WO2022215196A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022215196A1
WO2022215196A1 PCT/JP2021/014770 JP2021014770W WO2022215196A1 WO 2022215196 A1 WO2022215196 A1 WO 2022215196A1 JP 2021014770 W JP2021014770 W JP 2021014770W WO 2022215196 A1 WO2022215196 A1 WO 2022215196A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
terminal electrode
insulating film
layer
tft
Prior art date
Application number
PCT/JP2021/014770
Other languages
English (en)
French (fr)
Inventor
忠芳 宮本
Original Assignee
シャープディスプレイテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープディスプレイテクノロジー株式会社 filed Critical シャープディスプレイテクノロジー株式会社
Priority to PCT/JP2021/014770 priority Critical patent/WO2022215196A1/ja
Publication of WO2022215196A1 publication Critical patent/WO2022215196A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • H10K59/8731Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers

Definitions

  • the present invention relates to display devices.
  • EL display devices using organic electroluminescence (hereinafter also referred to as "EL") elements have attracted attention as display devices that can replace liquid crystal display devices.
  • a plurality of thin film transistors (hereinafter also referred to as "TFTs") are provided for each sub-pixel, which is the minimum unit of an image.
  • TFTs thin film transistors
  • a semiconductor layer constituting a TFT for example, a semiconductor layer made of polysilicon with high mobility, a semiconductor layer made of an oxide semiconductor such as In--Ga--Zn--O with small leakage current, and the like are well known. ing.
  • Patent Document 1 discloses a display device having a hybrid structure in which a first TFT using a polysilicon semiconductor and a second TFT using an oxide semiconductor are formed on a substrate.
  • the first TFT using a polysilicon semiconductor and the second TFT using an oxide semiconductor are arranged side by side.
  • the area occupied by the TFT becomes large. In that case, it becomes difficult to meet the demand for high-definition image display, so there is room for improvement.
  • the present invention has been made in view of this point, and its object is to reduce the area occupied by the thin film transistor in each sub-pixel.
  • a display device includes a base substrate layer and a thin film transistor layer provided on the base substrate layer, wherein the thin film transistor layer includes a first thin film transistor made of polysilicon.
  • a first thin film transistor having a semiconductor layer and a second thin film transistor having a second semiconductor layer formed of an oxide semiconductor are provided for each subpixel, and the first thin film transistor includes a first conductor region and a second thin film transistor separated from each other.
  • a second semiconductor layer having a conductor region and a fourth conductor region; a second gate insulating film provided on the second semiconductor layer; a third conductor provided on the second gate insulating film; a second gate electrode for controlling conduction between the region and the fourth conductor region; a third interlayer insulating film provided to cover the second gate electrode; the third conductor region and the fourth conductor region; and a third terminal electrode and a fourth terminal electrode electrically connected to each other, the third terminal electrode is provided so as to overlap at least a part of the second terminal electrode, and the second terminal electrode It is characterized by being electrically connected.
  • the area occupied by the thin film transistor can be reduced in each sub-pixel.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the invention.
  • FIG. 2 is a plan view of the display area of the organic EL display device according to the first embodiment of the invention.
  • FIG. 3 is a cross-sectional view of the display area of the organic EL display device according to the first embodiment of the invention.
  • FIG. 4 is an equivalent circuit diagram showing a pixel circuit of the organic EL display device according to the first embodiment of the invention.
  • FIG. 5 is a cross-sectional view showing an organic EL layer that constitutes the organic EL display device according to the first embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the display area of the organic EL display device according to the second embodiment of the invention.
  • FIG. 7 is a cross-sectional view of the display area of the organic EL display device according to the third embodiment of the invention.
  • FIG. 8 is a cross-sectional view of the display area of the organic EL display device according
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50a of this embodiment.
  • 2 is a plan view of the display area D of the organic EL display device 50a.
  • 3 is a cross-sectional view of the display area D of the organic EL display device 50a.
  • FIG. 4 is an equivalent circuit diagram showing a pixel circuit of the organic EL display device 50a.
  • FIG. 5 is a cross-sectional view showing the organic EL layer 33 forming the organic EL display device 50a.
  • the organic EL display device 50a includes, for example, a rectangular display area D for image display and a frame area F provided around the display area D, as shown in FIG.
  • the rectangular display area D is exemplified, but the rectangular shape includes, for example, a shape with arc-shaped sides, a shape with arc-shaped corners, and a shape with arc-shaped corners.
  • a substantially rectangular shape such as a shape with a notch is also included.
  • a plurality of sub-pixels P are arranged in a matrix.
  • sub-pixels P having a red light-emitting region Er for displaying red sub-pixels P having a green light-emitting region Eg for displaying green
  • a sub-pixel P having a blue light-emitting region Eb for displaying blue is provided so as to be adjacent to each other.
  • one pixel is configured by three adjacent sub-pixels P each having a red light emitting region Er, a green light emitting region Eg and a blue light emitting region Eb.
  • a terminal portion T is provided at the right end portion of the frame area F in FIG.
  • a bending portion that can be bent at 180° (in a U shape) with the vertical direction in the drawing as the bending axis.
  • B is provided so as to extend in one direction (vertical direction in the drawing).
  • the organic EL display device 50a includes a resin substrate layer 10 provided as a base substrate layer, a TFT layer 30a provided on the resin substrate layer 10, and a light emitting element layer on the TFT layer 30a.
  • An organic EL element layer 40 is provided, and a sealing film 45 is provided so as to cover the organic EL element layer 40 .
  • the resin substrate layer 10 is made of, for example, polyimide resin.
  • the TFT layer 30a includes a base coat film 11 provided on the resin substrate layer 10, four first TFTs 9A provided for each sub-pixel P on the organic EL element layer 40 side of the base coat film 11, It has three second TFTs 9B and one capacitor 9h (see FIG. 4), and a second planarization film 26 provided on each first TFT 9A and each second TFT 9B and each capacitor 9h.
  • the TFT layer 30a is provided with a plurality of gate lines 14g extending parallel to each other in the horizontal direction in the figure.
  • the TFT layer 30a is provided with a plurality of light emission control lines 14e extending parallel to each other in the horizontal direction in the figure.
  • the TFT layer 30a is provided with a plurality of second initialization power supply lines 23i extending parallel to each other in the horizontal direction in the drawing. As shown in FIG. 2, each light emission control line 14e is provided adjacent to each gate line 14g and each second initialization power supply line 23i. Further, as shown in FIG. 2, the TFT layer 30a is provided with a plurality of source lines 18f extending parallel to each other in the vertical direction in the figure. Further, as shown in FIG. 2, the TFT layer 30a is provided with a plurality of power supply lines 18g extending parallel to each other in the vertical direction in the figure. Each power supply line 18g is provided adjacent to each source line 18f, as shown in FIG.
  • the first TFT 9A includes a first semiconductor layer 12a provided on the base coat film 11 and a first gate insulating film provided on the first semiconductor layer 12a so as to cover the first semiconductor layer 12a. 13, a first gate electrode 14a provided on the first gate insulating film 13, a first interlayer insulating film 15 and a first planarization film 17 provided in this order so as to cover the first gate electrode 14a, 1.
  • a first terminal electrode 18a and a second terminal electrode 18b provided on the planarizing film 17 so as to be spaced apart from each other, and a second interlayer insulation provided so as to cover the first terminal electrode 18a and the second terminal electrode 18b.
  • a membrane 19 is provided.
  • the base coat film 11, the first gate insulating film 13, the first interlayer insulating film 15, the second interlayer insulating film 19, the second gate insulating film 22 and the third interlayer insulating film 24, which will be described later, are made of, for example, silicon nitride, silicon oxide, It is composed of a single layer film or a laminated film such as silicon oxynitride.
  • At least the second interlayer insulating film 19 and the second gate insulating film 22 on the second semiconductor layer 21a side are made of a silicon oxide film.
  • the first semiconductor layer 12a is formed of, for example, polysilicon such as LTPS (low temperature polysilicon), and as shown in FIG. , and a first channel region 12ac defined between the first conductor region 12aa and the second conductor region 12ab.
  • polysilicon such as LTPS (low temperature polysilicon)
  • LTPS low temperature polysilicon
  • the first gate electrode 14a is provided so as to overlap the first channel region 12ac of the first semiconductor layer 12a. configured to control conduction between
  • the first terminal electrode 18a and the second terminal electrode 18b as shown in FIG. and Hb to the first conductor region 12aa and the second conductor region 12ab of the first semiconductor layer 12a.
  • the second TFT 9B includes a second semiconductor layer 21a provided on the second interlayer insulating film 19 and a third terminal provided between the second interlayer insulating film 19 and the second semiconductor layer 21a.
  • the electrode 20a and the fourth terminal electrode 20b, the second gate insulating film 22 provided on the second semiconductor layer 21a so as to cover the second semiconductor layer 21a, and the second gate provided on the second gate insulating film 22 It has an electrode 23a and a third interlayer insulating film 24 provided to cover the second gate electrode 23a.
  • the second semiconductor layer 21a is formed of, for example, an In--Ga--Zn--O-based oxide semiconductor, and as shown in FIG. A region 21ab and a second channel region 21ac defined between the third conductor region 21aa and the fourth conductor region 21ab.
  • the In—Ga—Zn—O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc), and the ratio (composition ratio) of In, Ga, and Zn is not particularly limited.
  • In--Ga--Zn--O based semiconductors may be amorphous or crystalline.
  • the crystalline In-Ga-Zn-O-based semiconductor As the crystalline In-Ga-Zn-O-based semiconductor, a crystalline In-Ga-Zn-O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable. Further, another oxide semiconductor may be included instead of the In--Ga--Zn--O-based semiconductor. Other oxide semiconductors may include, for example, In—Sn—Zn—O-based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO; InSnZnO). Here, the In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • In—Sn—Zn—O-based semiconductor is a ternary oxide of In (indium), Sn (tin), and Zn (zinc).
  • oxide semiconductors include In--Al--Zn--O based semiconductors, In--Al--Sn--Zn--O based semiconductors, Zn--O based semiconductors, In--Zn--O based semiconductors, Zn--Ti-- O-based semiconductor, Cd--Ge--O-based semiconductor, Cd--Pb--O-based semiconductor, CdO (cadmium oxide), Mg--Zn--O-based semiconductor, In--Ga--Sn--O-based semiconductor, In--Ga--O-based semiconductor Semiconductors, Zr-In-Zn-O-based semiconductors, Hf-In-Zn-O-based semiconductors, Al-Ga-Zn-O-based semiconductors, Ga-Zn-O-based semiconductors, In-Ga-Zn-Sn-O-based semiconductors Semiconductors such as InGaO 3 (ZnO) 5 , magnesium zinc oxide (Mg
  • the third terminal electrode 20a and the fourth terminal electrode 20b are in contact with the third conductor region 21aa and the fourth conductor region 21ab of the second semiconductor layer 21a, respectively, as shown in FIG. It is electrically connected to the 3-conductor region 21aa and the 4th conductor region 21ab.
  • the third terminal electrode 20a is provided so as to overlap at least a part of the second terminal electrode 18b of the first TFT 9A. It is electrically connected to the second terminal electrode 18b. Specifically, the third terminal electrode 20a of the anode discharge TFT 9g, which will be described later, is electrically connected to the second terminal electrode 18b of the light emission control TFT 9f, which will be described later.
  • the fourth terminal electrode 20b is electrically connected to the wiring 18c through a contact hole Hd formed in the second interlayer insulating film 19, as shown in FIG.
  • the wiring 18c is made of the same material as the first terminal electrode 18a, the second terminal electrode 18b, the source line 18f, the power line 18g, and the like, and is formed in the same layer.
  • the second gate electrode 23a is provided so as to overlap the second channel region 21ac of the second semiconductor layer 21a. configured to control conduction between
  • the four first TFTs 9A having the first semiconductor layer 12a made of polysilicon p-channel TFTs including a writing TFT 9c, a driving TFT 9d, a power supply TFT 9e, and a light emission control TFT 9f, which will be described later, are used.
  • the three second TFTs 9B each having a second semiconductor layer 21a made of an oxide semiconductor n-channel TFTs including an initialization TFT 9a, a compensation TFT 9b, and an anode discharge TFT 9g, which will be described later, are exemplified (see FIG. 4). ).
  • the four first TFTs 9A having the first semiconductor layer 12a made of polysilicon may be n-channel TFTs.
  • the first terminal electrodes 18a and the second terminal electrodes 18b of the TFTs 9c, 9d, 9e, and 9f are indicated by circled numerals 1 and 2, and the third terminals of the TFTs 9a, 9b, and 9g are shown.
  • the electrode 20a and the fourth terminal electrode 20b are indicated by circled numerals 3 and 4.
  • the equivalent circuit diagram of FIG. 4 shows the pixel circuit of the n-th row and m-th column sub-pixel P, it also includes part of the pixel circuit of the (n-1)-th row and m-th column sub-pixel P. there is In the equivalent circuit diagram of FIG.
  • the power supply line 18g for supplying the high power supply voltage ELVDD also serves as the first initialization power supply line, but the power supply line 18g and the first initialization power supply line are provided separately.
  • the same voltage as the low power supply voltage ELVSS is input to the second initialization power supply line 23i, it is not limited to this, and a voltage different from the low power supply voltage ELVSS can be applied to turn off the organic EL element 35. can be entered.
  • the initialization TFT 9a has its gate electrode electrically connected to the preceding (n-1) gate line 14g (n-1).
  • the electrode is electrically connected to the lower conductive layer of the capacitor 9h and the gate electrode of the driving TFT 9d, which will be described later, and the fourth terminal electrode is electrically connected to the power supply line 18g.
  • the compensation TFT 9b has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage) in each sub-pixel P, and its third terminal electrode is used for driving. It is electrically connected to the gate electrode of the TFT 9d, and its fourth terminal electrode is electrically connected to the first terminal electrode of the driving TFT 9d.
  • the write TFT 9c has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage), and its first terminal electrode corresponds to the gate line 14g(n).
  • the second terminal electrode of the source line 18f is electrically connected to the second terminal electrode of the driving TFT 9d.
  • the driving TFT 9d has its gate electrode electrically connected to the third terminal electrodes of the initialization TFT 9a and the compensation TFT 9b, and its first terminal electrode is connected to the compensation TFT 9b.
  • the second terminal electrodes of the TFT 9b for writing and the first terminal electrode of the TFT 9f for light emission control are electrically connected to the fourth terminal electrode of the TFT 9b for writing and the second terminal electrodes of the TFT 9e for power supply. is electrically connected to
  • the driving TFT 9 d is configured to control the current of the organic EL element 35 .
  • the power supply TFT 9e has its gate electrode electrically connected to the light emission control line 14e of its own stage (n stage), and its first terminal electrode connected to the power supply line 18g. and its second terminal electrode is electrically connected to the first terminal electrode of the driving TFT 9d.
  • the gate electrode of the light emission control TFT 9f is electrically connected to the light emission control line 14e of its own stage (n stage), and its first terminal electrode is connected to the drive TFT 9d.
  • the second terminal electrode is electrically connected to a first electrode 31 of an organic EL element 35, which will be described later.
  • the anode discharge TFT 9g has its gate electrode electrically connected to the gate line 14g(n) of its own stage (n stage) in each sub-pixel P, and its third terminal electrode is an organic electrode. It is electrically connected to the first electrode 31 of the EL element 35, and its fourth terminal electrode is electrically connected to the second initialization power supply line 23i.
  • the capacitor 9h includes, for example, a lower conductive layer (not shown) made of the same material as the first gate electrode 14a and formed in the same layer, a first interlayer insulating film 15 provided to cover the lower conductive layer, a first An upper conductive layer (not shown) is provided between the interlayer insulating film 15 and the first planarizing film 17 so as to overlap the lower conductive layer.
  • the capacitor 9h has its lower conductive layer electrically connected to the gate electrode of the driving TFT 9d and the third terminal electrodes of the initializing TFT 9a and the compensating TFT 9b in each sub-pixel P.
  • the upper conductive layer is electrically connected to the third terminal electrode of the anode discharge TFT 9g, the second terminal electrode of the light emission control TFT 9f, and the first electrode 31 of the organic EL element .
  • the first planarizing film 17 and the second planarizing film 26 have flat surfaces in the display region D, and are made of organic resin materials such as polyimide resin and acrylic resin, or polysiloxane-based SOG (spin on glass). ) is composed of materials, etc.
  • the organic EL element layer 40 includes a plurality of organic EL elements 35 provided in a matrix as a plurality of light emitting elements arranged to correspond to a plurality of sub-pixels P, and each organic EL element An edge cover 32 is provided in a grid pattern in common with all the sub-pixels P so as to cover the peripheral edge portion of the first electrode 31 , which will be described later.
  • the organic EL element 35 includes a first electrode 31 provided on the second planarizing film 26 of the TFT layer 30a and an organic EL element 35 provided on the first electrode 31 in each sub-pixel P.
  • An EL layer 33 and a second electrode 34 provided on the organic EL layer 33 are provided.
  • the first electrode 31 is connected through a contact hole (not shown) formed in the laminated film of the second interlayer insulating film 19, the second gate insulating film 22, the third interlayer insulating film 24, and the second planarization film 26. It is electrically connected to the second terminal electrode (18b) of the light emission control TFT 9f of each sub-pixel P.
  • the first electrode 31 also has a function of injecting holes into the organic EL layer 33 . Further, the first electrode 31 is more preferably made of a material having a large work function in order to improve the efficiency of injecting holes into the organic EL layer 33 .
  • examples of materials forming the first electrode 31 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), and gold (Au). , titanium (Ti), ruthenium (Ru), manganese (Mn), indium (In), ytterbium (Yb), lithium fluoride (LiF), platinum (Pt), palladium (Pd), molybdenum (Mo), iridium ( metal materials such as Ir) and tin (Sn). Also, the material forming the first electrode 31 may be an alloy such as astatine (At)/astatine oxide (AtO 2 ).
  • the material forming the first electrode 31 is, for example, conductive oxides such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). There may be. Also, the first electrode 31 may be formed by laminating a plurality of layers made of the above materials. Compound materials having a large work function include, for example, indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the edge cover 32 is made of, for example, an organic resin material such as polyimide resin or acrylic resin, or a polysiloxane-based SOG material.
  • the organic EL layer 33 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4 and an electron injection layer 5 which are provided in this order on the first electrode 31. ing.
  • the hole injection layer 1 is also called an anode buffer layer, and has the function of bringing the energy levels of the first electrode 31 and the organic EL layer 33 close to each other and improving the efficiency of hole injection from the first electrode 31 to the organic EL layer 33 .
  • materials constituting the hole injection layer 1 include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, phenylenediamine derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives and the like.
  • the hole transport layer 2 has the function of improving the transport efficiency of holes from the first electrode 31 to the organic EL layer 33 .
  • Examples of materials constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, and oxadiazole.
  • the light-emitting layer 3 In the light-emitting layer 3, holes and electrons are injected from the first electrode 31 and the second electrode 34 when a voltage is applied by the first electrode 31 and the second electrode 34, and the holes and electrons recombine. area.
  • the light-emitting layer 3 is made of a material with high light-emitting efficiency. Examples of materials constituting the light-emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complex], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives.
  • the electron transport layer 4 has a function of efficiently transferring electrons to the light emitting layer 3 .
  • the materials constituting the electron transport layer 4 include, for example, organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , silole derivatives, and metal oxinoid compounds.
  • the electron injection layer 5 has the function of bringing the energy levels of the second electrode 34 and the organic EL layer 33 close to each other and improving the efficiency with which electrons are injected from the second electrode 34 into the organic EL layer 33. With this function, The driving voltage of the organic EL element 35 can be lowered.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • examples of materials constituting the electron injection layer 5 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride.
  • inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like.
  • the second electrode 34 is provided in common to all the sub-pixels P so as to cover each organic EL layer 33 and the edge cover 32, as shown in FIG.
  • the second electrode 34 also has a function of injecting electrons into the organic EL layer 33 .
  • the second electrode 34 is more preferably made of a material with a small work function in order to improve the efficiency of injecting electrons into the organic EL layer 33 .
  • materials constituting the second electrode 34 include silver (Ag), aluminum (Al), vanadium (V), calcium (Ca), titanium (Ti), yttrium (Y), and sodium (Na).
  • the second electrode 34 is composed of, for example, magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), astatine (At)/astatine oxide (AtO 2 ), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al), etc.
  • the second electrode 34 may be formed of conductive oxides such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). . Also, the second electrode 34 may be formed by laminating a plurality of layers made of the above materials.
  • Examples of materials with a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg)/copper (Cu), magnesium (Mg)/silver (Ag), sodium (Na)/potassium (K), lithium (Li)/aluminum (Al), lithium (Li)/calcium (Ca)/aluminum (Al), lithium fluoride (LiF)/calcium (Ca)/aluminum (Al) etc.
  • the sealing film 45 is provided so as to cover the second electrode 34 , and the first inorganic sealing film 41 , the organic sealing film 42 and the second sealing film 42 are laminated on the second electrode 34 in this order. It has an inorganic sealing film 43 and has a function of protecting the organic EL layer 33 of the organic EL element layer 35 from moisture and oxygen.
  • the first inorganic sealing film 41 and the second inorganic sealing film 43 are composed of an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film.
  • the organic sealing film 42 is made of an organic resin material such as acrylic resin, epoxy resin, silicone resin, polyurea resin, parylene resin, polyimide resin, or polyamide resin.
  • the organic EL display device 50a configured as described above, in each sub-pixel P, first, when the light emission control line 14e is selected and rendered inactive, the organic EL element 35 becomes non-light emitting. In the non-light-emitting state, the preceding gate line 14g(n-1) is selected, and a gate signal is input to the initialization TFT 9a via the gate line 14g(n-1), whereby the initialization TFT 9a is turned on, the high power supply voltage ELVDD of the power supply line 18g is applied to the capacitor 9h, and the driving TFT 9d is turned on. As a result, the charge in the capacitor 9h is discharged, and the voltage applied to the gate electrode of the driving TFT 9d is initialized.
  • the compensation TFT 9b and the writing TFT 9c are turned on, and the source signal is transmitted through the corresponding source line 18f. is written to the capacitor 9h via the diode-connected driving TFT 9d, the anode discharging TFT 9g is turned on, and the initialization signal is applied to the organic EL element via the second initialization power supply line 23i.
  • the charge accumulated in the first electrode 31 applied to the first electrode 31 of 35 is reset.
  • the light emission control line 14e is selected, the power supply TFT 9e and the light emission control TFT 9f are turned on, and the driving current corresponding to the voltage applied to the gate electrode of the driving TFT 9d is supplied to the organic EL element 35 from the power line 18g. be done.
  • the organic EL display device 50a in each sub-pixel P, the organic EL element 35 emits light with a luminance corresponding to the drive current to display an image.
  • the method of manufacturing the organic EL display device 50a includes a TFT layer forming process, an organic EL element layer forming process, and a sealing film forming process.
  • ⁇ TFT layer forming process> First, for example, a silicon nitride film (about 50 nm thick) and a silicon oxide film (about 250 nm thick) are sequentially formed on a resin substrate layer 10 formed on a glass substrate by plasma CVD (Chemical Vapor Deposition). A base coat film 11 is formed by film formation.
  • an amorphous silicon film (thickness of about 50 nm) is formed on the substrate surface on which the base coat film 11 is formed, for example, by plasma CVD, and the amorphous silicon film is crystallized by laser annealing or the like to form a polysilicon film. is formed, the polysilicon film is patterned to form the first semiconductor layer 12a and the like.
  • the first gate insulating film 13 is formed by forming a silicon oxide film (approximately 100 nm) on the surface of the substrate on which the first semiconductor layer 12a and the like are formed, by plasma CVD, for example.
  • a metal film such as a molybdenum film (thickness of about 200 nm) is formed on the surface of the substrate on which the first gate insulating film 13 is formed by, for example, a sputtering method, and then the metal film is patterned to form the first gate insulating film.
  • 1 gate electrode 14a and the like are formed.
  • part of the first semiconductor layer 12a is made conductive, thereby forming the first conductor region 12aa, the second conductor region 12ab, and the first channel region 12ac. Form.
  • the first interlayer insulating film 15 is formed by forming a silicon nitride film (approximately 100 nm) on the surface of the substrate where the first semiconductor layer 12a is partly conductive by, for example, plasma CVD. .
  • a polyimide-based photosensitive resin film (thickness of about 2 ⁇ m) is applied to the surface of the substrate on which the first interlayer insulating film 15 is formed by, for example, a spin coating method or a slit coating method. Then, pre-baking, exposure, development and post-baking are performed to form the first planarizing film 17. Further, the first gate insulating film 13 and the first interlayer insulating film 15 are appropriately patterned to form contact holes. Form.
  • a titanium film (about 50 nm thick), an aluminum film (about 400 nm thick), a titanium film (about 50 nm thick), and the like are sequentially formed on the substrate surface in which the contact holes are formed by, for example, a sputtering method.
  • the metal laminated film is patterned to form the first terminal electrode 18a, the second terminal electrode 18b, and the wiring 18c.
  • a silicon nitride film (about 100 nm thick) and a silicon oxide film (about 250 nm thick) are sequentially formed on the surface of the substrate on which the first terminal electrode 18a and the like are formed by, for example, a plasma CVD method, followed by patterning. By doing so, a second interlayer insulating film 19 is formed.
  • a titanium film (about 50 nm thick), an aluminum film (about 400 nm thick), and a titanium film (about 50 nm thick) are formed on the substrate surface on which the second interlayer insulating film 19 is formed by, for example, a sputtering method.
  • the metal laminated film is patterned to form the third terminal electrode 20a and the fourth terminal electrode 20b.
  • an oxide semiconductor film such as InGaZnO 4 is formed by, for example, a sputtering method on the substrate surface on which the third terminal electrode 20a is formed, and then the oxide semiconductor film is patterned. Thus, the second semiconductor layer 21a is formed.
  • the second gate insulating film 22 is formed by forming a silicon oxide film (about 100 nm thick) on the surface of the substrate on which the second semiconductor layer 21a is formed, by plasma CVD, for example.
  • a metal film such as a molybdenum film (thickness of about 200 nm) is formed on the surface of the substrate on which the second gate insulating film 22 is formed by, for example, a sputtering method, and then the metal film is patterned to form a second gate insulating film.
  • a metal film such as a molybdenum film (thickness of about 200 nm) is formed on the surface of the substrate on which the second gate insulating film 22 is formed by, for example, a sputtering method, and then the metal film is patterned to form a second gate insulating film.
  • 2 Gate electrodes 23a and the like are formed.
  • a silicon oxide film (thickness of about 300 nm) and a silicon nitride film (thickness of about 150 nm) are sequentially formed on the substrate surface on which the second gate electrode 23a is formed by, for example, plasma CVD.
  • a third interlayer insulating film 24 is formed.
  • a heat treatment after forming the third interlayer insulating film 24 forms a third conductor region 21aa, a fourth conductor region 21ab, and a second channel region 21ac in the second semiconductor layer 21a.
  • the surface of the substrate on which the third interlayer insulating film 24 is formed is coated with a polyimide-based photosensitive resin film (thickness of about 2 ⁇ m) by, for example, a spin coating method or a slit coating method. Then, pre-baking, exposure, development and post-baking are performed to form the second planarizing film 26. Further, the second gate insulating film 22 and the third interlayer insulating film 24 are appropriately patterned to form contact holes. Form.
  • the TFT layer 30a can be formed as described above.
  • the first electrode 31, the edge cover 32, the organic EL layer 33 (the hole injection layer 1, the A hole-transporting layer 2, a light-emitting layer 3, an electron-transporting layer 4, an electron-injecting layer 5) and a second electrode 34 are formed to form an organic EL element layer 40.
  • FIG. 1 the hole injection layer 1, the A hole-transporting layer 2, a light-emitting layer 3, an electron-transporting layer 4, an electron-injecting layer 5
  • a second electrode 34 are formed to form an organic EL element layer 40.
  • ⁇ Sealing film forming process> First, using a mask, an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is applied to the surface of the substrate on which the organic EL element layer 40 formed in the organic EL element layer forming step is formed. is deposited by the plasma CVD method to form the first inorganic sealing film 41 .
  • an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is applied to the surface of the substrate on which the organic EL element layer 40 formed in the organic EL element layer forming step is formed. is deposited by the plasma CVD method to form the first inorganic sealing film 41 .
  • an organic resin material such as an acrylic resin is deposited on the surface of the substrate on which the first inorganic sealing film 41 is formed by, for example, an inkjet method to form an organic sealing film 42 .
  • an inorganic insulating film such as a silicon nitride film, a silicon oxide film, or a silicon oxynitride film is formed by plasma CVD on the substrate on which the organic sealing film 42 is formed.
  • a sealing film 45 is formed by forming the second inorganic sealing film 43 .
  • a laser beam is irradiated from the glass substrate side of the resin substrate layer 10 to form the resin.
  • a glass substrate is removed from the lower surface of the substrate layer 10, and a protective sheet (not shown) is attached to the lower surface of the resin substrate layer 10 from which the glass substrate has been removed.
  • the organic EL display device 50a of the present embodiment can be manufactured.
  • the third terminal electrode 20a of the second TFT 9B is provided so as to overlap at least a part of the second terminal electrode 18b of the first TFT 9A, and the third terminal Since the electrode 20a is electrically connected to the second terminal electrode 18b, the first TFT 9A and the second TFT 9B are arranged vertically, and the area occupied by the TFTs in each sub-pixel P can be reduced. .
  • the first TFT 9A is provided with the first flattening film 17 having a thickness of about 2 ⁇ m.
  • the parasitic capacitance generated between signal lines such as the line 18g and the second initialization power supply line 23i is reduced, and noise from these signal lines is less likely to affect the driving TFT 9d.
  • the operation of the TFT 9d can be stabilized.
  • the first planarizing film 17 is provided thickly on the first TFT 9A, short-circuit defects at the intersections of the gate line 14g and the light emission control line 14e and the source line 18f and the power supply line 18g can be suppressed. can be done.
  • the organic EL display device 50a of the present embodiment after the first TFT 9A using polysilicon is formed on the resin substrate layer 10 at a relatively high process temperature, it can be formed at a relatively low process temperature. Since the second TFT 9B can be formed using an oxide semiconductor, the degree of freedom in the layout of TFTs and wiring is increased without adding a complicated manufacturing process, and the organic EL display device 50a can be made to have a higher definition and a narrower frame. can be realized.
  • FIG. 6 shows a second embodiment of the display device according to the invention.
  • FIG. 6 is a cross-sectional view of the display area D of the organic EL display device 50b of this embodiment.
  • the same parts as in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the organic EL display device 50a in which the second gate insulating film 22 is provided in a solid pattern is exemplified.
  • An EL display device 50b is illustrated.
  • the organic EL display device 50b includes, for example, a rectangular display region D and a frame region F provided around the display region D. I have.
  • the organic EL display device 50b includes a resin substrate layer 10, a TFT layer 30b provided on the resin substrate layer 10, an organic EL element layer 40 provided on the TFT layer 30b, and an organic EL element layer 40 provided on the TFT layer 30b. and a sealing film 45 provided to cover the EL element layer 40 .
  • the TFT layer 30b includes a base coat film 11 provided on the resin substrate layer 10, four first TFTs 9A provided for each sub-pixel P on the organic EL element layer 40 side of the base coat film 11, It has three second TFTs 9B and one capacitor 9h (see FIG. 4), and a second planarization film 26 provided on each first TFT 9A and each second TFT 9B and each capacitor 9h.
  • the TFT layer 30b includes a plurality of gate lines 14g, a plurality of light emission control lines 14e, a plurality of second initialization power supply lines 23i, and a plurality of source lines, similarly to the TFT layer 30a of the first embodiment. 18f and a plurality of power lines 18g are provided.
  • the second TFT 9B includes a second semiconductor layer 21a provided on the second interlayer insulating film 19 and a third terminal provided between the second interlayer insulating film 19 and the second semiconductor layer 21a.
  • an electrode 20a and a fourth terminal electrode 20b ; a second gate insulating film 22a provided in an island shape on the second semiconductor layer 21a; a second gate electrode 23a provided on the second gate insulating film 22a; and a third interlayer insulating film 24 provided to cover the gate electrode 23a.
  • the organic EL element 35 emits light with a luminance corresponding to the drive current to display an image, as in the organic EL display device 50a of the first embodiment. is done.
  • a silicon oxide film is formed on the surface of the substrate on which the second semiconductor layer 21a is formed in the TFT layer forming step in the manufacturing method of the organic EL display device 50a of the first embodiment. It can be manufactured by patterning after film formation to form the second gate insulating film 22a.
  • the third terminal electrode 20a of the second TFT 9B is provided so as to overlap at least part of the second terminal electrode 18b of the first TFT 9A, and the third terminal Since the electrode 20a is electrically connected to the second terminal electrode 18b, the first TFT 9A and the second TFT 9B are arranged vertically, and the area occupied by the TFTs in each sub-pixel P can be reduced. .
  • the first flattening film 17 is provided as thick as about 2 ⁇ m on the first TFT 9A.
  • the parasitic capacitance generated between signal lines such as the line 18g and the second initialization power supply line 23i is reduced, and noise from these signal lines is less likely to affect the driving TFT 9d.
  • the operation of the TFT 9d can be stabilized.
  • the first planarizing film 17 is provided thickly on the first TFT 9A, short-circuit defects at the intersections of the gate line 14g and the light emission control line 14e and the source line 18f and the power supply line 18g can be suppressed. can be done.
  • the organic EL display device 50b of the present embodiment after the first TFT 9A using polysilicon is formed on the resin substrate layer 10 at a relatively high process temperature, it can be formed at a relatively low process temperature. Since the second TFT 9B can be formed using an oxide semiconductor, the degree of freedom in the layout of TFTs and wiring is increased without adding a complicated manufacturing process, and the organic EL display device 50b can be made with higher definition and a narrower frame. can be realized.
  • FIG. 7 shows a second embodiment of the display device according to the invention.
  • FIG. 7 is a cross-sectional view of the display area D of the organic EL display device 50c of this embodiment.
  • the organic EL display device 50a in which the third terminal electrode 20a and the fourth terminal electrode 20b are provided on the resin substrate layer 10 side of the second semiconductor layer 21a is illustrated.
  • the embodiment exemplifies an organic EL display device 50c in which the third terminal electrode 25a and the fourth terminal electrode 25b are provided on the organic EL element layer 40 side of the second semiconductor layer 21c.
  • the organic EL display device 50c includes, for example, a rectangular display region D and a frame region F provided around the display region D. I have.
  • the organic EL display device 50c includes a resin substrate layer 10, a TFT layer 30c provided on the resin substrate layer 10, an organic EL element layer 40 provided on the TFT layer 30c, and an organic EL display device 50c. and a sealing film 45 provided to cover the EL element layer 40 .
  • the TFT layer 30c includes a base coat film 11 provided on the resin substrate layer 10, four first TFTs 9A provided for each sub-pixel P on the organic EL element layer 40 side of the base coat film 11, It has three second TFTs 9B and one capacitor 9h (see FIG. 4), and a second planarization film 26 provided on each first TFT 9A and each second TFT 9B and each capacitor 9h.
  • the TFT layer 30c includes a plurality of gate lines 14g, a plurality of light emission control lines 14e, a plurality of second initialization power supply lines 23i, and a plurality of source lines, similarly to the TFT layer 30a of the first embodiment. 18f and a plurality of power lines 18g are provided.
  • the second TFT 9B includes a second semiconductor layer 21c provided on the second interlayer insulating film 19 and a second semiconductor layer 21c provided on the second semiconductor layer 21c so as to cover the second semiconductor layer 21c.
  • the second semiconductor layer 21c is formed of, for example, an In--Ga--Zn--O-based oxide semiconductor, like the second semiconductor layer 21a of the first embodiment.
  • the third terminal electrode 25a and the fourth terminal electrode 25b are connected through upper portions of contact holes Hc and Hd formed in the laminated film of the second gate insulating film 22 and the third interlayer insulating film 24, as shown in FIG. are electrically connected to the third conductor region 21ca and the fourth conductor region 21cb of the second semiconductor layer 21c.
  • the second planarization film 26 is provided so as to cover the third terminal electrode 25a and the fourth terminal electrode 25b.
  • the third terminal electrode 25a is provided so as to overlap at least a part of the second terminal electrode 18b of the first TFT 9A, and is located under the contact hole Hc formed in the second interlayer insulating film 19. is electrically connected to the second terminal electrode 18b via the .
  • the fourth terminal electrode 25b is electrically connected to the wiring 18c through the lower portion of the contact hole Hd formed in the second interlayer insulating film 19, as shown in FIG.
  • the organic EL element 35 emits light with a luminance corresponding to the drive current to display an image, as in the organic EL display device 50a of the first embodiment. is done.
  • the organic EL display device 50c of the present embodiment has a third terminal electrode formed on the surface of the substrate on which the second interlayer insulating film 19 is formed in the TFT layer forming step in the manufacturing method of the organic EL display device 50a of the first embodiment.
  • 20a and the fourth terminal electrode 20b after forming a contact hole in the laminated film of the second interlayer insulating film 19, the second gate insulating film 22 and the third interlayer insulating film 24, the third terminal electrode 25a and the fourth terminal electrode 20b are formed. It can be manufactured by forming the fourth terminal electrode 25b.
  • the third terminal electrode 25a of the second TFT 9B is provided so as to overlap at least a part of the second terminal electrode 18b of the first TFT 9A, and the third terminal Since the electrode 25a is electrically connected to the second terminal electrode 18b, the first TFT 9A and the second TFT 9B are arranged vertically, and the area occupied by the TFTs in each sub-pixel P can be reduced. .
  • the first TFT 9A is provided with the first flattening film 17 having a thickness of about 2 ⁇ m.
  • the parasitic capacitance generated between signal lines such as the line 18g and the second initialization power supply line 23i is reduced, and noise from these signal lines is less likely to affect the driving TFT 9d.
  • the operation of the TFT 9d can be stabilized.
  • the first planarizing film 17 is provided thickly on the first TFT 9A, short-circuit defects at the intersections of the gate line 14g and the light emission control line 14e and the source line 18f and the power supply line 18g can be suppressed. can be done.
  • the organic EL display device 50c of the present embodiment after the first TFT 9A using polysilicon is formed on the resin substrate layer 10 at a relatively high process temperature, it can be formed at a relatively low process temperature. Since the second TFT 9B can be formed using an oxide semiconductor, the degree of freedom in the layout of TFTs and wiring is increased without adding a complicated manufacturing process, and the organic EL display device 50c can be made with higher definition and a narrower frame. can be realized.
  • FIG. 8 shows a second embodiment of the display device according to the invention.
  • FIG. 8 is a cross-sectional view of the display area D of the organic EL display device 50d of this embodiment.
  • the organic EL display device 50c in which the second gate insulating film 22 is provided in a solid pattern is exemplified.
  • An EL display device 50d is illustrated.
  • the organic EL display device 50d includes, for example, a rectangular display region D and a frame region F provided around the display region D. I have.
  • the organic EL display device 50d includes a resin substrate layer 10, a TFT layer 30d provided on the resin substrate layer 10, an organic EL element layer 40 provided on the TFT layer 30d, and an organic EL display device 50d. and a sealing film 45 provided to cover the EL element layer 40 .
  • the TFT layer 30d includes a base coat film 11 provided on the resin substrate layer 10, four first TFTs 9A provided for each sub-pixel P on the organic EL element layer 40 side of the base coat film 11, It has three second TFTs 9B and one capacitor 9h (see FIG. 4), and a second planarization film 26 provided on each first TFT 9A and each second TFT 9B and each capacitor 9h.
  • the TFT layer 30d includes a plurality of gate lines 14g, a plurality of light emission control lines 14e, a plurality of second initialization power supply lines 23i, and a plurality of source lines, similarly to the TFT layer 30a of the first embodiment. 18f and a plurality of power lines 18g are provided.
  • the second TFT 9B includes a second semiconductor layer 21c provided on the second interlayer insulating film 19, a second gate insulating film 22a provided in an island shape on the second semiconductor layer 21c, and a second gate insulating film 22a provided on the second semiconductor layer 21c.
  • the organic EL element 35 emits light with a luminance corresponding to the drive current to display an image, as in the organic EL display device 50a of the first embodiment. is done.
  • the organic EL display device 50d of the present embodiment has a silicon oxide film formed on the surface of the substrate on which the second semiconductor layer 21a is formed in the TFT layer forming step in the manufacturing method of the organic EL display device 50a of the first embodiment.
  • the second gate insulating film 22a by patterning after film formation and further forming the third terminal electrode 20a and the fourth terminal electrode 20b on the substrate surface on which the second interlayer insulating film 19 is formed
  • Manufactured by forming a third terminal electrode 25a and a fourth terminal electrode 25b after forming a contact hole in the laminated film of the second interlayer insulating film 19, the second gate insulating film 22 and the third interlayer insulating film 24. can be done.
  • the third terminal electrode 25a of the second TFT 9B is provided so as to overlap at least a part of the second terminal electrode 18b of the first TFT 9A, and the third terminal Since the electrode 25a is electrically connected to the second terminal electrode 18b, the first TFT 9A and the second TFT 9B are arranged vertically, and the area occupied by the TFTs in each sub-pixel P can be reduced. .
  • the first flattening film 17 is provided as thick as about 2 ⁇ m on the first TFT 9A.
  • the parasitic capacitance generated between signal lines such as the line 18g and the second initialization power supply line 23i is reduced, and noise from these signal lines is less likely to affect the driving TFT 9d.
  • the operation of the TFT 9d can be stabilized.
  • the first planarizing film 17 is provided thickly on the first TFT 9A, short-circuit defects at the intersections of the gate line 14g and the light emission control line 14e and the source line 18f and the power supply line 18g can be suppressed. can be done.
  • the organic EL display device 50d of the present embodiment after the first TFT 9A using polysilicon is formed on the resin substrate layer 10 at a relatively high process temperature, it can be formed at a relatively low process temperature. Since the second TFT 9B can be formed using an oxide semiconductor, the degree of freedom in the layout of TFTs and wiring is increased without adding a complicated manufacturing process, and the organic EL display device 50d can be made with higher definition and a narrower frame. can be realized.
  • an organic EL layer having a five-layer laminate structure of a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer was exemplified. It may have a three-layered structure of a layer-cum-hole-transporting layer, a light-emitting layer, and an electron-transporting layer-cum-electron-injecting layer.
  • the organic EL display device in which the first electrode is the anode and the second electrode is the cathode was exemplified. , and can also be applied to an organic EL display device in which the second electrode is an anode.
  • the organic EL display device is used as the display device, but the present invention can also be applied to a display device such as an active matrix driven liquid crystal display device.
  • the resin substrate layer was exemplified as the base substrate layer, but the base substrate layer may be a glass substrate or the like.
  • the display device in which the first TFT and the second TFT are provided for each sub-pixel in the display region was exemplified. can be combined to constitute a CMOS (complementary metal oxide semiconductor), and the first TFT and the second TFT can be applied to a display device provided as a driving circuit for the frame region.
  • CMOS complementary metal oxide semiconductor
  • an organic EL display device was described as an example of a display device.
  • QLED Quantum-dot light emitting diode
  • the present invention is useful for flexible display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

第1TFT(9A)は、第1半導体層(12a)の第1導体領域(12aa)及び第2導体領域(12ab)に電気的にそれぞれ接続された第1端子電極(18a)及び第2端子電極(18b)を備え、第2TFT(9B)は、第2半導体層(21a)の第3導体領域(21aa)及び第4導体領域(21ab)に電気的にそれぞれ接続された第3端子電極(20a)及び第4端子電極(20b)を備え、第3端子電極(20a)は、第2端子電極(18b)の少なくとも一部と重なるように設けられ、第2端子電極(18b)に電気的に接続されている。

Description

表示装置
 本発明は、表示装置に関するものである。
 近年、液晶表示装置に代わる表示装置として、有機エレクトロルミネッセンス(electroluminescence、以下「EL」とも称する)素子を用いた自発光型の有機EL表示装置が注目されている。この有機EL表示装置では、画像の最小単位であるサブ画素毎に複数の薄膜トランジスタ(thin film transistor、以下「TFT」とも称する)が設けられている。ここで、TFTを構成する半導体層としては、例えば、移動度が高いポリシリコンからなる半導体層、リーク電流の小さいIn-Ga-Zn-O等の酸化物半導体からなる半導体層等がよく知られている。
 例えば、特許文献1には、ポリシリコン半導体を用いた第1のTFT、及び酸化物半導体を用いた第2のTFTが基板上にそれぞれ形成されたハイブリッド構造を有する表示装置が開示されている。
特開2020-17558号公報(図5、図6)
 ところで、上記特許文献1に開示されたハイブリッド構造を有する表示装置では、ポリシリコン半導体を用いた第1のTFTと、酸化物半導体を用いた第2のTFTとが横並びに配置されているので、表示領域を構成する各サブ画素において、TFTが占有する面積が大きくなってしまう。そうなると、高精細な画像表示の要望に応じ難くなるので、改善の余地がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、各サブ画素において、薄膜トランジスタが占有する面積を小さくすることにある。
 上記目的を達成するために、本発明に係る表示装置は、ベース基板層と、上記ベース基板層上に設けられた薄膜トランジスタ層とを備え、上記薄膜トランジスタ層には、ポリシリコンにより形成された第1半導体層を有する第1薄膜トランジスタ、及び酸化物半導体により形成された第2半導体層を有する第2薄膜トランジスタがサブ画素毎に設けられ、上記第1薄膜トランジスタは、互いに離間するように第1導体領域及び第2導体領域が規定された上記第1半導体層と、該第1半導体層上に設けられた第1ゲート絶縁膜と、該第1ゲート絶縁膜上に設けられ、上記第1導体領域及び上記第2導体領域の間の導通を制御する第1ゲート電極と、該第1ゲート電極を覆うように設けられた第1層間絶縁膜と、該第1層間絶縁膜上に設けられた第1平坦化膜と、上記第1平坦化膜上に互いに離間するように設けられ、上記第1導体領域及び上記第2導体領域に電気的にそれぞれ接続された第1端子電極及び第2端子電極と、該第1端子電極及び該第2端子電極を覆うように設けられた第2層間絶縁膜とを備え、上記第2薄膜トランジスタは、上記第2層間絶縁膜上に設けられて互いに離間するように第3導体領域及び第4導体領域が規定された上記第2半導体層と、該第2半導体層上に設けられた第2ゲート絶縁膜と、該第2ゲート絶縁膜上に設けられ、上記第3導体領域及び上記第4導体領域の間の導通を制御する第2ゲート電極と、該第2ゲート電極を覆うように設けられた第3層間絶縁膜と、上記第3導体領域及び上記第4導体領域に電気的にそれぞれ接続された第3端子電極及び第4端子電極とを備え、上記第3端子電極は、上記第2端子電極の少なくとも一部と重なるように設けられ、該第2端子電極に電気的に接続されていることを特徴とする。
 本発明によれば、各サブ画素において、薄膜トランジスタが占有する面積を小さくすることができる。
図1は、本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。 図2は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の平面図である。 図3は、本発明の第1の実施形態に係る有機EL表示装置の表示領域の断面図である。 図4は、本発明の第1の実施形態に係る有機EL表示装置の画素回路を示す等価回路図である。 図5は、本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層を示す断面図である。 図6は、本発明の第2の実施形態に係る有機EL表示装置の表示領域の断面図である。 図7は、本発明の第3の実施形態に係る有機EL表示装置の表示領域の断面図である。 図8は、本発明の第4の実施形態に係る有機EL表示装置の表示領域の断面図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。
 《第1の実施形態》
 図1~図5は、本発明に係る表示装置の第1の実施形態を示している。なお、以下の各実施形態では、発光素子層を備えた表示装置として、有機EL素子層を備えた有機EL表示装置を例示する。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。また、図2は、有機EL表示装置50aの表示領域Dの平面図である。また、図3は、有機EL表示装置50aの表示領域Dの断面図である。また、図4は、有機EL表示装置50aの画素回路を示す等価回路図である。また、図5は、有機EL表示装置50aを構成する有機EL層33を示す断面図である。
 有機EL表示装置50aは、図1に示すように、例えば、矩形状に設けられた画像表示を行う表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。なお、本実施形態では、矩形状の表示領域Dを例示したが、この矩形状には、例えば、辺が円弧状になった形状、角部が円弧状になった形状、辺の一部に切り欠きがある形状等の略矩形状も含まれる。
 表示領域Dには、図2に示すように、複数のサブ画素Pがマトリクス状に配列されている。また、表示領域Dでは、図2に示すように、例えば、赤色の表示を行うための赤色発光領域Erを有するサブ画素P、緑色の表示を行うための緑色発光領域Egを有するサブ画素P、及び青色の表示を行うための青色発光領域Ebを有するサブ画素Pが互いに隣り合うように設けられている。なお、表示領域Dでは、例えば、赤色発光領域Er、緑色発光領域Eg及び青色発光領域Ebを有する隣り合う3つのサブ画素Pにより、1つの画素が構成されている。
 額縁領域Fの図1中の右端部には、端子部Tが設けられている。また、額縁領域Fにおいて、図1に示すように、表示領域D及び端子部Tの間には、図中の縦方向を折り曲げの軸として180°に(U字状に)折り曲げ可能な折り曲げ部Bが一方向(図中の縦方向)に延びるように設けられている。
 有機EL表示装置50aは、図3に示すように、ベース基板層として設けられた樹脂基板層10と、樹脂基板層10上に設けられたTFT層30aと、TFT層30a上に発光素子層として設けられた有機EL素子層40と、有機EL素子層40を覆うように設けられた封止膜45とを備えている。
 樹脂基板層10は、例えば、ポリイミド樹脂等により構成されている。
 TFT層30aは、図3に示すように、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11の有機EL素子層40側にサブ画素P毎に設けられた4つの第1TFT9A、3つの第2TFT9B及び1つのキャパシタ9h(図4参照)と、各第1TFT9A及び各第2TFT9B及び各キャパシタ9h上に設けられた第2平坦化膜26とを備えている。ここで、TFT層30aには、図2に示すように、図中の横方向に互いに平行に延びるように複数のゲート線14gが設けられている。また、TFT層30aには、図2に示すように、図中の横方向に互いに平行に延びるように複数の発光制御線14eが設けられている。また、TFT層30aには、図2に示すように、図中の横方向に互いに平行に延びるように複数の第2初期化電源線23iが設けられている。なお、各発光制御線14eは、図2に示すように、各ゲート線14g及び各第2初期化電源線23iと隣り合うように設けられている。また、TFT層30aには、図2に示すように、図中の縦方向に互いに平行に延びるように複数のソース線18fが設けられている。また、TFT層30aには、図2に示すように、図中の縦方向に互いに平行に延びるように複数の電源線18gが設けられている。なお、各電源線18gは、図2に示すように、各ソース線18fと隣り合うように設けられている。
 第1TFT9Aは、図3に示すように、ベースコート膜11上に設けられた第1半導体層12aと、第1半導体層12a上に第1半導体層12aを覆うように設けられた第1ゲート絶縁膜13と、第1ゲート絶縁膜13上に設けられた第1ゲート電極14aと、第1ゲート電極14aを覆うように順に設けられた第1層間絶縁膜15及び第1平坦化膜17と、第1平坦化膜17上に互いに離間するように設けられた第1端子電極18a及び第2端子電極18bと、第1端子電極18a及び第2端子電極18bを覆うように設けられた第2層間絶縁膜19を備えている。
 ベースコート膜11、第1ゲート絶縁膜13、第1層間絶縁膜15、第2層間絶縁膜19、後述する第2ゲート絶縁膜22及び第3層間絶縁膜24は、例えば、窒化シリコン、酸化シリコン、酸窒化シリコン等の単層膜又は積層膜により構成されている。なお、少なくとも第2層間絶縁膜19及び第2ゲート絶縁膜22の第2半導体層21a側は、酸化シリコン膜により構成されている。
 第1半導体層12aは、例えば、LTPS(low temperature polysilicon)等のポリシリコンにより形成され、図3に示すように、互いに離間するように規定された第1導体領域12aa及び第2導体領域12abと、第1導体領域12aa及び第2導体領域12abの間に規定された第1チャネル領域12acとを備えている。
 第1ゲート電極14aは、図3に示すように、第1半導体層12aの第1チャネル領域12acに重なるように設けられ、第1半導体層12aの第1導体領域12aa及び第2導体領域12abの間の導通を制御するように構成されている。
 第1端子電極18a及び第2端子電極18bは、図3に示すように、第1ゲート絶縁膜13、第1層間絶縁膜15及び第1平坦化膜17の積層膜に形成されたコンタクトホールHa及びHbを介して、第1半導体層12aの第1導体領域12aa及び第2導体領域12abに電気的にそれぞれ接続されている。
 第2TFT9Bは、図3に示すように、第2層間絶縁膜19上に設けられた第2半導体層21aと、第2層間絶縁膜19及び第2半導体層21aの間に設けられた第3端子電極20a及び第4端子電極20bと、第2半導体層21a上に第2半導体層21aを覆うように設けられた第2ゲート絶縁膜22、第2ゲート絶縁膜22上に設けられた第2ゲート電極23aと、第2ゲート電極23aを覆うように設けられた第3層間絶縁膜24とを備えている。
 第2半導体層21aは、例えば、In-Ga-Zn-O系等の酸化物半導体により形成され、図3に示すように、互いに離間するように規定された第3導体領域21aa及び第4導体領域21abと、第3導体領域21aa及び第4導体領域21abの間に規定された第2チャネル領域21acとを備えている。ここで、In-Ga-Zn-O系の半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物であって、In、Ga及びZnの割合(組成比)は特に限定されない。また、In-Ga-Zn-O系の半導体は、アモルファスでもよいし、結晶質でもよい。なお、結晶質In-Ga-Zn-O系の半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系の半導体が好ましい。また、In-Ga-Zn-O系の半導体の代わりに、他の酸化物半導体を含んでいてもよい。他の酸化物半導体としては、例えば、In-Sn-Zn-O系半導体(例えば、In-SnO-ZnO;InSnZnO)を含んでもよい。ここで、In-Sn-Zn-O系半導体は、In(インジウム)、Sn(スズ)及びZn(亜鉛)の三元系酸化物である。また、他の酸化物半導体としては、In-Al-Zn-O系半導体、In-Al-Sn-Zn-O系半導体、Zn-O系半導体、In-Zn-O系半導体、Zn-Ti-O系半導体、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドミウム)、Mg-Zn-O系半導体、In-Ga-Sn-O系半導体、In-Ga-O系半導体、Zr-In-Zn-O系半導体、Hf-In-Zn-O系半導体、Al-Ga-Zn-O系半導体、Ga-Zn-O系半導体、In-Ga-Zn-Sn-O系半導体、InGaO(ZnO)、酸化マグネシウム亜鉛(MgZn1-xO)、酸化カドミウム亜鉛(CdZn1-xO)等を含んでいてもよい。なお、Zn-O系半導体としては、1族元素、13族元素、14族元素、15族元素、17族元素等のうち1種又は複数種の不純物元素が添加されたZnOの非晶質(アモルファス)状態のもの、多結晶状態のもの、非晶質状態と多結晶状態が混在する微結晶状態のもの、又は何も不純物元素が添加されていないものを用いることができる。
 第3端子電極20a及び第4端子電極20bは、図3に示すように、第2半導体層21aの第3導体領域21aa及び第4導体領域21abにそれぞれ接触して、第2半導体層21aの第3導体領域21aa及び第4導体領域21abに電気的にそれぞれ接続されている。
 第3端子電極20aは、図3に示すように、第1TFT9Aの第2端子電極18bの少なくとも一部と重なるように設けられ、第2層間絶縁膜19に形成されたコンタクトホールHcを介して、第2端子電極18bに電気的に接続されている。具体的には、後述する陽極放電用TFT9gの第3端子電極20aは、後述する発光制御用TFT9fの第2端子電極18bに電気的に接続されている。
 第4端子電極20bは、図3に示すように、第2層間絶縁膜19に形成されたコンタクトホールHdを介して、配線18cに電気的に接続されている。なお、配線18cは、第1端子電極18a、第2端子電極18b、ソース線18f及び電源線18g等と同一材料により同一層に形成されている。
 第2ゲート電極23aは、図3に示すように、第2半導体層21aの第2チャネル領域21acに重なるように設けられ、第2半導体層21aの第3導体領域21aa及び第4導体領域21abの間の導通を制御するように構成されている。
 本実施形態では、ポリシリコンにより形成された第1半導体層12aを有する4つの第1TFT9Aとして、後述する書込用TFT9c、駆動用TFT9d、電源供給用TFT9e及び発光制御用TFT9fのpチャネル型TFTを例示し、酸化物半導体により形成された第2半導体層21aを有する3つの第2TFT9Bとして、後述する初期化用TFT9a、補償用TFT9b及び陽極放電用TFT9gのnチャネル型TFTを例示する(図4参照)。なお、ポリシリコンにより形成された第1半導体層12aを有する4つの第1TFT9Aは、nチャネル型TFTであってもよい。また、図4の等価回路図では、各TFT9c、9d、9e、9fの第1端子電極18a及び第2端子電極18bを丸数字の1及び2で示し、各TFT9a、9b、9gの第3端子電極20a及び第4端子電極20bを丸数字の3及び4で示している。また、図4の等価回路図では、n行m列目のサブ画素Pの画素回路を示しているが、(n-1)行m列目のサブ画素Pの画素回路の一部も含んでいる。また、図4の等価回路図では、高電源電圧ELVDDを供給する電源線18gが第1初期化電源線を兼ねているが、電源線18g及び第1初期化電源線は、別々に設けられていてもよい。また、第2初期化電源線23iには、低電源電圧ELVSSと同じ電圧を入力するが、これに限定されることなく、低電源電圧ELVSSと異なる電圧で有機EL素子35が消灯するような電圧を入力してもよい。
 初期化用TFT9aは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が前段(n-1段)のゲート線14g(n-1)に電気的に接続され、その第3端子電極が後述するキャパシタ9hの下部導電層及び駆動用TFT9dのゲート電極に電気的に接続され、その第4端子電極が電源線18gに電気的に接続されている。
 補償用TFT9bは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)のゲート線14g(n)に電気的に接続され、その第3端子電極が駆動用TFT9dのゲート電極に電気的に接続され、その第4端子電極が駆動用TFT9dの第1端子電極に電気的に接続されている。
 書込用TFT9cは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)のゲート線14g(n)に電気的に接続され、その第1端子電極が対応するソース線18fに電気的に接続され、その第2端子電極が駆動用TFT9dの第2端子電極に電気的に接続されている。
 駆動用TFT9dは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が初期化用TFT9a及び補償用TFT9bの各第3端子電極に電気的に接続され、その第1端子電極が補償用TFT9bの第4端子電極及び電源供給用TFT9eの各第2端子電極に電気的に接続され、その第2端子電極が書込用TFT9cの第2端子電極及び発光制御用TFT9fの第1端子電極に電気的に接続されている。ここで、駆動用TFT9dは、有機EL素子35の電流を制御するように構成されている。
 電源供給用TFT9eは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)の発光制御線14eに電気的に接続され、その第1端子電極が電源線18gに電気的に接続され、その第2端子電極が駆動用TFT9dの第1端子電極に電気的に接続されている。
 発光制御用TFT9fは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)の発光制御線14eに電気的に接続され、その第1端子電極が駆動用TFT9dの第2端子電極に電気的に接続され、その第2端子電極が後述する有機EL素子35の第1電極31に電気的に接続されている。
 陽極放電用TFT9gは、図4に示すように、各サブ画素Pにおいて、そのゲート電極が自段(n段)のゲート線14g(n)に電気的に接続され、その第3端子電極が有機EL素子35の第1電極31に電気的に接続され、その第4端子電極が第2初期化電源線23iに電気的に接続されている。
 キャパシタ9hは、例えば、第1ゲート電極14aと同一材料により同一層に形成された下部導電層(不図示)と、下部導電層を覆うように設けられた第1層間絶縁膜15と、第1層間絶縁膜15及び第1平坦化膜17の間で下部導電層と重なるように設けられた上部導電層(不図示)とを備えている。また、キャパシタ9hは、図4に示すように、各サブ画素Pにおいて、その下部導電層が駆動用TFT9dのゲート電極、初期化用TFT9a及び補償用TFT9bの各第3端子電極に電気的に接続され、その上部導電層が陽極放電用TFT9gの第3端子電極、発光制御用TFT9fの第2端子電極及び有機EL素子35の第1電極31に電気的に接続されている。
 第1平坦化膜17及び第2平坦化膜26は、表示領域Dにおいて、平坦な表面を有し、例えば、ポリイミド樹脂、アクリル樹脂等の有機樹脂材料、又はポリシロキサン系のSOG(spin on glass)材料等により構成されている。
 有機EL素子層40は、図3に示すように、複数のサブ画素Pに対応するように配列された複数の発光素子としてマトリクス状に設けられた複数の有機EL素子35と、各有機EL素子35の後述する第1電極31の周端部を覆うように全てのサブ画素Pに共通して格子状に設けられたエッジカバー32とを備えている。
 有機EL素子35は、図3に示すように、各サブ画素Pにおいて、TFT層30aの第2平坦化膜26上に設けられた第1電極31と、第1電極31上に設けられた有機EL層33と、有機EL層33上に設けられた第2電極34とを備えている。
 第1電極31は、第2層間絶縁膜19、第2ゲート絶縁膜22、第3層間絶縁膜24及び第2平坦化膜26の積層膜に形成されたコンタクトホール(不図示)を介して、各サブ画素Pの発光制御用TFT9fの第2端子電極(18b)に電気的に接続されている。また、第1電極31は、有機EL層33にホール(正孔)を注入する機能を有している。また、第1電極31は、有機EL層33への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極31を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、チタン(Ti)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、イッテルビウム(Yb)、フッ化リチウム(LiF)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、イリジウム(Ir)、スズ(Sn)等の金属材料が挙げられる。また、第1電極31を構成する材料は、例えば、アスタチン(At)/酸化アスタチン(AtO)等の合金であっても構わない。さらに、第1電極31を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極31は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな化合物材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。
 エッジカバー32は、例えば、ポリイミド樹脂、アクリル樹脂等の有機樹脂材料、又はポリシロキサン系のSOG材料等により構成されている。
 有機EL層33は、図5に示すように、第1電極31上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。
 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極31と有機EL層33とのエネルギーレベルを近づけ、第1電極31から有機EL層33への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。
 正孔輸送層2は、第1電極31から有機EL層33への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。
 発光層3は、第1電極31及び第2電極34による電圧印加の際に、第1電極31及び第2電極34から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンゾチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。
 電子注入層5は、第2電極34と有機EL層33とのエネルギーレベルを近づけ、第2電極34から有機EL層33へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子35の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。
 第2電極34は、図3に示すように、各有機EL層33及びエッジカバー32を覆うように全てのサブ画素Pに共通して設けられている。また、第2電極34は、有機EL層33に電子を注入する機能を有している。また、第2電極34は、有機EL層33への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第2電極34を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極34は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極34は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極34は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。
 封止膜45は、図3に示すように、第2電極34を覆うように設けられ、第2電極34上に順に積層された第1無機封止膜41、有機封止膜42及び第2無機封止膜43を備え、有機EL素子層35の有機EL層33を水分や酸素から保護する機能を有している。ここで、第1無機封止膜41及び第2無機封止膜43は、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜により構成されている。また、有機封止膜42は、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリ尿素樹脂、パリレン樹脂、ポリイミド樹脂、ポリアミド樹脂等の有機樹脂材料により構成されている。
 上記構成の有機EL表示装置50aでは、各サブ画素Pにおいて、まず、発光制御線14eが選択されて非活性状態とされると、有機EL素子35が非発光状態となる。その非発光状態で、前段のゲート線14g(n-1)が選択され、そのゲート線14g(n-1)を介してゲート信号が初期化用TFT9aに入力されることにより、初期化用TFT9aがオン状態となり、電源線18gの高電源電圧ELVDDがキャパシタ9hに印加されると共に、駆動用TFT9dがオン状態となる。これにより、キャパシタ9hの電荷が放電されて、駆動用TFT9dのゲート電極にかかる電圧が初期化される。次に、自段のゲート線14g(n)が選択されて活性状態とされることにより、補償用TFT9b及び書込用TFT9cがオン状態となり、対応するソース線18fを介して伝達されるソース信号に対応する所定の電圧がダイオード接続状態の駆動用TFT9dを介してキャパシタ9hに書き込まれると共に、陽極放電用TFT9gがオン状態となり、第2初期化電源線23iを介して初期化信号が有機EL素子35の第1電極31に印加されて第1電極31に蓄積した電荷がリセットされる。その後、発光制御線14eが選択されて、電源供給用TFT9e及び発光制御用TFT9fがオン状態となり、駆動用TFT9dのゲート電極にかかる電圧に応じた駆動電流が電源線18gから有機EL素子35に供給される。このようにして、有機EL表示装置50aでは、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。
 次に、本実施形態の有機EL表示装置50aの製造方法について説明する。なお、有機EL表示装置50aの製造方法は、TFT層形成工程、有機EL素子層形成工程及び封止膜形成工程を備える。
 <TFT層形成工程>
 まず、例えば、ガラス基板上に形成した樹脂基板層10上に、例えば、プラズマCVD(Chemical Vapor Deposition)法により、窒化シリコン膜(厚さ50nm程度)及び酸化シリコン膜(厚さ250nm程度)を順に成膜することにより、ベースコート膜11を形成する。
 続いて、ベースコート膜11が形成された基板表面に、例えば、プラズマCVD法により、アモルファスシリコン膜(厚さ50nm程度)を成膜し、そのアモルファスシリコン膜をレーザーアニール等により結晶化してポリシリコン膜を形成した後に、そのポリシリコン膜をパターニングして、第1半導体層12a等を形成する。
 その後、第1半導体層12a等が形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(100nm程度)を成膜することにより、第1ゲート絶縁膜13を形成する。
 さらに、第1ゲート絶縁膜13が形成された基板表面に、例えば、スパッタリング法により、モリブデン膜(厚さ200nm程度)等の金属膜を成膜した後に、その金属膜をパターニングすることにより、第1ゲート電極14a等を形成する。
 その後、第1ゲート電極14aをマスクとして、不純物イオンをドーピングすることにより、第1半導体層12aの一部を導体化して、第1導体領域12aa、第2導体領域12ab及び第1チャネル領域12acを形成する。
 続いて、第1半導体層12aの一部が導体化された基板表面に、例えば、プラズマCVD法により、窒化シリコン膜(100nm程度)を成膜することにより、第1層間絶縁膜15を形成する。
 その後、第1層間絶縁膜15が形成された基板表面に、例えば、スピンコート法やスリットコート法により、ポリイミド系の感光性樹脂膜(厚さ2μm程度)を塗布した後に、その塗布膜に対して、プリベーク、露光、現像及びポストベークを行うことにより、第1平坦化膜17を形成し、さらに、第1ゲート絶縁膜13及び第1層間絶縁膜15を適宜パターニングすることにより、コンタクトホールを形成する。
 続いて、上記コンタクトホールが形成された基板表面に、例えば、スパッタリング法により、チタン膜(厚さ50nm程度)、アルミニウム膜(厚さ400nm程度)及びチタン膜(厚さ50nm程度)等を順に成膜して金属積層膜を形成した後に、その金属積層膜をパターニングして、第1端子電極18a、第2端子電極18b及び配線18cを形成する。
 その後、第1端子電極18a等が形成された基板表面に、例えば、プラズマCVD法により、窒化シリコン膜(厚さ100nm程度)及び酸化シリコン膜(厚さ250nm程度)を順に成膜した後に、パターニングすることにより、第2層間絶縁膜19を形成する。
 さらに、第2層間絶縁膜19が形成された基板表面に、例えば、スパッタリング法により、チタン膜(厚さ50nm程度)、アルミニウム膜(厚さ400nm程度)及びチタン膜(厚さ50nm程度)等を順に成膜して金属積層膜を形成した後に、その金属積層膜をパターニングすることにより、第3端子電極20a及び第4端子電極20bを形成する。
 続いて、第3端子電極20aが形成された基板表面に、例えば、スパッタリング法により、InGaZnO等の酸化物半導体膜(厚さ30nm程度)を成膜した後に、その酸化物半導体膜をパターニングすることにより、第2半導体層21aを形成する。
 その後、第2半導体層21aが形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ100nm程度)を成膜することにより、第2ゲート絶縁膜22を形成する。
 さらに、第2ゲート絶縁膜22が形成された基板表面に、例えば、スパッタリング法により、モリブデン膜(厚さ200nm程度)等の金属膜を成膜した後に、その金属膜をパターニングすることにより、第2ゲート電極23a等を形成する。
 続いて、第2ゲート電極23aが形成された基板表面に、例えば、プラズマCVD法により、酸化シリコン膜(厚さ300nm程度)及び窒化シリコン膜(厚さ150nm程度)を順に成膜することにより、第3層間絶縁膜24を形成する。なお、第3層間絶縁膜24を形成した後の熱処理により、第2半導体層21aに第3導体領域21aa、第4導体領域21ab及び第2チャネル領域21acが形成される。
 その後、第3層間絶縁膜24が形成された基板表面に、例えば、スピンコート法やスリットコート法により、ポリイミド系の感光性樹脂膜(厚さ2μm程度)を塗布した後に、その塗布膜に対して、プリベーク、露光、現像及びポストベークを行うことにより、第2平坦化膜26を形成し、さらに、第2ゲート絶縁膜22及び第3層間絶縁膜24を適宜パターニングすることにより、コンタクトホールを形成する。
 以上のようにして、TFT層30aを形成することができる。
 <有機EL素子層形成工程>
 上記TFT層形成工程で形成されたTFT層30aの第2平坦化膜26上に、周知の方法を用いて、第1電極31、エッジカバー32、有機EL層33(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)及び第2電極34を形成して、有機EL素子層40を形成する。
 <封止膜形成工程>
 まず、上記有機EL素子層形成工程で形成された有機EL素子層40が形成された基板表面に、マスクを用いて、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜をプラズマCVD法により成膜して、第1無機封止膜41を形成する。
 続いて、第1無機封止膜41が形成された基板表面に、例えば、インクジェット法により、アクリル樹脂等の有機樹脂材料を成膜して、有機封止膜42を形成する。
 その後、有機封止膜42が形成された基板に対して、マスクを用いて、例えば、窒化シリコン膜、酸化シリコン膜、酸窒化シリコン膜等の無機絶縁膜をプラズマCVD法により成膜して、第2無機封止膜43を形成することにより、封止膜45を形成する。
 最後に、上記封止膜形成工程で封止膜45が形成された基板表面に保護シート(不図示)を貼付した後に、樹脂基板層10のガラス基板側からレーザー光を照射することにより、樹脂基板層10の下面からガラス基板を剥離させ、ガラス基板を剥離させた樹脂基板層10の下面に保護シート(不図示)を貼付する。
 以上のようにして、本実施形態の有機EL表示装置50aを製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50aによれば、第2TFT9Bの第3端子電極20aが第1TFT9Aの第2端子電極18bの少なくとも一部と重なるように設けられ、第3端子電極20aが第2端子電極18bに電気的に接続されているので、第1TFT9A及び第2TFT9Bが縦並びに配置されることになり、各サブ画素Pにおいて、TFTが占有する面積を小さくすることができる。
 また、本実施形態の有機EL表示装置50aによれば、第1TFT9Aに第1平坦化膜17が2μm程度に厚く設けられているので、第1TFT9Aとして設けられた駆動用TFT9dとソース線18f、電源線18g、第2初期化電源線23i等の信号線との間に生じる寄生容量が小さくなったり、それらの信号線からのノイズが駆動用TFT9dに影響を与え難くなったりすることにより、駆動用TFT9dの動作を安定化させることができる。さらに、第1TFT9Aに第1平坦化膜17が厚く設けられていることにより、ゲート線14g及び発光制御線14eと、ソース線18f及び電源線18gとが交差する部分での短絡不良を抑制することができる。
 また、本実施形態の有機EL表示装置50aによれば、樹脂基板層10上に相対的に高いプロセス温度でポリシリコンを用いた第1TFT9Aを形成した後に、相対的に低いプロセス温度で形成可能な酸化物半導体を用いた第2TFT9Bを形成することができるので、複雑な製造プロセスの追加を行わなくとも、TFTや配線のレイアウトの自由度が広がり、有機EL表示装置50aの高精細化及び狭額縁化を実現することができる。
 《第2の実施形態》
 図6は、本発明に係る表示装置の第2の実施形態を示している。ここで、図6は、本実施形態の有機EL表示装置50bの表示領域Dの断面図である。なお、以下の各実施形態において、図1~図5と同じ部分については同じ符号を付して、その詳細な説明を省略する。
 上記第1の実施形態では、第2ゲート絶縁膜22がベタ状に設けられた有機EL表示装置50aを例示したが、本実施形態では、第2ゲート絶縁膜22aが島状に設けられた有機EL表示装置50bを例示する。
 有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aと同様に、例えば、矩形状に設けられた表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。
 有機EL表示装置50bは、図6に示すように、樹脂基板層10と、樹脂基板層10上に設けられたTFT層30bと、TFT層30b上に設けられた有機EL素子層40と、有機EL素子層40を覆うように設けられた封止膜45とを備えている。
 TFT層30bは、図6に示すように、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11の有機EL素子層40側にサブ画素P毎に設けられた4つの第1TFT9A、3つの第2TFT9B及び1つのキャパシタ9h(図4参照)と、各第1TFT9A及び各第2TFT9B及び各キャパシタ9h上に設けられた第2平坦化膜26とを備えている。ここで、TFT層30bには、上記第1の実施形態のTFT層30aと同様に、複数のゲート線14g、複数の発光制御線14e、複数の第2初期化電源線23i、複数のソース線18f及び複数の電源線18gが設けられている。
 第2TFT9Bは、図6に示すように、第2層間絶縁膜19上に設けられた第2半導体層21aと、第2層間絶縁膜19及び第2半導体層21aの間に設けられた第3端子電極20a及び第4端子電極20bと、第2半導体層21a上に島状に設けられた第2ゲート絶縁膜22a、第2ゲート絶縁膜22a上に設けられた第2ゲート電極23aと、第2ゲート電極23aを覆うように設けられた第3層間絶縁膜24とを備えている。
 上記構成の有機EL表示装置50bでは、上記第1の実施形態の有機EL表示装置50aと同様に、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。
 本実施形態の有機EL表示装置50bは、上記第1の実施形態の有機EL表示装置50aの製造方法におけるTFT層形成工程において、第2半導体層21aが形成された基板表面に、酸化シリコン膜を成膜した後にパターニングして、第2ゲート絶縁膜22aを形成することにより製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50bによれば、第2TFT9Bの第3端子電極20aが第1TFT9Aの第2端子電極18bの少なくとも一部と重なるように設けられ、第3端子電極20aが第2端子電極18bに電気的に接続されているので、第1TFT9A及び第2TFT9Bが縦並びに配置されることになり、各サブ画素Pにおいて、TFTが占有する面積を小さくすることができる。
 また、本実施形態の有機EL表示装置50bによれば、第1TFT9Aに第1平坦化膜17が2μm程度に厚く設けられているので、第1TFT9Aとして設けられた駆動用TFT9dとソース線18f、電源線18g、第2初期化電源線23i等の信号線との間に生じる寄生容量が小さくなったり、それらの信号線からのノイズが駆動用TFT9dに影響を与え難くなったりすることにより、駆動用TFT9dの動作を安定化させることができる。さらに、第1TFT9Aに第1平坦化膜17が厚く設けられていることにより、ゲート線14g及び発光制御線14eと、ソース線18f及び電源線18gとが交差する部分での短絡不良を抑制することができる。
 また、本実施形態の有機EL表示装置50bによれば、樹脂基板層10上に相対的に高いプロセス温度でポリシリコンを用いた第1TFT9Aを形成した後に、相対的に低いプロセス温度で形成可能な酸化物半導体を用いた第2TFT9Bを形成することができるので、複雑な製造プロセスの追加を行わなくとも、TFTや配線のレイアウトの自由度が広がり、有機EL表示装置50bの高精細化及び狭額縁化を実現することができる。
 《第3の実施形態》
 図7は、本発明に係る表示装置の第2の実施形態を示している。ここで、図7は、本実施形態の有機EL表示装置50cの表示領域Dの断面図である。
 上記第1及び第2の実施形態では、第3端子電極20a及び第4端子電極20bが第2半導体層21aの樹脂基板層10側に設けられた有機EL表示装置50aを例示したが、本実施形態では、第3端子電極25a及び第4端子電極25bが第2半導体層21cの有機EL素子層40側に設けられた有機EL表示装置50cを例示する。
 有機EL表示装置50cは、上記第1の実施形態の有機EL表示装置50aと同様に、例えば、矩形状に設けられた表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。
 有機EL表示装置50cは、図7に示すように、樹脂基板層10と、樹脂基板層10上に設けられたTFT層30cと、TFT層30c上に設けられた有機EL素子層40と、有機EL素子層40を覆うように設けられた封止膜45とを備えている。
 TFT層30cは、図7に示すように、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11の有機EL素子層40側にサブ画素P毎に設けられた4つの第1TFT9A、3つの第2TFT9B及び1つのキャパシタ9h(図4参照)と、各第1TFT9A及び各第2TFT9B及び各キャパシタ9h上に設けられた第2平坦化膜26とを備えている。ここで、TFT層30cには、上記第1の実施形態のTFT層30aと同様に、複数のゲート線14g、複数の発光制御線14e、複数の第2初期化電源線23i、複数のソース線18f及び複数の電源線18gが設けられている。
 第2TFT9Bは、図7に示すように、第2層間絶縁膜19上に設けられた第2半導体層21cと、第2半導体層21c上に第2半導体層21cを覆うように設けられた第2ゲート絶縁膜22、第2ゲート絶縁膜22上に設けられた第2ゲート電極23aと、第2ゲート電極23aを覆うように設けられた第3層間絶縁膜24と、第3層間絶縁膜24上に設けられた第3端子電極25a及び第4端子電極25bとを備えている。
 第2半導体層21cは、上記第1の実施形態の第2半導体層21aと同様に、例えば、In-Ga-Zn-O系等の酸化物半導体により形成され、図7に示すように、互いに離間するように規定された第3導体領域21ca及び第4導体領域21cbと、第3導体領域21ca及び第4導体領域21cbの間に規定された第2チャネル領域21ccとを備えている。
 第3端子電極25a及び第4端子電極25bは、図7に示すように、第2ゲート絶縁膜22及び第3層間絶縁膜24の積層膜に形成されたコンタクトホールHc及びHdの上側部分を介して、第2半導体層21cの第3導体領域21ca及び第4導体領域21cbに電気的にそれぞれ接続されている。ここで、第2平坦化膜26は、図7に示すように、第3端子電極25a及び第4端子電極25bを覆うように設けられている。
 第3端子電極25aは、図7に示すように、第1TFT9Aの第2端子電極18bの少なくとも一部と重なるように設けられ、第2層間絶縁膜19に形成されたコンタクトホールHcの下側部分を介して、第2端子電極18bに電気的に接続されている。
 第4端子電極25bは、図7に示すように、第2層間絶縁膜19に形成されたコンタクトホールHdの下側部分を介して、配線18cに電気的に接続されている。
 上記構成の有機EL表示装置50cでは、上記第1の実施形態の有機EL表示装置50aと同様に、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。
 本実施形態の有機EL表示装置50cは、上記第1の実施形態の有機EL表示装置50aの製造方法におけるTFT層形成工程において、第2層間絶縁膜19が形成された基板表面に第3端子電極20a及び第4端子電極20bを形成する代わりに、第2層間絶縁膜19、第2ゲート絶縁膜22及び第3層間絶縁膜24の積層膜にコンタクトホールを形成した後に、第3端子電極25a及び第4端子電極25bを形成することにより製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50cによれば、第2TFT9Bの第3端子電極25aが第1TFT9Aの第2端子電極18bの少なくとも一部と重なるように設けられ、第3端子電極25aが第2端子電極18bに電気的に接続されているので、第1TFT9A及び第2TFT9Bが縦並びに配置されることになり、各サブ画素Pにおいて、TFTが占有する面積を小さくすることができる。
 また、本実施形態の有機EL表示装置50cによれば、第1TFT9Aに第1平坦化膜17が2μm程度に厚く設けられているので、第1TFT9Aとして設けられた駆動用TFT9dとソース線18f、電源線18g、第2初期化電源線23i等の信号線との間に生じる寄生容量が小さくなったり、それらの信号線からのノイズが駆動用TFT9dに影響を与え難くなったりすることにより、駆動用TFT9dの動作を安定化させることができる。さらに、第1TFT9Aに第1平坦化膜17が厚く設けられていることにより、ゲート線14g及び発光制御線14eと、ソース線18f及び電源線18gとが交差する部分での短絡不良を抑制することができる。
 また、本実施形態の有機EL表示装置50cによれば、樹脂基板層10上に相対的に高いプロセス温度でポリシリコンを用いた第1TFT9Aを形成した後に、相対的に低いプロセス温度で形成可能な酸化物半導体を用いた第2TFT9Bを形成することができるので、複雑な製造プロセスの追加を行わなくとも、TFTや配線のレイアウトの自由度が広がり、有機EL表示装置50cの高精細化及び狭額縁化を実現することができる。
 《第4の実施形態》
 図8は、本発明に係る表示装置の第2の実施形態を示している。ここで、図8は、本実施形態の有機EL表示装置50dの表示領域Dの断面図である。
 上記第3の実施形態では、第2ゲート絶縁膜22がベタ状に設けられた有機EL表示装置50cを例示したが、本実施形態では、第2ゲート絶縁膜22aが島状に設けられた有機EL表示装置50dを例示する。
 有機EL表示装置50dは、上記第1の実施形態の有機EL表示装置50aと同様に、例えば、矩形状に設けられた表示領域Dと、表示領域Dの周囲に設けられた額縁領域Fとを備えている。
 有機EL表示装置50dは、図8に示すように、樹脂基板層10と、樹脂基板層10上に設けられたTFT層30dと、TFT層30d上に設けられた有機EL素子層40と、有機EL素子層40を覆うように設けられた封止膜45とを備えている。
 TFT層30dは、図8に示すように、樹脂基板層10上に設けられたベースコート膜11と、ベースコート膜11の有機EL素子層40側にサブ画素P毎に設けられた4つの第1TFT9A、3つの第2TFT9B及び1つのキャパシタ9h(図4参照)と、各第1TFT9A及び各第2TFT9B及び各キャパシタ9h上に設けられた第2平坦化膜26とを備えている。ここで、TFT層30dには、上記第1の実施形態のTFT層30aと同様に、複数のゲート線14g、複数の発光制御線14e、複数の第2初期化電源線23i、複数のソース線18f及び複数の電源線18gが設けられている。
 第2TFT9Bは、図8に示すように、第2層間絶縁膜19上に設けられた第2半導体層21cと、第2半導体層21c上に島状に設けられた第2ゲート絶縁膜22a、第2ゲート絶縁膜22a上に設けられた第2ゲート電極23aと、第2ゲート電極23aを覆うように設けられた第3層間絶縁膜24と、第3層間絶縁膜24上に設けられた第3端子電極25a及び第4端子電極25bとを備えている。
 上記構成の有機EL表示装置50dでは、上記第1の実施形態の有機EL表示装置50aと同様に、各サブ画素Pにおいて、有機EL素子35が駆動電流に応じた輝度で発光して、画像表示が行われる。
 本実施形態の有機EL表示装置50dは、上記第1の実施形態の有機EL表示装置50aの製造方法におけるTFT層形成工程において、第2半導体層21aが形成された基板表面に、酸化シリコン膜を成膜した後にパターニングして、第2ゲート絶縁膜22aを形成し、さらに、第2層間絶縁膜19が形成された基板表面に第3端子電極20a及び第4端子電極20bを形成する代わりに、第2層間絶縁膜19、第2ゲート絶縁膜22及び第3層間絶縁膜24の積層膜にコンタクトホールを形成した後に、第3端子電極25a及び第4端子電極25bを形成することにより製造することができる。
 以上説明したように、本実施形態の有機EL表示装置50dによれば、第2TFT9Bの第3端子電極25aが第1TFT9Aの第2端子電極18bの少なくとも一部と重なるように設けられ、第3端子電極25aが第2端子電極18bに電気的に接続されているので、第1TFT9A及び第2TFT9Bが縦並びに配置されることになり、各サブ画素Pにおいて、TFTが占有する面積を小さくすることができる。
 また、本実施形態の有機EL表示装置50dによれば、第1TFT9Aに第1平坦化膜17が2μm程度に厚く設けられているので、第1TFT9Aとして設けられた駆動用TFT9dとソース線18f、電源線18g、第2初期化電源線23i等の信号線との間に生じる寄生容量が小さくなったり、それらの信号線からのノイズが駆動用TFT9dに影響を与え難くなったりすることにより、駆動用TFT9dの動作を安定化させることができる。さらに、第1TFT9Aに第1平坦化膜17が厚く設けられていることにより、ゲート線14g及び発光制御線14eと、ソース線18f及び電源線18gとが交差する部分での短絡不良を抑制することができる。
 また、本実施形態の有機EL表示装置50dによれば、樹脂基板層10上に相対的に高いプロセス温度でポリシリコンを用いた第1TFT9Aを形成した後に、相対的に低いプロセス温度で形成可能な酸化物半導体を用いた第2TFT9Bを形成することができるので、複雑な製造プロセスの追加を行わなくとも、TFTや配線のレイアウトの自由度が広がり、有機EL表示装置50dの高精細化及び狭額縁化を実現することができる。
 《その他の実施形態》
 上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。
 また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。
 また、上記各実施形態では、表示装置として有機EL表示装置したが、本発明は、アクティブマトリクス駆動方式の液晶表示装置等の表示装置にも適用することができる。
 また、上記各実施形態では、ベース基板層として樹脂基板層を例示したが、ベース基板層は、ガラス基板等であってもよい。
 また、上記各実施形態では、表示領域のサブ画素毎に第1TFT及び第2TFTが設けられた表示装置を例示したが、本発明は、例えば、pチャネル型の第1TFT及びnチャネル型の第2TFTを組み合わせてCMOS(complementary metal oxide semiconductor)を構成して、第1TFT及び第2TFTが額縁領域の駆動回路として設けられた表示装置にも適用することができる。
 また、上記各実施形態では、表示装置として有機EL表示装置を例に挙げて説明したが、本発明は、電流によって駆動される複数の発光素子を備えた表示装置にも適用することができ、例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot light emitting diode)を備えた表示装置にも適用することができる。
 以上説明したように、本発明は、フレキシブルな表示装置について有用である。
P     サブ画素
9A    第1TFT(第1薄膜トランジスタ)
9B    第2TFT(第2薄膜トランジスタ)
9a    初期化用TFT(第2薄膜トランジスタ)
9b    補償用TFT(第2薄膜トランジスタ)
9c    書込用TFT(第1薄膜トランジスタ)
9d    駆動用TFT(第1薄膜トランジスタ)
9e    電源供給用TFT(第1薄膜トランジスタ)
9f    発光制御用TFT(第1薄膜トランジスタ)
9g    陽極放電用TFT(第2薄膜トランジスタ)
10    樹脂基板層(ベース基板層)
11    ベースコート膜
12a   第1半導体層
12aa  第1導体領域
12ab  第2導体領域
13    ゲート絶縁膜
14a   第1ゲート電極
15    第1層間絶縁膜
17    第1平坦化膜
18a,25a  第1端子電極
18b,25b  第2端子電極
18c   配線
19    第2層間絶縁膜
20a   第3端子電極
20b   第4端子電極
21a   第2半導体層
21aa  第3導体領域
21ab  第4導体領域
21c   第2半導体層
21ca  第3導体領域
21cb  第4導体領域
22    第2ゲート絶縁膜
22a   第2ゲート絶縁膜
23a   第2ゲート電極
24    第3層間絶縁膜
26    第2平坦化膜
30a,30b,30c,30d  TFT層(薄膜トランジスタ層)
35    有機EL素子(発光素子、有機エレクトロルミネッセンス素子)
40    有機EL素子層(発光素子層)
45    封止膜
50a,50b,50c,50d  有機EL表示装置

Claims (14)

  1.  ベース基板層と、
     上記ベース基板層上に設けられた薄膜トランジスタ層とを備え、
     上記薄膜トランジスタ層には、ポリシリコンにより形成された第1半導体層を有する第1薄膜トランジスタ、及び酸化物半導体により形成された第2半導体層を有する第2薄膜トランジスタがサブ画素毎に設けられ、
     上記第1薄膜トランジスタは、互いに離間するように第1導体領域及び第2導体領域が規定された上記第1半導体層と、該第1半導体層上に設けられた第1ゲート絶縁膜と、該第1ゲート絶縁膜上に設けられ、上記第1導体領域及び上記第2導体領域の間の導通を制御する第1ゲート電極と、該第1ゲート電極を覆うように設けられた第1層間絶縁膜と、該第1層間絶縁膜上に設けられた第1平坦化膜と、上記第1平坦化膜上に互いに離間するように設けられ、上記第1導体領域及び上記第2導体領域に電気的にそれぞれ接続された第1端子電極及び第2端子電極と、該第1端子電極及び該第2端子電極を覆うように設けられた第2層間絶縁膜とを備え、
     上記第2薄膜トランジスタは、上記第2層間絶縁膜上に設けられて互いに離間するように第3導体領域及び第4導体領域が規定された上記第2半導体層と、該第2半導体層上に設けられた第2ゲート絶縁膜と、該第2ゲート絶縁膜上に設けられ、上記第3導体領域及び上記第4導体領域の間の導通を制御する第2ゲート電極と、該第2ゲート電極を覆うように設けられた第3層間絶縁膜と、上記第3導体領域及び上記第4導体領域に電気的にそれぞれ接続された第3端子電極及び第4端子電極とを備え、
     上記第3端子電極は、上記第2端子電極の少なくとも一部と重なるように設けられ、該第2端子電極に電気的に接続されていることを特徴とする表示装置。
  2.  請求項1に記載された表示装置において、
     上記第2ゲート絶縁膜は、上記第2半導体層を覆うように設けられていることを特徴とする表示装置。
  3.  請求項2に記載された表示装置において、
     上記第3端子電極及び上記第4端子電極は、上記第2層間絶縁膜と上記第2半導体層との間に設けられていることを特徴とする表示装置。
  4.  請求項2に記載された表示装置において、
     上記第3端子電極及び上記第4端子電極は、上記第3層間絶縁膜上に設けられていることを特徴とする表示装置。
  5.  請求項4に記載された表示装置において、
     上記第3層間絶縁膜上には、上記第3端子電極及び上記第4端子電極を覆うように第2平坦化膜が設けられていることを特徴とする表示装置。
  6.  請求項1に記載された表示装置において、
     上記第2ゲート絶縁膜は、上記第2半導体層上に島状に設けられていることを特徴とする表示装置。
  7.  請求項6に記載された表示装置において、
     上記第3端子電極及び上記第4端子電極は、上記第2層間絶縁膜と上記第2半導体層との間に設けられていることを特徴とする表示装置。
  8.  請求項2に記載された表示装置において、
     上記第3端子電極及び上記第4端子電極は、上記第3層間絶縁膜上に設けられていることを特徴とする表示装置。
  9.  請求項8に記載された表示装置において、
     上記第3層間絶縁膜上には、上記第3端子電極及び上記第4端子電極を覆うように第2平坦化膜が設けられていることを特徴とする表示装置。
  10.  請求項1~9の何れか1つに記載された表示装置において、
     上記第1平坦化膜及び上記第2層間絶縁膜の間には、上記第1端子電極及び上記第2端子電極と同一材料により同一層に形成され、上記第4端子電極に電気的に接続された配線が設けられていることを特徴とする表示装置。
  11.  請求項1~10の何れか1つに記載された表示装置において、
     上記薄膜トランジスタ層は、上記ベース基板層上に設けられたベースコート膜を備え、
     上記第1半導体層は、上記ベースコート膜上に設けられていることを特徴とする表示装置。
  12.  請求項1~11の何れか1つに記載された表示装置において、
     上記第1ゲート絶縁膜は、上記第1半導体層を覆うように設けられていることを特徴とする表示装置。
  13.  請求項1~12の何れか1つに記載された表示装置において、
     上記薄膜トランジスタ層上に設けられ、複数の発光素子が配列された発光素子層と、
     上記発光素子層を覆うように設けられた封止膜とを備えていることを特徴とする表示装置。
  14.  請求項13に記載された表示装置において、
     上記各発光素子は、有機エレクトロルミネッセンス素子であることを特徴とする表示装置。
PCT/JP2021/014770 2021-04-07 2021-04-07 表示装置 WO2022215196A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014770 WO2022215196A1 (ja) 2021-04-07 2021-04-07 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/014770 WO2022215196A1 (ja) 2021-04-07 2021-04-07 表示装置

Publications (1)

Publication Number Publication Date
WO2022215196A1 true WO2022215196A1 (ja) 2022-10-13

Family

ID=83545280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014770 WO2022215196A1 (ja) 2021-04-07 2021-04-07 表示装置

Country Status (1)

Country Link
WO (1) WO2022215196A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182223A1 (en) * 2009-01-22 2010-07-22 Samsung Mobile Display Co., Ltd. Organic light emitting display device
WO2015031037A1 (en) * 2013-08-26 2015-03-05 Apple Inc. Displays with silicon and semiconducting oxide thin-film transistors
JP2020181194A (ja) * 2017-12-19 2020-11-05 エルジー ディスプレイ カンパニー リミテッド 表示装置
JP2020205402A (ja) * 2019-06-14 2020-12-24 Tianma Japan株式会社 薄膜デバイス
JP2020205388A (ja) * 2019-06-19 2020-12-24 株式会社ジャパンディスプレイ 半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100182223A1 (en) * 2009-01-22 2010-07-22 Samsung Mobile Display Co., Ltd. Organic light emitting display device
WO2015031037A1 (en) * 2013-08-26 2015-03-05 Apple Inc. Displays with silicon and semiconducting oxide thin-film transistors
JP2020181194A (ja) * 2017-12-19 2020-11-05 エルジー ディスプレイ カンパニー リミテッド 表示装置
JP2020205402A (ja) * 2019-06-14 2020-12-24 Tianma Japan株式会社 薄膜デバイス
JP2020205388A (ja) * 2019-06-19 2020-12-24 株式会社ジャパンディスプレイ 半導体装置

Similar Documents

Publication Publication Date Title
WO2021161465A1 (ja) 表示装置
WO2019171581A1 (ja) 表示装置
WO2020039555A1 (ja) 表示装置
WO2022215196A1 (ja) 表示装置
WO2021176508A1 (ja) 表示装置
WO2023286168A1 (ja) 表示装置
WO2023062695A1 (ja) 表示装置
WO2023062696A1 (ja) 表示装置
WO2023021623A1 (ja) 表示装置及びその製造方法
WO2020174605A1 (ja) 表示装置及びその製造方法
WO2023013039A1 (ja) 表示装置及びその製造方法
US20240040836A1 (en) Display device and method for manufacturing same
WO2023175794A1 (ja) 表示装置及びその製造方法
WO2022230060A1 (ja) 表示装置
WO2023157293A1 (ja) 表示装置
WO2023112328A1 (ja) 表示装置
WO2023100365A1 (ja) 表示装置
WO2023105569A1 (ja) 表示装置
JP7494383B2 (ja) 表示装置
WO2024105749A1 (ja) 表示装置
WO2023218637A1 (ja) 表示装置
WO2024013808A1 (ja) 表示装置
WO2024142278A1 (ja) 表示装置
WO2023127165A1 (ja) 表示装置
WO2023126995A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936000

Country of ref document: EP

Kind code of ref document: A1