反射スペクトルの各ピークの半値全幅(25GHz)は、第1の櫛状反射スペクトルの各ピークの半値全幅(43GHz)より狭い。
 光源部4では、レーザ発振を実現するために、第1の櫛状反射スペクトルのピークの一つと第2の櫛状反射スペクトルのピークの一つとを周波数軸上で重ね合わせ可能に構成されている。このような重ね合わせは、DBRヒータ421,RINGヒータ422の少なくとも一つを用いて、DBRヒータ421により回折格子層431bを加熱して熱光学効果によりその屈折率を変化させて第1の櫛状反射スペクトルを周波数軸上で全体的に移動させて変化させる、および、RINGヒータ422によりリング状導波路444を加熱してその屈折率を変化させて第2の櫛状反射スペクトルを周波数軸上で全体的に移動させて変化させる、の少なくともいずれか一つを行うことにより、実現することができる。
 一方、光源部4において、光共振器Cによる共振器モードが存在する。そして、光源部4において、共振器モードの間隔(縦モード間隔)は、25GHz以下となるように光共振器Cの共振器長が設定されている。この設定の場合、光共振器Cの共振器長は、1800μm以上となり、発振するレーザ光の狭線幅化を期待することができる。なお、光共振器Cの共振器モードの周波数は、Phaseヒータ423を用いて位相調整部445を加熱してその屈折率を変化させて共振器モードの周波数を周波数軸上で全体的に移動させることにより微調整することができる。すなわち、位相調整部445は、光共振器Cの光路長を能動的に制御するための部分である。
 光源部4は、制御部3により、n側電極45およびp側電極433から利得部431aへ電流を注入し、利得部431aを発光させると、第1の櫛状反射スペクトルのスペクトル成分のピーク、第2の櫛状反射スペクトルのスペクトル成分のピーク、および光共振器Cの共振器モードの一つが一致した周波数、たとえば193.4THzでレーザ発振し、レーザ光L1を出力するように構成されている。
 光源部4では、バーニア効果を利用してレーザ光L1の周波数を変化させることができる。すなわち、制御部3から供給する電力を調整してDBRヒータ421を制御すると、その櫛状反射スペクトルは、周波数軸上でシフトする。同様に、RINGヒータ422を制御すると、その櫛状反射スペクトルは周波数軸上でシフトする。同様に、Phaseヒータ423を制御すると、そのスペクトルは周波数軸上でシフトする。
 たとえば、まず、DBRの反射ピークと光共振器Cの共振器モードとRINGの反射ピークとが一致した周波数f1でレーザ発振する状態を形成する。この状態にするために、DBRヒータ421およびRINGヒータ422は、供給される電力に基づいて、DBR、RINGの反射スペクトルがピークとなる周波数位置を各々設定する。また、Phaseヒータ423は、供給される電力に基づいて、共振器モードがピークとなる周波数位置を設定する。周波数f1でレーザ発振する状態から、各ヒータの制御によってDBRの反射ピークと光共振器Cの共振器モードとRINGの反射ピークとが一致する周波数を周波数f2とすると、レーザ光L1の周波数を周波数f2に調整できる。なお、各ヒータへ供給する電力は電流を制御量として制御することができる。すなわち、制御部3は、制御量である電流に対応する電力を光源部4に供給することによってレーザ光L1の周波数を制御する。
 レーザ光L1の周波数を第1周波数から第2周波数に変更する場合には、たとえば、まずDBRおよびRINGの櫛状反射スペクトルが第2周波数において重なり合うようにDBRヒータ421およびRINGヒータ422をフィードフォワード制御し、その後に共振器モードのいずれか一つが第2周波数と一致するようにPhaseヒータ423をフィードバック制御する。ただし制御の方法はこれに限られない。
 図1に戻って説明を続ける。半導体光増幅器5は、具体的な図示は省略したが、第1の導波路部43と同様の材料および構造からなる活性コア層を備える埋め込み導波路構造を有する。但し、回折格子層431bは設けられていない。この半導体光増幅器5は、空間結合光学系(図示略)により光源部4に対して光学的に結合している。そして、光源部4から出力されたレーザ光L1は、半導体光増幅器5に入力される。半導体光増幅器5は、制御部3から電流を供給されると、レーザ光L1を増幅してレーザ光L2として出力する。なお、半導体光増幅器5は、基部B1上に、光源部4とモノリシックに構成されていてもよい。
 平面光波回路6は、空間結合光学系(図示略)によりアーム部442に光学的に結合している。そして、レーザ光L1と同様に光源部4におけるレーザ発振により発生したレーザ光L3の一部は、アーム部442を介して平面光波回路6に入力される。なお、レーザ光L3は、レーザ光L1の周波数と同一の周波数を有し、レーザ光L1の強度と対応する強度を有する。この平面光波回路6は、光分岐部61と、光導波路62と、リング共振器型光フィルタである周波数フィルタ63aを有する光導波路63と、リング共振器型光フィルタである周波数フィルタ64aを有する光導波路64と、を備える。周波数フィルタ63aは第1周波数フィルタの一例であり、周波数フィルタ64aは第2周波数フィルタの一例である。
 光分岐部61は、入力したレーザ光L3を3つのレーザ光L4,L5,L6に分岐する。光導波路62は、レーザ光L4を光検出部7における後述するPD(Photo Diode)73に導波する。光導波路63は、レーザ光L5を光検出部7における後述するPD71に導波する。光導波路64は、レーザ光L6を光検出部7における後述するPD72に導波する。
 ここで、周波数フィルタ63aは、入力する光の周波数に対して透過率が周期的に変化する透過特性を有し、レーザ光L5をレーザ光L5の周波数に応じた透過率で透過する。そして、周波数フィルタ63aを透過したレーザ光L5は、PD71に入力する。すなわち、周波数フィルタ63aは、導波路型の周波数フィルタである。なお、周波数フィルタ63aとして、入力する光の周波数に対して周期的な透過特性を有するエタロンフィルタやMZI(Mach-Zehnder Interferometer)フィルタを用いてもよい。
 同様に、周波数フィルタ64aは、入力する光の周波数に対して透過率が周期的に変化する透過特性を有し、レーザ光L6をレーザ光L6の周波数に応じた透過率で透過する。そして、周波数フィルタ64aを透過したレーザ光L6は、PD72に入力する。周波数フィルタ64aとして、入力する光の周波数に対して周期的な透過特性を有するエタロンフィルタやMZIフィルタを用いてもよい。
 周波数フィルタ63a、64aの透過特性は、互いに同じ周期であることが好ましい。また、後に詳述するように、周波数フィルタ63a、64aの透過特性は位相が相対的にずれている。
 光検出部7は、PD71,72,73を備え、検出ステップを実行する。PD73は、レーザ光L4(光源部4から出力されたレーザ光L1と同一の周波数を有し、レーザ光L1の強度と対応する強度を有する)を受光し、当該レーザ光L4の強度に応じた電気信号を制御部3に出力する。PD71は、周波数フィルタ63aを透過したレーザ光L5を受光し、当該レーザ光L5の強度に応じた電気信号を制御部3に出力する。PD72は、周波数フィルタ64aを透過したレーザ光L6を受光し、当該レーザ光L6の強度に応じた電気信号を制御部3に出力する。そして、PD71,72,73からそれぞれ出力された電気信号は、制御部3による周波数ロック制御(光源部4から出力されるレーザ光L1の周波数を目標周波数にするための制御)に用いられる。
 PD71は、レーザ光L1が周波数フィルタ63aを透過した後の強度に相当するレーザ光L5の強度である第1強度を検出する第1検出部の一例である。PD72は、レーザ光L1が周波数フィルタ64aを透過した後の強度に相当するレーザ光L6の強度である第2強度を検出する第2検出部の一例である。PD73は、レーザ光L1の強度に対応するレーザ光L4の強度である第3強度を検出する第3検出部の一例である。
 温度センサ8は、たとえばサーミスタ等で構成されるとともに、温度制御器9の設置面91上に載置され、光源部4および平面光波回路6の周囲温度を検出する。なお、温度センサ8としては、温度制御器9の外部に配置し、レーザ装置1が配置される環境の温度を周囲温度として検出しても構わない。温度センサ8は、検出した温度の情報を含む電気信号を制御部3に出力する。
 温度制御器9は、たとえばペルチェ素子を含むTEC(Thermo Electric Cooler)等で構成されている。この温度制御器9には、光源部4、半導体光増幅器5、平面光波回路6、光検出部7、および温度センサ8が載置される。そして、温度制御器9は、供給された電力に応じて光源部4、半導体光増幅器5、平面光波回路6、光検出部7、および温度センサ8の温度を制御する。この場合、制御部3は、温度センサ8が検出した温度の情報に基づいて、主に光源部4が一定の温度となるように、温度制御器9に供給する電力を制御する。主に光源部4が一定の温度となるよう制御を行うことが、レーザ光L1の周波数の、動作条件や外部環境温度に依存する変動を抑制する上で好ましい。
 なお、温度センサ8は、温度制御器9において、光源部4、半導体光増幅器5、平面光波回路6、光検出部7、および温度センサ8が載置される設置面91を、光源部4および半導体光増幅器5が載置される第1の領域Ar1と、平面光波回路6および光検出部7が載置される第2の領域Ar2の2つの領域に区画した場合には、第1の領域Ar1に載置してもよい。このとき、温度センサ8は、光源部4に近接して配置したり、光源部4上に載置するようにしてもよい。また、温度センサ8は、第2の領域Ar2に載置され、平面光波回路6に近接して配置されていてもよい。
 〔制御部の構成〕
 つぎに、制御部3の構成について説明する。図3は、制御部の構成を示すブロック図である。制御部3は、たとえばユーザインターフェースを備えた上位の制御装置(図示略)と接続されており、当該上位の制御装置を介したユーザからの指示にしたがって、光源部4の動作を制御する。
 なお、以下では、本発明の要部である制御部3による周波数ロック制御を主に説明する。また、図3では、説明の便宜上、制御部3の構成として、周波数ロック制御を実行する構成を主に図示している。
 制御部3は、アナログ-デジタルコンバータ(ADC)31、32、33、34と、演算部35と、記憶部36と、電流源37と、を備える。
 ADC31は、PD71から入力されたアナログの電気信号をデジタル信号(電圧信号)に変換して演算部35に出力する。ADC32は、PD72から入力されたアナログの電気信号をデジタル信号(電圧信号)に変換して演算部35に出力する。ADC33は、PD73から入力されたアナログの電気信号をデジタル信号(電圧信号)に変換して演算部35に出力する。ADC34は、温度センサ8から入力されたアナログの電気信号をデジタル信号(電圧信号)に変換して演算部35に出力する。
 デジタル演算を行う演算部35は、制御部3が実行する制御のための各種演算処理を行うものであり、たとえばCPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)で構成される。記憶部36は、演算部35が演算処理を行うために使用する各種プログラムやデータ等が格納される、たとえばROM(Read Only Memory)で構成される部分と、演算部35が演算処理を行う際の作業スペースや演算部35の演算処理の結果等を記憶する等のために使用される、たとえばRAM(Random Access Memory)で構成される部分とを備えている。制御部3の制御機能は、演算部35と記憶部36との機能によりソフトウェア的に実現される。
 電流源37は、演算部35からの指示に基づいて、光源部4にレーザ光L1の周波数の制御のための電力を供給する。本実施形態では、演算部35は電流源37に制御量として電流値を指示する。電流源37は指示された電流値の電流を光源部4に供給する。
 つぎに、演算部35の構成について詳述する。演算部35は、機能部として、目標周波数設定部351と、弁別カーブ選択部352と、目標値取得部353と、モニタ値算出部354と、差分取得部355と、PID制御部356と、DBR/RING電力設定部357と、を備えている。これらの機能部はソフトウェアとハードウェア資源とが協働することによって実現される。
 目標周波数設定部351は、たとえば上位の制御装置からの指示により、レーザ光L1の周波数の制御における目標値として目標周波数を取得して設定する第1取得ステップを行う。
 弁別カーブ選択部352は、設定された目標周波数を取得し、目標周波数に基づいて、第1周波数弁別カーブ、第2周波数弁別カーブ、第3周波数弁別カーブ、および第4周波数弁別カーブのいずれか一つを選択する。第1周波数弁別カーブは、周波数フィルタ63aの透過特性に相当する。第2周波数弁別カーブは、周波数フィルタ64aの透過特性に相当する。第3周波数弁別カーブは、第1周波数弁別カーブと第2周波数弁別カーブとの和で示される。第4周波数弁別カーブは、第1周波数弁別カーブと第2周波数弁別カーブとの差で示される。
 振幅値が-1から1の間で変化するように規格化した第1周波数弁別カーブ、第2周波数弁別カーブは、周波数の変化に対し正弦関数的に変化する場合、たとえば以下の式(1)、(2)のような正弦関数(余弦関数)で表現できる。なお、θ=2πf/Fである。fは光の周波数である。Fは弁別カーブの周期またはFSR(Free Spectral Range)であり、周波数フィルタ63aおよび周波数フィルタ64aの周期と等しい。また、φは周波数フィルタ63aと周波数フィルタ64aとの相対的な位相ずれに対応する位相差である。
  sinθ ・・・ (1)
  sin(θ+φ) ・・・ (2)
 振幅値が-1から1の間で変化するように規格化した第3周波数弁別カーブ、第4周波数弁別カーブは、たとえば以下の式(3)、(4)で表される。なお、Δ=φ-π/2である。
  sin(θ+π/4+Δ/2) ・・・ (3)
  sin(θ-π/4+Δ/2) ・・・ (4)
 図4は、振幅値が-1から1の間で変化するように規格化した第1周波数弁別カーブC1、第2周波数弁別カーブC2、第3周波数弁別カーブC3、第4周波数弁別カーブC4、を示す図である。横軸は周波数であり、弁別カーブの半周期が1となるように規格化したものである。縦軸は、第1周波数弁別カーブC1、第2周波数弁別カーブC2、第3周波数弁別カーブC3、第4周波数弁別カーブC4について、それぞれ第1比、第2比、第3比、第4比に相当する比である。なお、図4では位相ずれφをπ/2に設定している。尚、第1周波数弁別カーブ、第2周波数弁別カーブの位相ずれφがπ/2でない場合においても、第1周波数弁別カーブ、第2周波数弁別カーブの振幅が略等しい場合では、第3周波数弁別カーブと第4周波数弁別カーブとの位相ずれはπ/2となる。
 領域C11、C21、C31、C41は、第1~第4周波数弁別カーブC1~C4において、不感帯とは異なり周波数に対する比の変化率が大きく、制御精度を高くできる領域である。領域C11、C21、C31、C41は、周波数的に互いに重なり合わないように設定される。
 弁別カーブ選択部352は、目標周波数に基づいて、目標周波数が含まれる領域C11、C21、C31、C41のいずれかに対応する周波数弁別カーブを選択する。たとえば、目標周波数が領域C11に含まれる場合、弁別カーブ選択部352は第1周波数弁別カーブC1を選択する。周波数弁別カーブの選択においては、周波数に対する比の変化率がより大きい周波数弁別カーブを選択することが好ましい。図4の場合、複数の周波数弁別カーブのうち、目標周波数において比の絶対値が小さい周波数弁別カーブを選択することが好ましい。
 目標値取得部353は、目標周波数を、弁別カーブ選択部352が選択した周波数弁別カーブに当てはめることによって、目標値を取得する第3取得ステップを行う。たとえば、図4において、目標周波数がf_tgtの場合は、第1周波数弁別カーブC1に当てはめて目標値R_tgtを取得する。
 モニタ値算出部354は、ADC31,32,33から入力されたデジタル信号から第1比、第2比を取得する第2取得ステップを行うとともに、第3比、または第4比を算出するステップを行う。そして、第1比、第2比、第3比、および第4比のいずれか一つをレーザ光L1の周波数に相当するモニタ値R_monとして設定する設定ステップを行う。モニタ値R_monは周波数相当量の一例である。なお、目標周波数とレーザ光L1の周波数とは、同じ領域(たとえば領域C11)に位置するとする例を示すが、モニタ値R_monと目標値R_tgtとが同じ周波数弁別カーブ上で設定されるようにすればよい。
 第1比は、PD73が検出した第3強度に対するPD71が検出した第1強度の比である。また、当該比に相当するものとして、第1比は、PD73が検出した第3強度に補正係数を適用した強度に対する、PD71が検出した第1強度に補正係数を適用した強度の比でもよい。また、当該比に相当する量として、第1比は、第1強度または第3強度のいずれか一方に補正係数を適用した強度を用いて比を算出したものでもよい。以下では第1比はPD1/PD3と記載する場合がある。
 第2比は、PD73が検出した第3強度に対するPD72が検出した第2強度の比である。また、当該比に相当するものとして、第1比は、PD73が検出した第3強度に補正係数を適用した強度に対する、PD72が検出した第2強度に補正係数を適用した強度の比でもよい。また、当該比に相当する量として、第2比は、第2強度または第3強度のいずれか一方に補正係数を適用した強度を用いて比を算出したものでもよい。以下では第2比はPD2/PD3と記載する場合がある。
 第1強度、第2強度、または第3強度に対する補正係数は、実験等によって予め取得され、テーブルデータや関係式などの形式にて記憶部36に記憶されており、モニタ値算出部354が適宜読み出して使用する。補正係数は、たとえばレーザ装置1の動作条件や、温度センサ8が検出した温度等に応じて定められていてもよい。また、補正係数は、規格化された周波数弁別カーブに当てはめるのに適するように定められていてもよい。第1強度、第2強度、または第3強度に対する補正係数の適用は、たとえば、加算、減算、乗算、除算のいずれかの演算による適用である。
 第3比は、第1比と第2比との和である。第4比は、第1比と第2比との差である。したがって、第3比または第4比は、第1強度、第2強度、または第3強度に対する補正係数を含みうる。
 差分取得部355は、目標値取得部353が取得した目標値R_tgtとモニタ値算出部354が算出したモニタ値R_monとの差分を算出して取得する。
 PID制御部356は、目標値R_tgtとモニタ値R_monとの差分に基づいて電流値の指示値を算出し、その指示値を電流源37に出力し、比例積分微分(PID)制御やPI制御などのフィードバック制御を実行する。すなわち、PID制御部356は、目標値R_tgtとモニタ値R_monとの差の絶対値が小さくなるように電流値(制御量)を調整する調整ステップを実行する。
 DBR/RING電力設定部357は、目標周波数設定部351が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定する。DBR/RING電力設定部357は、設定した電力に基づいて電流値を設定し、その電流値の指示を電流源37に出力し、DBRヒータ421およびRINGヒータ422のフィードフォワード制御を行うことができる。
 このように構成されたレーザ装置1では、制御目標の周波数が不感帯と意図せずに重なってしまうことが抑制されるので、レーザ光の周波数の制御精度の低下を抑制できる。
 以下では、横ずれが起きたときの制御目標の周波数と不感帯との重なりにくさについて、「余裕度」なるパラメータを導入して説明する。余裕度は、周波数モニタ・制御系の横ずれへの耐性の評価指標となるパラメータである。
 図5は、余裕度の説明図である。図5では、振幅値が-1から1の間で変化するように規格化した正弦関数である第5周波数弁別カーブC5、第6周波数弁別カーブC6を示している。領域C51、C61は、第5、第6周波数弁別カーブC5、C6において、不感帯とは異なり周波数に対する比の変化率が大きく、制御精度を高くできる領域である。領域C51、C61は、周波数的に互いに重なり合わないように設定される。
 図5において、余裕度は、2つの周波数弁別カーブの切り替え点のうち最も極値に近い点と、不感帯の中心すなわち周波数弁別カーブの極値(図5では極小値)との周波数差として定義できる。余裕度が大きいほど、不感帯から周波数的に離れた領域でレーザ光L1の周波数のモニタができるといえるので、横ずれへの耐性が高いといえる。なお、図5のような2つの周波数弁別カーブを切り換えて周波数制御を行う場合、余裕度はφ/2である。
 図6は、φと余裕度との関係を示す図である。線M1は、式(1)、(2)で示す第1および第2周波数弁別カーブの2つを用いた場合のφと余裕度との関係を示している。線M2は、式(1)~(3)で示す第1~第3周波数弁別カーブの3つを用いた場合のφと余裕度との関係を示している。線M2はφが90度以下では線M1と重なっている。線M3は、式(1)、(2)、(4)で示す第1、第2、第4周波数弁別カーブの3つを用いた場合のφと余裕度との関係を示している。線M3はφが90度以上では線M1と重なっている。線M4は、式(1)~(4)で示す第1~第4周波数弁別カーブの4つを用いた場合のφと余裕度との関係を示している。線M4はφが60度以下では線M3と重なり、120度以上では線M2と重なっている。
 図6に示すように、第1~第4周波数弁別カーブの4つを用いた場合、いずれのφにおいても余裕度が高くなり、周波数モニタ・制御系の横ずれへの耐性が高いことが確認できる。
 つぎに、図7は、比較形態における周波数弁別カーブの温度依存変化を示す図である。比較形態とは、レーザ装置1において、第1および第2周波数弁別カーブのみを用いて周波数制御を行う形態である。
 図7では、図5と同様に第5周波数弁別カーブC5、第6周波数弁別カーブC6を示している。ただし、第5周波数弁別カーブC5と第6周波数弁別カーブC6との位相ずれはπ/2としている。ここで、領域C51において、例示的な4つの目標周波数に対応する第5周波数弁別カーブC5上のポイントを実線の白丸で示している。一方、周波数弁別カーブC5Aは、温度変化によって第5周波数弁別カーブC5が正の周波側に横ずれした状態を示しており、周波数弁別カーブC5Bは、温度変化によって第5周波数弁別カーブC5が負の周波側に横ずれした状態を示している。領域C5F、C5AF、C5BFは、それぞれ第5周波数弁別カーブC5、周波数弁別カーブC5A、周波数弁別カーブC5Bにおける不感帯を示している。
 横ずれによって周波数弁別カーブC5Aの状態になった場合、破線の白丸で示すように、4つの目標周波数のうち最も負側のポイントは、横ずれによって不感帯C5AFと重なってしまう。また、横ずれによって周波数弁別カーブC5Bの状態になった場合、破線の白丸で示すように、4つの目標周波数のうち最も正側のポイントは、横ずれによって不感帯C5BFと重なってしまう。このことは、比較形態の場合は横ずれへの耐性が低いことを示している。
 一方、図8は、実施形態における周波数弁別カーブの温度依存変化を示す図である。図8では、図4と同様に第1~第4周波数弁別カーブC1~C4を示している。ここで、領域C11において、例示的な3つの目標周波数に対応する第1周波数弁別カーブC1上のポイントを実線の白丸で示している。一方、周波数弁別カーブC1Aは、温度変化によって第1周波数弁別カーブC1が正の周波側に横ずれした状態を示しており、周波数弁別カーブC1Bは、温度変化によって第1周波数弁別カーブC1が負の周波側に横ずれした状態を示している。領域C1F、C1AF、C1BFは、それぞれ第1周波数弁別カーブC1、周波数弁別カーブC1A、周波数弁別カーブC1Bにおける不感帯を示している。
 実施形態の場合は、横ずれによって周波数弁別カーブC1Aの状態になった場合でも、破線の白丸で示すように、3つの目標周波数いずれのポイントも不感帯C1AFとは重ならない。また、横ずれによって周波数弁別カーブC1Bの状態になった場合も、破線の白丸で示すように、3つの目標周波数のいずれも不感帯C1BFとは重ならない。このことは、実施形態の場合は横ずれへの耐性が高いことを示している。
 〔制御方法〕
 つぎに、レーザ装置1において実行される制御方法について、図9のフローチャートを参照して説明する。
 はじめに、ステップS101において、目標周波数設定部351は、レーザ光L1の周波数の目標値として目標周波数を設定する。つづいて、図示は省略するが、DBR/RING電力設定部357は、目標周波数設定部351が設定した目標周波数をもとに、DBRヒータ421およびRINGヒータ422のそれぞれに供給する電力を設定し、電流源37にその電力に相当する電流値の指示値を電流源37に出力する。
 つづいて、ステップS102において、弁別カーブ選択部352が、目標周波数に基づいて、第1周波数弁別カーブ、第2周波数弁別カーブ、第3周波数弁別カーブ、および第4周波数弁別カーブのいずれか一つを選択する。例えば、第1周波数弁別カーブ、第2周波数弁別カーブ、第3周波数弁別カーブ、および第4周波数弁別カーブのうち、ステップS101において設定された目標周波数における変化率が最も大きくなる周波数弁別カーブを選択したり、いずれの周波数弁別カーブも振幅値が-1から1の間で変化するように規格化した上で目標周波数において絶対値が最も小さくなる周波数弁別カーブを選択したりしてもよい。
 第1周波数弁別カーブを選択した場合(ステップS102、カーブ1)、ステップS103において、目標値取得部353は、第1周波数弁別カーブに基づいて、目標周波数に対応する目標値R_tgtを取得して決定する。つづいて、ステップS104において、モニタ値算出部354は、第1周波数弁別カーブに基づいて、レーザ光L1の周波数に相当するモニタ値R_monを算出して設定する。その後フローはステップS111に進む。
 第2周波数弁別カーブを選択した場合(ステップS102、カーブ2)、ステップS105において、目標値取得部353は、第2周波数弁別カーブに基づいて、目標周波数に対応する目標値R_tgtを取得して決定する。つづいて、ステップS106において、モニタ値算出部354は、第2周波数弁別カーブに基づいて、レーザ光L1の周波数に相当するモニタ値R_monを算出して設定する。その後フローはステップS111に進む。
 第3周波数弁別カーブを選択した場合(ステップS102、カーブ3)、ステップS107において、目標値取得部353は、第3周波数弁別カーブに基づいて、目標周波数に対応する目標値R_tgtを取得して決定する。つづいて、ステップS108において、モニタ値算出部354は、第3周波数弁別カーブに基づいて、レーザ光L1の周波数に相当するモニタ値R_monを算出して設定する。その後フローはステップS111に進む。
 第4周波数弁別カーブを選択した場合(ステップS102、カーブ4)、ステップS109において、目標値取得部353は、第4周波数弁別カーブに基づいて、目標周波数に対応する目標値R_tgtを取得して決定する。つづいて、ステップS110において、モニタ値算出部354は、第4周波数弁別カーブに基づいて、レーザ光L1の周波数に相当するモニタ値R_monを算出して設定する。その後フローはステップS111に進む。
 つづいて、ステップS111において、差分取得部355は、目標値R_tgtとモニタ値R_monとの差分(目標値R_tgt-モニタ値R_mon)を算出して取得する。
 つづいて、ステップS112において、PID制御部356は、目標値R_tgtとモニタ値R_monとの差の絶対値が小さくなるような電流値の指示値を算出する。
 つづいて、ステップS113において、PID制御部356は、算出した指示値を電流源37に出力する。
 つづいて、ステップS114において、PID制御部356は、差の絶対値である|目標値R_tgt-モニタ値R_mon|が目標誤差内であるか否かを判定する。目標誤差内ではないと判定した場合(ステップS114、No)、制御はステップS115に進む。
 ステップS115において、制御部3は、弁別カーブ選択部352が選択した弁別カーブを確認する。第1周波数弁別カーブを選択したと確認した場合(ステップS115、カーブ1)、フローはステップS104に戻る。第2周波数弁別カーブを選択したと確認した場合(ステップS115、カーブ2)、フローはステップS106に戻る。第3周波数弁別カーブを選択したと確認した場合(ステップS115、カーブ3)、フローはステップS108に戻る。第4周波数弁別カーブを選択したと確認した場合(ステップS115、カーブ4)、フローはステップS110に戻る。
 一方、ステップS114において、PID制御部356が、|目標値R_tgt-モニタ値R_mon|が目標誤差内であると判定した場合(ステップS114、Yes)、制御は終了する。
 以上説明したように、レーザ装置1では、制御目標の周波数が不感帯と意図せずに重なってしまうことが抑制されるので、レーザ光の周波数の制御精度の低下を抑制できる。
 また、レーザ装置1では、2つの周波数フィルタ63a、64aにて、4つの周波数弁別カーブを生成しているので、周波数フィルタの数を増加させる場合と比較して、レーザ装置の構成や制御の煩雑さの増大は抑制される。また、周波数弁別カーブに対して、レーザ光の強度を検出する検出部をある程度共用しているので、周波数弁別カーブを切り換える毎に検出部を切り換える必要が無い。その結果、周波数弁別カーブを切り換える際に制御が不安定になることが抑制される。
 また、レーザ装置1では、第1比または第2比を、第1強度、第2強度、または第3強度に補正係数を適用して算出することができる。これにより、レーザ装置1の動作条件や、温度センサ8が検出した温度や、周波数弁別カーブへの当てはめの適正に応じて第1比または第2比、さらには第3比や第4比を算出することができる。具体的には、温度センサ8が検出した温度に応じて、温度に依存する周波数フィルタの横ずれを補正するように補正係数を設定したり、温度に依存する周波数フィルタの縦ずれを補正するように補正係数を設定したりすることができる。ここで、周波数フィルタの縦ずれとは、周波数フィルタの透過特性が透過率軸方向にずれることを意味する。縦ずれは、目標周波数に制御ができなかったり、達成不可能な目標値が設定されたりする原因となりうる。また、たとえば周波数フィルタ63a、64aの透過特性が周波数の正弦関数ではない場合に、補正係数を用いて、第1強度、第2強度、または第3強度を、周波数の正弦関数である周波数弁別カーブに当てはめられるように補正してもよい。尚、温度センサ8を第1の領域Ar1に載置し、当該温度センサ8(第1の温度センサ)とは別に、第2の温度センサを載置し、当該温度センサ8が検出した温度の情報に基づいて温度制御器9に供給する電力を制御する場合は、第2の温度センサで検出された温度の情報に基づいて、周波数フィルタの横ずれおよび縦ずれの少なくとも一方を補正するように補正係数を設定してもよい。このとき、第2の温度センサは第2の領域Ar2に載置してもよいし、光源部4よりも平面光波回路6に近接するように載置してもよい。この他、レーザ部2と異なる場所(例えば、レーザ部2が筐体内に格納される場合は、当該筐体の外)に載置するようにしてもよい。
 また、周波数フィルタ63a、64aの透過特性が周波数の正弦関数ではない周期関数である場合、高速フーリエ変換(FFT)と逆高速フーリエ変換(IFFT)とを用いて正弦関数に変換するための関数を導いて使用してもよい。たとえば、ADC31、32で変換したデジタル信号を1周期以上蓄積し、これをFFTした上で周波数フィルタ63a、64aのFSR以外の成分を除去し、IFFTすることで正弦関数へと変換できる。こうして導かれた関数を使用し、正弦関数へと変換する。尚、MZIフィルタの周波数透過特性は、周波数の変化に対して正弦関数的に変化するとして扱うことができるため、MZIフィルタを周波数フィルタ63a、64aとして用いる場合は、FFTおよびIFFTによる正弦関数への変換を行わなくともよい。周波数フィルタ63a、64aとしてリング共振器型フィルタを用いる際は、当該フィルタの周波数透過特性のQ値が小さい場合に、周波数の変化に対して正弦関数的に変化するとして扱うことができる。
 また、レーザ装置1では、1つの温度制御器9によって、光源部4と平面光波回路6との両方の温度制御を行っているので、光源部4と平面光波回路6とにそれぞれ温度制御器を設けるよりも低消費電力、低コストが実現できる。しかしながら、制御部3が主に光源部4が一定の温度となるように温度制御器9に供給する電力を制御したり、光源部4に供給する電力を制御することで光源部4の出力するレーザ光の発振周波数を制御したりすると、平面光波回路6の周波数フィルタ63a、64aに温度に依存する横ずれが生じやすい場合がある。これに対して、レーザ装置1は、横ずれへの耐性が高い構成を備えるので、制御精度の低下を抑制するのに好適である。
 また、レーザ装置1において、第3比および第4比は、周波数フィルタ63aの特性が反映された第1比および周波数フィルタ64aの特性が反映された第2比の両方の情報を含んでいる。このことは、ADC31,32,33が変換したデジタル信号において、第1比および第2比のどちらかの電圧値が、周波数に対して1bitでも変化していれば、その変化は検出可能であることを意味している。すなわち、仮に横ずれなどによって目標値やモニタ値が不感帯に入ったり、位相ずれφが0またはπに近かったりする場合でも、モニタ値の変化の検出が可能であるため、周波数制御を実行できることを意味する。
 また、レーザ装置1では、第1比または第2比を、第1強度、第2強度、または第3強度に補正係数を適用して算出しているが、目標値取得部353が目標周波数から目標値を取得する際に補正係数を適用してもよい。この補正係数は、実験等によって予め取得され記憶部36に記憶されているものであり、レーザ装置1の動作条件や、温度センサ8または第2の温度センサが検出した温度に応じて設定することができる。また、目標周波数から目標値を取得する際に、FFTとIFFTとを用いて正弦関数以外から正弦関数に変換する手法と同様の手法を用いて、目標周波数から目標値を取得してもよい。
 また、レーザ装置1では、第3比や第4比を算出するための和や差の演算を演算部35のデジタル演算で行っているが、アナログ回路で和や差の演算を行ってもよい。デジタル演算を用いれば使用素子数や回路規模を削減でき、かつ低コスト化が実現される。また、アナログ回路を用いれば、デジタル化の際の量子化による情報の欠損の発生を防止できる。
(変形例)
 また、レーザ装置1の第1変形例において、周波数フィルタ63aおよび64aの環境温度を検出する温度センサをさらに備えてもよい。そして、演算部35は、環境温度センサが検出した環境温度に基づいて、周波数フィルタ63aおよび64aの透過特性の環境温度による変化を相殺するように温度制御器9の制御温度および第1比または第2比を補正してもよい。
 環境温度センサは、たとえばサーミスタ等で構成される。なお、環境温度は、周波数フィルタ63aおよび64aの環境温度を検出できる位置に配置されればよく、その位置は特に限定されないが、たとえばレーザ部2が筐体内に格納される場合、環境温度センサは当該筐体外に配置するようにしてもよく、たとえば制御部3に設けられていてもよい。環境温度センサは、検出した温度の情報を含む電気信号を制御部3のADCに出力する。ADCは、環境温度センサから入力されたアナログの電気信号をデジタル信号に変換して演算部35に出力する。
 環境温度が変化すると、光源部4が一定の温度となるように温度制御器9が制御されていても、周波数フィルタ63aおよび64aの温度が変化してしまい、第1乃至第4周波数弁別カーブは、横ずれまたは縦ずれしてしまう。
 同様の縦ずれまたは横ずれは他の要因によっても生じ得る。他の要因とは例えばレーザ光L2の強度変更に伴う半導体光増幅器5の発熱量(SOA発熱量)の変化や、レーザ装置1の長期間の使用に伴う周波数フィルタ63aおよび64aの経時変化がある。周波数フィルタ63aおよび64aの周波数特性はレーザ装置1が長期間使用され製品寿命に近づくに伴って経時変化しうる。以降このような長期間にわたる意図しない周波数フィルタ63aおよび64aの特性の経時変化を劣化と呼ぶ。以降は環境温度の変化に伴う横ずれまたは縦ずれとその補正について主に述べるが、他の要因による横ずれまたは縦ずれについても同様に補正が可能である。
 環境温度変化による横ずれまたは縦ずれが生じる場合、レーザ装置1において実行される制御方法においては、演算部35は、環境温度センサが検出した周波数フィルタ63aおよび64aの環境温度に基づいて、光源部4の周囲温度の目標温度(温度制御器9の制御目標温度)を補正する温度補正係数を設定する。周波数フィルタ63aおよび64aは、温度制御器9の制御に応じて温度が変化する状態で配置されている。その結果、目標温度を補正することによって温度制御器9が周波数フィルタ63aおよび64aに熱的に与える影響が変化するので、周波数フィルタ63aおよび64aの温度も変化する。この温度の変化に対して、周波数フィルタ63aおよび64aの透過特性の環境温度による変化を相殺するように温度補正係数を設定することによって、第1乃至第4弁別カーブの環境温度による横ずれまたは縦ずれを減らすことができる。ここで、相殺とは、第1乃至第4弁別カーブの環境温度による横ずれまたは縦ずれを完全に相殺する場合に限られず、目標温度を補正しない場合よりも横ずれまたは縦ずれが少なくなるように相殺する、いわゆる減殺も含まれる。また、補正係数の適用は、たとえば、加算、減算、乗算、除算のいずれかの演算による適用である。
 環境温度と温度補正係数との関係の一例を表1に示す。これらの関係はたとえばレーザ装置1の製造時や出荷時やメインテナンス時等のキャリブレーションの際に取得される。表1では温度補正係数をLDオフセット温度と表している。表1で示す例では、環境温度が-5℃から80℃まで変動することを想定している。たとえば光源部4に対する目標温度は35℃より高く80℃より低い所定の値である。環境温度が35℃の場合に、LDオフセット温度は0℃である。環境温度が-5℃の場合に、LDオフセット温度はΔT1[℃]である。環境温度が80℃の場合に、LDオフセット温度はΔT2[℃]である。ΔT1、ΔT2は、いずれも目標温度に加算されることで補正に利用される。ΔT1はたとえば正値であり、ΔT2はたとえば負値である。このような関係は、環境温度と温度補正係数との第1の関係情報として記憶部36に記憶されている。第1の関係情報は、環境温度と温度補正係数とが対応付けられたテーブルデータまたは関係式を含む。なお、環境温度が-5℃、35℃、80℃以外の値の場合のLDオフセット温度については、テーブルデータまたは関係式として記憶部36に記憶されていてもよいし、環境温度が-5℃、35℃、80℃の値の場合のLDオフセット温度から補完により演算されてもよい。LDオフセット温度が0℃の場合の環境温度を、以下では基準温度と記載する場合がある。表1の場合は、基準温度は35℃である。
Figure JPOXMLDOC01-appb-T000001
 SOA発熱量の変化や、周波数フィルタ63aおよび64aの劣化による横ずれまたは縦ずれが生じる場合も同様の対処が可能である。SOA発熱量の変化によるずれに対しては、SOA発熱量またはSOA電流値(半導体光増幅器5に供給される電流の値)と温度補正係数との関係を同様に定めることで温度補正係数が決定される。周波数フィルタ63aおよび64aの劣化によるずれに対しては、劣化度合いを反映する何らかの量と温度補正係数との関係を同様に定めることで温度補正係数が決定される。劣化度合いを反映する何らかの量とは、例えば環境温度の変動の回数であって、所定の範囲を超える幅で温度が変動した累計の回数である。あるいは時間であって、レーザ装置1が所定の範囲の動作条件となった累計の時間である。あるいは環境温度の変動の回数やレーザ装置1が所定の動作条件となった累計の時間などの量にそれぞれ重み付けを行った所定の関数を劣化関数とし、劣化度合いを反映する量として劣化関数の出力値を使用しても良い。
 横ずれまたは縦ずれの要因ごとに決定された温度補正係数を足し合わせたものを最終的な温度制御器9の目標温度への補正係数としても良い。
 さらに、図4に示すような弁別カーブは、環境温度変化などによって、周波数軸方向にずれる場合だけではなく、比軸方向にずれる場合がある。このような縦ずれとも呼ばれるずれの発生は、周波数ロックの精度が低下する原因となる。
 そこで、演算部35は、環境温度に応じて、比補正係数を設定し、比補正係数によって第1比または第2比を補正してもよい。この場合、記憶部36は、環境温度と比補正係数との関係を示す第2の関係情報を記憶している。第2の関係情報は、環境温度と比補正係数とが対応付けられたテーブルデータまたは関係式を含む。演算部35は、記憶部36を参照して比補正係数を設定する。比補正係数は環境温度に応じた縦ずれを相殺するように設定されている。これにより、周波数ロックの精度の低下を抑制できる。たとえば、比補正係数は、周波数フィルタ63aまたは64aの透過特性の極大点または極小点を基準として設定されていてもよい。具体例としては、縦ずれした第1または第2周波数弁別カーブにおける極点と、基準温度における第1または第2周波数弁別カーブにおける極点とが一致するように比補正係数を設定してもよい。このことは、縦ずれした周波数弁別カーブの振幅を比補正係数の適用によって本来の周波数弁別カーブに合わせることを意味する。なお、極点とは極大点または極小点である。また、比補正係数の適用は、たとえば、加算、減算、乗算、除算のいずれかの演算による適用であるが、縦ずれがカーブの振幅とカーブのオフセットとの両方で発生する場合、比補正係数は振幅の補正係数とオフセットの補正係数との組み合わせとして設定される。具体例としては、縦ずれした第1または第2周波数弁別カーブの一対の極大値・極小値と、それに対応する基準温度における第1または第2周波数弁別カーブの一対の極大値・極小値が一致するように、比補正係数が設定される。
 また、演算部35は、SOA発熱量に応じて、比補正係数を設定し、比補正係数によって第1比または第2比を補正してもよい。この場合、記憶部36は、SOA発熱量と比補正係数との関係を示す第3の関係情報を記憶している。第3の関係情報は、SOA発熱量と比補正係数とが対応付けられたテーブルデータまたは関係式を含む。演算部35は、記憶部36を参照して比補正係数を設定する。比補正係数はSOA発熱量に応じた縦ずれを相殺するように設定されている。これにより、周波数ロックの精度の低下を抑制できる。たとえば、比補正係数は、周波数フィルタ63aまたは64aの透過特性の極大点または極小点を基準として設定されていてもよい。具体例としては、縦ずれした第1または第2周波数弁別カーブにおける極点と、基準SOA発熱量における第1または第2周波数弁別カーブにおける極点とが一致するように比補正係数を設定してもよい。このことは、縦ずれした周波数弁別カーブの振幅を比補正係数の適用によって本来の周波数弁別カーブに合わせることを意味する。なお、極点とは極大点または極小点である。また、基準SOA発熱量とは、レーザ光L2が基準強度であるときのSOA発熱量であり、たとえばレーザ装置1の製造時や出荷時やメインテナンス時等のキャリブレーションの際に取得される。また、比補正係数の適用は、たとえば、加算、減算、乗算、除算のいずれかの演算による適用であるが、縦ずれがカーブの振幅とカーブのオフセットとの両方で発生する場合、比補正係数は振幅の補正係数とオフセットの補正係数との組み合わせとして設定される。具体例としては、縦ずれした第1または第2周波数弁別カーブの一対の極大値・極小値と、それに対応する基準SOA発熱量における第1または第2周波数弁別カーブの一対の極大値・極小値が一致するように、比補正係数が設定される。
 また、演算部35は、劣化度合いを反映する量に応じて、比補正係数を設定し、比補正係数によって第1比または第2比を補正してもよい。この場合、記憶部36は、劣化度合いを反映する量と比補正係数との関係を示す第4の関係情報を記憶している。第4の関係情報は、劣化度合いを反映する量と比補正係数とが対応付けられたテーブルデータまたは関係式を含む。演算部35は、記憶部36を参照して比補正係数を設定する。比補正係数は周波数フィルタ63aおよび64aの劣化に伴う縦ずれを相殺するように設定されている。これにより、周波数ロックの精度の低下を抑制できる。たとえば、比補正係数は、周波数フィルタ63aまたは64aの透過特性の極大点または極小点を基準として設定されていてもよい。具体例としては、劣化により縦ずれした第1または第2周波数弁別カーブにおける極点と、レーザ装置1の製造時における第1または第2周波数弁別カーブにおける極点とが一致するように比補正係数を設定してもよい。このことは、劣化により縦ずれした周波数弁別カーブの振幅を比補正係数の適用によって本来の周波数弁別カーブに合わせることを意味する。なお、極点とは極大点または極小点である。また、比補正係数の適用は、たとえば、加算、減算、乗算、除算のいずれかの演算による適用であるが、縦ずれがカーブの振幅とカーブのオフセットとの両方で発生する場合、比補正係数は振幅の補正係数とオフセットの補正係数との組み合わせとして設定される。具体例としては、縦ずれした第1または第2周波数弁別カーブの一対の極大値・極小値と、それに対応するレーザ装置1の製造時における第1または第2周波数弁別カーブの一対の極大値・極小値が一致するように、比補正係数が設定される。
 縦ずれの要因ごとに決定された比補正係数をそれぞれ順に適用することで複数の要因による縦ずれを同時に補正しても良い。
 横ずれを相殺するための温度補正係数の設定と縦ずれを相殺するための比補正係数の設定を両方行う場合は、比補正係数を設定した後に温度補正係数を設定する方が、周波数ロックの精度の低下をより効果的に抑制できる。
 図10は、環境温度に応じた補正を行う場合の制御方法を示すフローチャートである。図10のフローチャートは、図9のフローチャートにステップS201~S203を追加したものであるので、以下ではステップS201~S203について説明し、ステップS101~S115については説明を省略する。
 図10に示す制御方法では、ステップS101につづいて、ステップS201において、制御部3は、環境温度を取得する。つづいて、ステップS202において、制御部3は、目標温度を取得する。つづいて、ステップS203において、制御部3は、補正係数すなわち温度補正係数および比補正係数を設定する。その後、制御はステップS102に進む。
 レーザ装置1の変形例および図10のフローチャートによる制御方法によれば、特に環境温度が変化しても、常に基準温度での周波数制御を適用できるので好ましく、特に環境温度の変化に起因する横ずれや縦ずれへの耐性がさらに高まる。
 また、この変形例および制御方法では、第1比と第2比との演算から得られる第3比及び第4比は、個別の補正係数が用意されていなくても最適に補正される、という効果を奏する。これにより、第1比と第2比の簡易な補正のみで、環境温度が変化しても基準温度と同等の周波数制御を実現することができる。
 また、第1比と第2比のそれぞれに異なる補正係数を設定するようにしてもよい。これにより、第1比と第2比とで迷光の影響などが異なっても最適な補正が行える。
 また、第1比または第2比に比補正係数を適用する代わりに、モニタ値にモニタ補正係数を適用してもよい。このモニタ係数は、環境温度に応じた縦ずれを相殺するように設定されている。
 また、図10のフローチャートにおいて、ステップS201~S203を実行するステップの位置は上記に限られない。ステップS201~S203の実行によって、周波数弁別カーブのずれが補正されて基準温度における周波数弁別カーブと一致する。したがって、このようなずれの補正に関するステップは、ステップS104、S106、S108、またはS110である、レーザ光L1の周波数に相当するモニタ値R_monを算出して設定するステップの前に行えば効果が得られる。
(さらなる変形例)
 図9のフローチャートでは、第1乃至第4比のうち、目標周波数における変化率が最も大きくなる周波数弁別カーブを選択してもよいことや、周波数弁別カーブの振幅を規格化した上で目標周波数において絶対値が最も小さくなる周波数弁別カーブを選択してもよいことを述べた。これに対して、レーザ装置1の第2変形例において、制御部3は、第1乃至第4比のうち、目標値における周波数変化に対する比の変化率に基づいて、レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択してもよい。
 また、レーザ装置1の第3変形例において、制御部3は、第1乃至第4比のうち、目標値における周波数変化に対する比のS/N(シグナルノイズ比)に基づいて、レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択してもよい。
 すなわち、周波数フィルタ63aを透過したレーザ光L5や、レーザ光L5が入力されたPD71から出力された電気信号には、迷光や電気的ノイズの影響によってノイズが載り、S/Nが悪化する場合がある。同様に、周波数フィルタ64aを透過したレーザ光L6や、レーザ光L6が入力されたPD72から出力された電気信号には、迷光や電気的ノイズの影響によってノイズが載り、S/Nが悪化する場合がある。また、劣化によりレーザ光L5またはレーザ光L6に対する迷光の相対強度が経時変化しS/Nが悪化する場合がある。S/Nが悪化するとレーザ光の周波数がふらつくなどし、周波数安定性が低下する場合がある。そこで、たとえば比の変化率が大きい周波数弁別カーブであってもS/Nが悪い周波数弁別カーブは選択の優先順位を低くすれば、S/Nの悪化を防止または抑制できるので、周波数安定性の低下を防止または抑制できる。
 また、レーザ装置1の第4変形例において、制御部3は、第1乃至第4比のうち、目標値における周波数変化に対する比の変化率およびS/Nに基づいて、レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択してもよい。これにより、より適正な周波数弁別カーブの選択が可能になる。
 優先順位の付け方は、たとえば、変化率が変化率に関する第1閾値よりも大きく、S/NがS/Nに関する第2閾値よりも高い周波数弁別カーブは最も優先順位が高く、変化率が第1閾値以下であるがS/Nが第2閾値よりも高い周波数弁別カーブは2番目に優先順位が高い、等と順位付けをすることができる。またたとえば、パラメータとしての変化率とS/Nとにそれぞれ重み付けを行った所定の関数を評価関数として、評価関数の値の大きい順に優先順位をつけてもよい。このような順位付けのルールは、たとえばレーザ装置に対する要求仕様に応じて設定することができる。なお、S/Nの度合いは、レーザ光の周波数のふらつきの範囲(周波数安定性)に換算して定量的に評価することができる。
 上記の3種類(変化率、S/N、S/Nおよび変化率)の優先順位付けは、たとえば第2~第4変形例のレーザ装置1の製造時や出荷時のキャリブレーションの際に取得されて、記憶部36にテーブルデータなどとして記憶される。また、変形例のレーザ装置1のメインテナンス時に書き換えられてもよい。S/Nは、PD71から出力された電気信号やPD72から出力された電気信号をモニタすることによっても取得することができる。また、レーザ光L1の周波数安定性の測定からも取得することができる。
 図11は、第4変形例のレーザ装置における制御方法の一部を示すフローチャートである。このフローチャートは、図9に示すフローチャートのステップS101、S102に置き換える部分のみを示している。図11のリターンの後は、制御フローは図9のステップS103~S115が行われる。
 ステップS301において、目標周波数設定部351は、レーザ光L1の周波数の目標値として目標周波数を設定する。
 つづいて、ステップS302において、弁別カーブ選択部352は、記憶部36に記憶されたテーブルデータから、“目標周波数における変化率”に基づく優先順位情報を取得する。ここで、テーブルデータT1は、“目標周波数における変化率”に基づく優先順位情報が格納されている。テーブルデータT1では、周波数はチャネル番号(CH)に対応付けられており、ここでは目標周波数はチャネルnに対応するとする。このとき、チャネルnでは、カーブ4(第4周波数弁別カーブ)の優先順位が1番であり、その後、カーブ2(第2周波数弁別カーブ)、カーブ3(第3周波数弁別カーブ)、カーブ1(第1周波数弁別カーブ)の順で優先順位付けがされている。
 つづいて、ステップS303において、弁別カーブ選択部352は、目標周波数における各カーブのS/Nを記憶部36から取得する。レーザ光L5またはレーザ光L6に対する迷光の相対強度はレーザ装置1の動作条件や温度に依存する場合があり、また経時変化する場合もある。これらの依存性や経時変化のS/Nへの影響を考慮するために、記憶部36から取得したS/Nだけでなく動作条件や温度センサ8が検出した温度や環境温度や劣化具合などの情報も用いて現在の各カーブのS/Nを見積もって、以降のステップで使用しても良い。ここで、動作条件とは具体的にはDBRヒータ421、RINGヒータ422、Phaseヒータ423に供給する電力の条件や半導体光増幅器5の動作の条件などを含むものである。
 つづいて、ステップS304において、弁別カーブ選択部352は、S/Nの度合いを周波数安定性に換算する。
 つづいて、ステップS305において、弁別カーブ選択部352は、優先順位1位のカーブであるカーブ4の周波数安定性が許容範囲(または所定の閾値より高い)であるかを判定する。許容範囲内である場合(ステップS305、Yes)、ステップS306において、弁別カーブ選択部352は、優先順位1位のカーブであるカーブ4を選択し、リターンする。許容範囲内でない場合(ステップS305、No)、フローはステップS307に進む。
 ステップS307において、弁別カーブ選択部352は、優先順位2位のカーブであるカーブ2の周波数安定性が許容範囲であるかを判定する。許容範囲内である場合(ステップS307、Yes)、ステップS308において、優先順位1位と2位のカーブの順位を入れ替え、ステップS306に進む。ステップS306において、弁別カーブ選択部352は、入れ替え後の優先順位1位のカーブであるカーブ2を選択し、リターンする。
 許容範囲内でない場合(ステップS307、No)、フローはステップS309に進み、演算部35はエラー状態に遷移し、フローを終了する。
 なお、ステップS308にて優先順位を入れ替えた結果は、記憶部36に上書きされてもよい。
 図12は、第4変形例のレーザ装置における制御方法の別の一例の一部を示すフローチャートである。このフローチャートは、図11に示すフローチャートのステップS302をステップS402a、S402b、S402cに置き換えたものである。その他のステップS301、S301~S309は図11と同じであるので説明を省略する。
 ステップS402aにおいて、弁別カーブ選択部352は、目標周波数(チャネルn)の周辺のカーブ1、カーブ2の制御目標値データを記憶部36に格納されたテーブルデータT2から取得する。なお制御目標値データとは第1比、第2比に対応するものである。
 つづいて、ステップS402bにおいて、弁別カーブ選択部352は、制御目標値(比)の変化率を4カーブそれぞれで算出する。
 つづいて、ステップS402cにおいて、弁別カーブ選択部352は、変化率が大きいほど高い優先順位を各カーブに設定し、優先順位付けをする。その後は、ステップS303~S309が適宜実行される。
(第4変形例のさらなる変形例)
 第4変形例では、記憶部36から取得したS/Nだけでなく動作条件や温度センサ8が検出した温度や環境温度や劣化具合などの情報も用いて現在の各カーブのS/Nを見積もって、S/Nの度合いを周波数安定性に換算し、カーブの優先順位を決定してもよいことを述べた。これに対して、制御部3は、第4変形例のさらなる変形例において、現在のレーザ光L1の周波数安定性を測定し、S/Nの度合いを正確に評価して第1乃至第4比に優先順位をつけて選択してもよい。周波数安定性の推定値ではなく測定値を用いることで、要求仕様に対して、より適正なS/Nに基づく順位付けや周波数弁別カーブの選択が可能となる。また、周波数安定性の低下をより確実に防止または抑制できる。現在の周波数安定性は、PD71から出力された電気信号やPD72から出力された電気信号のふらつきの程度をモニタすることによって取得することができる。
 図13、14は、第4変形例のさらなる変形例のレーザ装置における制御方法の一部を示すフローチャートであって、変化率およびS/Nに基づいて優先順位を付けるフローチャートである。図13のフローチャートは、図9に示すフローチャートのステップS101、S102に置き換える部分のみを示している。図13のリターンの後は、制御フローは図9のステップS104、S106、S108またはS110、およびS111~S113が行われる。図14は、図9に示すフローチャートのステップS114、S115および“エンド”に置き換える部分のみを示している。
 はじめに、図13について説明すると、ステップS501において、目標周波数設定部351は、レーザ光L1の周波数の目標値として目標周波数を設定する。
 つづいて、ステップS502において、弁別カーブ選択部352は、記憶部36に記憶されたテーブルデータから、“目標周波数における変化率”に基づく優先順位情報を取得する。ここで、テーブルデータT3は、“目標周波数における変化率”に基づく優先順位情報が格納されている。テーブルデータT3では、周波数はチャネル番号(CH)に対応付けられており、ここでは目標周波数はチャネルnに対応するとする。このとき、チャネルnでは、カーブ4(第4周波数弁別カーブ)の優先順位が1番であり、その後、カーブ2(第2周波数弁別カーブ)、カーブ3(第3周波数弁別カーブ)、カーブ1(第1周波数弁別カーブ)の順で優先順位付けがされている。
 つづいて、ステップS503において、弁別カーブ選択部352は、優先順位1位のカーブであるカーブ4を選択し、リターンする。
 つぎに、図14について説明すると、ステップS514において、PID制御部356は、差の絶対値である|目標値R_tgt-モニタ値R_mon|が目標誤差内であるか否かを判定する。目標誤差内であると判定した場合(ステップS514、Yes)、制御はステップS515に進む。なお目標誤差内ではないと判定した場合(ステップS514、No)、制御は後述するステップS519に進む。
 ステップS515において、弁別カーブ選択部352は、優先順位1位のカーブであるカーブ4の周波数安定性が許容範囲(または所定の閾値より高い)であるかを判定する。許容範囲内である場合(ステップS515、Yes)、フローを終了する。許容範囲内でない場合(ステップS515、No)、フローはステップS516に進む。
 ステップS516において、弁別カーブ選択部352は、このステップが初めて実行されるかを判定する。初めてではない場合(ステップS516、No)、フローはステップS517に進み、演算部35はエラー状態に遷移し、フローを終了する。
 一方、初めてである場合(ステップS516、Yes)、ステップS518において、優先順位1位と2位のカーブの順位を入れ替え、ステップS519に進む。ステップS519において、弁別カーブ選択部352は、入れ替え後の優先順位1位のカーブであるカーブ2を選択する。つづいて、ステップS520において、目標値取得部353は、選択されたカーブ2に基づいて、目標周波数に対応する目標値R_tgtを取得して決定する。その後、フローは、選択されたカーブ2に応じてステップS106にリターンする。
 なお、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
1    レーザ装置
2    レーザ部
3    制御部
4    光源部
5    半導体光増幅器
6    平面光波回路
7    光検出部
8    温度センサ
9    温度制御器
10   モニタ部
31、32、33、34 ADC
35   演算部
36   記憶部
37   電流源
41   レーザ本体部
42   変更部
43   第1の導波路部
44   第2の導波路部
44a  光導波層
45   n側電極
61   光分岐部
62、63、64   光導波路
63a、64a 周波数フィルタ
91   設置面
351  目標周波数設定部
352  弁別カーブ選択部
353  目標値取得部
354  モニタ値算出部
355  差分取得部
356  PID制御部
357  DBR/RING電力設定部
421  DBRヒータ
422  RINGヒータ
423  Phaseヒータ
431  導波路部
431a 利得部
431b 回折格子層
432  半導体積層部
433  p側電極
441a 導波路
442、443  アーム部
444  リング状導波路
445  位相調整部
Ar1  第1の領域
Ar2  第2の領域
B1   基部
C    光共振器
C1   第1周波数弁別カーブ
C2   第2周波数弁別カーブ
C3   第3周波数弁別カーブ
C4   第4周波数弁別カーブ
C5   第5周波数弁別カーブ
C6   第6周波数弁別カーブ
C5A、C5B   周波数弁別カーブ
C11、C21、C31、C41、C51、C61、C1F、C1AF、C1BF、C5F、C5AF、C5BF 領域
L1、L2、L3、L4、L5、L6   レーザ光
M    反射ミラー
M1、M2、M3、M4 線
RF1  リング共振器フィルタ

Claims (14)

  1.  出力するレーザ光の周波数を可変とする光源部と、前記レーザ光の周波数に相当する周波数相当量に対応するモニタ値を取得するモニタ部と、を備えるレーザ部と、
     制御量を前記レーザ部に供給することによって前記レーザ光の周波数を制御する制御部と、
     を備え、
     前記モニタ部は、入力する光の周波数に対して透過率が周期的に変化する透過特性を有し、かつ位相が相対的にずれている第1周波数フィルタおよび第2周波数フィルタと、前記レーザ光が前記第1周波数フィルタを透過した後のレーザ光の強度に対応する第1強度を検出する第1検出部と、前記レーザ光が前記第2周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出する第2検出部と、を少なくとも備え、
     前記制御部は、
     前記レーザ光の周波数の制御目標となる目標周波数を取得し、
      前記レーザ光の強度に対する前記第1強度の比に相当する第1比と、前記レーザ光の強度に対する前記第2強度の比に相当する第2比と、を取得し、
     前記第1比、前記第2比、前記第1比と前記第2比との和である第3比、および前記第1比と前記第2比との差である第4比のいずれか一つを前記レーザ光の周波数に相当するモニタ値として設定し、
      前記第1乃至第4比の当該いずれか一つに基づいて、前記目標周波数に相当する目標値を取得し、
     前記目標値と前記モニタ値との差の絶対値が小さくなるように前記制御量を制御する
     レーザ装置。
  2.  前記制御部は、前記第1比または前記第2比を、前記第1強度、前記第2強度、または前記レーザ光の強度に補正係数を適用して算出する
     請求項1に記載のレーザ装置。
  3.  前記制御部は、前記第1強度、前記第2強度、および前記レーザ光の強度をデジタル信号に変換し、デジタル演算によって前記第1比または前記第2比を算出する
     請求項1または2に記載のレーザ装置。
  4.  前記第1および第2周波数フィルタの透過率は、周波数の変化に対し正弦関数的に変化する
     請求項1~3のいずれか一つに記載のレーザ装置。
  5.  前記制御部は、前記第1強度、前記第2強度、および前記レーザ光の強度から、前記第1周波数フィルタの透過特性または前記第2周波数フィルタの透過特性を示す周波数の関数を周波数の正弦関数に変換して、前記第1比または前記第2比を算出する
     請求項1~4のいずれか一つに記載のレーザ装置。
  6.  前記レーザ部は、バーニア効果を利用して前記レーザ光の周波数が可変とされている
     請求項1~5のいずれか一つに記載のレーザ装置。
  7.  前記制御部は、前記制御量に対応する電力を前記レーザ部に供給することによって前記レーザ光の周波数を制御する、
     請求項1~6のいずれか一つに記載のレーザ装置。
  8.  前記光源部と、前記第1周波数フィルタおよび第2周波数フィルタとが設置される設置面を有する温度制御器をさらに備え、
     前記光源部、前記第1周波数フィルタおよび第2周波数フィルタは、
     前記温度制御器の同一の前記設置面に設置される
     ことを特徴とする請求項7記載のレーザ装置。
  9.  前記制御部は、前記第1乃至第4比のうち、前記目標値における周波数変化に対する比の変化率に基づいて、前記レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択する
     請求項1~8のいずれか一つに記載のレーザ装置。
  10.  前記制御部は、前記第1乃至第4比のうち、前記目標値における周波数変化に対する比のS/Nに基づいて、前記レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択する
     請求項1~8のいずれか一つに記載のレーザ装置。
  11.  前記制御部は、前記第1乃至第4比のうち、前記目標値における周波数変化に対する比の変化率およびS/Nに基づいて、前記レーザ光の周波数に相当するモニタ値として設定する比に優先順位を付けて選択する
     請求項1~8のいずれか一つに記載のレーザ装置。
  12.  前記光源部と前記第1周波数フィルタおよび第2周波数フィルタとが設置される設置面を有する温度制御器をさらに備え、
     前記制御部は、前記第1周波数フィルタおよび第2周波数フィルタの透過特性の横ずれまたは縦ずれを相殺するように、前記温度制御器の制御温度、および、前記第1比もしくは第2比、またはモニタ値を補正する
     請求項1~11のいずれか一つに記載のレーザ装置。
  13.  前記光源部と前記第1周波数フィルタおよび第2周波数フィルタとが設置される設置面を有する温度制御器と、前記第1周波数フィルタおよび第2周波数フィルタの環境温度を検出する環境温度センサと、をさらに備え、
     前記制御部は、前記環境温度センサが検出した前記環境温度に基づいて、前記第1周波数フィルタおよび第2周波数フィルタの透過特性の環境温度による変化を相殺するように、前記温度制御器の制御温度、および、前記第1比もしくは第2比、またはモニタ値を補正する
     請求項1~11のいずれか一つに記載のレーザ装置。
  14.  出力するレーザ光の周波数を可変とする光源部を備えるレーザ装置の制御方法であって、
     前記レーザ光の周波数の制御目標となる目標周波数を取得する第1取得ステップと、
     入力する光の周波数に対して透過率が周期的に変化する透過特性を有し、かつ位相が相対的にずれている第1周波数フィルタおよび第2周波数フィルタのうち、前記レーザ光が前記第1周波数フィルタを透過した後のレーザ光の強度に対応する第1強度を検出し、前記レーザ光が前記第2周波数フィルタを透過した後のレーザ光の強度に対応する第2強度を検出し、前記レーザ光の強度を検出する検出ステップと、
     前記レーザ光の強度に対する前記第1強度の比に相当する第1比と、前記レーザ光の強度に対する前記第2強度の比に相当する第2比と、を取得する第2取得ステップと、
     前記第1比、前記第2比、前記第1比と前記第2比との和である第3比、および前記第1比と前記第2比との差である第4比のいずれか一つから前記レーザ光の周波数に相当する周波数相当量に対応するモニタ値を設定する設定ステップと、
     前記第1乃至第4比の当該いずれか一つに基づいて、前記目標周波数に相当する目標値を取得する第3取得ステップと、
     前記目標値と前記モニタ値との差の絶対値が小さくなるように制御量を調整する調整ステップと、
     を含む
     レーザ装置の制御方法。
PCT/JP2021/014966 2021-04-08 2021-04-08 レーザ装置およびその制御方法 WO2022215240A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/014966 WO2022215240A1 (ja) 2021-04-08 2021-04-08 レーザ装置およびその制御方法
JP2023512616A JPWO2022215240A1 (ja) 2021-04-08 2021-04-08
CN202180095510.XA CN116964882A (zh) 2021-04-08 2021-04-08 激光装置及其控制方法
US18/465,228 US20240006847A1 (en) 2021-04-08 2023-09-12 Laser apparatus and laser apparatus control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014966 WO2022215240A1 (ja) 2021-04-08 2021-04-08 レーザ装置およびその制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/465,228 Continuation US20240006847A1 (en) 2021-04-08 2023-09-12 Laser apparatus and laser apparatus control method

Publications (1)

Publication Number Publication Date
WO2022215240A1 true WO2022215240A1 (ja) 2022-10-13

Family

ID=83545258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014966 WO2022215240A1 (ja) 2021-04-08 2021-04-08 レーザ装置およびその制御方法

Country Status (4)

Country Link
US (1) US20240006847A1 (ja)
JP (1) JPWO2022215240A1 (ja)
CN (1) CN116964882A (ja)
WO (1) WO2022215240A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251013A (ja) * 2000-03-06 2001-09-14 Fujitsu Ltd 波長可変安定化レーザ
JP2011151210A (ja) * 2010-01-21 2011-08-04 Opnext Japan Inc 光出力装置
JP2015060961A (ja) * 2013-09-19 2015-03-30 住友電気工業株式会社 波長制御システムおよび波長制御方法
JP2017147249A (ja) * 2016-02-15 2017-08-24 古河電気工業株式会社 波長可変型レーザモジュールおよびその波長制御方法
JP2018110158A (ja) * 2016-12-28 2018-07-12 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及びこれを用いた光トランシーバ
US20190221995A1 (en) * 2018-01-18 2019-07-18 Lumentum Operations Llc On-chip wavelength locker
JP2019140304A (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法
JP2019140303A (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001251013A (ja) * 2000-03-06 2001-09-14 Fujitsu Ltd 波長可変安定化レーザ
JP2011151210A (ja) * 2010-01-21 2011-08-04 Opnext Japan Inc 光出力装置
JP2015060961A (ja) * 2013-09-19 2015-03-30 住友電気工業株式会社 波長制御システムおよび波長制御方法
JP2017147249A (ja) * 2016-02-15 2017-08-24 古河電気工業株式会社 波長可変型レーザモジュールおよびその波長制御方法
JP2018110158A (ja) * 2016-12-28 2018-07-12 富士通オプティカルコンポーネンツ株式会社 波長可変光源、及びこれを用いた光トランシーバ
US20190221995A1 (en) * 2018-01-18 2019-07-18 Lumentum Operations Llc On-chip wavelength locker
JP2019140304A (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法
JP2019140303A (ja) * 2018-02-14 2019-08-22 古河電気工業株式会社 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法

Also Published As

Publication number Publication date
JPWO2022215240A1 (ja) 2022-10-13
CN116964882A (zh) 2023-10-27
US20240006847A1 (en) 2024-01-04

Similar Documents

Publication Publication Date Title
US7230963B2 (en) Monolithic wavelength stabilized asymmetric laser
JP4943255B2 (ja) 半導体レーザの制御方法
US8249405B2 (en) Variable wavelength light source, optical module and manufacturing method of variable wavelength light source
JP5154581B2 (ja) レーザ装置およびレーザ装置の制御データ
US20090059973A1 (en) Wavelength tunable light source, control method and control program thereof, and optical module
JP2016178283A (ja) 波長可変レーザ素子およびレーザモジュール
US20090225796A1 (en) Diffraction grating device, laser diode, and wavelength tunable filter
US20180287343A1 (en) Laser with sampled grating distributed bragg reflector
CN111712980A (zh) 光模块、其波长控制方法以及其校准方法
JP2019087572A (ja) 波長可変光源、及び光半導体装置
JP6951983B2 (ja) 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法
WO2022215240A1 (ja) レーザ装置およびその制御方法
KR101394965B1 (ko) 파장 가변 외부 공진 레이저 발생 장치
JP7433958B2 (ja) レーザ装置およびその制御方法
JP7214498B2 (ja) 波長可変レーザ装置及びマルチモード発振検知方法
JP6998789B2 (ja) 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法
US20210376569A1 (en) Wavelength-tunable laser device and wavelength control method
JP7458196B2 (ja) レーザ装置およびその制御方法
Chen et al. Butterfly-packaged multi-channel interference widely tunable semiconductor laser with improved performance
JP6998903B2 (ja) 波長可変光源装置および波長可変光源装置の制御方法
JP6816051B2 (ja) 波長可変レーザ装置、及び波長可変レーザ装置の波長制御方法
JP2015088626A (ja) 波長可変レーザ装置の試験方法および波長可変レーザ装置
JP7488053B2 (ja) レーザ装置およびその制御方法
Barcaya et al. C-band tunable laser control for wdm optical communications networks
JP2021128970A (ja) レーザ装置およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512616

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180095510.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936044

Country of ref document: EP

Kind code of ref document: A1