WO2022211071A1 - 硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品 - Google Patents

硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品 Download PDF

Info

Publication number
WO2022211071A1
WO2022211071A1 PCT/JP2022/016760 JP2022016760W WO2022211071A1 WO 2022211071 A1 WO2022211071 A1 WO 2022211071A1 JP 2022016760 W JP2022016760 W JP 2022016760W WO 2022211071 A1 WO2022211071 A1 WO 2022211071A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
polyphenylene ether
curable
filler
resin
Prior art date
Application number
PCT/JP2022/016760
Other languages
English (en)
French (fr)
Inventor
翔子 三島
翔也 関口
康太 大城
信広 石川
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021062055A external-priority patent/JP2022157693A/ja
Priority claimed from JP2021062056A external-priority patent/JP2022157694A/ja
Priority claimed from JP2021062057A external-priority patent/JP2022157695A/ja
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Priority to KR1020237028278A priority Critical patent/KR20230164007A/ko
Priority to US18/552,743 priority patent/US20240165934A1/en
Priority to CN202280014146.4A priority patent/CN116867646A/zh
Publication of WO2022211071A1 publication Critical patent/WO2022211071A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention provides a curable resin laminate and a dry film having the curable resin laminate, which are useful for producing interlayer insulating layers in electronic components such as printed wiring boards (hereinafter also simply referred to as "wiring boards"). and a cured product of the curable resin laminate obtained by using the curable resin laminate or the dry film, and an electronic component.
  • wiring boards printed wiring boards
  • a curable resin composition containing epoxy resin or the like as a main component has been used as an insulating material for wiring boards incorporated in such electronic devices.
  • Dk) and dielectric loss tangent (Df) are high, and transmission loss increases for signals in a high frequency band, causing problems such as signal attenuation and heat generation. Therefore, attention has been focused on polyphenylene ether, which is excellent in low dielectric properties.
  • Non-Patent Document 1 proposes polyphenylene ether with improved heat resistance by introducing an allyl group into the molecule of polyphenylene ether to form a thermosetting resin.
  • an object of the present invention is to provide a curable resin laminate useful for forming an insulating layer having low dielectric properties and excellent adhesion (peel strength) to a conductor layer.
  • the present inventors have found a multilayer structure in which the thickness of each layer is within a specific range, and the curable composition forming each layer contains a polyphenylene ether having a branched structure, and the filler content is specified.
  • the present inventors have found that the above problems can be solved by setting the range of That is, the present invention is as follows.
  • the present invention A first resin layer made of a first curable composition, and a second resin layer made of a second curable composition laminated on at least one main surface of the first resin layer.
  • a curable resin laminate having The second resin layer has a thickness of 5 to 35% of the total thickness of the first resin layer and the second resin layer,
  • the first curable composition contains (A1) a polyphenylene ether and (B1) a filler, and the content of the (B1) filler (M B1 ) is 30 relative to the total solid content in the composition.
  • the second curable composition contains (A2) a polyphenylene ether and does not contain (B2) a filler, or (B2) the filler content (M B2 ) is based on the total solid content in the composition is 40% by mass or less,
  • the relationship between the (B1) filler content (M B1 ) and the (B2) filler content (M B2 ) is M B1 >M B2
  • the (A1) polyphenylene ether and (A2) polyphenylene ether are obtained from raw material phenols containing phenols that satisfy at least Condition 1, and are polyphenylene ethers having a slope of less than 0.6 as calculated by conformation plotting.
  • a curable resin laminate characterized by (Condition 1) have hydrogen atoms at the ortho and para positions
  • the present invention may be a dry film having the curable resin laminate.
  • the present invention may be a cured product comprising the curable laminate.
  • the present invention may be an electronic component having the cured product.
  • curable resin laminate that has low dielectric properties and is useful for forming an insulating layer that has excellent adhesion (peel strength) to a conductor layer.
  • a curable resin laminate which is a laminate structure including at least two resin layers, will be described below, but the present invention is not limited to the following.
  • phenols that are used as raw materials for polyphenylene ether (PPE) and can be constituent units of polyphenylene ether are collectively referred to as "raw material phenols.”
  • polyphenylene ether in which some or all of the functional groups (for example, hydroxyl groups) of polyphenylene ether are modified is sometimes simply referred to as "polyphenylene ether". Accordingly, the reference to “polyphenylene ether” includes both unmodified and modified polyphenylene ethers unless there is a contradiction.
  • monohydric phenols are mainly disclosed as raw material phenols in this specification, polyhydric phenols may be used as raw material phenols within a range that does not impair the effects of the present invention.
  • solid content is used to mean non-volatile content (components other than volatile components such as solvents).
  • the components contained in the curable composition and the components contained in the curable resin layer, which is the dried coating film of the curable composition may be described without distinguishing between them.
  • the curable resin laminate of the present invention has a first resin layer and a second resin layer laminated (directly) on at least one main surface of the first resin layer.
  • the thickness of the second resin layer is 5 to 35% of the total thickness of the first resin layer and the second resin layer.
  • the first resin layer and the second resin layer contain polyphenylene ether.
  • the first resin layer essentially contains a filler
  • the second resin layer may or may not contain a filler.
  • the second resin layer must (1) not contain a filler, or (2) when the second resin layer contains a filler, the content of the filler in the second resin layer is the same as that of the first resin layer. Preferably, it is configured to be less than the filler content.
  • the curable resin laminate of the present invention is usually used so that the second resin layer is in contact with an adherend such as a copper foil (copper circuit). Therefore, in the case of a two-layer laminate consisting of a first resin layer and a second resin layer, the first resin layer side of the resin layer is arranged so as to be in contact with a substrate such as a wiring board, and It is used so that the second resin layer is in contact with an object to be adhered such as a copper foil (copper circuit).
  • a base film made of polyethylene terephthalate, polypropylene, or the like, or other resin layers may be laminated on the outer layer of the first resin layer and/or the second resin layer. Two or more layers of the base film and other layers may be provided.
  • the curable resin laminate of the present invention may be a laminate that satisfies the above configuration.
  • a laminate consisting of at least three layers is also possible.
  • the curable resin laminate of the present invention has two second resin layers, for example, the thickness, material, etc. of each second resin layer are adjusted within a range that satisfies the following conditions A, B and/or C: They may be the same or different.
  • the combined thickness of the second resin layer is (1) 10 to 70% of the combined thickness of the first resin layer and the second resin layer, and the second resin layer alone
  • the layer (2) does not contain a filler, or the filler content in the second resin layer is 40% by mass or less with respect to the total solid content in the composition, and the filler in the second resin layer The content is configured to be less than the content of the filler in the first resin layer.
  • the total thickness of the second resin layer is 10 to 70% of the total thickness of the first resin layer and the second resin layer, and each resin layer has a predetermined thickness as a cured product. Configured to meet melt viscosity.
  • Condition C The total thickness of the second resin layer is 10 to 70% of the total thickness of the first resin layer and the second resin layer, and each resin layer has a predetermined thickness as a cured product. Configured to meet Young's modulus requirements.
  • the first resin layer of the present invention contains (A1) polyphenylene ether and (B1) filler.
  • the content ratio M B1 of the (B1) filler with respect to the total solid content in the first resin layer is preferably 30% by mass or more.
  • the first resin layer is a dry coating obtained from a first curable composition comprising (A1) a polyphenylene ether and (B1) a filler. It is preferable that the dry coating film has a filler content M B1 of 30% by mass or more relative to the total solid content in the first curable composition.
  • Filler content M B1 is more preferably 30 to 80% by mass, still more preferably 50 to 80% by mass, and particularly preferably 65 to 80% by mass, from the viewpoint of low thermal expansion. .
  • the content of (A1) polyphenylene ether M A1 with respect to the total solid content in the first resin layer is preferably 3 to 40% by mass, more preferably 5 to 30% by mass, and still more preferably 7 to 25 % by mass, particularly preferably 9 to 20% by mass.
  • the first resin layer may contain (C1) other components.
  • the thickness T1 of the first resin layer is thicker than the thickness T2 of the second resin layer.
  • the thickness T 1 of the first resin layer is, for example, preferably 1 to 50 ⁇ m, more preferably 10 to 45 ⁇ m, even more preferably 20 to 30 ⁇ m, particularly 24 to 29 ⁇ m. preferable.
  • the second resin layer of the present invention contains (A2) polyphenylene ether.
  • the second resin layer may contain (B2) a filler or may not contain (B2) a filler.
  • the second resin layer does not contain (B2) a filler, or (B2) has a filler content (M B2 ) of 40% by mass or less with respect to the total solid content in the composition, and the ( B1)
  • the relationship between the filler content (M B1 ) and the (B2) filler content (M B2 ) is preferably M B1 >M B2 .
  • the second resin layer is a dry coating obtained from a second curable composition comprising (A2) polyphenylene ether.
  • the second resin layer is a dry coating film obtained from a second curable composition containing no (B2) filler, or the content of (B2) filler relative to the total solid content in the second curable composition M B2 is 40% by mass or less, and the relationship between the (B1) filler content (M B1 ) and the (B2) filler content (M B2 ) is M B1 >M B2 .
  • a dry coating obtained from a curable composition is preferred.
  • [Content of (B1) filler with respect to total solids in the first curable composition M B1 ], [Content of (B2) filler with respect to total solids in the second curable composition M B2 ] (M B2 /M B1 ) is more preferably 50% or less, still more preferably 45% or less, and still more preferably 15% or less from the viewpoint of low dielectric properties.
  • the content M B2 of the filler (B2) in the second resin layer and the second curable composition is more preferably 35% by mass or less.
  • the content of (B2) filler M B2 is It is preferably 5 to 35% by mass, more preferably 20 to 35% by mass.
  • the content M A2 of (A2) polyphenylene ether with respect to the total solid content in the second resin layer (or the total solid content of the second curable composition) is preferably 10 to 50% by mass, more preferably is 30 to 50% by mass.
  • the second resin layer may contain (C2) other components.
  • the [ second The ratio (T 2 /(T 1 +T 2 )) of the resin layer thickness T 2 ] is 5 to 35%, preferably 10 to 25%, and preferably 15 to 25%. more preferred.
  • the ratio of the thickness T2 of the second resin layer is within the above range, it is possible to obtain stable adhesion with the conductor layer.
  • the thickness T 2 of the second resin layer is thinner than the thickness T 1 of the first resin layer, for example, preferably 0.5 to 40 ⁇ m, more preferably 0.7 to 30 ⁇ m. It is more preferably up to 20 ⁇ m, particularly preferably 3 to 10 ⁇ m.
  • the first resin layer preferably has a melt viscosity (MV 1 ) at 140°C of more than 20,000 dPa s, more preferably more than 25,000 dPa s, and more than 30,000 dPa s. It is particularly preferred to have The upper limit of melt viscosity (MV 1 ) is not particularly limited, but is, for example, 500,000 dPa ⁇ s.
  • the second resin layer preferably has a melt viscosity (MV 2 ) at 140° C. of 40,000 dPa ⁇ s or less.
  • the lower limit of melt viscosity (MV 2 ) is not particularly limited, but is, for example, 10,000 dPa ⁇ s.
  • the relationship between the melt viscosity (MV 1 ) of the first resin layer at 140° C. and the melt viscosity (MV 2 ) of the second resin layer is preferably MV 1 >MV 2 .
  • the melt viscosity difference (MV 1 ⁇ MV 2 ) between the melt viscosity (MV 1 ) of the first resin layer at 140° C. and the melt viscosity (MV 2 ) of the second resin layer at 140° C. is , is preferably 2,000 dPa ⁇ s or more, more preferably 5,000 dPa ⁇ s or more.
  • the upper limit of the melt viscosity difference (MV 1 -MV 2 ) is not particularly limited, but is, for example, 450,000 dPa ⁇ s, 400,000 dPa ⁇ s or 300,000 dPa ⁇ s.
  • the melt viscosity of the resin layer at 140°C can be adjusted by changing the molecular structure, molecular weight, and content of the resin component (polyphenylene ether), or by changing the content of the filler component. Specifically, when the filler content in the resin layer is increased, the melt viscosity at 140° C. tends to increase.
  • Each melt viscosity of the first resin layer and the second resin layer can be measured by the following method.
  • Each single resin layer (for example, a dry film having a single resin layer with a thickness of 25 ⁇ m) is repeatedly laminated to a thickness of 500 ⁇ m using a vacuum laminator MVLP-500 manufactured by Meiki Seisakusho, and the melt viscosity is measured.
  • Use a test piece for This test piece is put into a melt viscosity measuring device, and the melt viscosity at 140° C. [unit: dPa ⁇ s] is measured.
  • a HAAKE rheometer As a melt viscosity measuring device, a HAAKE rheometer (MARS 40) is used, an oscillation temperature increase method (5 ° C./min), a measurement temperature range: 70 to 200 ° C., a frequency: 1 Hz, a stress control: 2. 5 N, parallel plate: diameter 20 mm, gap: 450 ⁇ m, sample size: 2.5 ⁇ 2.5 cm.
  • the first resin layer preferably has a Young's modulus (YM 1 ) as a cured product of more than 2.0 GPa, more preferably more than 3.0 GPa, even more preferably more than 3.5 GPa. , above 5.0 GPa.
  • YM 1 Young's modulus
  • the second resin layer preferably has a Young's modulus (YM 2 ) as a cured product of 3.0 GPa or less, more preferably 2.0 GPa or less.
  • YM 2 Young's modulus
  • the relationship between the Young's modulus (YM 1 ) of the cured product of the first resin layer and the Young's modulus (YM 2 ) of the cured product of the second resin layer is preferably YM 1 >YM 2 .
  • the Young's modulus difference (YM 1 -YM 2 ) between the Young's modulus (YM 1 ) of the cured product of the first resin layer and the Young's modulus (YM 2 ) of the cured product of the second resin layer is , is preferably 0.5 GPa or more, more preferably 1.0 GPa or more, and particularly preferably 1.5 GPa or more.
  • the upper limit of the Young's modulus difference (YM 1 -YM 2 ) is not particularly limited, but is 8 GPa, 6 GPa, 5 GPa, or the like.
  • the Young's modulus of the resin layer as a cured product can be changed by changing the molecular structure, molecular weight, and content of the resin component (polyphenylene ether), changing the number of curing reactive functional groups contained in the composition, and changing the filler content. Adjustable. Specifically, when the filler content in the resin layer is increased, the Young's modulus tends to increase.
  • the Young's modulus of the resin layer as a cured product can be measured by the following method.
  • a cured resin layer having a thickness of 25 ⁇ m is cut into a piece having a length of 8 cm and a width of 0.5 cm, and the Young's modulus is measured under the following conditions.
  • the Young's modulus is obtained from the slope of the strain in the obtained stress-strain diagram when the stress is from 5 MPa to 10 MPa.
  • Tester Tensile tester EZ-SX (manufactured by Shimadzu Corporation) Distance between chucks: 50mm Test speed: 1mm/min Elongation calculation: (pulling movement amount/distance between chucks) x 100
  • the polyphenylene ether of the present invention is a polyphenylene ether obtained from raw material phenols containing phenols satisfying at least Condition 1 and having a branched structure.
  • Such polyphenylene ether is defined as a prescribed polyphenylene ether. (Condition 1) have hydrogen atoms at the ortho and para positions
  • Phenols satisfying condition 1 for example, phenols (A) and phenols (B) to be described later ⁇ have a hydrogen atom at the ortho position.
  • an ether bond can be formed at the ortho position as well, it is possible to form a branched chain structure.
  • a polyphenylene ether having a branched structure may be expressed as a predetermined polyphenylene ether branched polyphenylene ether.
  • This predetermined polyphenylene ether is considered to be, for example, a polyphenylene ether compound having at least a branched structure as represented by formula (i) in its skeleton.
  • R a to R k are hydrogen atoms or hydrocarbon groups having 1 to 15 carbon atoms (preferably 1 to 12 carbon atoms).
  • the raw material phenols constituting the predetermined polyphenylene ether may contain other phenols that do not satisfy the condition 1 within a range that does not impair the effects of the present invention.
  • phenols examples include phenols (C) and phenols (D) described later, and phenols having no hydrogen atom at the para-position.
  • phenols (C) and phenols (D) which will be described later, form ether bonds at the ipso and para positions when oxidatively polymerized, and are polymerized in a straight chain. Therefore, in order to increase the molecular weight of the polyphenylene ether, it is preferable to further include phenols (C) and phenols (D) as raw material phenols.
  • Certain polyphenylene ethers may also have functional groups containing unsaturated carbon bonds. By having such a functional group, various properties of the cured product become better due to the effect of imparting crosslinkability and excellent reactivity.
  • unsaturated carbon bond means an ethylenic or acetylenic multiple bond (double bond or triple bond) between carbon atoms unless otherwise specified.
  • Such functional groups containing unsaturated carbon bonds are not particularly limited, but are alkenyl groups (e.g., vinyl groups, allyl groups), alkynyl groups (e.g., ethynyl groups), or (meth)acryloyl groups.
  • a vinyl group, an allyl group, or a (meth)acryloyl group is more preferred, and from the viewpoint of excellent low dielectric properties, an allyl group is even more preferred.
  • These functional groups having unsaturated carbon bonds can have, for example, 15 or less, 10 or less, 8 or less, 5 or less, or 3 or less carbon atoms.
  • a method for introducing such a functional group containing an unsaturated carbon bond into a predetermined polyphenylene ether is not particularly limited, but the following [Method 1] or [Method 2] can be mentioned.
  • Method 1 is As raw material phenols, Phenols (A) that satisfy at least the following conditions 1 and 2 below are included (form 1), or phenols (B) that satisfy at least the following conditions 1 but do not satisfy the following conditions 2 and satisfy the following conditions 1 First, it is a method of including a mixture of phenols (C) that satisfies the following condition 2 (form 2). (Condition 1) Having hydrogen atoms at the ortho and para positions (Condition 2) Having a hydrogen atom at the para position and having a functional group containing an unsaturated carbon bond
  • Method 2 is In this method, a terminal hydroxyl group of a branched polyphenylene ether is modified with a functional group containing an unsaturated carbon bond to obtain a terminally modified polyphenylene ether.
  • the predetermined polyphenylene ether obtained by method 1 uses at least phenols satisfying condition 2 ⁇ for example, one of phenols (A) and phenols (C) ⁇ as a phenol raw material, so at least unsaturated carbon bonds It will have crosslinkability due to the hydrocarbon groups it contains.
  • a predetermined polyphenylene ether has a hydrocarbon group containing such an unsaturated carbon bond, it reacts with the hydrocarbon group and performs modification such as epoxidation using a compound having a reactive functional group such as an epoxy group. It is also possible to
  • the predetermined polyphenylene ether obtained by Method 1 is, for example, a polyphenylene ether having at least a branched structure represented by formula (i) in the skeleton, and a hydrocarbon group containing at least one unsaturated carbon bond. It is considered to be a compound having a functional group. Specifically, it is considered to be a compound in which at least one of R a to R k in the above formula (i) is a hydrocarbon group having an unsaturated carbon bond.
  • the phenol (B) is at least one of o-cresol, 2-phenylphenol, 2-dodecylphenol and phenol, and phenols ( Preferably C) is 2-allyl-6-methylphenol.
  • Phenols (A) are, as described above, phenols that satisfy both conditions 1 and 2, that is, phenols having hydrogen atoms at the ortho and para positions and having a functional group containing an unsaturated carbon bond. and preferably a phenol (a) represented by the following formula (1).
  • R 1 to R 3 are hydrogen atoms or hydrocarbon groups having 1 to 15 carbon atoms. However, at least one of R 1 to R 3 is a hydrocarbon group having an unsaturated carbon bond. From the viewpoint of facilitating polymerization during oxidative polymerization, the hydrocarbon group preferably has 1 to 12 carbon atoms.
  • Phenols (a) represented by formula (1) include o-vinylphenol, m-vinylphenol, o-allylphenol, m-allylphenol, 3-vinyl-6-methylphenol, 3-vinyl-6- Ethylphenol, 3-vinyl-5-methylphenol, 3-vinyl-5-ethylphenol, 3-allyl-6-methylphenol, 3-allyl-6-ethylphenol, 3-allyl-5-methylphenol, 3- Allyl-5-ethylphenol and the like can be exemplified. Only one kind of the phenols represented by the formula (1) may be used, or two or more kinds thereof may be used.
  • Phenols (B) are, as described above, phenols that satisfy condition 1 but do not satisfy condition 2, i.e., have hydrogen atoms at the ortho- and para-positions and do not have functional groups containing unsaturated carbon bonds. Phenols, preferably phenols (b) represented by the following formula (2).
  • R 4 to R 6 are hydrogen atoms or hydrocarbon groups having 1 to 15 carbon atoms. However, R 4 to R 6 do not have unsaturated carbon bonds. From the viewpoint of facilitating polymerization during oxidative polymerization, the hydrocarbon group preferably has 1 to 12 carbon atoms.
  • Phenols (b) represented by formula (2) include phenol, o-cresol, m-cresol, o-ethylphenol, m-ethylphenol, 2,3-xylenol, 2,5-xylenol, 3,5 -xylenol, o-tert-butylphenol, m-tert-butylphenol, o-phenylphenol, m-phenylphenol, 2-dodecylphenol and the like. Only one kind of phenols represented by the formula (2) may be used, or two or more kinds thereof may be used.
  • Phenols (C) are, as described above, phenols that do not satisfy condition 1 but satisfy condition 2, i.e., have a hydrogen atom at the para position, do not have a hydrogen atom at the ortho position, and have unsaturated carbon is a phenol having a functional group containing, preferably a phenol (c) represented by the following formula (3).
  • R 7 and R 10 are hydrocarbon groups having 1 to 15 carbon atoms
  • R 8 and R 9 are hydrogen atoms or hydrocarbon groups having 1 to 15 carbon atoms.
  • at least one of R 7 to R 10 is a hydrocarbon group having an unsaturated carbon bond.
  • the hydrocarbon group preferably has 1 to 12 carbon atoms.
  • Phenols (c) represented by formula (3) include 2-allyl-6-methylphenol, 2-allyl-6-ethylphenol, 2-allyl-6-phenylphenol, 2-allyl-6-styrylphenol , 2,6-divinylphenol, 2,6-diallylphenol, 2,6-diisopropenylphenol, 2,6-dibutenylphenol, 2,6-diisobutenylphenol, 2,6-diisopentenylphenol, 2 -methyl-6-styrylphenol, 2-vinyl-6-methylphenol, 2-vinyl-6-ethylphenol and the like. Only one kind of phenols represented by the formula (3) may be used, or two or more kinds thereof may be used.
  • Phenols (D) are, as described above, phenols having a hydrogen atom at the para position, no hydrogen atom at the ortho position, and no functional group containing an unsaturated carbon bond. Phenols (d) represented by the formula (4).
  • R 11 and R 14 are hydrocarbon groups having 1 to 15 carbon atoms and have no unsaturated carbon bonds
  • R 12 and R 13 are hydrogen atoms or have no unsaturated carbon bonds. It is a hydrocarbon group having 1 to 15 carbon atoms. From the viewpoint of facilitating polymerization during oxidative polymerization, the hydrocarbon group preferably has 1 to 12 carbon atoms.
  • Phenols (d) represented by formula (4) include 2,6-dimethylphenol, 2,3,6-trimethylphenol, 2-methyl-6-ethylphenol, and 2-ethyl-6-n-propylphenol. , 2-methyl-6-n-butylphenol, 2-methyl-6-phenylphenol, 2,6-diphenylphenol, 2,6-ditolylphenol and the like. Only one kind of phenols represented by the formula (4) may be used, or two or more kinds thereof may be used.
  • hydrocarbon groups include alkyl groups, cycloalkyl groups, aryl groups, alkenyl groups and alkynyl groups, preferably alkyl groups, aryl groups and alkenyl groups.
  • hydrocarbon groups having unsaturated carbon bonds include alkenyl groups and alkynyl groups. These hydrocarbon groups may be linear or branched.
  • Such a terminal-modified branched polyphenylene ether has a branched structure and a terminal hydroxyl group is modified, so that it is soluble in various solvents, and a cured product with further reduced low dielectric properties can be obtained.
  • the terminal-modified branched polyphenylene ether has an unsaturated carbon bond arranged at the terminal position, the reactivity is extremely good, and the properties of the resulting cured product are further improved.
  • the terminal hydroxyl group and the modifying compound When modifying the terminal hydroxyl group with a modifying compound, the terminal hydroxyl group and the modifying compound usually form an ether bond or an ester bond.
  • the modifying compound is not particularly limited as long as it contains a functional group having an unsaturated carbon bond and can react with a phenolic hydroxyl group in the presence or absence of a catalyst.
  • Suitable examples of modifying compounds include organic compounds represented by the following formula (11).
  • R A , R B , and R C are each independently hydrogen or a hydrocarbon group having 1 to 9 carbon atoms, and R D is a hydrocarbon group having 1 to 9 carbon atoms. and X is a group capable of reacting with a phenolic hydroxyl group such as F, Cl, Br, I or CN.
  • Suitable examples of modifying compounds include organic compounds represented by the following formula (11-1).
  • R is a vinyl group, an allyl group, or a (meth)acryloyl group
  • X is a group capable of reacting with a phenolic hydroxyl group such as F, Cl, Br, and I. .
  • terminal hydroxyl groups of the branched polyphenylene ether have been modified can be confirmed by comparing the hydroxyl values of the branched polyphenylene ether and the terminal-modified branched polyphenylene ether. A part of the terminal-modified branched polyphenylene ether may remain unmodified hydroxyl groups.
  • reaction temperature, reaction time, presence or absence of a catalyst, the type of catalyst, etc. during modification can be designed as appropriate. Two or more compounds may be used as modifying compounds.
  • one type may be used alone, or two or more types may be used.
  • the ratio of phenols satisfying Condition 1 to the total amount of raw material phenols used in the synthesis of a predetermined polyphenylene ether is preferably 1 to 50 mol%.
  • the ratio of the phenols that satisfy the condition 2 to the total of the raw material phenols is 0.5 to 99 mol%. It is preferably 1 to 99 mol %, and more preferably 1 to 99 mol %.
  • the slope of the logarithmic plot of the absolute molecular weight and the radius of gyration obtained by GPC-MALS indicates the degree of branching, and the smaller the slope, the more advanced the branching.
  • a smaller slope calculated from the conformation plot indicates more branching of the polyphenylene ether, and a larger slope indicates less branching of the polyphenylene ether.
  • the above slope is less than 0.6, 0.55 or less, 0.50 or less, 0.45 or less, 0.40 or less, or 0.55 or less. It is preferably 35 or less. If the slope is within this range, the polyphenylene ether is considered to have sufficient branching.
  • the lower limit of the slope is not particularly limited, it is, for example, 0.05 or more, 0.10 or more, 0.15 or more, or 0.20 or more.
  • the slope of the conformation plot can be adjusted by changing the temperature, catalyst amount, stirring speed, reaction time, oxygen supply amount, and solvent amount during the synthesis of polyphenylene ether. More specifically, by increasing the temperature, increasing the amount of catalyst, increasing the stirring speed, increasing the reaction time, increasing the amount of oxygen supplied, and/or decreasing the amount of solvent, the slope of the conformation plot becomes tend to be lower (the polyphenylene ether tends to branch more easily).
  • the predetermined polyphenylene ether constituting the curable composition of the present invention preferably has a number average molecular weight of 2,000 to 30,000, more preferably 5,000 to 30,000, and more preferably 8,000 to 30,000. It is more preferably 30,000, and particularly preferably 8,000 to 25,000. By setting the molecular weight to such a range, the film formability of the curable composition can be improved while maintaining the solubility in the solvent. Further, the polyphenylene ether constituting the curable composition of the present invention preferably has a polydispersity index (PDI: weight average molecular weight/number average molecular weight) of 1.5-20.
  • PDI polydispersity index
  • the number average molecular weight and weight average molecular weight are measured by gel permeation chromatography (GPC) and converted using a calibration curve prepared using standard polystyrene.
  • the hydroxyl value of the predetermined polyphenylene ether constituting the curable composition of the present invention is preferably 15 or less, more preferably 2 or more and 10 in the range of number average molecular weight (Mn) of 2,000 to 30,000. Below, more preferably 3 or more and 8 or less.
  • the hydroxyl value may be lower than the above numerical value.
  • ⁇ Solvent Solubility of Predetermined Polyphenylene Ether> One gram of a given polyphenylene ether constituting the curable composition of the present invention is soluble in preferably 100 grams of cyclohexanone (more preferably 100 grams of cyclohexanone, DMF and PMA) at 25°C.
  • 1 g of polyphenylene ether is soluble in 100 g of a solvent (for example, cyclohexanone) means that when 1 g of polyphenylene ether and 100 g of solvent are mixed, turbidity and precipitation cannot be visually confirmed. More preferably, the predetermined polyphenylene ether is soluble in 1 g or more in 100 g of cyclohexanone at 25°C.
  • the predetermined polyphenylene ether that constitutes the curable composition of the present invention has a branched structure, thereby improving the solubility in various solvents and the dispersibility and compatibility between components in the composition. Therefore, each component of the composition is uniformly dissolved or dispersed, and a uniform cured product can be obtained. As a result, the cured product is extremely excellent in mechanical properties and the like. In particular, certain polyphenylene ethers can crosslink with each other. As a result, the mechanical properties, low thermal expansion, etc. of the resulting cured product are improved.
  • the predetermined polyphenylene ether constituting the curable composition of the present invention is a conventionally known polyphenylene ether synthesis method (polymerization conditions, presence or absence of catalyst, type of catalyst, etc.), except that specific ones are used as raw material phenols. It is possible to manufacture by applying
  • a predetermined polyphenylene ether can be obtained, for example, by preparing a polymerization solution containing a specific phenol, a catalyst and a solvent (polymerization solution preparation step), passing oxygen through at least the solvent (oxygen supply step), and performing the polymerization containing oxygen. It can be produced by oxidatively polymerizing phenols in a solution (polymerization step).
  • each step may be performed continuously, a part or all of a certain step and a part or all of another step may be performed at the same time, a certain step may be interrupted, and another step may be performed.
  • the oxygen supply step may be performed during the polymerization solution preparation step or during the polymerization step.
  • the method for producing the polyphenylene ether of the present invention may include other steps as necessary. Other steps include, for example, a step of extracting the polyphenylene ether obtained by the polymerization step (for example, a step of performing reprecipitation, filtration and drying), the modification step described above, and the like.
  • the polymerization solution preparation step is a step of mixing raw materials containing phenols to be polymerized in the polymerization step described below to prepare a polymerization solution.
  • Raw materials for the polymerization solution include raw material phenols, catalysts, and solvents.
  • the catalyst is not particularly limited, and may be an appropriate catalyst used in oxidative polymerization of polyphenylene ether.
  • catalysts include amine compounds and metal amine compounds composed of heavy metal compounds such as copper, manganese and cobalt and amine compounds such as tetramethylethylenediamine. It is preferable to use a copper-amine compound in which a copper compound is coordinated to an amine compound. Only one kind of catalyst may be used, or two or more kinds thereof may be used.
  • the content of the catalyst is not particularly limited, but it may be 0.1 to 0.6 mol% or the like with respect to the total amount of raw material phenols in the polymerization solution.
  • Such a catalyst may be dissolved in an appropriate solvent in advance.
  • the solvent is not particularly limited, and may be an appropriate solvent used in oxidative polymerization of polyphenylene ether. It is preferable to use a solvent capable of dissolving or dispersing the phenolic compound and the catalyst.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; halogenated aromatic hydrocarbons such as chloroform, methylene chloride, chlorobenzene, dichlorobenzene and trichlorobenzene; nitro compounds such as nitrobenzene; Methyl ethyl ketone (MEK), cyclohexanone, tetrahydrofuran, ethyl acetate, N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide (DMF), propylene glycol monomethyl ether acetate (PMA), diethylene glycol monoethyl ether acetate (CA) etc. Only one solvent may be used, or two or more solvents may be used.
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • halogenated aromatic hydrocarbons such as chloro
  • the solvent may contain water, a solvent compatible with water, or the like.
  • the content of the solvent in the polymerization solution is not particularly limited, and may be adjusted as appropriate.
  • the polymerization solution may contain other raw materials as long as they do not impair the effects of the present invention.
  • the oxygen supply step is a step of passing an oxygen-containing gas into the polymerization solution.
  • the ventilation time of oxygen gas and the oxygen concentration in the oxygen-containing gas used can be changed as appropriate according to atmospheric pressure, temperature, etc.
  • the polymerization step is a step of oxidative polymerization of phenols in the polymerization solution under the condition that oxygen is supplied to the polymerization solution.
  • stirring may be performed at 25 to 100° C. for 2 to 24 hours.
  • a specific method for introducing a functional group containing an unsaturated carbon bond into a branched polyphenylene ether is understood. can. That is, by making the type of raw material phenols specific, or by further providing a step (modification step) for modifying terminal hydroxyl groups after the polymerization step, a predetermined polyphenylene ether having a functional group containing an unsaturated carbon bond can be obtained.
  • fillers include inorganic fillers and organic fillers.
  • Inorganic fillers include metal oxides such as silica, alumina and titanium oxide; metal hydroxides such as aluminum hydroxide and magnesium hydroxide; clay minerals such as talc and mica; ferrovskites such as barium titanate and strontium titanate. Filler having a type crystal structure; boron nitride, aluminum borate, barium sulfate, calcium carbonate, etc. can be used.
  • organic fillers examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene/ethylene copolymer (ETFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene/hexafluoropropylene.
  • Fluoropolymer filler such as copolymer (FEP), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF); cycloolefin polymer (COP), cycloolefin copolymer (COC), etc.
  • a hydrocarbon-based resin filler or the like can be used.
  • the filler component is preferably silica in consideration of low dielectric loss tangent and low thermal expansion.
  • Silica which is a preferred form of the filler component, will be described below.
  • the average particle size of silica is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 3 ⁇ m.
  • the average particle diameter can be obtained as the median diameter (d50, volume basis) based on the cumulative distribution from the particle size distribution measured by the laser diffraction/scattering method using a commercially available laser diffraction/scattering particle size distribution analyzer. can.
  • silica with different average particle sizes may be used together.
  • silica having an average particle size of 1 ⁇ m or more may be used in combination with nano-order fine silica having an average particle size of less than 1 ⁇ m.
  • the silica may be surface-treated with a coupling agent. Dispersibility with polyphenylene ether can be improved by treating the surface with a silane coupling agent. In addition, affinity with organic solvents can also be improved.
  • silane coupling agent for example, an epoxysilane coupling agent, a mercaptosilane coupling agent, a vinylsilane coupling agent, or the like can be used.
  • epoxysilane coupling agents that can be used include ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldimethoxysilane.
  • a mercaptosilane coupling agent for example, ⁇ -mercaptopropyltriethoxysilane can be used.
  • vinylsilane coupling agent for example, vinyltriethoxysilane can be used.
  • the amount of the silane coupling agent used may be, for example, 0.1 to 5 parts by mass or 0.5 to 3 parts by mass with respect to 100 parts by mass of silica.
  • the first curable composition and resin layer may contain (C1) other components, and the second curable composition and resin layer may contain (C2) other components.
  • C1) Other components and (C2) Other components may be the same component or different components.
  • (C1) other components and (C2) other components are collectively described as other components.
  • Other components include conventionally known additives that can be blended into the first curable composition and the second curable composition. More specifically, it preferably contains a peroxide, a cross-linking curing agent, an elastomer, a maleimide compound, and the like.
  • other components include flame retardant improvers (phosphorus compounds, etc.), cellulose nanofibers, polymer components (cyanate ester resins, epoxy resins, phenol novolak resins, etc.), as long as they do not impair the effects of the present invention.
  • flame retardant improvers phosphorus compounds, etc.
  • cellulose nanofibers polymer components
  • cyanate ester resins epoxy resins, phenol novolak resins, etc.
  • the curable composition or curable resin laminate preferably contains a peroxide.
  • Peroxides include methyl ethyl ketone peroxide, methyl acetoacetate peroxide, acetylacetoperoxide, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(t-butylperoxy)butane, t -butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t -butyl hydroperoxide, t-butyl hydroperoxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5-dimethyl-2,5-di( t-butylperoxy)hexyne, 2,5-dimethyl-2,5-di(t-butylper
  • peroxides having a 1-minute half-life temperature of 130°C to 180°C are desirable. Since such a peroxide has a relatively high reaction initiation temperature, it is difficult to accelerate curing at a time such as drying when curing is not required, and the storage stability of the curable composition containing the polyphenylene ether is not impaired. In addition, since it has low volatility, it does not volatilize during drying or storage, and has good stability.
  • the content of the peroxide in the curable composition or in the curable resin laminate is 0.00% per total solid content in the curable composition or in the curable resin laminate. It is preferably from 01 to 20% by mass, more preferably from 0.05 to 10% by mass, and particularly preferably from 0.1 to 10% by mass. By setting the total amount of the peroxide within this range, it is possible to prevent deterioration of film quality when formed into a coating film, while ensuring sufficient effects at low temperatures.
  • azo compounds such as azobisisobutyronitrile and azobisisovaleronitrile, and radical initiators such as dicumyl and 2,3-diphenylbutane.
  • the curable composition or curable resin laminate preferably contains a cross-linking curing agent.
  • cross-linking curing agent those having good compatibility with polyphenylene ether are used.
  • Polyfunctional vinyl compounds such as divinylbenzene, divinylnaphthalene, and divinylbiphenyl; vinylbenzyl synthesized from the reaction of phenol and vinylbenzyl chloride; Ether compounds; styrene monomers, allyl ether compounds synthesized from the reaction of phenol and allyl chloride; and trialkenyl isocyanurates are preferred.
  • trialkenyl isocyanurate which has particularly good compatibility with polyphenylene ether, is preferable.
  • TAC is preferred. These exhibit low dielectric properties and can increase heat resistance.
  • TAIC registered trademark
  • TAIC is particularly preferred because it has excellent compatibility with polyphenylene ether.
  • (Meth)acrylate compounds may also be used as the cross-linking curing agent.
  • Trimethylolpropane trimethacrylate and the like can be used as tri- to penta-functional methacrylate compounds, while trimethylolpropane triacrylate and the like can be used as tri- to penta-functional acrylate compounds.
  • the heat resistance can be enhanced by using these cross-linking curing agents. Only one type of cross-linking curing agent may be used, or two or more types may be used.
  • a component in a curable composition or a curable resin laminate containing a predetermined polyphenylene ether contains a hydrocarbon group having an unsaturated carbon bond
  • curing with excellent dielectric properties can be obtained by curing with a cross-linking curing agent. can get things.
  • the blending ratio of the predetermined polyphenylene ether and the cross-linkable curing agent is as follows: It is preferably from 20:80 to 90:10, more preferably from 30:70 to 90:10. By setting it as such a range, the hardened
  • the maleimide compound is not particularly limited as long as it contains at least one maleimide group in one molecule.
  • maleimide compound (1) monofunctional aliphatic/cycloaliphatic maleimides, (2) a monofunctional aromatic maleimide, (3) polyfunctional aliphatic/cycloaliphatic maleimides, (4) polyfunctional aromatic maleimides, can be mentioned.
  • Monofunctional aliphatic/alicyclic maleimide (1) includes, for example, N-methylmaleimide, N-ethylmaleimide, and reaction products of maleimidecarboxylic acid and tetrahydrofurfuryl alcohol disclosed in JP-A-11-302278. etc. can be mentioned.
  • Examples of the monofunctional aromatic maleimide (2) include N-phenylmaleimide and N-(2-methylphenyl)maleimide.
  • Polyfunctional aliphatic/alicyclic maleimides (3) include, for example, N,N'-methylenebismaleimide, N,N'-ethylenebismaleimide, tris(hydroxyethyl)isocyanurate and aliphatic/alicyclic maleimides.
  • an isocyanurate skeleton maleimide ester compound obtained by dehydration esterification of a carboxylic acid an isocyanurate skeleton maleimide urethane compound obtained by urethanizing tris(carbamatehexyl)isocyanurate and an aliphatic/alicyclic maleimide alcohol, etc.
  • n is an integer of 1 to 6
  • R1 represents a hydrogen atom or a methyl group.
  • Polyfunctional aromatic maleimides (4) include, for example, N,N'-(4,4'-diphenylmethane)bismaleimide, bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane, 2,2 '-Bis-(4-(4-maleimidophenoxy)propane, N,N'-(4,4'-diphenyloxy)bismaleimide, N,N'-p-phenylenebismaleimide, N,N'-m- Phenylenebismaleimide, N,N'-2,4-tolylenebismaleimide, N,N'-2,6-tolylenebismaleimide, dehydration esterification of maleimide carboxylic acid and various aromatic polyols, or maleimide carboxylic acid Aromatic polymaleimide ester compounds obtained by transesterifying esters with various aromatic polyols, aromatic polymaleimide ester compounds obtained by ether ring-opening reaction
  • the maleimide compound is preferably polyfunctional.
  • the maleimide compound preferably has a bismaleimide skeleton.
  • a maleimide compound can be used individually by 1 type or in combination of 2 or more types.
  • the weight average molecular weight of the maleimide compound is not particularly limited, but is 100 or more, 200 or more, 500 or more, 750 or more, 1,000 or more, 2,000 or more, or 100,000 or less, 50,000 or less, or 10,000. 5,000 or less, 4,000 or less, or 3,500 or less.
  • the content of the maleimide compound is typically 0.5 to 50% by mass, 1 to 40% by mass, or 1.5 to 30% by mass based on the total solid content in the curable composition or curable resin laminate. % by mass. From another point of view, the mixing ratio of the predetermined polyphenylene ether and the maleimide compound in the curable composition or curable resin laminate is 9:91 to 99:1, 17:83 to : It can be 95:5 or 25:75 to 90:10.
  • the mixing ratio of the maleimide compound and the cross-linking curing agent is the solid content ratio (maleimide compound: cross-linking curing agent ), preferably 80:20 to 10:90, more preferably 70:30 to 20:80.
  • Elastomers include, for example, polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, polychloroprene rubber, nitrile rubber, diene synthetic rubber such as ethylene-propylene rubber, ethylene-propylene rubber, butyl rubber, acrylic rubber, polyurethane rubber, fluororubber, Non-diene synthetic rubbers such as silicone rubbers and epichlorohydrin rubbers, natural rubbers, styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, silicone elastomers and the like.
  • the elastomer is preferably a styrene-based elastomer.
  • Styrene-based elastomers include styrene-butadiene-styrene block copolymers, styrene-butadiene-butylene-styrene block copolymers; styrene-isoprene copolymers such as styrene-isoprene-styrene block copolymers; ethylene-butylene-styrene block copolymers, styrene-ethylene-propylene-styrene block copolymers, and the like.
  • Styrenic elastomers having no unsaturated carbon bonds such as styrene-ethylene-butylene-styrene block copolymers, are preferred because the resulting cured product has particularly good dielectric properties
  • the content ratio of the styrene block in the styrene-based elastomer is preferably 10 to 70% by mass, 30 to 60% by mass, or 40 to 50% by mass.
  • the styrene block content ratio can be obtained from the integral ratio of the spectrum measured by 1 H-NMR.
  • raw material monomers for styrene-based elastomers include not only styrene but also styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene.
  • the content of the styrene elastomer in 100% by mass of the elastomer is, for example, 10% by mass or more, 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more. , 80% by mass or more, 90% by mass or more, 95% by mass or more, or 100% by mass.
  • the elastomer may have functional groups (including bonds) that react with other components.
  • the elastomer may have an unsaturated carbon bond as a reactive functional group.
  • unsaturated carbon bonds for example, unsaturated carbon bonds possessed by branched polyphenylene ether
  • the elastomer may be modified using (meth)acrylic acid, maleic acid, their anhydrides or esters. Further, it may be one obtained by adding water to the residual unsaturated bond of the diene elastomer.
  • the number average molecular weight of the elastomer may be 1,000 to 150,000. When the number average molecular weight is at least the lower limit, the low thermal expansion property is excellent, and when it is at most the upper limit, the compatibility with other components is excellent.
  • the content of the elastomer may be 10 to 300 parts by mass with respect to 100 parts by mass of the predetermined polyphenylene ether in the curable composition or curable resin laminate.
  • the elastomer content may be 3 to 65% by mass based on the total solid content in the curable composition or curable resin laminate.
  • the curable resin laminate of the present invention is arranged on the object to be adhered so that the second resin layer and the object to be adhered (copper foil, etc.) are in contact with each other, and is heat-pressed to obtain the object to be adhered.
  • the second resin layer is filled in the irregularities of the object (copper foil, etc.) without gaps, and then the curable resin laminate is cured to form the first resin layer, the second resin layer, and the resin interlayer.
  • a cross-linking reaction occurs at the interface between the adherend and the curable resin laminate, thereby firmly adhering to each other, resulting in excellent peel strength.
  • the content of the solvent used for diluting the curable composition is not particularly limited, and can be adjusted as appropriate according to the application and desired viscosity of the curable composition.
  • the solvent may be N,N-dimethylformamide (DMF). Only one solvent may be used, or two or more solvents may be used.
  • the dry film of the present invention is characterized in that at least one side of a curable resin laminate is supported or protected by a film.
  • the film that serves as the support is not particularly limited, and may be a metal foil such as copper foil, a polyimide film, a polyester film, a polyethylene naphthalate (PEN) film, or the like. These films can also be used as a support or cover film for dry films.
  • a method for producing a dry film includes, for example, coating a solution of the second curable composition on a base film with an applicator or the like, drying to form a second resin layer, and then coating the second resin layer on the A solution of the first curable composition is applied to the base film and dried to form the first resin layer, so that the second resin layer and the first resin layer are laminated in order on the base film.
  • a three-layer structure having the second resin layer on both sides of the first resin layer is obtained.
  • a step of providing other layers may be carried out as necessary.
  • a dry film having a curable resin laminate is produced by laminating a first dry film having a first resin layer and/or a second resin layer instead of the step of sequentially laminating resin layers on the base film described above.
  • a second dry film having is prepared in advance, these are laminated, and the base film is peeled off and laminated to form the two-layer curable resin laminate or the three-layer curable resin laminate is sandwiched between base films.
  • a curable composition having a uniform thickness can be obtained by a known coating method such as comma coater, blade coater, lip coater, rod coater, squeeze coater, reverse coater, transfer roll coater, gravure coater, spray coater.
  • the coating film of the curable composition obtained by coating is dried by heating at a temperature of 60 to 130° C. for 1 to 30 minutes, thereby forming a resin layer composed of a dry coating film.
  • Heat drying can be carried out by known heating means such as a hot air circulation drying oven, an IR oven, a hot plate and a convection oven.
  • the thickness of the resin layer can be adjusted by changing the coating conditions and the viscosity of the curable composition.
  • the curable resin laminate of the present invention is formed on an appropriate substrate so that the second resin layer is on the surface side, and then a conductor layer (copper foil, etc.) is crimped to the second resin layer.
  • a conductor layer copper foil, etc.
  • the first curable composition and the second curable composition may be formed by coating and drying on the substrate, or through the form of the dry film described above. , may be formed on the substrate.
  • the solution of the first curable composition is coated on the substrate and dried to form the first resin layer, and then the first resin layer is formed.
  • the first resin layer and the second resin layer are formed on the substrate in that order.
  • a laminated curable resin laminate can be formed.
  • the coating and drying on the substrate can be carried out by known methods and conditions, and the same coating and drying methods as the dry film manufacturing method described above can be used.
  • a curable resin laminate can be formed by laminating a first resin layer and a second resin layer in this order on a substrate.
  • Lamination of the dry film onto the substrate can be carried out by known methods and conditions. Among them, it is preferable to use a vacuum laminator because it does not generate voids, etc., and the lamination can be performed under the temperature condition of 80 to 160° C. and the time condition of 10 to 120 seconds.
  • an object to be adhered such as a copper foil is placed on the second resin layer, which is the surface layer side of the curable resin laminate, and the second resin layer is formed by applying heat and pressure using a vacuum laminator or a vacuum press. A conductor layer is formed thereon. After that, the curable resin laminate is thermally cured by an appropriate method.
  • thermosetting step for example, the curable resin laminate is heated at 100 to 220°C for 30 to 120 minutes in a hot air circulating drying oven to cause a thermosetting reaction and form a cured product.
  • the curable resin laminate and dry film of the present invention are suitable for forming an insulating film on a circuit board, and are suitable for forming an interlayer adhesive, an electromagnetic wave shield layer, or an interlayer insulating layer.
  • the invention according to Form I comprises: A curable resin laminate having a first resin layer and a second resin layer laminated on at least one main surface of the first resin layer,
  • the second resin layer has a thickness of 5 to 35% of the total thickness of the first resin layer and the second resin layer
  • the first resin layer contains (A1) polyphenylene ether and (B1) a filler
  • the second resin layer contains (A2) polyphenylene ether, and has a Young's modulus (YM 2 ) as a cured product of 3.0 GPa or less
  • the relationship between the Young's modulus (YM 1 ) of the cured product of the first resin layer and the Young's modulus (YM 2 ) of the cured product of the second resin layer is YM 1 >YM 2
  • the (A1) polyphenylene ether and (A2) polyphenylene ether are obtained from raw material phenols containing phenols that satisfy at least Condition 1, and are polyphenylene ethers having a
  • the invention according to Mode I may be a dry film having the curable resin laminate.
  • the invention according to Mode I may be a cured product comprising the curable laminate.
  • the invention according to Mode I may be an electronic component having the cured product.
  • the invention according to Form II comprises: A curable resin laminate having a first resin layer and a second resin layer laminated on at least one main surface of the first resin layer,
  • the second resin layer has a thickness of 5 to 35% of the total thickness of the first resin layer and the second resin layer
  • the first resin layer contains (A1) polyphenylene ether and (B1) a filler
  • the second resin layer contains (A2) polyphenylene ether and has a melt viscosity (MV 2 ) at 140° C. of 40,000 dPa ⁇ s or less, The relationship between the melt viscosity (MV 1 ) of the first resin layer at 140° C. and the melt viscosity (MV 2 ) of the second resin layer at 140° C.
  • the (A1) polyphenylene ether and (A2) polyphenylene ether are obtained from raw material phenols containing phenols that satisfy at least Condition 1, and are polyphenylene ethers having a slope of less than 0.6 as calculated by conformation plotting.
  • a curable resin laminate characterized by (Condition 1) have hydrogen atoms at the ortho and para positions
  • the invention according to Mode II may be a dry film having the curable resin laminate.
  • the invention according to Mode II may be a cured product comprising the curable laminate.
  • the invention according to Mode II may be an electronic component having the cured product.
  • This raw material solution was added dropwise to the flask and reacted at 40° C. for 6 hours while stirring at a rotational speed of 600 rpm. After completion of the reaction, the precipitate was reprecipitated with a mixed solution of 20 L of methanol and 22 mL of concentrated hydrochloric acid, taken out by filtration, and dried at 80° C. for 24 hours to obtain PPE-1, which is a branched PPE resin.
  • PPE-1 had a number average molecular weight of 20,000 and a weight average molecular weight of 60,000.
  • This raw material solution was added dropwise to the flask and reacted at 40° C. for 6 hours while stirring at a rotational speed of 600 rpm. After completion of the reaction, the precipitate was reprecipitated with a mixture of 20 L of methanol and 22 mL of concentrated hydrochloric acid, filtered and dried at 80° C. for 24 hours to obtain a branched PPE resin.
  • branched PPE resin 50 g of branched PPE resin, 4.8 g of allyl bromide as a modifying compound, and 300 mL of NMP were added to a 1 L two-neck eggplant flask equipped with a dropping funnel and stirred at 60°C. 5 mL of 5M NaOH aqueous solution was added dropwise to the solution. After that, the mixture was further stirred at 60° C. for 5 hours. Next, after neutralizing the reaction solution with hydrochloric acid, it was reprecipitated in 5 L of methanol and taken out by filtration. After drying for 2 hours, a branched PPE resin, PPE-2, was obtained.
  • PPE-2 had a number average molecular weight of 19,000 and a weight average molecular weight of 66,500.
  • the unbranched PPE resin had a number average molecular weight of 1,000 and a weight average molecular weight of 2,000.
  • the number average molecular weight (Mn) and weight average molecular weight (Mw) of each PPE resin were determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • Shodex K-805L was used as a column, the column temperature was 40° C., the flow rate was 1 mL/min, the eluent was chloroform, and the standard substance was polystyrene.
  • Branched PPE resins-1 and 2 were soluble in cyclohexanone.
  • the unbranched PPE resin was not soluble in cyclohexanone, but soluble in chloroform.
  • the thickness of the resin layer after drying the varnish of the curable composition for the first resin layer of Example 1 on a 100 ⁇ m thick PET film (manufactured by Toyobo Co., Ltd.: trade name “TN-200”) was applied with an applicator and dried at 90° C. for 5 minutes to prepare a dry film having the first resin layer of Example 1.
  • a dry film was prepared under the same conditions as above so that the thickness of the resin layer after drying was 25 ⁇ m.
  • ⁇ Measurement of Melt Viscosity of First Resin Layer> Prepare 20 sheets of dry film having the first resin layer of Example 1 with a thickness of 25 ⁇ m, use Meiki Seisakusho's vacuum laminator MVLP-500, laminate so that the resin layers are in contact with each other, and peel off the PET film. Repeatedly, a test piece for melt viscosity measurement having a resin layer thickness of 500 ⁇ m was produced.
  • HAAKE's rheometer (MARS 40), oscillation heating method (5 ° C./min), measurement temperature range: 70 to 200 ° C., frequency: 1 Hz, stress control: 3 Pa, parallel plate : 20 mm, gap: 450 ⁇ m, sample size: 2.5 x 2.5 cm, melt viscosity at 140°C was measured.
  • FV-WS low-roughness copper foil
  • This cured film was cut into a piece having a length of 8 cm and a width of 0.5 cm, and a tensile test was performed under the following conditions.
  • Tester Tensile tester EZ-SX (manufactured by Shimadzu Corporation) Distance between chucks: 50mm Test speed: 1mm/min Elongation calculation: (pulling movement amount/distance between chucks) x 100
  • Second resin layer (dry film including second resin layer)> Then, the varnish of the curable composition for the second resin layer of Example 1 was applied on a PET film having a thickness of 100 ⁇ m with an applicator so that the thickness of the resin layer after drying was 2 ⁇ m, and the temperature was maintained at 90°C. After drying for 5 minutes, a dry film having the second resin layer of Example 1 was produced. For the measurement of melt viscosity and the measurement of Young's modulus, a dry film was prepared under the same conditions as above so that the thickness of the resin layer after drying was 25 ⁇ m.
  • the Young's modulus and melt viscosity of each cured film of the first resin layer and the second resin layer were measured, and a dry film including the first resin layer and the second resin layer was produced.
  • a cured film could not be produced and the melt viscosity could not be measured.
  • a cured film could not be produced from the dry film of Comparative Example 3.
  • ⁇ CTE coefficient of thermal expansion>> Cut out the cured film to a length of 3 cm and a width of 0.3 cm, and use TMA (Thermomechanical Analysis) Q400 manufactured by TA Instruments in tension mode, 16 mm between chucks, load 30 mN, under nitrogen atmosphere, 20 ⁇ The temperature was raised to 250°C at a rate of 5°C/min, and then the temperature was lowered from 250°C to 20°C at a rate of 5°C/min. The average coefficient of thermal expansion from 100° C. to 50° C. during temperature drop was obtained.
  • TMA Thermomechanical Analysis
  • the dielectric constant Dk and dielectric loss tangent Df were measured according to the following methods.
  • the cured film was cut into a length of 80 mm and a width of 45 mm, and measured by an SPDR (Split Post Dielectric Resonator) resonator method as a test piece.
  • SPDR Split Post Dielectric Resonator
  • a vector-type network analyzer E5071C and an SPDR resonator manufactured by Keysight Technologies LLC were used as measuring instruments, and a calculation program manufactured by QWED was used.
  • the conditions were a frequency of 10 GHz and a measurement temperature of 25°C.
  • ⁇ Peel Strength>> The surface of a copper-clad laminate of copper solid (copper foil over the entire surface) was pretreated with CZ-8100 manufactured by MEC. Then, the PET film on the first resin layer side of the dry film of Example 1-13 and Comparative Example 1-6, and the PET film on one side of Example 14 and Comparative Example 7-13 were peeled off, and the exposed resin layer and They were laminated with a vacuum laminator so that the treated surfaces were in contact with each other.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

低誘電特性を有し、導体層に対して優れた密着性(ピール強度)を有する絶縁層を容易に製造することが可能な硬化性樹脂積層体を提供する。第1の硬化性組成物からなる第1の樹脂層と、第1の樹脂層に積層された、第2の硬化性組成物からなる第2の樹脂層とを有し、第2の樹脂層は、第1の樹脂層及び第2の樹脂層の合計の厚みに対して5~35%の厚みを有し、第1の硬化性組成物は、(A1)ポリフェニレンエーテルと、フィラーとを含み、全固形分としてのフィラーの含有率(MB1)が30質量%以上であり、第2の硬化性組成物は、(A2)ポリフェニレンエーテルを含み、固形分としてのフィラーの含有率(MB2)が40質量%以下であり、MB1>MB2であり、(A1)及び(A2)はコンフォメーションプロットで算出された傾きが0.6未満である、硬化性樹脂積層体。

Description

硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品
 本発明は、プリント配線基板(以下、単に「配線板」とも称する)等の電子部品における層間絶縁層を製造するために有用な、硬化性樹脂積層体、当該硬化性樹脂積層体を有するドライフィルム、及び、当該硬化性樹脂積層体又は当該ドライフィルムを用いて得られる硬化性樹脂積層体の硬化物及び電子部品に関する。
 近年、第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等の普及により、電子機器の信号の高周波化が進んでいる。
 このような電子機器に内蔵される配線板には、絶縁材料としてエポキシ樹脂等を主成分とした硬化性樹脂組成物が用いられていたが、かかる組成物からなる硬化物は、比誘電率(Dk)や誘電正接(Df)が高く、高周波数帯の信号に対して伝送損失が増大し、信号の減衰や発熱等の問題が生じていた。そのため、低誘電特性に優れるポリフェニレンエーテルが注目されてきた。
 非特許文献1には、ポリフェニレンエーテルの分子内にアリル基を導入させて、熱硬化性樹脂とすることで、耐熱性を向上させたポリフェニレンエーテルが提案されている。
J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5278-3223.
 しかしながら、ポリフェニレンエーテルを配線板用の絶縁膜、例えば、銅張積層板(CCL)等の上下の導体層に挟まれた層間絶縁材用途等に用いた場合、かかる導体層に用いられる銅箔との密着性、いわゆるピール強度が十分に得られないという問題があった。
 そこで本発明の目的は、低誘電特性を有し、導体層に対して優れた密着性(ピール強度)を有する絶縁層の形成に有用な硬化性樹脂積層体を提供することにある。
 本発明者らは、各層の厚みの構成が特定範囲である多層構造体であって、且つ各層を形成する硬化性組成物が、分岐構造を有するポリフェニレンエーテルを含み、さらにフィラーの含有率を特定の範囲とすることで、上記課題を解決可能し得ることを見出し、本発明を完成させるに至った。即ち、本発明は以下の通りである。
 本発明は、
 第1の硬化性組成物からなる第1の樹脂層と、前記第1の樹脂層の主面の少なくとも一方の面に積層された、第2の硬化性組成物からなる第2の樹脂層とを有する硬化性樹脂積層体であって、
 前記第2の樹脂層は、前記第1の樹脂層及び前記第2の樹脂層の合計の厚みに対して5~35%の厚みを有し、
 前記第1の硬化性組成物は、(A1)ポリフェニレンエーテルと、(B1)フィラーとを含み、前記(B1)フィラーの含有率(MB1)が、組成物中の全固形分に対して30質量%以上であり、
 前記第2の硬化性組成物は、(A2)ポリフェニレンエーテルを含み、(B2)フィラーを含まない、又は、(B2)フィラーの含有率(MB2)が、組成物中の全固形分に対して40質量%以下であり、
 前記(B1)フィラーの含有率(MB1)と前記(B2)フィラーの含有率(MB2)との関係がMB1>MB2であり、
 前記(A1)ポリフェニレンエーテル及び(A2)ポリフェニレンエーテルは、少なくとも条件1を満たすフェノール類を含む原料フェノール類から得られ、コンフォメーションプロットで算出された傾きが0.6未満であるポリフェニレンエーテルであることを特徴とする、硬化性樹脂積層体である。
(条件1)
 オルト位及びパラ位に水素原子を有する
 本発明は、前記硬化性樹脂積層体を有するドライフィルムであってもよい。
 本発明は、前記硬化性積層体からなる硬化物であってもよい。
 本発明は、前記硬化物を有する電子部品であってもよい。
 本発明によれば、低誘電特性を有し、導体層に対して優れた密着性(ピール強度)を有する絶縁層の形成に有用な硬化性樹脂積層体を提供することができる。
 以下、少なくとも2層の樹脂層を含む積層構造体である硬化性樹脂積層体について説明するが、本発明は以下には何ら限定されない。
 説明した化合物に異性体が存在する場合、特に断らない限り、存在し得る全ての異性体が本発明において使用可能である。
 本発明において、ポリフェニレンエーテル(PPE)の原料として用いられ、ポリフェニレンエーテルの構成単位になり得るフェノール類を総称して、「原料フェノール類」とする。
 本発明において、原料フェノール類の説明を行う際に「オルト位」や「パラ位」等と表現した場合、特に断りがない限り、フェノール性水酸基の位置を基準(イプソ位)とする。
 本発明において、単に「オルト位」等と表現した場合、「オルト位の少なくとも一方」等を示す。従って、特に矛盾が生じない限り、単に「オルト位」とした場合、オルト位のどちらか一方を示すと解釈してもよいし、オルト位の両方を示すと解釈してもよい。
 本発明において、ポリフェニレンエーテルが有する一部又は全ての官能基(例えば、水酸基)が変性されたポリフェニレンエーテルを、単に「ポリフェニレンエーテル」と表現する場合がある。従って、「ポリフェニレンエーテル」と表現された場合、特に矛盾が生じない限り、未変性のポリフェニレンエーテル及び変性されたポリフェニレンエーテルの両方を含む。
 本明細書において、原料フェノール類としては主に1価のフェノール類を開示しているが、本発明の効果を阻害しない範囲で、原料フェノール類として多価のフェノール類を使用してもよい。
 本明細書において、数値範囲の上限値と下限値とが別々に記載されている場合、矛盾しない範囲で、各下限値と各上限値との全ての組み合わせが実質的に記載されているものとする。
 本明細書において、固形分とは、不揮発分(溶媒等の揮発成分以外の成分)の意味で使用される。
 以下、硬化性樹脂積層体の構成及び成分、硬化性樹脂積層体の効果、硬化性樹脂積層体の製造方法、硬化性樹脂積層体の用途等について説明する。
 なお、以下においては、硬化性組成物中に含まれる成分と、硬化性組成物の乾燥塗膜である硬化性樹脂層中に含まれる成分と、を区別せずに説明することがある。
<<<<<<硬化性樹脂層の構成及び成分>>>>>>
 本発明の硬化性樹脂積層体は、第1の樹脂層と、第1の樹脂層の主面の少なくとも一方の面に(直接)積層された第2の樹脂層とを有する。
 第2の樹脂層は、前記第1の樹脂層及び前記第2の樹脂層の合計の厚みに対して5~35%の厚みである。
 第1の樹脂層及び第2の樹脂層は、ポリフェニレンエーテルを含有する。
 また、第1の樹脂層はフィラーを必須的に含むが、第2の樹脂層は、フィラーを含有してもよいし、フィラーを含有せずともよい。
 第2の樹脂層は、(1)フィラーを含有しないこと、又は、(2)第2の樹脂層がフィラーを含む場合は、第2の樹脂層のフィラーの含有率が第1の樹脂層のフィラーの含有率よりも少なくなるように構成されること、が好ましい。
 本発明の硬化性樹脂積層体は、通常、第2の樹脂層が銅箔(銅回路)等の被着対象と接触するように使用される。そのため、第1の樹脂層と第2の樹脂層からなる2層の積層体である場合には、樹脂層の第1の樹脂層側に配線板等の基板に接するように配置され、且つ、第2の樹脂層が銅箔(銅回路)等の被着対象と接するように使用する。
 本発明の硬化性樹脂積層体は、第1の樹脂層及び/又は第2の樹脂層の外層に、ポリエチレンテレフタレートやポリプロピレン等からなる基材フィルムやその他の樹脂層を積層していてもよい。また、基材フィルムやその他の層は2層以上設けられていてもよい。
 なお、本発明の硬化性樹脂積層体は、上記構成を充足する積層体であればよく、例えば、第2の樹脂層/第1の樹脂層/第2の樹脂層の順番で積層された、少なくとも3層からなる積層体とすることも可能である。
 本発明の硬化性樹脂積層体が第2の樹脂層を2層有する場合、例えば、下記条件A、B及び/又はCを満たす範囲で、各々の第2の樹脂層の厚みや材質等を、同一のものとしてもよいし異なるものとしてもよい。
(条件A)
 第2の樹脂層を合わせた厚みは、(1)第1の樹脂層と第2の樹脂層を合わせた厚みに対して10~70%の厚みであり、且つ、第2の樹脂層の単独層は、(2)フィラーを含有しない、又は、第2の樹脂層におけるフィラーの含有率が、組成物中の全固形分に対して40質量%以下であり、第2の樹脂層のフィラーの含有率は、第1の樹脂層のフィラーの含有率よりも少なくなるように構成される。
(条件B)
 第2の樹脂層を合わせた厚みは、第1の樹脂層と第2の樹脂層を合わせた厚みに対して10~70%の厚みであり、且つ、各樹脂層は、硬化物として所定の溶融粘度を満たすように構成される。
(条件C)
 第2の樹脂層を合わせた厚みは、第1の樹脂層と第2の樹脂層を合わせた厚みに対して10~70%の厚みであり、且つ、各樹脂層は、硬化物として所定のヤング率の規定を満たすように構成される。
<<<<<構成>>>>>
<<<<構成:第1の樹脂層>>>>
 本発明の第1の樹脂層は、(A1)ポリフェニレンエーテルと、(B1)フィラーとを含む。
 また、第1の樹脂層中の全固形分に対する(B1)フィラーの含有率MB1は、30質量%以上であることが好ましい。
 別の表現によれば、第1の樹脂層は、(A1)ポリフェニレンエーテルと(B1)フィラーとを含む第1の硬化性組成物から得られる乾燥塗膜である。
 第1の硬化性組成物中の全固形分に対する(B1)フィラーの含有率MB1が30質量%以上である乾燥塗膜であることが好ましい。
 (B1)フィラーの含有率MB1は、低熱膨張化の観点から、より好ましくは30~80質量%であり、更に好ましくは50~80質量%であり、特に好ましくは65~80質量%である。
 第1の樹脂層中の全固形分に対する(A1)ポリフェニレンエーテルの含有率MA1は、好ましくは3~40質量%であり、より好ましくは5~30質量%であり、更に好ましくは7~25質量%であり、特に好ましくは9~20質量%である。
 また、第1の樹脂層は、(C1)その他の成分を含んでいてもよい。
 (A1)ポリフェニレンエーテル、(B1)フィラー、(C1)その他の成分については後述する。
 第1の樹脂層の厚みTは、第2の樹脂層の厚みTよりも厚い。第1の樹脂層の厚みTは、例えば、1~50μmであることが好ましく、10~45μmであることがより好ましく、20~30μmであることが更に好ましく、24~29μmであることが特に好ましい。
<<<<構成:第2の樹脂層>>>>
 本発明の第2の樹脂層は、(A2)ポリフェニレンエーテルを含む。
 第2の樹脂層は、(B2)フィラーを含んでいてもよいし、(B2)フィラーを含まずともよい。
 第2の樹脂層は、(B2)フィラーを含まないこと、又は、(B2)フィラーの含有率(MB2)が、組成物中の全固形分に対して40質量%以下であり、前記(B1)フィラーの含有率(MB1)と前記(B2)フィラーの含有率(MB2)との関係がMB1>MB2であることが好ましい。
 別の表現によれば、第2の樹脂層は、(A2)ポリフェニレンエーテルを含む、第2の硬化性組成物から得られる乾燥塗膜である。
 第2の樹脂層は、(B2)フィラーを含まない第2の硬化性組成物から得られる乾燥塗膜、又は、第2の硬化性組成物中の全固形分に対する(B2)フィラーの含有率MB2が40質量%以下であり、前記(B1)フィラーの含有率(MB1)と前記(B2)フィラーの含有率(MB2)との関係がMB1>MB2である、第2の硬化性組成物から得られる乾燥塗膜、であることが好ましい。
 [第1の硬化性組成物中の全固形分に対する(B1)フィラーの含有率MB1]に対する、[第2の硬化性組成物中の全固形分に対する(B2)フィラーの含有率MB2]の比率(MB2/MB1)は、低誘電特性化の観点から、より好ましくは50%以下、更に好ましくは45%以下、更により好ましくは15%以下である。
 第2の樹脂層及び第2の硬化性組成物の(B2)フィラーの含有率MB2は、より好ましくは35質量%以下である。
 第2の樹脂層及び第2の硬化性組成物が(B2)フィラーを含む場合、低熱膨張性及び導体層との密着性のバランスに優れることから、(B2)フィラーの含有率MB2は、好ましくは5~35質量%であり、より好ましくは20~35質量%である。
 第2の樹脂層中の全固形分(又は、第2の硬化性組成物の全固形分)に対する(A2)ポリフェニレンエーテルの含有率MA2は、好ましくは10~50質量%であり、より好ましくは30~50質量%である。
 また、第2の樹脂層は、(C2)その他の成分を含んでいてもよい。
 (A2)ポリフェニレンエーテル、(B2)フィラー、(C2)その他の成分については後述する。
 第2の樹脂層の厚みTについて、[第1の樹脂層の厚み(T)及び第2の樹脂層の厚み(T)の合計の厚み(T+T)]に対する[第2の樹脂層の厚みT]の比率(T/(T+T))の比率は、5~35%であり、10~25%であることが好ましく、15~25%であることがより好ましい。第2の樹脂層の厚みTの比率が上記の範囲にあることで安定した導体層との密着性を得ることができる。
 第2の樹脂層の厚みTは、第1の樹脂層の厚みTよりも薄く、例えば、0.5~40μmであることが好ましく、0.7~30μmであることがより好ましく、1~20μmであることが更に好ましく、3~10μmであることが特に好ましい。
<<<<<物性>>>>>
<<<<溶融粘度>>>>
 第1の樹脂層は、140℃における溶融粘度(MV)が、20,000dPa・s超であることが好ましく、25,000dPa・s超であることがより好ましく、30,000dPa・s超であることが特に好ましい。溶融粘度(MV)の上限値は、特に限定されないが、例えば500,000dPa・sである。
 第2の樹脂層は、140℃における溶融粘度(MV)が、40,000dPa・s以下であることが好ましい。溶融粘度(MV)の下限値は、特に限定されないが、例えば10,000dPa・sである。
 また、第1の樹脂層の140℃における溶融粘度(MV)と第2の樹脂層の溶融粘度(MV)との関係がMV>MVであることが好ましい。
 より具体的には、第1の樹脂層の140℃における溶融粘度(MV)と第2の樹脂層の140℃における溶融粘度(MV)との溶融粘度差(MV-MV)が、2,000dPa・s以上であることが好ましく、5,000dPa・s以上であることがより好ましい。溶融粘度差(MV-MV)の上限値は、特に限定されないが、例えば450,000dPa・s、400,000dPa・s又は300,000dPa・s等である。
 樹脂層の140℃における溶融粘度は、樹脂成分(ポリフェニレンエーテル)の分子構造や分子量、含有量を変更したり、フィラー成分の含有量を変更することで調整できる。具体的には、樹脂層中のフィラー含有率を高めると140℃における溶融粘度が高くなる傾向がある。
 第1の樹脂層及び第2の樹脂層の各溶融粘度は、以下の方法によって測定することができる。
 各単独の樹脂層(例えば、単独の樹脂層を厚さ25μmで備えるドライフィルム)を、名機製作所製真空ラミネーターMVLP-500を用い、厚さ500μmになるように繰り返し積層させて、溶融粘度測定用試験片とする。この試験片を溶融粘度測定装置に投入し、140℃の溶融粘度[単位:dPa・s]を測定する。
 なお、溶融粘度測定装置としては、HAAKE社製レオメーター(MARS 40)を用い、オシレーション昇温法(5℃/min)、測定温度範囲:70~200℃、周波数:1Hz、応力制御:2.5N、パラレルプレート:直径20mm、ギャップ:450μm、サンプルサイズ:2.5×2.5cmの条件で実施する。
<<<<ヤング率>>>>
 第1の樹脂層は、硬化物としてのヤング率(YM)が、2.0GPa超であることが好ましく、3.0GPa超であることがより好ましく、3.5GPa超であることが更に好ましく、5.0GPa超であることが特に好ましい。
 第2の樹脂層は、硬化物としてのヤング率(YM)が、3.0GPa以下であることが好ましく、2.0GPa以下であることがより好ましい。
 また、第1の樹脂層の硬化物のヤング率(YM)と第2の樹脂層の硬化物のヤング率(YM)との関係が、YM>YMであることが好ましい。
 より具体的には、第1の樹脂層の硬化物のヤング率(YM)と第2の樹脂層の硬化物のヤング率(YM)とのヤング率差(YM-YM)が、0.5GPa以上であることが好ましく、1.0GPa以上であることがより好ましく、1.5Pa以上であることが特に好ましい。また、ヤング率差(YM-YM)の上限値は、特に限定されないが、8GPa、6GPa又は5GPa等である。
 樹脂層の硬化物としてのヤング率は、樹脂成分(ポリフェニレンエーテル)の分子構造、分子量、含有量の変更や、組成中に含まれる硬化反応性官能基数の変更、フィラー含有量を変更することで調整できる。具体的には、樹脂層中のフィラー含有率を高めるとヤング率が高くなる傾向がある。
 樹脂層の硬化物としてのヤング率は、以下の方法によって測定することができる。
 厚み25μmの樹脂層の硬化物を長さ8cm、幅0.5cmに切り出し、ヤング率を下記条件にて測定する。
 なお、ヤング率は、得られた応力ひずみ線図の応力が5MPaから10MPaにおけるひずみの傾きにより求める。
[測定条件]
 試験機:引張試験機EZ-SX(株式会社島津製作所製)
 チャック間距離:50mm
 試験速度:1mm/min
 伸び計算:(引張移動量/チャック間距離)×100
<<<<構成:その他の層>>>>
 その他の層としては、例えば、ポリエチレンテレフタレートやポリプロピレン等の基材フィルムや、硬化性樹脂層表面を保護するカバーフィルム等が挙げられる。
<<<<<成分>>>>>
 上述した第1の樹脂層及び第2の樹脂層の構成成分である、(A1)ポリフェニレンエーテル、(A2)ポリフェニレンエーテル、(B1)フィラー、(B2)フィラー、(C1)その他の成分、(C2)その他の成分について説明する。
<<<<成分:ポリフェニレンエーテル(A1)及び(A2)>>>>
 第1の硬化性組成物及び樹脂層に含まれる(A1)ポリフェニレンエーテルと、第2の硬化性組成物及び樹脂層に含まれる(A2)ポリフェニレンエーテルとは、同一の成分であっても異なる成分であってもよい。ここでは、(A1)ポリフェニレンエーテルと(A2)ポリフェニレンエーテルとをポリフェニレンエーテル(所定ポリフェニレンエーテル)としてまとめて説明する。
<<<ポリフェニレンエーテル(所定ポリフェニレンエーテル)>>>
 本発明のポリフェニレンエーテルは、少なくとも条件1を満たすフェノール類を含む原料フェノール類から得られ、分岐構造を有するポリフェニレンエーテルである。このようなポリフェニレンエーテルを、所定ポリフェニレンエーテルとする。
(条件1)
 オルト位及びパラ位に水素原子を有する
 条件1を満たすフェノール類{例えば、後述するフェノール類(A)及びフェノール類(B)}は、オルト位に水素原子を有するため、フェノール類と酸化重合される際に、イプソ位、パラ位のみならず、オルト位においてもエーテル結合が形成され得るため、分岐鎖状の構造を形成することが可能となる。
 このように、分岐構造を有するポリフェニレンエーテルを、所定ポリフェニレンエーテル分岐ポリフェニレンエーテルと表現する場合がある。
 このように、所定ポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐することとなる。この所定ポリフェニレンエーテルは、例えば、骨格中に少なくとも式(i)で示されるような分岐構造を有するポリフェニレンエーテル化合物であると考えられる。
Figure JPOXMLDOC01-appb-C000001
 式(i)中、R~Rは、水素原子、又は炭素数1~15(好ましくは、炭素数1~12)の炭化水素基である。
 ここで、所定ポリフェニレンエーテルを構成する原料フェノール類は、本発明の効果を阻害しない範囲内で、条件1を満たさないその他のフェノール類を含んでいてもよい。
 このようなその他のフェノール類としては、例えば、後述するフェノール類(C)及びフェノール類(D)、パラ位に水素原子を有しないフェノール類が挙げられる。特に後述するフェノール類(C)及びフェノール類(D)は、酸化重合される際には、イプソ位及びパラ位においてエーテル結合が形成され、直鎖状に重合されていく。そのため、ポリフェニレンエーテルの高分子量化のためには、原料フェノール類として、フェノール類(C)及びフェノール類(D)をさらに含むことが好ましい。
 また、所定ポリフェニレンエーテルは、不飽和炭素結合を含む官能基を有していてもよい。かかる官能基を有することにより、架橋性を付与する効果と優れた反応性により、硬化物の諸特性がより良好となる。
 なお、本発明において「不飽和炭素結合」は、特に断らない限り、エチレン性又はアセチレン性の炭素間多重結合(二重結合又は三重結合)を示す。
 このような不飽和炭素結合を含む官能基としては、特に限定されないが、アルケニル基(例えば、ビニル基、アリル基)、アルキニル基(例えば、エチニル基)、又は、(メタ)アクリルロイル基であることが好ましく、硬化性に優れる観点からビニル基、アリル基、(メタ)アクリルロイル基であることがより好ましく、低誘電特性に優れる観点からアリル基であることがさらに好ましい。これらの不飽和炭素結合を有する官能基は、炭素数を、例えば15以下、10以下、8以下、5以下、3以下等とすることができる。
 このような不飽和炭素結合を含む官能基を所定ポリフェニレンエーテルに導入する方法としては、特に限定されないが、次の[方法1]又は[方法2]が挙げられる。
[方法1]
 方法1は、
 原料フェノール類として、
 少なくとも下記条件1及び下記条件2をいずれも満たすフェノール類(A)を含ませる(形態1)、又は、少なくとも下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含ませる(形態2)方法である。
(条件1)
 オルト位及びパラ位に水素原子を有する
(条件2)
 パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
 方法1によれば、原料フェノール類由来の不飽和炭素結合を含む官能基を有する所定ポリフェニレンエーテルを得ることができる。
[方法2]
 方法2は、
 分岐ポリフェニレンエーテルの末端水酸基を、不飽和炭素結合を含む官能基に変性させ、末端変性ポリフェニレンエーテルとする方法である。
 方法2によれば、原料フェノール類が不飽和炭素結合を含む官能基を有しない場合でも、不飽和炭素結合を含む官能基が導入された所定ポリフェニレンエーテルを得ることができる。
 [方法1]と[方法2]とは、同時に実施されてもよい。
<<方法1によって得られる所定ポリフェニレンエーテル>>
 方法1によって得られる所定ポリフェニレンエーテルは、条件2を満たすフェノール類{例えば、フェノール類(A)及びフェノール類(C)のいずれか}を少なくともフェノール原料として用いているので、少なくとも不飽和炭素結合を含む炭化水素基による架橋性を有することとなる。所定ポリフェニレンエーテルがこのような不飽和炭素結合を含む炭化水素基を有する場合、該炭化水素基と反応し、かつエポキシ基等の反応性官能基を有する化合物を用いてエポキシ化等の変性を実施することも可能である。
 すなわち、方法1によって得られる所定ポリフェニレンエーテルは、例えば、骨格中に少なくとも式(i)で示されるような分岐構造を有するポリフェニレンエーテルであり、かつ少なくとも一つの不飽和炭素結合を含む炭化水素基を官能基として有する化合物と考えられる。具体的には、上記式(i)中のR~Rの少なくとも一つが、不飽和炭素結合を有する炭化水素基である化合物と考えられる。
 特に、上記形態2において、工業的・経済的な観点から、フェノール類(B)が、o-クレゾール、2-フェニルフェノール、2-ドデシルフェノール及びフェノールの少なくともいずれか1種であり、フェノール類(C)が、2-アリル-6-メチルフェノールであることが好ましい。
 以下、フェノール類(A)~(D)に関してより詳細に説明する。
 フェノール類(A)は、上述のように、条件1及び条件2のいずれも満たすフェノール類、即ち、オルト位及びパラ位に水素原子を有し、不飽和炭素結合を含む官能基を有するフェノール類であり、好ましくは下記式(1)で示されるフェノール類(a)である。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、R~Rは、水素原子、又は炭素数1~15の炭化水素基である。ただし、R~Rの少なくとも一つが、不飽和炭素結合を有する炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
 式(1)で示されるフェノール類(a)としては、o-ビニルフェノール、m-ビニルフェノール、o-アリルフェノール、m-アリルフェノール、3-ビニル-6-メチルフェノール、3-ビニル-6-エチルフェノール、3-ビニル-5-メチルフェノール、3-ビニル-5-エチルフェノール、3-アリル-6-メチルフェノール、3-アリル-6-エチルフェノール、3-アリル-5-メチルフェノール、3-アリル-5-エチルフェノール等が例示できる。式(1)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
 フェノール類(B)は、上述のように、条件1を満たし、条件2を満たさないフェノール類、即ち、オルト位及びパラ位に水素原子を有し、不飽和炭素結合を含む官能基を有しないフェノール類であり、好ましくは下記式(2)で示されるフェノール類(b)である。
Figure JPOXMLDOC01-appb-C000003
 式(2)中、R~Rは、水素原子、又は炭素数1~15の炭化水素基である。ただし、R~Rは、不飽和炭素結合を有しない。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
 式(2)で示されるフェノール類(b)としては、フェノール、o-クレゾール、m-クレゾール、o-エチルフェノール、m-エチルフェノール、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、o-tert-ブチルフェノール、m-tert-ブチルフェノール、o-フェニルフェノール、m-フェニルフェノール、2-ドデシルフェノール等が例示できる。式(2)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
 フェノール類(C)は、上述のように、条件1を満たさず、条件2を満たすフェノール類、即ち、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有するフェノール類であり、好ましくは下記式(3)で示されるフェノール類(c)である。
Figure JPOXMLDOC01-appb-C000004
 式(3)中、R及びR10は、炭素数1~15の炭化水素基であり、R及びRは、水素原子、又は炭素数1~15の炭化水素基である。ただし、R~R10の少なくとも一つが、不飽和炭素結合を有する炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
 式(3)で示されるフェノール類(c)としては、2-アリル-6-メチルフェノール、2-アリル-6-エチルフェノール、2-アリル-6-フェニルフェノール、2-アリル-6-スチリルフェノール、2,6-ジビニルフェノール、2,6-ジアリルフェノール、2,6-ジイソプロペニルフェノール、2,6-ジブテニルフェノール、2,6-ジイソブテニルフェノール、2,6-ジイソペンテニルフェノール、2-メチル-6-スチリルフェノール、2-ビニル-6-メチルフェノール、2-ビニル-6-エチルフェノール等が例示できる。式(3)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
 フェノール類(D)は、上述のように、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有しないフェノール類であり、好ましくは下記式(4)で示されるフェノール類(d)である。
Figure JPOXMLDOC01-appb-C000005
 式(4)中、R11及びR14は、不飽和炭素結合を有しない炭素数1~15の炭化水素基であり、R12及びR13は、水素原子、又は不飽和炭素結合を有しない炭素数1~15の炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
 式(4)で示されるフェノール類(d)としては、2,6-ジメチルフェノール、2,3,6-トリメチルフェノール、2-メチル-6-エチルフェノール、2-エチル-6-n-プロピルフェノール、2-メチル-6-n-ブチルフェノール、2-メチル-6-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ジトリルフェノール等が例示できる。式(4)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
 ここで、本発明において、炭化水素基としては、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルキニル基などが挙げられ、好ましくはアルキル基、アリール基、アルケニル基である。不飽和炭素結合を有する炭化水素基としては、アルケニル基、アルキニル基などが挙げられる。なお、これらの炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
<<方法2によって得られる所定ポリフェニレンエーテル>>
 方法2によって得られる所定ポリフェニレンエーテルは、末端変性分岐ポリフェニレンエーテルである。
 このような末端変性分岐ポリフェニレンエーテルは、分岐構造を有し、かつ末端水酸基が変性されているため、種々の溶媒に可溶でありつつも、低誘電特性を更に低減した硬化物が得られる。また、末端変性分岐ポリフェニレンエーテルは、不飽和炭素結合を末端の位置に配した結果、反応性が極めて良好となり、得られる硬化物の緒性能はより良好となる。
 変性用化合物により末端水酸基を変性する場合、通常、末端水酸基と変性用化合物とでエーテル結合又はエステル結合を形成する。
 ここで、変性用化合物としては、不飽和炭素結合を有する官能基を含み、触媒の存在下又は非存在下で、フェノール性の水酸基と反応可能な限りにおいて特に限定されない。
 変性用化合物の好適例としては、下記式(11)で示される有機化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 式(11)中、R、R、Rは、各々独立して、水素又は、炭素数1~9の炭化水素基であり、Rは、炭素数1~9の炭化水素基であり、Xは、F、Cl、Br、I又はCN等のフェノール性水酸基と反応可能な基である。
 また、別の観点では、変性用化合物の好適例としては、下記式(11-1)で示される有機化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 式(11-1)中、Rは、ビニル基、アリル基、又は、(メタ)アクリルロイル基であり、Xは、F、Cl、Br、I等のフェノール性水酸基と反応可能な基である。
 分岐ポリフェニレンエーテルの末端水酸基が変性されたことは、分岐ポリフェニレンエーテルと末端変性分岐ポリフェニレンエーテルとの水酸基価を比較することで確認することができる。なお、末端変性分岐ポリフェニレンエーテルは、一部が未変性の水酸基のままであってもよい。
 変性に際しての反応温度、反応時間、触媒の有無及び触媒の種類等については、適宜設計可能である。変性用化合物として2種類以上の化合物を使用してもよい。
 以上説明したような所定ポリフェニレンエーテルは、硬化性組成物の成分として用いる場合、1種単独で用いてもよいし、2種以上を用いてもよい。
 なお、所定ポリフェニレンエーテル合成時に用いられる原料フェノール類の合計に対する条件1を満たすフェノール類の割合は、1~50mol%であることが好ましい。
 また、上記条件2を満たすフェノール類を使用しなくてもよいが、使用する場合には、原料フェノール類の合計に対する条件2を満たすフェノール類の割合は、0.5~99mol%であることが好ましく、1~99mol%であることがより好ましい。
<<所定ポリフェニレンエーテルの物性及び性質>>
<分岐度>
 所定ポリフェニレンエーテルの分岐構造(分岐の度合い)は、以下の分析手順に基づいて確認することができる。
(分析手順)
 ポリフェニレンエーテルのクロロホルム溶液を、0.1、0.15、0.2、0.25mg/mLの間隔で調製後、0.5mL/minで送液しながら屈折率差と濃度のグラフを作成し、傾きから屈折率増分dn/dcを計算する。次に、下記装置運転条件にて、絶対分子量を測定する。RI検出器のクロマトグラムとMALS検出器のクロマトグラムを参考に、分子量と回転半径の対数グラフ(コンフォメーションプロット)から、最小二乗法による回帰直線を求め、その傾きを算出する。
(測定条件)
装置名   :HLC8320GPC
移動相   :クロロホルム
カラム   :TOSOH TSKguardcolumnHHR-H
       +TSKgelGMHHR-H(2本)
       +TSKgelG2500HHR
流速    :0.6mL/min
検出器   :DAWN HELEOS(MALS検出器)
       +Optilab rEX(RI検出器、波長254nm)
試料濃度  :0.5mg/mL
試料溶媒  :移動相と同じ。試料5mgを移動相10mLで溶解
注入量   :200μL
フィルター :0.45μm
STD試薬 :標準ポリスチレン Mw 37,900
STD濃度 :1.5mg/mL
STD溶媒 :移動相と同じ。試料15mgを移動相10mLで溶解
分析時間  :100min
 絶対分子量が同じ樹脂において、高分子鎖の分岐が進行しているものほど重心から各セグメントまでの距離(回転半径)は小さくなる。そのため、GPC-MALSにより得られる絶対分子量と回転半径の対数プロットの傾きは、分岐の程度を示し、傾きが小さいほど分岐が進行していることを意味する。本発明においては、上記コンフォメーションプロットで算出された傾きが小さいほどポリフェニレンエーテルの分岐が多いことを示し、この傾きが大きいほどポリフェニレンエーテルの分岐が少ないことを示す。
 本発明の硬化性組成物を構成する所定ポリフェニレンエーテルにおいて、上記傾きは、0.6未満であり、0.55以下、0.50以下、0.45以下、0.40以下、又は、0.35以下であることが好ましい。上記傾きがこの範囲である場合、ポリフェニレンエーテルが十分な分岐を有していると考えられる。なお、上記傾きの下限としては特に限定されないが、例えば、0.05以上、0.10以上、0.15以上、又は、0.20以上である。
 なお、コンフォメーションプロットの傾きは、ポリフェニレンエーテルの合成の際の、温度、触媒量、攪拌速度、反応時間、酸素供給量、溶媒量を変更することで調整可能である。より具体的には、温度を高める、触媒量を増やす、攪拌速度を速める、反応時間を長くする、酸素供給量を増やす、及び/又は、溶媒量を少なくすることで、コンフォメーションプロットの傾きが低くなる(ポリフェニレンエーテルがより分岐し易くなる)傾向となる。
<所定ポリフェニレンエーテルの分子量>
 本発明の硬化性組成物を構成する所定ポリフェニレンエーテルは、数平均分子量が2,000~30,000であることが好ましく、5,000~30,000であることがより好ましく、8,000~30,000であることが更に好ましく、8,000~25,000であることが特に好ましい。分子量をこのような範囲とすることで、溶媒への溶解性を維持しつつ、硬化性組成物の製膜性を向上させることができる。さらに、本発明の硬化性組成物を構成する所定ポリフェニレンエーテルは、多分散指数(PDI:重量平均分子量/数平均分子量)が、1.5~20であることが好ましい。
 本発明において、数平均分子量及び重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定を行い、標準ポリスチレンを用いて作成した検量線により換算したものである。
<所定ポリフェニレンエーテルの水酸基価>
 本発明の硬化性組成物を構成する所定ポリフェニレンエーテルの水酸基価は、数平均分子量(Mn)が2,000~30,000の範囲において、15以下であることが好ましく、より好ましくは2以上10以下、さらに好ましくは3以上8以下である。
 なお、所定ポリフェニレンエーテルが方法2によって得られた所定ポリフェニレンエーテルである場合等、水酸基価が上記した数値より低いものとなる場合がある。
<所定ポリフェニレンエーテルの溶媒溶解性>
 本発明の硬化性組成物を構成する所定ポリフェニレンエーテル1gは、25℃で、好ましくは100gのシクロヘキサノンに対して(より好ましくは、100gの、シクロヘキサノン、DMF及びPMAに対して)可溶である。なお、ポリフェニレンエーテル1gが100gの溶媒(例えば、シクロヘキサノン)に対して可溶とは、ポリフェニレンエーテル1gと溶媒100gとを混合したときに、濁り及び沈殿が目視で確認できないことを示す。この所定ポリフェニレンエーテルは、25℃で、100gのシクロヘキサノンに対して、1g以上可溶であることがより好ましい。
 本発明の硬化性組成物を構成する所定ポリフェニレンエーテルは、分岐構造を有することで種々の溶媒への溶解性、組成物中の成分同士の分散性や相溶性が向上する。このため組成物の各成分が均一に溶解又は分散し、均一な硬化物を得ることが可能となる。この結果、この硬化物は機械的特性等が極めて優れている。特に、所定ポリフェニレンエーテルは、相互に架橋することができる。この結果、得られる硬化物の機械的特性や低熱膨張性等はより良好となる。
<<所定ポリフェニレンエーテルの製造方法>>
 本発明の硬化性組成物を構成する所定ポリフェニレンエーテルは、原料フェノール類として特定のものを使用すること以外は、従来公知のポリフェニレンエーテルの合成方法(重合条件、触媒の有無及び触媒の種類等)を適用して製造することが可能である。
 次に、この所定ポリフェニレンエーテルの製造方法の一例について説明する。
 所定ポリフェニレンエーテルは、例えば、特定のフェノール類、触媒及び溶媒を含む重合溶液を調製すること(重合溶液調製工程)、少なくとも前記溶媒に酸素を通気させること(酸素供給工程)、酸素を含む前記重合溶液内で、フェノール類を酸化重合させること(重合工程)で製造可能である。
 以下、重合溶液調製工程、酸素供給工程及び重合工程について説明する。なお、各工程を連続的に実施してもよいし、ある工程の一部又は全部と、別の工程の一部又は全部と、を同時に実施してもよいし、ある工程を中断し、その間に別の工程を実施してもよい。例えば、重合溶液調製工程中や重合工程中に酸素供給工程を実施してもよい。また、本発明のポリフェニレンエーテルの製造方法は、必要に応じてその他の工程を含んでいてもよい。その他の工程としては、例えば、重合工程により得られるポリフェニレンエーテルを抽出する工程(例えば、再沈殿、ろ過及び乾燥を行う工程)、上述した変性工程等が挙げられる。
<重合溶液調製工程>
 重合溶液調製工程は、後述する重合工程において重合されるフェノール類を含む各原料を混合し、重合溶液を調製する工程である。重合溶液の原料としては、原料フェノール類、触媒、溶媒が挙げられる。
(触媒)
 触媒は特に限定されず、ポリフェニレンエーテルの酸化重合において使用される適宜の触媒とすればよい。
 触媒としては、例えば、アミン化合物や、銅、マンガン、コバルト等の重金属化合物とテトラメチルエチレンジアミンなどのアミン化合物とからなる金属アミン化合物が挙げられ、特に、十分な分子量の共重合体を得るためには、アミン化合物に銅化合物を配位させた銅-アミン化合物を用いることが好ましい。触媒は、1種のみを用いてもよいし、2種以上を用いてもよい。
 触媒の含有量は特に限定されないが、重合溶液中、原料フェノール類の合計に対し0.1~0.6mol%等とすればよい。
 このような触媒は、予め適宜の溶媒に溶解させてもよい。
(溶媒)
 溶媒は特に限定されず、ポリフェニレンエーテルの酸化重合において使用される適宜の溶媒とすればよい。溶媒は、フェノール性化合物及び触媒を溶解又は分散可能なものを用いることが好ましい。
 溶媒としては、具体的には、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素、クロロホルム、塩化メチレン、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素、ニトロベンゼン等のニトロ化合物、メチルエチルケトン(MEK)、シクロヘキサノン、テトラヒドロフラン、酢酸エチル、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)等が挙げられる。溶媒は、1種のみを用いてもよいし、2種以上を用いてもよい。
 なお、溶媒として、水や水と相溶可能な溶媒等を含んでいてもよい。
 重合溶液中の溶媒の含有量は特に限定されず、適宜調整すればよい。
(その他の原料)
 重合溶液は、本発明の効果を阻害しない範囲でその他の原料を含んでいてもよい。
<酸素供給工程>
 酸素供給工程は、重合溶液中に酸素含有ガスを通気させる工程である。
 酸素ガスの通気時間や使用する酸素含有ガス中の酸素濃度は、気圧や気温等に応じて適宜変更可能である。
<重合工程>
 重合工程は、重合溶液中に酸素が供給された状況下、重合溶液中のフェノール類を酸化重合させる工程である。
 具体的な重合の条件としては特に限定されないが、例えば、25~100℃、2~24時間の条件で攪拌すればよい。
 以上説明したような工程を経る所定ポリフェニレンエーテルの製造に際しては、上述した方法1や方法2を参照することで、分岐ポリフェニレンエーテルに不飽和炭素結合を含む官能基を導入する具体的な方法を理解できる。即ち、原料フェノール類の種類を特定のものとするか、又は、重合工程後に末端水酸基を変性する工程(変性工程)を更に設けること等で、不飽和炭素結合を含む官能基を有する所定ポリフェニレンエーテルを得ることができる。
<<<<成分:フィラー(B1)及び(B2)>>>>
 本発明の第1の硬化性組成物及び樹脂層に含まれる(B1)フィラーと、第2の硬化性組成物及び樹脂層に含まれる(B2)フィラーとは、同一の成分であっても異なる成分であってもよい。ここでは、(B1)フィラーと(B2)フィラーとをフィラーとしてまとめて説明する。
 フィラーとしては、例えば、無機フィラー、有機フィラー等が挙げられる。
 無機フィラーとしては、シリカ、アルミナ、酸化チタンなどの金属酸化物;水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物;タルク、マイカなどの粘土鉱物;チタン酸バリウム、チタン酸ストロンチウムなどのフェロブスカイト型結晶構造を有するフィラー;窒化ホウ素、ホウ酸アルミニウム、硫酸バリウム、炭酸カルシウム等を使用できる。
 有機フィラーとしては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン/エチレンの共重合体(ETFE)、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル系共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体(FEP)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等のフッ素樹脂フィラー;シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)等の炭化水素系樹脂フィラー等を使用できる。
 中でも、フィラー成分は、低誘電正接化、低熱膨張性を考慮して、シリカであることが好ましい。以下、フィラー成分の好ましい形態であるシリカについて説明する。
<<シリカ>>
 シリカの平均粒径は、好ましくは0.01~10μm、より好ましくは0.1~3μmである。ここで平均粒径は、市販のレーザー回折・散乱式粒度分布測定装置を用いて、レーザー回折・散乱法による粒度分布の測定値から、累積分布によるメディアン径(d50、体積基準)として求めることができる。
 異なる平均粒径のシリカを併用することも可能である。シリカの高充填化を図りたい場合には、例えば平均粒径1μm以上のシリカとともに、平均粒径1μm未満のナノオーダーの微小のシリカを併用してもよい。
 シリカはカップリング剤により表面処理が施されていてもよい。表面をシランカップリング剤で処理することで、ポリフェニレンエーテルとの分散性を向上させることができる。また有機溶媒との親和性も向上させることができる。
 シランカップリング剤としては、例えば、エポキシシランカップリング剤、メルカプトシランカップリング剤、ビニルシランカップリング剤などを用いることができる。エポキシシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランなどを用いることができる。メルカプトシランカップリング剤としては、例えば、γ-メルカプトプロピルトリエトキシシランなどを用いることができる。ビニルシランカップリング剤としては、例えば、ビニルトリエトキシシランなどを用いることができる。
 シランカップリング剤の使用量は、例えば、シリカ100質量部に対して0.1~5質量部、0.5~3質量部としてもよい。
<<<<成分:その他の成分(C1)及び(C2)>>>>
 第1の硬化性組成物及び樹脂層は、(C1)その他の成分を含んでいても良く、第2の硬化性組成物及び樹脂層は、(C2)その他の成分を含んでいてもよい。(C1)その他の成分及び(C2)その他の成分は、同一の成分であっても異なる成分であってもよい。ここでは、(C1)その他の成分と(C2)その他の成分とをその他の成分としてまとめて説明する。
 その他の成分としては、第1の硬化性組成物及び第2の硬化性組成物に配合可能な従来公知の添加剤が挙げられる。より具体的には、過酸化物、架橋型硬化剤、エラストマー、マレイミド化合物等を含むことが好ましい。
 また、その他の成分には、本発明の効果を損なわない範囲で、難燃性向上剤(リン系化合物等)、セルロースナノファイバー、ポリマー成分(シアネートエステル樹脂、エポキシ樹脂、フェノ-ルノボラック樹脂等の樹脂成分、非分岐型ポリフェニレンエーテル、ポリイミド、ポリアミド等の有機ポリマー)、分散剤、熱硬化触媒、増粘剤、消泡剤、酸化防止剤、防錆剤、密着性付与剤等の成分を含んでもよい。
 これらは、1種のみが使用されてもよいし、2種以上が使用されてもよい。
<<<過酸化物>>>
 上述した所定ポリフェニレンエーテルが不飽和炭素結合を有する場合、硬化性組成物乃至は硬化性樹脂積層体は過酸化物を含むことが好ましい。
 過酸化物としては、メチルエチルケトンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトパーオキサイド、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ブテン、アセチルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、m-トルイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t-ブチレンパーオキシベンゾエート、ジ-t-ブチルパーオキサイド、t-ブチルペルオキシイソプロピルモノカーボネート、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン等があげられる。過酸化物は、1種のみを用いてもよいし、2種以上を用いてもよい。
 過酸化物としては、これらの中でも、取り扱いの容易さと反応性の観点から、1分間半減期温度が130℃から180℃のものが望ましい。このような過酸化物は、反応開始温度が比較的に高いため、乾燥時など硬化が必要でない時点での硬化を促進し難く、ポリフェニレンエーテルを含有した硬化性組成物の保存性を貶めず、また、揮発性が低いため乾燥時や保存時に揮発せず、安定性が良好である。
 過酸化物の硬化性組成物中乃至は硬化性樹脂積層体中の含有量は、過酸化物の総量で、硬化性組成物中乃至は硬化性樹脂積層体の全固形分に対し、0.01~20質量%とするのが好ましく、0.05~10質量%とするのがより好ましく、0.1~10質量%とするのが特に好ましい。過酸化物の総量をこの範囲とすることで、低温での効果を十分なものとしつつ、塗膜化した際の膜質の劣化を防止することができる。
 また、必要に応じてアゾビスイソブチロニトリル、アゾビスイソバレロニトリル等のアゾ化合物やジクミル、2,3-ジフェニルブタン等のラジカル開始剤を含有してもよい。
<<<架橋型硬化剤>>>
 所定ポリフェニレンエーテルが不飽和炭素結合を有する場合、硬化性組成物乃至は硬化性樹脂積層体は架橋型硬化剤を含むことが好ましい。
 架橋型硬化剤としては、ポリフェニレンエーテルとの相溶性が良好なものが用いられるが、ジビニルベンゼンやジビニルナフタレンやジビニルビフェニルなどの多官能ビニル化合物;フェノールとビニルベンジルクロライドの反応から合成されるビニルベンジルエーテル系化合物;スチレンモノマー,フェノールとアリルクロライドの反応から合成されるアリルエーテル系化合物;さらにトリアルケニルイソシアヌレートなどが良好である。架橋型硬化剤としては、ポリフェニレンエーテルとの相溶性が特に良好なトリアルケニルイソシアヌレートが好ましく、なかでも具体的にはトリアリルイソシアヌレート(以下、TAIC(登録商標))やトリアリルシアヌレート(以下TAC)が好ましい。これらは、低誘電特性を示し、かつ耐熱性を高めることができる。特にTAIC(登録商標)は、ポリフェニレンエーテルとの相溶性に優れるので好ましい。
 また、架橋型硬化剤としては、(メタ)アクリレート化合物(メタクリレート化合物及びアクリレート化合物)を用いてもよい。特に、3~5官能の(メタ)アクリレート化合物を使用するのが好ましい。3~5官能のメタクリレート化合物としては、トリメチロールプロパントリメタクリレート等を用いることができ、一方、3~5官能のアクリレート化合物としては、トリメチロールプロパントリアクリレート等を用いることができる。これらの架橋型硬化剤を用いると耐熱性を高めることができる。架橋型硬化剤は、1種のみを用いてもよいし、2種以上を用いてもよい。
 所定ポリフェニレンエーテルを含む硬化性組成物乃至は硬化性樹脂積層体中の成分が、不飽和炭素結合を有する炭化水素基を含む場合、特に架橋型硬化剤と硬化させることにより誘電特性に優れた硬化物を得ることができる。
 硬化性組成物乃至は硬化性樹脂積層体中、所定ポリフェニレンエーテルと架橋型硬化剤(例えば、トリアルケニルイソシアヌレート)との配合比率は、固形分比(所定ポリフェニレンエーテル:架橋型硬化剤)として、20:80~90:10とすることが好ましく、30:70~90:10とすることがより好ましい。このような範囲とすることで、低誘電特性と耐熱性に優れる硬化物が得られる。
<<<マレイミド化合物>>>
 マレイミド化合物は、1分子中に少なくとも1つのマレイミド基を含有する限り特に限定されない。
 マレイミド化合物としては、
(1)単官能脂肪族/脂環族マレイミド、
(2)単官能芳香族マレイミド、
(3)多官能脂肪族/脂環族マレイミド、
(4)多官能芳香族マレイミド、
を挙げることができる。
<<(1)単官能脂肪族/脂環族マレイミド>>
 単官能脂肪族/脂環族マレイミド(1)としては、例えば、N-メチルマレイミド、N-エチルマレイミド、特開平11-302278号に開示されているマレイミドカルボン酸とテトラヒドロフルフリルアルコールとの反応物等を挙げることができる。
<<(2)単官能芳香族マレイミド>>
 単官能芳香族マレイミド(2)としては、例えば、N-フェニルマレイミド、N-(2-メチルフェニル)マレイミド等を挙げることができる。
<<(3)多官能脂肪族/脂環族マレイミド>>
 多官能脂肪族/脂環族マレイミド(3)としては、例えば、N,N’-メチレンビスマレイミド、N,N’-エチレンビスマレイミド、トリス(ヒドロキシエチル)イソシアヌレートと脂肪族/脂環族マレイミドカルボン酸とを脱水エステル化して得られるイソシアヌレート骨格のマレイミドエステル化合物、トリス(カーバメートヘキシル)イソシアヌレートと脂肪族/脂環族マレイミドアルコールとをウレタン化して得られるイソシアヌレート骨格のマレイミドウレタン化合物等のイソシアヌル骨格ポリマレイミド類、イソホロンビスウレタンビス(N-エチルマレイミド)、トリエチレングリコールビス(マレイミドエチルカーボネート)、脂肪族/脂環族マレイミドカルボン酸と各種脂肪族/脂環族ポリオールとを脱水エステル化し、又は脂肪族/脂環族マレイミドカルボン酸エステルと各種脂肪族/脂環族ポリオールとをエステル交換反応して得られる脂肪族/脂環族ポリマレイミドエステル化合物類、脂肪族/脂環族マレイミドカルボン酸と各種脂肪族/脂環族ポリエポキシドとをエーテル開環反応して得られる脂肪族/脂環族ポリマレイミドエステル化合物類、脂肪族/脂環族マレイミドアルコールと各種脂肪族/脂環族ポリイソシアネートとをウレタン化反応して得られる脂肪族/脂環族ポリマレイミドウレタン化合物類等を挙げることができる。
 具体的には、炭素数1~6のアルキル基、より好ましくは直鎖状アルキル基を有するマレイミドアルキルカルボン酸又はマレイミドアルキルカルボン酸エステルと、数平均分子量100~1000のポリエチレングリコール及び/又は数平均分子量100~1000のポリプロピレングリコール及び/又は数平均分子量100~1000のポリテトラメチレングリコールとを、脱水エステル化反応又はエステル交換反応して得られる下記一般式(X1)及び一般式(X2)で表される脂肪族ビスマレイミド化合物等を挙げることができる。
Figure JPOXMLDOC01-appb-I000008
(式中、mは1~6の整数、nは2~23の値、R1は水素原子又はメチル基を表す。)
Figure JPOXMLDOC01-appb-I000009
(式中、mは1~6の整数、pは2~14の値を表す。)
<<(4)多官能芳香族マレイミド>>
 多官能芳香族マレイミド(4)としては、例えば、N,N’-(4,4’-ジフェニルメタン)ビスマレイミド、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、2,2’-ビス-(4-(4-マレイミドフェノキシ)プロパン、N,N’-(4,4’-ジフェニルオキシ)ビスマレイミド、N,N’-p-フェニレンビスマレイミド、N,N’-m-フェニレンビスマレイミド、N,N’-2,4-トリレンビスマレイミド、N,N’-2,6-トリレンビスマレイミド、マレイミドカルボン酸と各種芳香族ポリオールとを脱水エステル化し、又はマレイミドカルボン酸エステルと各種芳香族ポリオールとをエステル交換反応して得られる芳香族ポリマレイミドエステル化合物類、マレイミドカルボン酸と各種芳香族ポリエポキシドとをエーテル開環反応して得られる芳香族ポリマレイミドエステル化合物類、マレイミドアルコールと各種芳香族ポリイソシアネートとをウレタン化反応して得られる芳香族ポリマレイミドウレタン化合物類等を挙げることができる。
 これらの中でも、マレイミド化合物は、多官能であることが好ましい。マレイミド化合物は、ビスマレイミド骨格を有することが好ましい。マレイミド化合物は、1種を単独又は2種以上を組み合わせて用いることができる。
 マレイミド化合物の重量平均分子量は、特に限定されないが、100以上、200以上、500以上、750以上、1,000以上、2,000以上、又は、100,000以下、50,000以下、10,000以下、5,000以下、4,000以下、3,500以下とすることができる。
 マレイミド化合物の含有量は、典型的には、硬化性組成物乃至は硬化性樹脂積層体中、固形分全量基準で、0.5~50質量%、1~40質量%又は1.5~30質量%とすることができる。
 また、別の観点では、硬化性組成物乃至は硬化性樹脂積層体中、所定ポリフェニレンエーテルとマレイミド化合物との配合比率は、固形分比として、9:91~99:1、17:83~:95:5、又は、25:75~90:10とすることができる。  
 また、硬化性組成物乃至は硬化性樹脂積層体がマレイミド化合物と架橋型硬化剤とを含む場合、マレイミド化合物と架橋型硬化剤との配合比率は、固形分比(マレイミド化合物:架橋型硬化剤)として、80:20~10:90とすることが好ましく、70:30~20:80とすることがより好ましい。このような範囲とすることで、低誘電特性と耐熱性に優れる硬化物が得られる。
<<<エラストマー>>>
 エラストマーは、例えばポリイソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、ポリクロロプレンゴム、ニトリルゴム、エチレン-プロピレンゴム等のジエン系合成ゴム、エチレン-プロピレンゴム、ブチルゴム、アクリルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴム、エピクロルヒドリンゴム等の非ジエン系合成ゴム、天然ゴム、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー等が挙げられる。
 ポリフェニレンエーテルとの相溶性及び誘電特性の観点から、エラストマーの少なくとも一部はスチレン系エラストマーが好ましい。スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロックコポリマー、スチレン-ブタジエン-ブチレン-スチレンブロックコポリマー等のスチレン-ブタジエン共重合体;スチレン-イソプレン-スチレンブロックコポリマー等のスチレン-イソプレン共重合体;スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマー、等が挙げられる。得られる硬化物の誘電特性が特に良好であることから、スチレン-エチレン-ブチレン-スチレンブロックコポリマー等の不飽和炭素結合を有しないスチレン系エラストマーが好ましい。
 スチレン系エラストマーにおけるスチレンブロックの含有比率は、10~70質量%、30~60質量%、又は40~50質量%であることが好ましい。スチレンブロックの含有比率は、H-NMRにより測定されたスペクトルの積分比から求めることができる。
 ここでスチレン系エラストマーの原料モノマーとしては、スチレンだけでなく、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体が含まれる。
 エラストマー100質量%に占めるスチレン系エラストマーの含有割合は、例えば、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、95質量%以上、100質量%としてもよい。
 エラストマーは他の成分と反応する官能基(結合を含む)を有していても良い。
 例えば、反応性官能基として不飽和炭素結合を有していても良い。エラストマーをこのように構成することで、不飽和炭素結合(例えば、分岐ポリフェニレンエーテルが有する不飽和炭素結合)に架橋することができ、ブリードアウトのリスクを低減するなどの効果がある。
 エラストマーは、(メタ)アクリル酸、マレイン酸、これらの無水物もしくはエステルなどを使用して変性されていてもよい。また、さらにジエン系エラストマーの残存不飽和結合に水添加して得られたものであってもよい。
 エラストマーの数平均分子量は、1,000~150,000としてもよい。数平均分子量が前記下限値以上であると低熱膨張性に優れ、前記上限値以下であると他の成分との相溶性に優れる。
 エラストマーの含有量は、硬化性組成物乃至は硬化性樹脂積層体中、所定ポリフェニレンエーテル100質量部に対して10~300質量部としてもよい。あるいは、エラストマーの含有量は、硬化性組成物乃至は硬化性樹脂積層体中の固形分全量基準で、3~65質量%としてもよい。上記範囲内の場合、良好な引張特性、密着性、耐熱性をバランスよく実現できる。
<<<<<<硬化性樹脂積層体の効果>>>>>>
 本発明の硬化性樹脂積層体は、前記第2の樹脂層と被着対象物(銅箔等)とが接触するように被着対象物上に配置し、加熱圧着することで、被着対象物(銅箔等)の凹凸部に第2の樹脂層が隙間なく充填され、その後、硬化性樹脂積層体を硬化することにより、第1の樹脂層、第2の樹脂層、及び前記樹脂層間の界面にて架橋反応が生じ、被着対象物と硬化性樹脂積層体が強固に密着することで、優れたピール強度が得られる。
<<<<<<硬化性樹脂積層体の製造方法>>>>>>
<<<<<原料>>>>>
 硬化性樹脂積層体は、上述した第1の硬化性組成物と第2の硬化性組成物を必要に応じて溶媒等により希釈して溶液とし、基材フィルムや基板上に塗布、乾燥して得ることができる。
 硬化性組成物の希釈に用いる溶媒の含有量は特に限定されず、硬化性組成物の用途や所望の粘度に応じて適宜調整可能である。
<<<<溶媒>>>>
 本発明の硬化性組成物に使用可能な溶媒の一例としては、クロロホルム、塩化メチレン、トルエン等の従来使用可能な溶媒の他、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)、メチルエチルケトン、酢酸エチル、等の比較的安全性の高い溶媒等が挙げられる。なお、溶媒は、N,N-ジメチルホルムアミド(DMF)であってもよい。溶媒は、1種のみを用いてもよいし、2種以上を用いてもよい。
<<<<<製造工程>>>>>
 以下、硬化性樹脂積層体の製造工程の一例について説明する。
<<<<ドライフィルム>>>>
 本発明のドライフィルムは、硬化性樹脂積層体の少なくとも片面が、フィルムで支持又は保護されてなることを特徴とする。
 支持体となるフィルム(基材フィルム)は特に限定されず、銅箔等の金属箔、ポリイミドフィルム、ポリエステルフィルム、ポリエチレンナフタレート(PEN)フィルム等のフィルム、とすることができる。なお、これらのフィルムは、ドライフィルムの支持体やカバーフィルムとして使用することもできる。
 ドライフィルムの製造方法は、例えば、基材フィルム上に第2の硬化性組成物の溶液をアプリケーター等により塗工、乾燥させて第2の樹脂層を形成し、次いで、第2の樹脂層上に第1の硬化性組成物の溶液を塗工、乾燥させて第1の樹脂層を形成することで、基材フィルム上に第2の樹脂層及び第1の樹脂層を順に積層した2層の硬化性樹脂積層体を有するドライフィルムを形成することができる。
 また、前記2層の硬化性樹脂積層体の第1の樹脂層上には、さらに第2の樹脂層を形成することで、第1の樹脂層の両面に第2の樹脂層を有する3層の硬化性樹脂構造体を有するドライフィルムを形成することができる。
 樹脂層を形成した後に、必要に応じてその他の層(例えば、カバーフィルム)を設ける工程を実施してもよい。
 硬化性樹脂積層体を有するドライフィルムは、上述した基材フィルム上に樹脂層を順に積層させる工程に替えて、第1の樹脂層を有する第1のドライフィルム及び/又は第2の樹脂層を有する第2のドライフィルムを予め準備しておき、これらを貼り合せ、さらに基材フィルムを剥離して貼り合せることで、前記2層の硬化性樹脂積層体や前記3層の硬化性樹脂積層体が基材フィルムで挟持された構造のドライフィルムを作製することができる。
 硬化性組成物の塗工及び乾燥は、公知の方法及び条件によって実施することができる。例えば、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等の公知の塗工方法により、均一な厚さの硬化性組成物を得る。
 その後、塗工によって得られた硬化性組成物の塗膜を、60~130℃の温度で1~30分間加熱乾燥することで、乾燥塗膜からなる樹脂層を形成することができる。加熱乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等の公知の加熱手段によって実施することができる。
 塗工条件や硬化性組成物の粘度を変更することで、樹脂層の厚さを調整することができる。
<<<<<<硬化性樹脂積層体の使用方法及び用途>>>>>>
 本発明の硬化性樹脂積層体は、一例として、第2の樹脂層が表層側となるように、適宜の基板上に形成した後、第2の樹脂層に導体層(銅箔等)を圧着して使用される。基板上への形成方法としては、第1の硬化性組成物及び第2の硬化性組成物を基板上に塗工及び乾燥して形成してもよいし、上述したドライフィルムの形態を介して、基板上に形成してもよい。
 基板としては、予め回路形成されたプリント配線基板やフレキシブルプリント配線基板の他、紙-フェノール樹脂、紙-エポキシ樹脂、ガラス布-エポキシ樹脂、ガラス-ポリイミド、ガラス布/不繊布-エポキシ樹脂、ガラス布/紙-エポキシ樹脂、合成繊維-エポキシ樹脂、フッ素樹脂・ポリエチレン・PPO・シアネートエステル等の複合材を用いた全てのグレード(FR-4等)の銅張積層板、ポリイミドフィルム、PETフィルム、ガラス基板、セラミック基板、ウエハ板等を用いることができる。
 基板上に塗工及び乾燥して基板上に形成する場合は、例えば、基板上に第1の硬化性組成物の溶液を塗工及び乾燥させて第1の樹脂層を形成し、次いで、第1の樹脂層上に第2の硬化性組成物の溶液を塗工及び乾燥させて第2の樹脂層を形成することで、基板上に第1の樹脂層及び第2の樹脂層の順で積層した硬化性樹脂積層体を形成することができる。
 基板上に塗工及び乾燥は、公知の方法及び条件によって実施することができ、上述したドライフィルムの製造方法と同様の塗工及び乾燥方法を用いることができる。
 ドライフィルムの形態を介して基板上に形成する場合は、例えば、基材フィルムにて挟持された2層の硬化性樹脂積層体を有するドライフィルムの場合は、第1の樹脂層に接する基材フィルムを剥離した後、第1の樹脂層が基板と接するように配置する。次いで、真空ラミネーター等を用いて、第2の樹脂層に接する基材フィルム側から加熱加圧することで基板にドライフィルムをラミネートし、常温まで冷却した後に表層の基材フィルムを剥離することで、基板上に第1の樹脂層及び第2の樹脂層の順で積層した硬化性樹脂積層体を形成することができる。
 基材上へのドライフィルムのラミネートは、公知の方法及び条件によって実施することができる。中でも、ボイド等が発生しないことから真空ラミネーターを用いることが好ましく、温度条件が80~160℃、時間条件が10~120秒の範囲でラミネートすることできる。
 その後、硬化性樹脂積層体の表層側となる第2の樹脂層上に銅箔等の被着対象を配置し、真空ラミネーターや真空プレス機を用いて加熱加圧することで、第2の樹脂層上に導体層を形成する。その後、硬化性樹脂積層体を適宜の方法により熱硬化させる。
 熱硬化工程は、例えば、熱風循環式乾燥炉により100~220℃、30~120分間加熱することにより、硬化性樹脂積層体は熱硬化反応を生じ、硬化物が形成される。
 本発明の硬化性樹脂積層体及びドライフィルムは、回路基板上に絶縁膜を形成するために好適に使用され、層間接着剤、電磁波シールド層、又は、層間絶縁層の形成に好適である。
<<<<<<具体的な形態の例>>>>>>
 以下、本発明の、具体的な形態の例について述べる。
 下記形態I、IIに係る発明によれば、低誘電特性を有し、導体層に対して優れた密着性(ピール強度)を有する絶縁層の形成に有用な硬化性樹脂積層体を提供することができる。
<<<<<形態I>>>>>
 形態Iに係る発明は、
 第1の樹脂層と、前記第1の樹脂層の主面の少なくとも一方の面に積層された、第2の樹脂層とを有する硬化性樹脂積層体であって、
 前記第2の樹脂層は、前記第1の樹脂層及び前記第2の樹脂層の合計の厚みに対して5~35%の厚みを有し、
 前記第1の樹脂層は、(A1)ポリフェニレンエーテルと、(B1)フィラーとを含み、
 前記第2の樹脂層は、(A2)ポリフェニレンエーテルを含み、硬化物としてのヤング率(YM)が、3.0GPa以下であり、
 前記第1の樹脂層の硬化物のヤング率(YM)と前記第2の樹脂層の硬化物のヤング率(YM)との関係がYM>YMであり、
 前記(A1)ポリフェニレンエーテル及び(A2)ポリフェニレンエーテルは、少なくとも条件1を満たすフェノール類を含む原料フェノール類から得られ、コンフォメーションプロットで算出された傾きが0.6未満であるポリフェニレンエーテルである
ことを特徴とする、硬化性樹脂積層体である。
(条件1)
 オルト位及びパラ位に水素原子を有する
 形態Iに係る発明は、前記硬化性樹脂積層体を有するドライフィルムであってもよい。
 形態Iに係る発明は、前記硬化性積層体からなる硬化物であってもよい。
 形態Iに係る発明は、前記硬化物を有する電子部品であってもよい。
<<<<<形態II>>>>>
 形態IIに係る発明は、
 第1の樹脂層と、前記第1の樹脂層の主面の少なくとも一方の面に積層された、第2の樹脂層とを有する硬化性樹脂積層体であって、
 前記第2の樹脂層は、前記第1の樹脂層及び前記第2の樹脂層の合計の厚みに対して5~35%の厚みを有し、
 前記第1の樹脂層は、(A1)ポリフェニレンエーテルと、(B1)フィラーとを含み、
 前記第2の樹脂層は、(A2)ポリフェニレンエーテルを含み、140℃における溶融粘度(MV)が、40,000dPa・s以下であり、
 前記第1の樹脂層の140℃における溶融粘度(MV)と前記第2の樹脂層の140℃における溶融粘度(MV)との関係がMV>MVであり、
 前記(A1)ポリフェニレンエーテル及び(A2)ポリフェニレンエーテルは、少なくとも条件1を満たすフェノール類を含む原料フェノール類から得られ、コンフォメーションプロットで算出された傾きが0.6未満であるポリフェニレンエーテルである
ことを特徴とする、硬化性樹脂積層体である。
(条件1)
 オルト位及びパラ位に水素原子を有する
 形態IIに係る発明は、前記硬化性樹脂積層体を有するドライフィルムであってもよい。
 形態IIに係る発明は、前記硬化性積層体からなる硬化物であってもよい。
 形態IIに係る発明は、前記硬化物を有する電子部品であってもよい。
 以下、実施例及び比較例により、本発明をより詳細に説明するが、本発明は以下には何ら限定されない。
<<PPE樹脂の合成>>
<PPE-1(分岐PPE樹脂)の合成>
 3Lの二つ口ナスフラスコに、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)2.6gと、テトラメチルエチレンジアミン(TMEDA)3.18mLを加えて十分に溶解させ、10ml/minにて酸素を供給した。原料フェノール類である2,6-ジメチルフェノール105gと2-アリルフェノール13gとをトルエン1.5Lに溶解させ原料溶液を調製した。この原料溶液をフラスコに滴下し、600rpmの回転速度で攪拌しながら40℃で6時間反応させた。反応終了後、メタノール20L:濃塩酸22mLの混合液で再沈殿させてろ過にて取り出し、80℃で24時間乾燥させ、分岐PPE樹脂であるPPE-1を得た。
 PPE-1の数平均分子量は20,000、重量平均分子量は60,000であった。
 PPE-1のコンフォメーションプロットの傾きは0.31であった。
<PPE-2(分岐PPE樹脂)の合成>
 3Lの二つ口ナスフラスコに、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)2.6gと、テトラメチルエチレンジアミン(TMEDA)3.18mLを加えて十分に溶解させ、10ml/minにて酸素を供給した。原料フェノール類である2,6-ジメチルフェノール105gとオルトクレゾール4.89gとをトルエン1.5Lに溶解させ原料溶液を調製した。この原料溶液をフラスコに滴下し、600rpmの回転速度で攪拌しながら40℃で6時間反応させた。反応終了後、メタノール20L:濃塩酸22mLの混合液で再沈殿させてろ過にて取り出し、80℃で24時間乾燥させ、分岐PPE樹脂を得た。
 滴下漏斗を備えた1Lの二つ口ナスフラスコに、50gの分岐PPE樹脂、変性用化合物としてアリルブロミド4.8g、NMP300mLを加え、60℃で攪拌した。その溶液に5MのNaOH水溶液5mLを滴下した。その後、さらに60℃で5時間攪拌した。次に、塩酸で反応溶液を中和した後、メタノール5L中に再沈殿させて濾過にて取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄後、80℃で24時間乾燥させ、分岐PPE樹脂であるPPE-2を得た。
 PPE-2の数平均分子量は19,000、重量平均分子量は66,500であった。
 PPE-2のコンフォメーションプロットの傾きは0.33であった。
<非分岐PPE樹脂の合成>
 原料フェノール類である2-アリル-6-メチルフェノール7.6g、2,6-ジメチルフェノール34gをトルエン0.23Lに溶解させた原料溶液に水を34mL添加した以外はPPE-1と同様の合成方法に基づき非分岐PPE樹脂を得た。
 非分岐PPE樹脂の数平均分子量は1,000、重量平均分子量は2,000であった。
 非分岐PPE樹脂のコンフォメーションプロットの傾きは測定不能であった。
 なお、各PPE樹脂の数平均分子量(Mn)と重量平均分子量(Mw)はゲル浸透クロマトグラフィー(GPC)により求めた。GPCにおいては、Shodex K-805Lをカラムとして使用し、カラム温度を40℃、流量を1mL/min、溶離液をクロロホルム、標準物質をポリスチレンとした。
<PPE樹脂の溶剤溶解性>
 各PPE樹脂の溶剤溶解性を確認した。
 分岐PPE樹脂-1、2は、シクロヘキサノンに可溶であった。
 非分岐PPE樹脂は、シクロヘキサノンに可溶ではなく、クロロホルムには可溶であった。
<<<硬化性組成物の調製/ドライフィルムの作成>>>
 以下のようにして、各実施例及び各比較例に係る硬化性組成物のワニス及びドライフィルムを得た。
<<実施例1>>
<第1の樹脂層用硬化性組成物の調製>
 PPE-1:100質量部及びスチレンエラストマー(旭化成株式会社製:商品名「H1051」):49質量部に、溶剤としてシクロヘキサノン:540質量部を加えて40℃にて30分混合、攪拌して完全に溶解させた。これによって得たPPE樹脂溶液に、架橋型硬化剤としてTAIC(三菱ケミカル株式会社製):60質量部、球状シリカフィラー(アドマテックス株式会社製:商品名「SC2500-SVJ」):534質量部、マレイミド樹脂(Designer Molecules社製:商品名「BMI-3000J」、Mw=3,000):16質量部、を添加してこれを混合した後、三本ロールミルで分散させた。最後に、過酸化物であるα,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン(日本油脂株式会社製:商品名「パーブチルP-40」)を3質量部配合し、マグネチックスターラーにて攪拌した。以上のようにして、実施例1の第1の樹脂層用硬化性組成物のワニスを得た。
 次いで、厚さ100μmのPETフィルム(東洋紡株式会社製:商品名「TN-200」)上に、実施例1の第1の樹脂層用硬化性組成物のワニスを乾燥後の樹脂層の厚さが29μmとなるように、アプリケーターにて塗布、90℃5分間乾燥し、実施例1の第1の樹脂層を備えるドライフィルムを作製した。また、溶融粘度及びヤング率測定用に、乾燥後の樹脂層の厚さが25μmとなるように上記と同様の条件でドライフィルムを作製した。
<第1の樹脂層の溶融粘度の測定>
 上記した実施例1の第1の樹脂層を厚さ25μmで備えるドライフィルムを20枚準備し、名機製作所製真空ラミネーターMVLP-500を用い、樹脂層同士が接するようにラミネート、PETフィルム剥離を繰り返して、樹脂層の厚さが500μmの溶融粘度測定用試験片を作製した。この試験片にて、HAAKE社製レオメーター(MARS 40)を用い、オシレーション昇温法(5℃/min)、測定温度範囲:70~200℃、周波数:1Hz、応力制御:3Pa、パラレルプレート:20mm、ギャップ:450μm、サンプルサイズ:2.5×2.5cmの条件で140℃における溶融粘度を測定した。
<第1の樹脂層の硬化膜のヤング率測定>
 上記した実施例1の第1の樹脂層を厚さ25μmで備えるドライフィルムを、低粗度銅箔(FV-WS(古河電機社製):Rz=1.2μm)の光沢面に第1の樹脂層が接するように配置し、真空ラミネーターにてラミネートした。次いで、PETフィルムを剥離した後、イナートオーブンを用いて窒素を完全に充満させて200℃まで昇温後60分硬化、第1の樹脂層からなる硬化膜を得た。この硬化膜を、長さ8cm、幅0.5cmに切り出し、下記条件にて引張り試験を行い、応力ひずみ線図の応力が5MPaから10MPaにおけるひずみの傾きからヤング率を求めた。
[測定条件]
 試験機:引張試験機EZ-SX(株式会社島津製作所製)
 チャック間距離:50mm
 試験速度:1mm/min
 伸び計算:(引張移動量/チャック間距離)×100
<第2の樹脂層用硬化性組成物の調製>
 上述した第1の樹脂層用硬化性組成物において、球状シリカフィラーの含有量を0質量部とした以外は同様の方法で実施例1の第2の樹脂層用硬化性組成物のワニスを得た。
<第2の樹脂層(第2の樹脂層を備えるドライフィルム)の作製>
 次いで、厚さ100μmのPETフィルム上に、実施例1の第2の樹脂層用硬化性組成物のワニスを乾燥後の樹脂層の厚さが2μmとなるように、アプリケーターにて塗布、90℃5分間乾燥し、実施例1の第2の樹脂層を備えるドライフィルムを作製した。また、溶融粘度の測定用及びヤング率測定用に、乾燥後の樹脂層の厚さが25μmとなるように上記と同様の条件でドライフィルムを作製した。
<第2の樹脂層の溶融粘度の測定>
 上記した実施例1の第2の樹脂層を厚さ25μmで備えるドライフィルムを20枚準備し、上述した第1の樹脂層の溶融粘度測定と同様の方法にて140℃における溶融粘度を測定した。
<第2の樹脂層の硬化膜のヤング率測定>
 上記した実施例1の第2の樹脂層を厚さ25μmで備えるドライフィルムを用いて、上述した第1の樹脂層のヤング率測定と同様の方法で、第2の樹脂層の硬化膜のヤング率を求めた。
<硬化性樹脂積層体(第1の樹脂層と第2の樹脂層とを備えるドライフィルム)の作製>
 上述した第1の樹脂層を備えるドライフィルムと、第2の樹脂層を備えるドライフィルムとを、樹脂層同士が接するように配置し、名機製作所製真空ラミネーターMVLP-500を用いて貼り合せ、実施例1のドライフィルムを得た。
<<実施例2-13、比較例1-6>>
 各成分と含有量を表に示す数値とした以外は実施例1と同様に、第1及び第2の樹脂層用硬化性組成物を調整し、実施例2-13、比較例1-6に係る第1の樹脂層及び第2の樹脂層の各硬化膜のヤング率及び溶融粘度を測定し、また、第1の樹脂層と第2の樹脂層とを備えるドライフィルムを作製した。
 なお、比較例3に係る第1の樹脂層及び第2の樹脂層は、硬化膜を作製及び溶融粘度を測定することができなかった。
<<実施例14>>
 第1の樹脂層を備えるドライフィルムと、第2の樹脂層を備えるドライフィルムとを貼り合せた後、第1の樹脂層側のPETフィルムを剥離し、更に第2の樹脂層を備えるドライフィルムを貼り合せ、実施例14に係るドライフィルムを作製した。
<<比較例7-13>>
 第1の樹脂層を備えるドライフィルムを作製し、かかる樹脂層に接するようにPETフィルムを貼り合せ、比較例7-13に係るドライフィルムを作製した。
<<<硬化物の作製>>>
 実施例及び比較例の各ドライフィルムの第1の樹脂層側のPETフィルムを剥離後、低粗度銅箔(FV-WS(古河電機社製):Rz=1.2μm)の光沢面に第1の樹脂層が接するようにドライフィルムを配置し、真空ラミネーターにてラミネートした。次いで、残るPETフィルムを剥離した後、イナートオーブンを用いて窒素を完全に充満させて200℃まで昇温後60分硬化、実施例及び比較例の各硬化膜を得た。
 なお、比較例3のドライフィルムでは硬化膜を作製することができなかった。
<<<評価>>>
 前述した硬化物の硬化膜について、以下の評価を行った。
<<CTE:熱膨張率>>
 硬化膜を長さ3cm、幅0.3cmに切り出し、ティー・エイ・インスツルメント社製TMA(Thermomechanical Analysis)Q400を用いて、引張モードで、チャック間16mm、荷重30mN、窒素雰囲気下、20~250℃まで5℃/分で昇温し、次いで、250~20℃まで5℃/分で降温して測定した。降温時における100℃から50℃の平均熱膨張率を求めた。
<<ヤング率及び破断ひずみ>>
 硬化膜を長さ8cm、幅0.5cmに切り出し、ヤング率及び破断ひずみを下記条件にて測定した。
 なお、ヤング率は、得られた応力ひずみ線図の応力が5MPaから10MPaにおけるひずみの傾きにより求めた。
[測定条件]
 試験機:引張試験機EZ-SX(株式会社島津製作所製)
 チャック間距離:50mm
 試験速度:1mm/min
 伸び計算:(引張移動量/チャック間距離)×100
<<誘電率>>
 比誘電率Dk及び誘電正接Dfは、以下の方法に従って測定した。
 硬化膜を長さ80mm、幅45mmに切断したものを試験片としてSPDR(Split Post Dielectric Resonator)共振器法により測定した。測定器には、キーサイトテクノロジー合同会社製のベクトル型ネットワークアナライザE5071C、SPDR共振器、計算プログラムはQWED社製のものを用いた。条件は、周波数10GHz、測定温度25℃とした。
<<ピール強度>>
 銅ベタ(全面銅箔)の銅張積層板の表面をメック社製CZ-8100によって前処理した。次いで、実施例1-13、比較例1-6のドライフィルムの第1の樹脂層側のPETフィルム、実施例14、比較例7-13の片面のPETフィルムを剥離し、露出した樹脂層と前記処理面が接するように真空ラミネーターにて貼り合せた。その後、残るPETフィルムを剥離して、露出した樹脂層上に低粗度銅箔(FV-WS(古河電機社製):Rz=1.2μm)の粗面が接するように真空ラミネーターにて貼り合せた後、イナートオーブンを用いて窒素を完全に充満させて200℃まで昇温後60分硬化して、ピール強度評価用基板を作製した。
 上述したピール強度評価用基板の低粗度銅箔部に、幅10mm、長さ100mmの切込みをいれ、この一端を剥がしてつかみ具で掴み、下記条件にて90°ピール強度測定を行った。
[測定条件]
 試験機:引張試験機EZ-SX(株式会社島津製作所製)
 試験速度:1mm/min
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011

 

Claims (4)

  1.  第1の硬化性組成物からなる第1の樹脂層と、前記第1の樹脂層の主面の少なくとも一方の面に積層された、第2の硬化性組成物からなる第2の樹脂層とを有する硬化性樹脂積層体であって、
     前記第2の樹脂層は、前記第1の樹脂層及び前記第2の樹脂層の合計の厚みに対して5~35%の厚みを有し、
     前記第1の硬化性組成物は、(A1)ポリフェニレンエーテルと、(B1)フィラーとを含み、前記(B1)フィラーの含有率(MB1)が、組成物中の全固形分に対して30質量%以上であり、
     前記第2の硬化性組成物は、(A2)ポリフェニレンエーテルを含み、(B2)フィラーを含まない、又は、(B2)フィラーの含有率(MB2)が、組成物中の全固形分に対して40質量%以下であり、
     前記(B1)フィラーの含有率(MB1)と前記(B2)フィラーの含有率(MB2)との関係がMB1>MB2であり、
     前記(A1)ポリフェニレンエーテル及び(A2)ポリフェニレンエーテルは、少なくとも条件1を満たすフェノール類を含む原料フェノール類から得られ、コンフォメーションプロットで算出された傾きが0.6未満であるポリフェニレンエーテルである
    ことを特徴とする、硬化性樹脂積層体。
    (条件1)
     オルト位及びパラ位に水素原子を有する
  2.  請求項1に記載の硬化性樹脂積層体を有するドライフィルム。
  3.  請求項1又は請求項2に記載の硬化性積層体からなる硬化物。
  4.  請求項3に記載の硬化物を有する電子部品。

     
PCT/JP2022/016760 2021-03-31 2022-03-31 硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品 WO2022211071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237028278A KR20230164007A (ko) 2021-03-31 2022-03-31 경화성 수지 적층체, 드라이 필름, 경화물 및 전자부품
US18/552,743 US20240165934A1 (en) 2021-03-31 2022-03-31 Curable resin multilayer body, dry film, cured product and electronic component
CN202280014146.4A CN116867646A (zh) 2021-03-31 2022-03-31 固化性树脂层叠体、干膜、固化物和电子部件

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021062055A JP2022157693A (ja) 2021-03-31 2021-03-31 硬化性樹脂積層体、ドライフィルムおよび硬化物、電子部品
JP2021062056A JP2022157694A (ja) 2021-03-31 2021-03-31 硬化性樹脂積層体、ドライフィルムおよび硬化物、電子部品
JP2021-062056 2021-03-31
JP2021-062057 2021-03-31
JP2021062057A JP2022157695A (ja) 2021-03-31 2021-03-31 硬化性樹脂積層体、ドライフィルムおよび硬化物、電子部品
JP2021-062055 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022211071A1 true WO2022211071A1 (ja) 2022-10-06

Family

ID=83459613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016760 WO2022211071A1 (ja) 2021-03-31 2022-03-31 硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品

Country Status (4)

Country Link
US (1) US20240165934A1 (ja)
KR (1) KR20230164007A (ja)
TW (1) TW202248029A (ja)
WO (1) WO2022211071A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227077A (ja) * 1998-02-13 1999-08-24 Mitsubishi Eng Plast Corp 多層中空体
JP2003017861A (ja) * 2001-06-28 2003-01-17 Kyocera Corp 多層配線基板及びその製造方法
JP2005088873A (ja) * 2003-08-08 2005-04-07 Sekisui Plastics Co Ltd 自動車内装材用発泡シート
JP2020055998A (ja) * 2018-09-28 2020-04-09 太陽ホールディングス株式会社 硬化性組成物、ドライフィルム、硬化物および電子部品
JP2020196853A (ja) * 2019-05-31 2020-12-10 太陽ホールディングス株式会社 ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物および電子部品
WO2022034872A1 (ja) * 2020-08-13 2022-02-17 三菱瓦斯化学株式会社 樹脂層付き銅箔、及び、これを用いた積層体
WO2022034871A1 (ja) * 2020-08-13 2022-02-17 三菱瓦斯化学株式会社 樹脂層付き銅箔、及び、これを用いた積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11227077A (ja) * 1998-02-13 1999-08-24 Mitsubishi Eng Plast Corp 多層中空体
JP2003017861A (ja) * 2001-06-28 2003-01-17 Kyocera Corp 多層配線基板及びその製造方法
JP2005088873A (ja) * 2003-08-08 2005-04-07 Sekisui Plastics Co Ltd 自動車内装材用発泡シート
JP2020055998A (ja) * 2018-09-28 2020-04-09 太陽ホールディングス株式会社 硬化性組成物、ドライフィルム、硬化物および電子部品
JP2020196853A (ja) * 2019-05-31 2020-12-10 太陽ホールディングス株式会社 ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物および電子部品
WO2022034872A1 (ja) * 2020-08-13 2022-02-17 三菱瓦斯化学株式会社 樹脂層付き銅箔、及び、これを用いた積層体
WO2022034871A1 (ja) * 2020-08-13 2022-02-17 三菱瓦斯化学株式会社 樹脂層付き銅箔、及び、これを用いた積層体

Also Published As

Publication number Publication date
KR20230164007A (ko) 2023-12-01
US20240165934A1 (en) 2024-05-23
TW202248029A (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
JP5261943B2 (ja) セミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP7117498B2 (ja) 熱硬化性樹脂組成物、樹脂シート、樹脂付き金属箔、金属張積層板、及びプリント配線板
JP5104507B2 (ja) セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにこれを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
JP5303854B2 (ja) 新規なセミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
WO2007094359A1 (ja) セミipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5549055B2 (ja) 熱硬化性樹脂組成物、これを用いたプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
JP5303852B2 (ja) セミipn型複合体の樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5552889B2 (ja) プリント配線板用熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP2011225639A (ja) 熱硬化性樹脂組成物並びにこれを用いた樹脂ワニス、プリプレグ及び金属張積層板
WO2021065964A1 (ja) ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品
JP6089615B2 (ja) 熱硬化性樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP5303853B2 (ja) Ipn型複合体の熱硬化性樹脂組成物並びにこれを用いたワニス、プリプレグ及び金属張積層板
JP5374891B2 (ja) セミipn型複合体の熱硬化性樹脂を含有する樹脂ワニスの製造方法、並びにプリント配線板用樹脂ワニス、プリプレグ及び金属張積層板
JP7410662B2 (ja) 硬化性組成物、ドライフィルム、硬化物および電子部品
JP7369581B2 (ja) ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品
JP7497143B2 (ja) ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物および電子部品
JP2023012356A (ja) ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、硬化物、および電子部品
JP2020143263A (ja) ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品
WO2022211071A1 (ja) 硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品
JP7344690B2 (ja) 硬化性組成物、ドライフィルム、硬化物、積層板および電子部品
JP7339800B2 (ja) 硬化性組成物、ドライフィルム、硬化物および電子部品
JP2022157695A (ja) 硬化性樹脂積層体、ドライフィルムおよび硬化物、電子部品
JP2022157693A (ja) 硬化性樹脂積層体、ドライフィルムおよび硬化物、電子部品
JP2022157694A (ja) 硬化性樹脂積層体、ドライフィルムおよび硬化物、電子部品
JP7388927B2 (ja) ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781281

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014146.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18552743

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781281

Country of ref document: EP

Kind code of ref document: A1