WO2022034872A1 - 樹脂層付き銅箔、及び、これを用いた積層体 - Google Patents

樹脂層付き銅箔、及び、これを用いた積層体 Download PDF

Info

Publication number
WO2022034872A1
WO2022034872A1 PCT/JP2021/029459 JP2021029459W WO2022034872A1 WO 2022034872 A1 WO2022034872 A1 WO 2022034872A1 JP 2021029459 W JP2021029459 W JP 2021029459W WO 2022034872 A1 WO2022034872 A1 WO 2022034872A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
copper foil
compound
resin
mass
Prior art date
Application number
PCT/JP2021/029459
Other languages
English (en)
French (fr)
Inventor
晃樹 小松
慎也 喜多村
憲明 杉本
洋介 松山
豪志 信國
Original Assignee
三菱瓦斯化学株式会社
Mgcエレクトロテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社, Mgcエレクトロテクノ株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2022542847A priority Critical patent/JPWO2022034872A1/ja
Priority to KR1020237005098A priority patent/KR20230049098A/ko
Priority to CN202180056838.0A priority patent/CN116096805A/zh
Publication of WO2022034872A1 publication Critical patent/WO2022034872A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Definitions

  • the present invention relates to a copper foil with a resin layer and a laminated body using the same. More specifically, the present invention relates to a copper foil with a resin layer useful for a printed wiring board or a substrate for mounting a semiconductor element, and a laminate using the same.
  • printed wiring boards or substrates for mounting semiconductor elements which are widely used in electronic devices, communication devices, personal computers, etc.
  • a method for manufacturing a printed wiring board or a substrate for mounting a semiconductor element a build-up method in which circuit-formed conductor layers and insulating layers (interlayer insulating layers) are alternately stacked is widely used, and wiring is used.
  • a semi-additive method that can form a fine pattern is often used for forming a pattern.
  • Patent Document 1 As an insulating layer used for such a printed wiring board, a multi-layered resin composition layer is known (see, for example, Patent Document 1).
  • Patent Document 1 relates to a resin insulating sheet in which the etching amount of each layer is controlled in order to improve the performance of the multi-layered insulating layer.
  • the resin insulating sheet described in Patent Document 1 is required to have a total thickness of at least 12 ⁇ m or more for each layer. Therefore, there has been a demand for the development of a technique that can further reduce the thickness (for example, less than 10 ⁇ m) and satisfy the requirements of insulation, plating adhesion, hygroscopic heat resistance, and the like.
  • the present invention has been made based on such a problem, and provides a copper foil with a resin layer having excellent insulation, plating adhesion, and moisture absorption and heat resistance, and a laminate using the same. The purpose.
  • the present inventors adjust the composition of the first resin layer and the surface roughness of the copper foil in the copper foil with a resin layer having the copper foil and the first resin layer laminated on the surface of the copper foil. As a result, it was found that the above problems could be solved, and the present invention was completed.
  • the first resin layer contains a polyphenylene ether compound (A), a polyimide resin (B), and a maleimide compound (C).
  • the inorganic filler contains at least one selected from magnesium hydroxide, magnesium oxide, silica, molybdenum compound, alumina, aluminum nitride, glass, talc, titanium compound, and zirconium oxide.
  • the second resin layer is a group consisting of an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a compound having a polymerizable unsaturated group.
  • With copper foil [10] The copper foil with a resin layer according to [2], wherein the thickness of the second resin layer is 1 ⁇ m or more and 15 ⁇ m or less.
  • the present invention it is possible to provide a copper foil with a resin layer having excellent insulation, plating adhesion, and hygroscopic heat resistance, and a laminate using the same.
  • the present embodiment will be described in detail, but the present invention is not limited thereto, and various modifications are made without departing from the gist thereof. Is possible.
  • the laminated bodies are those in which the layers are adhered to each other, but the layers may be peelable from each other, if necessary.
  • the “resin solid content” refers to the components of the first resin layer 12 or the second resin layer 13 excluding the solvent and the inorganic filler, unless otherwise specified, and refers to the “resin solid content”. "100 parts by mass” means that the total of the components of the first resin layer 12 or the second resin layer 13 excluding the solvent and the inorganic filler is 100 parts by mass.
  • FIG. 1 shows the configuration of a copper foil 10 with a resin layer according to an embodiment of the present invention.
  • the copper foil 10 with a resin layer includes a copper foil 11 and a first resin layer 12 laminated on the surface of the copper foil 11, and further, a second resin is placed on the first resin layer 12. It is preferable that the layer 13 is provided.
  • the copper foil 10 with a resin layer is useful, for example, as a material for forming an insulating layer provided on a circuit pattern (conductor layer), and is used, for example, in the manufacture of electronic devices, communication devices, personal computers, and the like. It can be used as a material for forming an insulating layer of a printed wiring board or a substrate for mounting a semiconductor element.
  • a copper foil 10 with a resin layer is arranged on a substrate on which a conductor layer such as a circuit pattern is formed so that the second resin layer 13 and the conductor layer are in contact with each other. After that, the first resin layer 12 and the second resin layer 13 are cured by heating and pressing (pressing) to form an insulating layer on the conductor layer.
  • the first resin layer 12 maintains the distance between the copper foil 11 and the conductor layer even after a press treatment such as when forming a laminate. It is a layer.
  • the second resin layer 13 is a layer containing a resin having fluidity at the time of press processing, and is a layer in which uneven portions such as a conductor layer of a circuit pattern are embedded. Since the second resin layer 13 functions as an embedded layer, it is preferable that at least one of the constituent components and physical properties is different from that of the first resin layer 12.
  • the first resin layer 12 is a polyimide resin and the second resin layer 13 is an epoxy compound.
  • the first resin layer 12 can be obtained by changing the composition ratio of the components contained in each layer or the cured state (for example, by changing the coating conditions of each layer).
  • the physical properties are different depending on (such as completely curing the second resin layer 13 to make the second resin layer 13 in a semi-cured state), and there are cases where these are combined.
  • the copper foil 11 may be any one used for ordinary printed wiring boards, and examples thereof include electrolytic copper foil, rolled copper foil, and copper alloy film.
  • the copper foil 11 may be subjected to known surface treatments such as matte treatment, corona treatment, nickel treatment and cobalt treatment.
  • commercially available products can be used, for example, "GHY5" (trade name, 12 ⁇ m thick copper foil) and "JXUT-I" (trade name, 1) manufactured by JX Nippon Mining & Metals Co., Ltd.
  • the ten-point average roughness Rz of the surface of the copper foil 11, that is, the ten-point average roughness Rz of the surface of the copper foil 11 on the side where the first resin layer 12 is formed may be 0.3 ⁇ m or more and 10 ⁇ m or less. preferable. This is because the plating adhesion can be improved by setting the thickness to 0.3 ⁇ m or more. Further, if it is larger than 10 ⁇ m, the thickness of the first resin layer 12 must be increased in order to secure the insulating property. A more preferable range of the ten-point average roughness Rz of the surface of the copper foil 11 is, for example, 0.6 ⁇ m or more and 2.5 ⁇ m or less.
  • the ten-point average roughness Rz of the surface of the copper foil 11 is preferably smaller than the thickness of the first resin layer 12. This is to improve the insulation.
  • the ten-point average roughness Rz of the surface of the copper foil 11 can be measured using a commercially available shape measuring microscope (laser microscope, for example, "VK-X1000" (trade name) manufactured by KEYENCE CORPORATION).
  • the thickness of the copper foil 11 is not particularly limited, but is preferably in the range of 1 ⁇ m to 18 ⁇ m in consideration of the surface roughening treatment, and a thin printed wiring board and a substrate for mounting a semiconductor element can be preferably obtained. It is more preferably in the range of 2 ⁇ m to 15 ⁇ m.
  • the first resin layer 12 contains a polyphenylene ether compound (A), a polyimide resin (B), and a maleimide compound (C). Further, the first resin layer 12 may contain at least one of other resin components, an inorganic filler, and other components, if necessary.
  • the thickness of the first resin layer 12 is not particularly limited, but is preferably 5 ⁇ m or less from the viewpoint of thinning, and is preferably 1.5 ⁇ m or more in consideration of ensuring insulation.
  • a copper foil 10 with a resin layer is hardened with a resin to prepare a sample for measurement, cut so as to have a vertical cross section, polished, and the vertical cross section is observed with a microscope. The thickness can be calculated.
  • the length measuring method is the distance from the surface of the first resin layer 12 opposite to the copper foil 11 to the interface with the copper foil 11 in the vertical direction, and the uneven interface between the first resin layer 12 and the copper foil 11 is set.
  • the distance from the average position of the first resin layer 12 to the surface of the first resin layer 12 on the opposite side of the copper foil 11 is defined as the thickness of the first resin layer 12.
  • the first resin layer 12 may be in a semi-cured state (B-Stage) or a completely cured state (C-Stage).
  • the first resin layer 12 can be formed by a known means such as coating.
  • the polyphenylene ether compound (A) according to the present embodiment is a compound represented by the general formula (1).
  • the polyphenylene ether compound (A) represented by the general formula (1) used in the present embodiment preferably has a number average molecular weight of 1000 or more and 7000 or less. By setting the number average molecular weight to 7,000 or less, the compatibility between the resins can be controlled.
  • the number average molecular weight of the polyphenylene ether compound (A) is preferably 1100 or more and 5000 or less. More preferably, the number average molecular weight of the polyphenylene ether compound (A) is 4500 or less, and even more preferably, the number average molecular weight of the polyphenylene ether compound (A) is 3000 or less. The number average molecular weight is measured using gel permeation chromatography according to a routine method.
  • X represents an aryl group (aromatic group)
  • ⁇ (YO) n 2 ⁇ represents a polyphenylene ether moiety
  • R 1 , R 2 and R 3 are independent of each other. It represents a hydrogen atom, an alkyl group, an alkenyl group or an alkynyl group
  • n 2 represents an integer of 1 to 100
  • n 1 represents an integer of 1 to 6
  • n 3 represents an integer of 1 to 4.
  • n 1 is preferably an integer of 1 or more and 4 or less, more preferably n 1 is 1 or 2, ideally n 1 is 1 and preferably n 3 is. It is preferably an integer of 1 or more and 3 or less, more preferably n 3 is 1 or 2, and ideally n 3 is 2.
  • the polyphenylene ether compound (A) represented by the general formula (1) preferably contains a polymer of the structural unit represented by the following general formula (2).
  • R 901 , R 902 , R 903 , and R 904 each independently represent an alkyl group, an aryl group, a halogen atom, or a hydrogen atom having 6 or less carbon atoms.
  • the polymer may further contain at least one structural unit selected from the group consisting of the structural units represented by the general formula (3) and the general formula (4).
  • R 905 , R 906 , R 907 , R 911 , and R 912 each independently represent an alkyl group or a phenyl group having 6 or less carbon atoms.
  • R 908 , R 909 , and R 910 are.
  • R 913 , R 914 , R 915 , R 916 , R 917 , R 918 , R 919 , and R 920 each independently have a hydrogen atom and an alkyl group or a phenyl group having 6 or less carbon atoms.
  • -A- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the general formulas (2), (3) and (4) are preferably ⁇ (YO) ⁇ of the general formula (1).
  • an aromatic hydrocarbon group can be used as the aryl group in X of the general formula (1).
  • a group for example, a phenyl group, a biphenyl group, etc.
  • a group obtained by removing n3 hydrogen atoms from one ring structure selected from a benzene ring structure , a biphenyl structure, an indenyl ring structure, and a naphthalene ring structure.
  • Indenyl group and naphthyl group can be used, and it is preferable to use a biphenyl group.
  • the aryl group includes a diphenyl ether group in which the above aryl group is bonded with an oxygen atom, a benzophenone group bonded with a carbonyl group, a 2,2-diphenylpropane group bonded with an alkylene group, and the like. But it may be. Further, the aryl group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group or a halogen atom. However, since the "aryl group" is substituted with a polyphenylene ether moiety via an oxygen atom, the limit on the number of general substituents depends on the number of polyphenylene ether moieties.
  • the polyphenylene ether compound (A) contains a polyphenylene ether represented by the structure of the following general formula (5).
  • X is an aryl group (aromatic group)
  • ⁇ (YO) n 2 ⁇ indicates a polyphenylene ether moiety
  • n 2 is an integer of 1 to 100, respectively.
  • Shows.) -(YO) n 2- and n 2 are synonymous with those in the general formula (1). It may contain a plurality of kinds of compounds having different n2 .
  • X in the general formula (1) and the general formula (5) is preferably the general formula (6), the general formula (7), or the general formula (8), and the general formula (1) and the general formula (5).
  • -(YO) n 2 - is a structure in which the general formula (9) or the general formula (10) is arranged, or a structure in which the general formula (9) and the general formula (10) are randomly arranged. More preferred.
  • R 921 , R 922 , R 923 , and R 924 each independently represent a hydrogen atom or a methyl group.
  • -B- is a linear, branched, or cyclic group having 20 or less carbon atoms. It is a divalent hydrocarbon group of.
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • the method for producing the modified polyphenylene ether having the structure represented by the general formula (5) is not particularly limited, and is, for example, a bifunctional phenylene obtained by oxidation-coupling a bifunctional phenol compound and a monofunctional phenol compound. It can be produced by converting the terminal phenolic hydroxyl group of the ether oligomer into vinylbenzyl ether.
  • a modified polyphenylene ether a commercially available product can be used, and for example, OPE-2St1200 and OPE-2St2200 manufactured by Mitsubishi Gas Chemical Company, Inc. can be preferably used.
  • the ratio of the polyphenylene ether compound (A) in the present embodiment is preferably 1 part by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass of the resin solid content of the first resin layer 12. ..
  • the upper limit of the content is preferably less than 20 parts by mass. Within such a range, the interlayer adhesion, the plating adhesion, and the hygroscopic heat resistance can be effectively improved.
  • the first resin layer 12 may contain only one type of the polyphenylene ether compound (A), or may contain two or more types of the polyphenylene ether compound (A). When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • the polyimide resin (B) As the polyimide resin (B), a commercially available product can be appropriately selected and used.
  • a solvent-soluble polyimide resin synthesized by the production method described in JP-A-2005-15629 can be used.
  • the solvent-soluble polyimide resin includes an aliphatic tetracarboxylic acid dianhydride represented by the following formula (11), an aliphatic tetracarboxylic acid represented by the following formula (12), and the aliphatic tetracarboxylic acid. It can be obtained by polycondensing one or more selected from acid derivatives and one or more diamine compounds in a solvent in the presence of a tertiary amine compound.
  • R is a tetravalent aliphatic hydrocarbon group having 4 to 16 carbon atoms.
  • R is a tetravalent aliphatic hydrocarbon group having 4 to 16 carbon atoms
  • Y 1 to Y 4 are independently hydrogen or a hydrocarbon group having 1 to 8 carbon atoms.
  • a substantially equal molar amount of the aliphatic tetracarboxylic acid and the diamine compound can be heated in a solvent in the presence of a tertiary amine compound and polycondensed.
  • the reaction molar ratio of the aliphatic tetracarboxylic acids and the diamine compound is preferably in the range of 95 to 105 mol% with respect to one of them.
  • tetracarboxylic acid dianhydride is usually used as the tetracarboxylic acid, but in the above production method, in addition to the aliphatic tetracarboxylic acid dianhydride, the aliphatic tetra is used.
  • a practical polyimide resin can be produced by using an ester of a carboxylic acid or an aliphatic tetracarboxylic acid and an alcohol. If the aliphatic tetracarboxylic acid can be used as it is, it is advantageous in terms of production equipment and cost.
  • Examples of the aliphatic tetracarboxylic acid dianhydride represented by the formula (11) include 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,4,5-cyclopentanetetra.
  • examples of the aliphatic tetracarboxylic acid represented by the formula (12) and its derivatives include 1,2,3,4-cyclobutanetetracarboxylic acid and 1,2,4,5-cyclopentanetetracarboxylic acid.
  • 1,2,4,5-Cyclohexanetetracarboxylic acid 1,2,4,5-Cyclohexanetetracarboxylic acid, bicyclo [2.2.2] octo-7-en-2,3,5,6-tetracarboxylic acid, etc., and their alcohol esters. Can be done. These can be used alone or in admixture of two or more. Of these, 1,2,4,5-cyclohexanetetracarboxylic dianhydride and 1,2,4,5-cyclohexanetetracarboxylic acid are preferred.
  • tetracarboxylic dians and derivatives thereof can be mixed and used as long as the solvent solubility is not impaired.
  • pyromellitic acid 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyltetracarboxylic acid, 2,2-bis (3,4-dicarboxyphenyl).
  • the diamine compound is preferably an aromatic diamine compound containing 6 to 28 carbon atoms or an aliphatic diamine compound containing 2 to 28 carbon atoms.
  • Examples of the diamine compound include p-phenylenediamine, m-phenylenediamine, 4,4'-diaminobiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, and 4,4'-diamino-3,3.
  • aromatic diamine compounds are 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-ditrifluoromethylbiphenyl, 4,4'-diamino.
  • the aliphatic diamine compound 4,4'-diaminodicyclohexylmethane, 3 (4), 8 (9) -bis (aminomethyl) -tricyclo [5.2.1.02,6] decane are preferable.
  • tertiary amine compound examples include trimethylamine, triethylamine, tripropylamine, tributylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, and N.
  • -Ethylpyrolidin, N-methylpiperidine, N-ethylpiperidine, imidazole, pyridine, quinoline, isoquinoline and the like can be mentioned.
  • triethylamine is particularly preferred.
  • Examples of the solvent used in the above-mentioned production method include ⁇ -butyrolactone, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphoramide, and tetramethylene sulfone. , P-Chlorphenol, m-Cresol, 2-Chlor-4-hydroxytoluene and the like. These can be used alone or in admixture of two or more.
  • ⁇ -butyrolactone, N, N-dimethylacetamide and N-methyl-2-pyrrolidone are preferable, and ⁇ -butyrolactone and N, N-dimethylacetamide are even more preferable.
  • a poor solvent of the polyimide resin can be used in combination to the extent that the polymer does not precipitate.
  • the poor solvent include hexane, heptane, benzene, toluene, xylene, chlorbenzene, o-dichlorobenzene and the like.
  • the total weight of the aliphatic tetracarboxylic acid component and the diamine component is preferably 1 to 50% by mass, more preferably 20 to 45% by mass with respect to the total mass of the reaction solution.
  • the method of charging the aliphatic tetracarboxylic acid component and the diamine compound component is not particularly limited, and the method of charging both components at once or in a solution containing either component (it does not have to be completely dissolved) is already used.
  • a method of gradually charging one of the components in a solid state or a solution state can be performed.
  • the method of charging both components at once is advantageous in terms of productivity because the charging time can be shortened.
  • the tertiary amine compound it is preferable to charge the tertiary amine compound by raising the temperature and reaching the target temperature in order to fully exert its catalytic effect.
  • the method for charging the solvent is also not particularly limited, and a method of charging in advance into a reaction vessel, a method of charging into a reaction vessel in which either one or both of an aliphatic tetracarboxylic acid component or a diamine compound is present, and an aliphatic tetra
  • a method of charging into a reaction vessel in which either one or both of an aliphatic tetracarboxylic acid component or a diamine compound is present and an aliphatic tetra
  • the solvent as described above may be added to the solvent-soluble polyimide resin solution in the state during the reaction, in the state of staying in the reaction tank after the reaction, or in the state of being taken out from the reaction tank after the reaction, depending on the purpose. can.
  • the polyimide resin (B) used in this embodiment for example, a block copolymer polyimide resin can also be used.
  • the block copolymer polyimide resin include the block copolymer polyimide resin described in International Publication No. WO2010-073952.
  • the block copolymer polyimide resin is composed of a structure B1 in which an imide oligomer composed of a second structural unit is bonded to the end of an imide oligomer composed of a first structural unit, and a second structural unit.
  • the copolymerized polyimide resin is not particularly limited as long as it has a structure in which the structure B2 in which the imide oligomer composed of the first structural unit is bonded to the end of the imide oligomer is alternately repeated.
  • the second structural unit is different from the first structural unit.
  • These block copolymerized polyimide resins are obtained by reacting a tetracarboxylic acid dianhydride with a diamine in a polar solvent to form an imide oligomer, and then further diamine or another tetracarboxylic acid with the tetracarboxylic acid dianhydride. It can be synthesized by a step-growth polymerization reaction in which acid dianhydride and diamine are added and imidized.
  • the ratio of the polyimide resin (B) in the first resin layer 12 is not particularly limited, but is 10 parts by mass with respect to 100 parts by mass of the resin solid content of the first resin layer 12 from the viewpoint of heat resistance and curability.
  • the range of 80 parts by mass or less is preferable, and the range of 30 parts by mass or more and 70 parts by mass or less is particularly preferable.
  • the first resin layer 12 may contain only one type of polyimide resin (B), or may contain two or more types of polyimide resin (B). When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • ⁇ Maleimide compound (C)> By containing the maleimide compound (C), the interlayer adhesion, the insulating property, the plating adhesion, and the hygroscopic heat resistance can be improved.
  • the maleimide compound (C) 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, still more preferably 2) maleimide in one molecule.
  • the compound is not particularly limited as long as it has a group, and any conventionally known maleimide compound can be used.
  • maleimide compound (C) examples include, for example, bis (4-maleimidephenyl) methane, 2,2-bis ⁇ 4- (4-maleimidephenoxy) -phenyl ⁇ propane, and bis (3,5-dimethyl-4).
  • -Bismaleimide compounds such as maleimidephenyl) methane, bis (3-ethyl-5-methyl-4-maleimidephenyl) methane, bis (3,5-diethyl-4-maleimidephenyl) methane; polyphenylmethane maleimide, etc. ..
  • the maleimide compound (C) can also be blended in the form of a prepolymer of these compounds, or a prepolymer of these compounds and an amine compound. These maleimide compounds (C) can be used alone or in admixture of two or more.
  • bismaleimide compounds are preferable from the viewpoint of heat resistance, and among them, 2,2-bis [4- (4-maleimidephenoxy) phenyl] propane and bis (3-ethyl-5-methyl-4-maleimidephenyl) are preferable. Methane is more preferred.
  • the ratio of the maleimide compound (C) in the first resin layer 12 is not particularly limited, but is 5% by mass with respect to 100 parts by mass of the resin solid content of the first resin layer 12 from the viewpoint of heat resistance and plating adhesion.
  • the range of 5 parts by mass or more and 75 parts by mass or less is preferable, and the range of 5 parts by mass or more and 45 parts by mass or less is further preferable.
  • the first resin layer 12 may contain only one type of maleimide compound (C), or may contain two or more types of maleimide compound (C). When two or more kinds are contained, it is preferable that the total amount is within the above range.
  • ⁇ Other resin components examples include liquid crystal polyesters, epoxy compounds, cyanate ester compounds, phenol compounds, benzoxazine compounds, organic group-modified silicone compounds, and compounds having a polymerizable unsaturated group.
  • the first resin layer 12 may contain one or more of these.
  • the liquid crystal polyester is an aromatic polyester that exhibits liquid crystal properties when melted.
  • a known one can be appropriately selected and used.
  • the aromatic polyester described in JP-A-2001-11296 can be used. Specific examples thereof include aromatic polyesters containing 90 mol% or more of structural units represented by the following formula (13).
  • the aromatic polyester containing the structural unit represented by the above formula (13) for example, from the viewpoint of availability, polyoxybenzoate which is a homopolymer of the structural unit represented by the formula (13) is used. Can be used.
  • a method for producing the aromatic polyester a known method can be adopted. It should be noted that the aromatic polyester containing the structural unit represented by the above formula (13) is often sparingly or insoluble in a normal solvent, and is also sparingly or insoluble, and therefore has a liquid crystallinity. Does not show. Therefore, the aromatic polyester containing the structural unit represented by the above formula (13) is preferably used as a powder. The powder is obtained by pulverizing an aromatic polyester resin or fiber.
  • the molecular weight of the liquid crystal polyester is usually 1000 to 100,000, preferably 10,000 to 50,000.
  • liquid crystal polyester a commercially available product can be appropriately selected and used, and for example, "Econol E101-F” manufactured by Sumitomo Chemical Co., Ltd. can be used.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass.
  • the range of 10 to 90 parts by mass is preferable, and the range of 30 to 80 parts by mass is particularly preferable.
  • the epoxy compound has 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) epoxy groups in one molecule.
  • the compound is not particularly limited as long as it is a compound, and any conventionally known epoxy compound can be used.
  • the epoxy equivalent of the epoxy compound is preferably 250 g / eq to 850 g / eq, more preferably 250 g / eq to 450 g / eq, from the viewpoint of improving the adhesiveness and flexibility.
  • the epoxy equivalent can be measured by a conventional method.
  • epoxy compound examples include polyoxynaphthylene type epoxy resin, biphenyl aralkyl type epoxy resin, naphthalene tetrafunctional epoxy resin, xylene type epoxy resin, naphthol aralkyl type epoxy resin, bisphenol A type epoxy resin, and bisphenol F.
  • Type epoxy resin bisphenol A novolak type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin, aralkylnovolac type epoxy resin, alicyclic epoxy resin, polyol type epoxy
  • examples thereof include a resin, a glycidylamine type epoxy resin, a glycidyl ester type epoxy resin, a compound obtained by epoxidizing a double bond such as butadiene, and a compound obtained by reacting a hydroxyl group-containing silicone resin with epichlorohydrin.
  • polyoxynaphthylene type epoxy resin biphenyl aralkyl type epoxy resin, naphthalene tetrafunctional epoxy resin, xylene type epoxy resin, and naphthol aralkyl type epoxy resin are particularly from the viewpoint of adhesiveness to plated copper and flame retardancy. Is preferable.
  • These epoxy compounds may be used alone or in admixture of two or more.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the first resin layer 12 is 100 parts by mass.
  • the range of 1 to 60 parts by mass is preferable, and the range of 1 to 30 parts by mass is particularly preferable.
  • the cyanic acid ester compound has excellent chemical resistance, adhesiveness, and the like, and the excellent chemical resistance makes it possible to form a uniform roughened surface. Therefore, the resin layer in the present embodiment. Can be suitably used as a component of.
  • the cyanate ester compound has one or more cyanate groups (cyanato groups) in the molecule (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, still more preferably. 2)
  • the compound is not particularly limited as long as it is contained, and a compound usually used in the field of printed wiring board can be widely used.
  • Specific examples of the cyanate ester compound include, for example, an ⁇ -naphthol aralkyl type cyanate ester compound represented by the formula (14), a phenol novolac type cyanate ester compound represented by the formula (15), and a formula (16).
  • Biphenyl aralkyl type cyanic acid ester compound naphthylene ether type cyanic acid ester compound, xylene resin type cyanic acid ester compound, trisphenol methane type cyanic acid ester compound, adamantan skeleton type cyanic acid ester compound, bisphenol M type cyanide.
  • At least one selected from the group consisting of an acid ester compound, a bisphenol A type cyanate ester compound, and a diallyl bisphenol A type cyanate ester compound can be mentioned.
  • These cyanate ester compounds may be prepared by a known method, or commercially available products may be used.
  • Cyanic acid ester compounds are preferable because they have excellent flame retardancy, high curability, and a low thermal expansion coefficient of the cured product.
  • R 1 represents a hydrogen atom or a methyl group, and n 1 represents an integer of 1 or more. n 1 is preferably an integer of 1 to 50.
  • R 2 represents a hydrogen atom or a methyl group
  • n 2 represents an integer of 1 or more.
  • n 2 is preferably an integer of 1 to 50.
  • R 3 represents a hydrogen atom or a methyl group, and n 3 represents an integer of 1 or more. n 3 is preferably an integer of 1 to 50.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the first resin layer 12 has a content thereof.
  • the range of 1 to 60 parts by mass is preferable, and the range of 1 to 30 parts by mass is more preferable with respect to 100 parts by mass of the resin solid content.
  • the phenolic compound includes 1 or more (preferably 2 to 12, more preferably 2 to 6, still more preferably 2 to 4, more preferably 2 or 3, even more preferably 2) phenolic hydroxy groups in one molecule.
  • the phenol compound is not particularly limited as long as it has, and any conventionally known phenol compound can be used.
  • Specific examples of the phenol compound include, for example, bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolak type phenol resin, and glycidyl ester type phenol resin.
  • the benzoxazine compound is not particularly limited as long as it is a compound having two or more dihydrobenzoxazine rings in one molecule, and generally known compounds can be used.
  • Specific examples of the benzoxazine compound include, for example, bisphenol A type benzoxazine BA-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), bisphenol F type benzoxazine BF-BXZ (trade name manufactured by Konishi Chemical Co., Ltd.), and bisphenol S type benzoxazine BS-BXZ. (Product name manufactured by Konishi Chemical Co., Ltd.) and the like. These benzoxazine compounds may be used alone or in admixture of two or more.
  • organic group-modified silicone compound is not particularly limited, and specific examples thereof include di (methylamino) polydimethylsiloxane, di (ethylamino) polydimethylsiloxane, di (propylamino) polydimethylsiloxane, and di (epoxypropyl). Examples thereof include polydimethylsiloxane and di (epoxybutyl) polydimethylsiloxane. These organic-modified silicone compounds may be used alone or in admixture of two or more.
  • the compound having a polymerizable unsaturated group is not particularly limited, and generally known compounds can be used. Specific examples of the compound having a polymerizable unsaturated group include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene and divinylbiphenyl; methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-.
  • Hydroxypropyl (meth) acrylate polypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropanetri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • Methoda) acrylates of monovalent or polyhydric alcohols; epoxy (meth) acrylates such as bisphenol A type epoxy (meth) acrylate and bisphenol F type epoxy (meth) acrylate; benzocyclobutene resin and the like can be mentioned. These compounds having a polymerizable unsaturated group can be used alone or in admixture of two or more.
  • the first resin layer 12 may not contain the inorganic filler, but may contain the inorganic filler.
  • the content is preferably 35% by volume or less, and more preferably 31% by volume or less. This is because the addition of the inorganic filler improves the workability, but if the content is too large, the flexibility is lowered, cracks are generated, and the insulating property is lowered.
  • the content of the inorganic filler is the content of the inorganic filler with respect to the first resin layer 12 (inorganic filler / first resin layer ⁇ 100).
  • a spherical filler can be used from the viewpoint of low thermal expansion rate, moldability, filling property and rigidity, and is not particularly limited as long as it is a spherical filler used for the insulating layer of the printed wiring board.
  • the inorganic filler examples include magnesium hydroxide; magnesium oxide; silica such as natural silica, molten silica, amorphous silica, and hollow silica; molybdenum compounds such as molybdenum disulfide, molybdenum oxide, and zinc molybdenate; alumina; aluminum nitride; Glass; talc; titanium compounds such as titanium oxide, barium titanate, and strontium titanate; zirconium oxide and the like. These can be used by appropriately mixing one kind or two or more kinds.
  • silica is preferable as the inorganic filler from the viewpoint of low thermal expansion, and specifically, spherical molten silica is preferable.
  • Commercially available spherical fused silicas include SO-C1, SO-E1, YC100C, SC2500-SQ, K180SQ-C1, CIK Nanotech Co., Ltd., and Denka Co., Ltd. Examples include SFP-20M and SFP-130MC.
  • the particle size of the inorganic filler is not particularly limited, but is preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, further preferably 2 ⁇ m or less, and even more preferably 1.0 ⁇ m or less.
  • the particle size of the inorganic filler can be measured by a laser diffraction / scattering method based on the Mie scattering theory.
  • As the measurement sample an inorganic filler dispersed in water by ultrasonic waves can be preferably used.
  • the laser diffraction / scattering type particle size distribution measuring device "MT3000II" manufactured by Microtrac Bell Co., Ltd. or the like can be used.
  • the inorganic filler may be surface-treated with a silane coupling agent or the like.
  • a silane coupling agent the silane coupling agent described later can be used.
  • a silane coupling agent may be contained for the purpose of improving hygroscopic heat resistance.
  • the silane coupling agent is not particularly limited as long as it is a silane coupling agent generally used for surface treatment of inorganic substances. Specific examples include aminosilane-based silane coupling agents (eg, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane), and epoxysilane-based silane coupling agents (eg, ⁇ -aminopropyltriethoxysilane).
  • aminosilane-based silane coupling agents eg, ⁇ -aminopropyltriethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane
  • epoxysilane-based silane coupling agents eg, ⁇ -aminopropyltriethoxysi
  • silane-based silane coupling agent eg, ⁇ -acryloxypropyltrimethoxysilane, vinylsilane-based silane coupling agent (eg, ⁇ -methacryloxypropyltrimethoxysilane)).
  • Cationic silane-based silane coupling agent for example, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane hydrochloride
  • phenylsilane-based silane coupling agent one kind or two or more kinds can be appropriately mixed and used.
  • the content of the silane coupling agent is not particularly limited, but is preferably in the range of 0.05 to 5 parts by mass with respect to 100 parts by mass of the inorganic filler from the viewpoint of improving moisture absorption and heat resistance, and is 0.
  • the range of 1 to 3 parts by mass is more preferable.
  • the total amount of these silane coupling agents satisfies the above range.
  • a wet dispersant may be contained, for example, for the purpose of improving manufacturability.
  • the wet dispersant is not particularly limited as long as it is a wet dispersant generally used for paints and the like.
  • Disperbyk registered trademark
  • -110, -111, -118, -180, -161, BYK registered trademark
  • BYK registered trademark
  • These wet dispersants can be used alone or in admixture of two or more.
  • the content of the wet dispersant is not particularly limited, but is preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the inorganic filler from the viewpoint of improving manufacturability, and is preferably 0.5. A range of up to 3 parts by mass is more preferable. When two or more kinds of wet dispersants are used in combination, it is preferable that the total amount thereof satisfies the above range.
  • a curing accelerator may be further contained, for example, for the purpose of adjusting the curing rate.
  • the curing accelerator is not particularly limited, but is an organic metal salt containing a metal such as copper, zinc, cobalt, nickel, manganese, etc. (for example, lead naphthenate, lead stearate, zinc naphthenate, zinc octylate, tin oleate).
  • Inorganic metal salts such as tin chloride, zinc chloride, aluminum chloride; dioctyl tin oxide, other alkyl tin, alkyl tin oxide), imidazoles and derivatives thereof (eg, 2-ethyl-4-methylimidazole, 1-benzyl- 2-Phenylimidazole, 2,4,5-triphenylimidazole), tertiary amines (eg, triethylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline, N, N-dimethyltoluidine, 2-N -Ethylanilinoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine, etc.), organic peroxides (eg, benzoyl peroxide) , Lauroyl peroxide, acetyl peroxid
  • the content of the curing accelerator is not particularly limited, but is 0.001 to 5% by mass with respect to 100 parts by mass of the resin solid content of the first resin layer 12 from the viewpoint of obtaining a high glass transition temperature.
  • the range of parts is preferable, and the range of 0.01 to 3 parts by mass is more preferable.
  • the total amount thereof satisfies the above range.
  • various other polymer compounds and / or flame-retardant compounds may be contained.
  • the polymer compound and the flame-retardant compound are not particularly limited as long as they are generally used.
  • polymer compound examples include various thermosetting resins and thermoplastic resins, oligomers thereof, elastomers and the like.
  • polyamide-imide resin polystyrene, polyolefin, styrene-butadiene rubber (SBR), isoprene rubber (IR), butadiene rubber (BR), acrylonitrile butadiene rubber (NBR), polyurethane, polypropylene, (meth) acrylic oligomer
  • SBR styrene-butadiene rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • polyurethane polypropylene
  • acrylic oligomer examples thereof include (meth) acrylic polymers and silicone resins. From the viewpoint of compatibility, acrylonitrile butadiene rubber or styrene-butadiene rubber is preferable.
  • the flame-retardant compound examples include phosphorus-containing compounds (for example, phosphoric acid ester, phosphoric acid melamine, phosphorus-containing epoxy compound), nitrogen-containing compounds (for example, melamine and benzoguanamine), oxazine ring-containing compounds, silicone-based compounds and the like. Can be mentioned. These polymer compounds and / or flame-retardant compounds may be used alone or in admixture of two or more.
  • the first resin layer 12 may contain various other additives for various purposes.
  • additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, defoaming agents, dispersants, and leveling agents. And brighteners. These additives may be used alone or in admixture of two or more.
  • the second resin layer 13 contains a thermosetting resin.
  • the thermosetting resin is not particularly limited, and is, for example, an epoxy compound, a cyanate ester compound, a maleimide compound, a phenol compound, a polyphenylene ether compound, a benzoxazine compound, an organic group-modified silicone compound, and a non-polymerizable resin. Examples include compounds having a saturated group. As these compounds, the same compounds as those exemplified in the first resin layer 12 can be used.
  • the thermosetting resin can be used by appropriately mixing one or more of these. Above all, it is preferable to include an epoxy compound and a phenol compound because excellent peel strength can be obtained, and it is more preferable to further contain a maleimide compound together with the epoxy compound and the phenol compound.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and curability, the resin solid content of the second resin layer 13 is 100 parts by mass.
  • the range of 10 to 80 parts by mass is preferable, and the range of 30 to 70 parts by mass is particularly preferable.
  • the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the second resin layer 13 is used.
  • the range of 10 to 80 parts by mass is preferable, and the range of 20 to 60 parts by mass is more preferable with respect to 100 parts by mass.
  • the maleimide compound when used for the second resin layer 13, the content thereof is not particularly limited, but from the viewpoint of heat resistance and adhesion to the copper foil, the resin solid of the second resin layer 13 is used.
  • the range of 10 to 80 parts by mass is preferable, and the range of 10 to 50 parts by mass is more preferable with respect to 100 parts by mass.
  • the thickness of the second resin layer 13 is not particularly limited, but is preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less, from the viewpoint of thinning. Further, the thickness of the second resin layer 13 is preferably 1 ⁇ m or more in consideration of ensuring the insulating property.
  • the second resin layer 13 is preferably in a semi-cured state (B-Stage).
  • the second resin layer 13 can be formed by a known means such as coating.
  • the second resin layer 13 may also contain at least one of an inorganic filler and other components, if necessary.
  • an inorganic filler and other components for example, the same ones as described in the first resin layer 12 can be used.
  • the second resin layer 13 may not contain the inorganic filler, but may contain the inorganic filler, and the content thereof is preferably 35% by volume or less. This is because adding an inorganic filler improves workability, but if the content is too large, the flexibility is reduced and cracks are likely to occur.
  • the content of the inorganic filler is the content of the inorganic filler with respect to the second resin layer 13 (inorganic filler / first resin layer ⁇ 100).
  • the method for producing the copper foil 10 with a resin layer of the present embodiment is not particularly limited.
  • a manufacturing method for example, first, a solution (varnish) in which the composition of the first resin layer 12 is dissolved or dispersed in an organic solvent is applied to the surface of the copper foil 11 and dried under heating and / or reduced pressure. Then, the solvent is removed and solidified to form the first resin layer 12.
  • the first resin layer 12 may be in a completely cured state as well as in a semi-cured state.
  • a solution (varnish) in which the composition of the second resin layer 13 is dissolved or dispersed in an organic solvent is applied onto the first resin layer 12, and dried under heating and / or reduced pressure to remove the solvent. It is preferable to remove and solidify to form the second resin layer 13. At this time, it is preferable that the second resin layer 13 is in a B-stage (semi-cured state). Further, a protective layer such as a plastic film may be provided on the second resin layer 13. The protective layer is appropriately removed at the time of producing the laminate described later.
  • the drying conditions are not particularly limited, but the first resin layer 12 or the second resin layer 13 is dried so that the amount of the organic solvent is usually 10 parts by mass or less, preferably 5 parts by mass or less, based on 100 parts by mass. Let me.
  • the conditions for achieving drying differ depending on the amount of the organic solvent in the varnish. For example, in the case of a varnish containing 30 to 60 parts by mass of an organic solvent with respect to 100 parts by mass of the varnish, the heating conditions are 50 ° C. to 200 ° C. It may be dried underneath for about 3 to 10 minutes.
  • the organic solvent is not particularly limited as long as each component can be suitably dissolved or dispersed and the effect of the first resin layer 12 or the second resin layer 13 is exhibited.
  • organic solvents include alcohols (eg, methanol, ethanol and propanol), ketones (eg, acetone, methylethylketone and methylisobutylketone), amides (eg, dimethylacetamide and dimethylformamide), aromatic hydrocarbons. Classes (eg, toluene and xylene), N-methyl-2-pyrrolidone, ⁇ -butyrolactone and the like can be mentioned. These organic solvents may be used alone or in admixture of two or more.
  • the method of coating is also not particularly limited, but for example, bar coater coating, air knife coating, gravure coating, reverse gravure coating, micro gravure coating, micro reverse gravure coater coating, die coater coating, dip coating, spin coating coating. , A coating method known for spray coating and the like can be used.
  • the laminate using the copper foil 10 with a resin layer of the present embodiment (hereinafter, may be simply referred to as “the laminate of the present embodiment”) is, for example, a build-up of a printed wiring board or a substrate for mounting a semiconductor element. It can be used for materials and for manufacturing coreless substrates.
  • the laminate of the present embodiment can be configured as a laminate having a build-up layer in which a conductor layer and an insulating layer formed by using a copper foil 10 with a resin layer are alternately laminated, for example.
  • the "insulating layer formed by using the copper foil 10 with a resin layer” means, for example, such that the second resin layer 13 of the copper foil 10 with a resin layer is in contact with the substrate on which the conductor layer is formed. Can be laminated and configured.
  • the conductor layer may be the copper foil 11 of the copper foil 10 with a resin layer, or another conductor (copper foil or the like) such as the copper foil of the copper-clad laminate may be separately laminated to form the conductor layer. May be formed.
  • the laminated body 20 is formed by laminating a copper foil 10 with a resin layer on a substrate 22 on which a conductor layer 21 is formed so that a second resin layer 13 is in contact with the first resin layer 12. And the second resin layer 13 form an insulating layer 23.
  • the build-up layer has a plurality of conductor layers and an insulating layer, and the conductor layer is between the insulating layers and of the build-up layer. It can be configured to be arranged on the surface of the outermost layer.
  • the number of insulating layers is not particularly limited, but may be, for example, 3 layers or 4 layers.
  • a coreless substrate can be produced by using the laminated body of the present embodiment. Examples of the coreless substrate include a coreless substrate having two or more layers, and examples thereof include a three-layer coreless substrate. The configuration of the coreless substrate will be described later.
  • the laminate of this embodiment can be used as a printed wiring board.
  • a laminate using the copper foil 10 with a resin layer of the present embodiment is used as a build-up material for a metal foil-clad laminate in which an insulating resin layer called a core base material is completely cured.
  • an insulating resin layer called a core base material is completely cured.
  • the copper foil 10 (laminated body) with a resin layer of the present embodiment for example, it is possible to manufacture a thin printed wiring board without using a thick support substrate (carrier substrate).
  • a conductor circuit is formed by a conductor layer obtained by peeling off the metal foil and / or the metal foil of a commonly used metal foil-clad laminate and then plating.
  • the base material of the metal foil-clad laminate is not particularly limited, but is mainly a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate.
  • build-up refers to the first resin layer 12 in the copper foil 10 with a resin layer and, if necessary, a second, with respect to the metal foil and / or the conductor layer on the surface of the metal foil-clad laminate.
  • the resin layer 13 is laminated. Even if the copper foil 11 is etched and then plated when the printed wiring board or the substrate for mounting the semiconductor element is manufactured, the first resin layer 12 has excellent plating adhesion, so that the plating adhesion is improved.
  • holes such as via holes and / or through holes are machined in order to electrically connect each conductor layer as needed. Drilling is usually performed using a mechanical drill, a carbon dioxide laser, a UV laser, a YAG laser, or the like.
  • the roughening treatment usually consists of a swelling step, a surface roughening and smear melting step, and a neutralization step.
  • the swelling step is performed by swelling the surface of the insulating resin layer with a swelling agent.
  • the swelling agent As the swelling agent, the wettability of the surface of the insulating resin layer is improved, and the surface of the insulating resin layer can be swelled to the extent that oxidative decomposition is promoted in the next surface roughening and smear dissolution steps. If so, it is not particularly limited. Examples include an alkaline solution, a surfactant solution and the like.
  • the surface roughening and smear dissolution steps are carried out using an oxidizing agent.
  • the oxidizing agent include an alkaline permanganate solution and the like, and suitable specific examples thereof include an aqueous solution of potassium permanganate and an aqueous solution of sodium permanganate.
  • Such an oxidant treatment is called wet desmear, and in addition to the wet desmear, other known roughening treatments such as plasma treatment, dry desmear by UV treatment, mechanical polishing by buffing, and sandblasting are appropriately combined. May be.
  • the neutralization step is to neutralize the oxidizing agent used in the previous step with a reducing agent.
  • the reducing agent examples include amine-based reducing agents, and suitable specific examples thereof include acidic aqueous solutions such as a hydroxylamine sulfate aqueous solution, an ethylenediamine tetraacetic acid aqueous solution, and a nitrilotriacetic acid aqueous solution.
  • acidic aqueous solutions such as a hydroxylamine sulfate aqueous solution, an ethylenediamine tetraacetic acid aqueous solution, and a nitrilotriacetic acid aqueous solution.
  • the via hole and / or the through hole is provided, or after the via hole and / or the through hole is desmeared, it is preferable to perform a metal plating treatment to electrically connect each conductor layer.
  • the method of the metal plating treatment is not particularly limited, and a method of the metal plating treatment in the production of a normal multilayer printed wiring board can be appropriately used.
  • the method of metal plating treatment and the type of chemical solution used for plating are not particularly limited, and the metal plating treatment method and chemical solution in the production of a normal multilayer printed wiring board can be appropriately used.
  • the chemical solution used for the metal plating treatment may be a commercially available product.
  • the metal plating treatment method is not particularly limited, and is, for example, a treatment with a degreasing liquid, a treatment with a soft etching liquid, an acid cleaning, a treatment with a predip liquid, a treatment with a catalyst liquid, a treatment with an accelerator liquid, and a chemical copper liquid.
  • a treatment with a degreasing liquid a treatment with a soft etching liquid
  • an acid cleaning a treatment with a predip liquid
  • a treatment with a catalyst liquid a treatment with an accelerator liquid
  • chemical copper liquid examples thereof include treatment, pickling, and treatment of immersing in a copper sulfate solution and passing a current.
  • the first resin layer 12 or the second resin layer 13 in the semi-cured state is usually heat-treated.
  • a printed wiring board can be obtained by completely curing.
  • another copper foil 10 with a resin layer may be further laminated on the obtained printed wiring board.
  • the laminating method in the build-up method is not particularly limited, but a vacuum-pressurized laminator can be preferably used.
  • the copper foil 10 with a resin layer can be laminated via an elastic body such as rubber.
  • the laminating conditions are not particularly limited as long as they are conditions used in laminating ordinary printed wiring boards, but for example, a temperature of 70 ° C. to 140 ° C., a contact pressure in the range of 1 kgf / cm 2 to 11 kgf / cm 2 , and a contact pressure of 1 kgf / cm 2 to 11 kgf / cm 2. It is carried out under an atmospheric reduced pressure of 20 hPa or less.
  • the laminated adhesive film may be smoothed by hot pressing with a metal plate.
  • the laminating step and the smoothing step can be continuously performed by a commercially available vacuum pressurizing laminator.
  • the first resin layer 12 and the second resin layer 13 can be completely cured.
  • the thermosetting conditions differ depending on the types of components contained in the first resin layer 12 and the second resin layer 13, but usually the curing temperature is 100 ° C to 300 ° C and the pressure is 0.1 kgf / cm 2 to 100 kgf. / Cm 2 (about 9.8 kPa to about 9.8 MPa), curing time is 30 seconds to 5 hours.
  • Examples of the method for forming a circuit pattern on the copper foil on one side or both sides of the printed wiring board in the present embodiment include a semi-additive method, a full additive method, and a subtractive method. Above all, the semi-additive method is preferable from the viewpoint of forming a fine wiring pattern.
  • a method of selectively electroplating using a plating resist pattern plating
  • pattern plating a method of selectively electroplating using a plating resist
  • etching an appropriate amount of the whole to form a wiring pattern can be mentioned.
  • electroless plating and electrolytic plating are combined, and at that time, it is preferable to perform drying after electroless plating and after electrolytic plating, respectively. Drying after electroless plating is not particularly limited, but is preferably performed at 80 ° C. to 180 ° C. for 10 minutes to 120 minutes, and drying after electrolytic plating is not particularly limited, but is, for example, at 130 ° C. to 220 ° C. It is preferably performed for 10 to 120 minutes. Copper plating is preferable as the plating.
  • An example of a method of forming a circuit pattern by the subtractive method is a method of forming a wiring pattern by selectively removing a conductor layer using an etching resist.
  • a dry film resist (Hitachi Kasei RD-1225 (trade name)) is laminated and bonded (laminated) on the entire surface of the copper foil at a temperature of 110 ⁇ 10 ° C. and a pressure of 0.50 ⁇ 0.02 MPa. Then, exposure is performed according to the circuit pattern and masking is performed. Then, the dry film resist is developed with a 1% aqueous sodium carbonate solution, and finally the dry film resist is peeled off with an amine-based resist stripping solution. This makes it possible to form circuit patterning on the copper foil.
  • a multilayer printed wiring board can be obtained by further laminating an insulating resin layer and / or a conductor layer on the printed wiring board.
  • a circuit board may be provided in the inner layer of the multilayer printed wiring board.
  • the copper foil 10 with a resin layer constitutes one of the insulating resin layer and the conductor layer of the multilayer printed wiring board.
  • the laminating method is not particularly limited, and a method generally used for laminating and forming a normal printed wiring board can be used.
  • Examples of the laminating method include a multi-stage press, a multi-stage vacuum press, a laminator, a vacuum laminator, an autoclave forming machine, and the like.
  • the temperature at the time of stacking is not particularly limited, but is not particularly limited, for example, 100 ° C. to 300 ° C.
  • the pressure is not particularly limited, for example, 0.1 kgf / cm 2 to 100 kgf / cm 2 (about 9.8 kPa to about 9.8 MPa).
  • the heating time is not particularly limited, but is appropriately selected in the range of, for example, 30 seconds to 5 hours. Further, if necessary, for example, post-curing may be performed in a temperature range of 150 ° C. to 300 ° C. to adjust the degree of curing.
  • the laminate of this embodiment can be used as a substrate for mounting a semiconductor element.
  • a substrate for mounting a semiconductor element is produced, for example, by laminating a copper foil 10 with a resin layer on a metal foil-clad laminate and masking and patterning the copper foil on the surface or one side of the obtained laminate.
  • the masking and patterning known masking and patterning performed in the manufacture of the printed wiring board can be used, and the circuit pattern is preferably formed by the above-mentioned subtractive method without particular limitation.
  • the circuit pattern may be formed on only one side of the laminate, or may be formed on both sides.
  • the laminate of this embodiment can be a coreless substrate as described above.
  • An example of the coreless substrate is a multilayer coreless substrate.
  • the multilayer coreless substrate is, for example, a plurality of insulating layers composed of a first insulating layer, one or a plurality of second insulating layers laminated on one side of the first insulating layer, and a plurality of insulating layers.
  • FIG. 3 is a schematic diagram showing an example of a multilayer coreless substrate in this embodiment.
  • the first conductor layer 113 arranged between each of the plurality of insulating layers (first insulating layer 111 and the second insulating layer 112) and their respective insulating layers 113. It has a plurality of conductor layers composed of a second conductor layer 114 arranged on the outermost layer of the plurality of insulating layers (first insulating layer 111 and second insulating layer 112).
  • Terminal styrene polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.) 15.0 parts by mass, polyimide resin (product name: Neoprim (registered trademark) S100, manufactured by Mitsubishi Gas Chemical Company, Inc.) 49 .9 parts by mass, 2,2-bis- (4- (4-maleimidephenoxy) phenyl) propane (product name: BMI-80, manufactured by KI Kasei Co., Ltd.) 34.9 parts by mass, 2,4 0.2 parts by mass of 5-triphenylimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.) was blended (mixed) to obtain the composition of the first resin layer 12.
  • the composition of the first resin layer 12 was diluted with N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”) to obtain varnish A.
  • NMP N-methyl-2-pyrrolidone
  • the obtained varnish A was applied to the surface mat surface side of a copper foil 11 (product name: 3EC-M2S-VLP, manufactured by Mitsui Mining & Smelting Co., Ltd.) having a thickness of 12 ⁇ m by a bar coater.
  • the matte surface side of the copper foil 11 was set as the surface, and the ten-point average roughness Rz of the surface was 1.7 ⁇ m in Examples 1 to 5, 0.3 ⁇ m in Example 6, and 4.5 ⁇ m in Example 7. ..
  • the coating film was heated and dried at 180 ° C. for 10 minutes to form the first resin layer 12 on the copper foil 11.
  • biphenyl aralkyl type phenol resin product name: KAYAHARD GPH-103, hydroxyl group equivalent: 230 g / eq, manufactured by Nippon Kayaku Co., Ltd. 35.8 parts by mass, bis (3-ethyl-5-methyl-4-maleimide).
  • Diphenyl) methane (product name: BMI-70, manufactured by KAI Kasei Co., Ltd.) 17.9 parts by mass, naphthalene aralkyl type epoxy resin (product name: HP-9900-75M, epoxy equivalent: 274 g / eq., DIC 7.0 parts by mass, biphenyl aralkyl type epoxy resin (product name: NC-3000-FH-75M, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent: 320 g / eq.) 38.8 parts by mass,
  • the composition of the second resin layer 13 was obtained by blending (mixing) 0.5 parts by mass of 2,4,5-triphenylimidazole (manufactured by Tokyo Kasei Kogyo Co., Ltd.).
  • the composition of the second resin layer 13 was diluted with methyl ethyl ketone to obtain varnish B.
  • the obtained varnish B was applied by a bar coater onto the first resin layer 12 obtained by the above method.
  • the coating film was heated and dried at 150 ° C. for 10 minutes to obtain a copper foil 10 with a resin layer having a first resin layer 12 and a second resin layer 13.
  • the thickness of the first resin layer 12 and the thickness of the second resin layer 13 were changed as follows in each example.
  • the thickness of the first resin layer 12 is 1.5 ⁇ m
  • the thickness of the second resin layer 13 is 2.5 ⁇ m
  • the thickness of the first resin layer 12 is 2.5 ⁇ m.
  • the thickness of the resin layer 13 of 2 is 2.5 ⁇ m
  • the thickness of the first resin layer 12 is 5.0 ⁇ m in Example 3
  • the thickness of the second resin layer 13 is 2.5 ⁇ m
  • the thickness of Example 4 is the first.
  • the thickness of the resin layer 12 is 2.5 ⁇ m, the thickness of the second resin layer 13 is 1.5 ⁇ m, and in Example 5, the thickness of the first resin layer 12 is 2.5 ⁇ m and the thickness of the second resin layer 13 is In Example 6, the thickness of the first resin layer 12 is 2.5 ⁇ m, the thickness of the second resin layer 13 is 2.5 ⁇ m, and in Example 7, the thickness of the first resin layer 12 is 2. The thickness of the second resin layer 13 is 5 ⁇ m, and the thickness of the second resin layer 13 is 5.0 ⁇ m.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.) 18.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.), 10.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed.
  • the composition of the first resin layer 12 is a terminal styrated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemicals Co., Ltd.), 15.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemicals Co., Ltd.
  • the second resin layer 13 was formed on the first resin layer 12 in the same manner as in Example 2 except that the composition of the second resin layer 13 was changed.
  • the composition of the second resin layer 13 is a biphenyl aralkyl type phenol resin (product name: KAYAHARD GPH-103, hydroxyl group equivalent: 230 g / eq, manufactured by Nippon Kayaku Co., Ltd.), 35.8 parts by mass, bis (3-).
  • Ethyl-5-methyl-4-maleimidediphenyl) methane (product name: BMI-70, manufactured by Keiai Kasei Co., Ltd.) 17.9 parts by mass, naphthalene aralkyl type epoxy resin (product name: HP-9900-75M, Epoxy equivalent: 274 g / eq., manufactured by DIC Co., Ltd.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.) 10.0 parts by mass, polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.), 7.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.), 3.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Inc.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrenated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.), 50.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Ltd.) 50.0 parts by mass was blended (mixed) to obtain the product.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrenated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.), 30.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). S100, manufactured by Mitsubishi Gas Chemical Company, Ltd.) 70.0 parts by mass was blended (mixed) to obtain the product.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a terminal styrenated polyphenylene ether compound (product name: OPE-2St2200, manufactured by Mitsubishi Gas Chemical Company, Inc.), 15.0 parts by mass, and a polyimide resin (product name: Neoprim (registered trademark)). It was obtained by blending (mixing) 50.0 parts by mass of S100, manufactured by Mitsubishi Gas Chemical Company, Ltd. and 35.0 parts by mass of an epoxy compound (product name: LCE-2615, manufactured by Nippon Kayaku Co., Ltd.).
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 2 except that the composition of the first resin layer 12 was changed, and the first resin layer 12 was formed on the first resin layer 12.
  • a second resin layer 13 was formed on the surface.
  • the composition of the first resin layer 12 is a polyimide resin (product name: Neoprim (registered trademark) S100, manufactured by Mitsubishi Gas Chemical Company, Inc.), 50.0 parts by mass, 2,2-bis- (4- (4- (4- (4- (4- (4-) Maleimide phenoxy) Phenyl) Propane (Product name: BMI-80, manufactured by KI Kasei Co., Ltd.) 50.0 parts by mass was blended (mixed) to obtain the product.
  • the first resin layer 12 was formed on the surface of the copper foil 11 in the same manner as in Example 7 except that the ten-point average roughness Rz of the surface of the copper foil 11 was set to 10.5 ⁇ m.
  • a second resin layer 13 was formed on the resin layer 12 of the above.
  • the resistance value of the obtained insulation evaluation substrate was measured in a HAST test tank (130 ° C., 85% RH, 5.0 V) for 300 hours, and then the resistance value after being taken out of the HAST test tank was measured. did.
  • a HAST test tank 130 ° C., 85% RH, 5.0 V
  • the resistance value after being taken out of the HAST test tank was measured. did.
  • the resistance value after being taken out of the HAST test tank is 1 ⁇ 10 8 ⁇ or more, it is evaluated as ⁇ as good, and in other cases, it is evaluated as ⁇ . did.
  • the copper foil 10 with a resin layer obtained in each example and each comparative example was etched with the copper foil 10 and then electroless plated and electrolytic copper plated to obtain a test piece having a plating layer having a thickness of 20 ⁇ m. rice field.
  • the peel strength was measured using this test piece.
  • the lower layer of the test piece was fixed to a plate or the like, the end of the plating layer was pulled perpendicular to the direction of the fixed plate, and the load value required for peeling was set as the adhesion strength at the interface between the upper layer and the lower layer. When this peel strength is 0.5 kN / m or more, it is judged to be good.
  • the obtained copper-clad laminate was cut into a size of 50 mm ⁇ 50 mm to obtain a test piece for measurement.
  • the obtained test piece for measurement was left in a constant temperature bath at 120 ° C. for 3 hours as a pretreatment, and then immersed in a solder bath at 260 ° C. for 30 seconds to evaluate heat resistance. After 30 seconds have elapsed, (1) the layer between the copper foil on the surface of the copper foil-clad laminate and the layer containing the cured product of the first resin layer 12 and the second resin layer 13, and (2) the first.
  • a layer containing a cured product of the resin layer 12 and the second resin layer 13, and a cured product of a resin composition in a copper foil-clad laminate (HL832NS (trade name) T / T 0.2 mmt, manufactured by Mitsubishi Gas Chemicals Co., Ltd.). It was confirmed whether or not each delamination occurred between the layers containing the above. For (1) and (2), the case where delamination did not occur was evaluated as ⁇ , and the case where delamination occurred in at least one of them was evaluated as x.
  • Tables 1 and 2 show the conditions and evaluation results of each example and each comparative example.
  • the first resin layer 12 contains the polyphenylene ether compound (A), the polyimide resin (B), and the maleimide compound (C), and the ten-point average roughness Rz of the surface of the copper foil 11 is 0.3 ⁇ m or more. It was found that when the thickness is 10 ⁇ m or less, excellent insulating property, plating adhesion, and moisture absorption heat resistance can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】絶縁性、めっき密着性、及び、吸湿耐熱性に優れた樹脂層付き銅箔、及び、これを用いた積層体を提供する。 【解決手段】樹脂層付き銅箔10は、銅箔11と、銅箔11の上に積層された第1の樹脂層12と、第1の樹脂層12の上に積層された第2の樹脂層13とを有する。第1の樹脂層12は、ポリフェニレンエーテル化合物(A)、ポリイミド樹脂(B)、及び、マレイミド化合物(C)を含む。銅箔11の表面の十点平均粗さRzは0.3μm以上10μm以下である。

Description

樹脂層付き銅箔、及び、これを用いた積層体
 本発明は、樹脂層付き銅箔、及び、これを用いた積層体に関する。詳しくは、本発明は、プリント配線板又は半導体素子搭載用基板用途に有用な樹脂層付き銅箔、及び、これを用いた積層体に関する。
 近年、電子機器や通信機、パーソナルコンピューター等に広く用いられるプリント配線板又は半導体素子搭載用基板においては、高密度化、高集積化、軽薄化が進展している。これに伴い、プリント配線板又は半導体素子搭載用基板の製造方法としては、回路形成された導体層と絶縁層(層間絶縁層)を交互に積み上げていくビルドアップ方式が広く用いられており、配線パターンの形成には、微細なパターンを形成することができるセミアディティブ工法が多く用いられている。
 このようなプリント配線板に用いられる絶縁層としては、樹脂組成物層を複層化したものが知られている(例えば、特許文献1参照)。特許文献1は、複層化した絶縁層の性能を向上させるために、各層のエッチング量を制御した樹脂絶縁シートに関するものである。
特開2017-50561号公報
 しかしながら、特許文献1に記載の樹脂絶縁シートは、各層の合計厚さが最低12μm以上であることが求められる。このため、更なる薄膜化(例えば、10μm未満)が可能でありながら、絶縁性、めっき密着性、及び、吸湿耐熱性等の要求を満足できる技術の開発が求められていた。
 本発明は、このような問題に基づきなされたものであり、絶縁性、めっき密着性、及び、吸湿耐熱性に優れた樹脂層付き銅箔、及び、これを用いた積層体を提供することを目的とする。
 本発明者らは、銅箔と、銅箔の表面に積層された第1の樹脂層とを有する樹脂層付き銅箔において、第1の樹脂層の組成及び銅箔の表面粗さを調整することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]
 銅箔と、前記銅箔の表面に積層された第1の樹脂層とを有する樹脂層付き銅箔であって、
 前記第1の樹脂層は、ポリフェニレンエーテル化合物(A)、ポリイミド樹脂(B)、及び、マレイミド化合物(C)を含み、
 前記銅箔の表面の十点平均粗さRzは0.3μm以上10μm以下である
 ことを特徴とする樹脂層付き銅箔。
[2]
 前記第1の樹脂層の上に、熱硬化性樹脂を含む第2の樹脂層が設けられた、[1]に記載の樹脂層付き銅箔。
[3]
 前記第1の樹脂層におけるポリフェニレンエーテル化合物(A)の割合は、樹脂固形分100質量部に対して3質量部以上20質量部未満である、[1]に記載の樹脂層付き銅箔。
[4]
 前記第1の樹脂層は、無機充填材を含まないか、又は、35体積%以下の含有量で無機充填材を含む、[1]に記載の樹脂層付き銅箔。
[5]
 前記無機充填材は水酸化マグネシウム、酸化マグネシウム、シリカ、モリブデン化合物、アルミナ、窒化アルミニウム、ガラス、タルク、チタン化合物、酸化ジルコニウムから選択される少なくとも1種を含有する、[4]に記載の樹脂層付き銅箔。
[6]
 前記第1の樹脂層の厚みは1.5μm以上5μm以下である、[1]に記載の樹脂層付き銅箔。
[7]
 前記第2の樹脂層は、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種を含有する、[2]に記載の樹脂層付き銅箔。
[8]
 前記第2の樹脂層は、無機充填材を含まないか、又は、36体積%以下の含有量で無機充填材を含む、[2]に記載の樹脂層付き銅箔。
[9]
 前記無機充填材は水酸化マグネシウム、酸化マグネシウム、シリカ、モリブデン化合物、アルミナ、窒化アルミニウム、ガラス、タルク、チタン化合物、酸化ジルコニウムから選択される少なくとも1種を含有する、[8]に記載の樹脂層付き銅箔。
[10]
 前記第2の樹脂層の厚みは1μm以上15μm以下である、[2]に記載の樹脂層付き銅箔。
[11]
 導体層と、[1]に記載の樹脂層付き銅箔を用いて形成されたビルドアップ層を有する積層体。
 本発明によれば、絶縁性、めっき密着性、及び、吸湿耐熱性に優れた樹脂層付き銅箔、及び、これを用いた積層体を提供することができる。
本発明の一実施の形態に係る樹脂層付き銅箔の構成を表す模式図である。 本発明の一実施の形態に係る積層体の一例を示す模式図である。 本発明の一実施の形態に係る多層コアレス基板の一例を示す模式図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。本明細書において、積層体は、各層が互いに接着したものであるが、その各層は、必要に応じて、互いに剥離可能なものであってもよい。
 本実施形態において、「樹脂固形分」とは、特に断りのない限り、第1の樹脂層12又は第2の樹脂層13における、溶剤及び無機充填材を除いた成分をいい、「樹脂固形分100質量部」とは、第1の樹脂層12又は第2の樹脂層13における、溶剤及び無機充填材を除いた成分の合計が100質量部であることをいう。
[樹脂層付き銅箔]
 図1は、本発明の一実施の形態に係る樹脂層付き銅箔10の構成を表すものである。この樹脂層付き銅箔10は、銅箔11と、銅箔11の表面に積層された第1の樹脂層12とを備えており、更に、第1の樹脂層12の上に第2の樹脂層13が設けられていることが好ましい。
 この樹脂層付き銅箔10は、例えば、回路パターン(導体層)上に設けられる絶縁層を形成するための材料として有用であり、例えば、電子機器、通信機器及びパーソナルコンピューター等の製造に用いられるプリント配線板又は半導体素子搭載用基板の絶縁層の形成材料として用いることができる。例えば、プリント配線板等を作製する場合、樹脂層付き銅箔10を、回路パターンなどの導体層が形成された基板上に、第2の樹脂層13と導体層とが接するように配置し、その後、加熱押圧(プレス)して第1の樹脂層12及び第2の樹脂層13を硬化させることで、導体層上に絶縁層を形成する。
 第1の樹脂層12は、導体層と銅箔11と間の絶縁性を保つために、積層体形成時などのプレス処理後においても、銅箔11と導体層との間の距離を維持する層である。第2の樹脂層13は、プレス処理時に流動性を有する樹脂を含む層であって、回路パターンの導体層などの凹凸部が埋め込まれる層である。第2の樹脂層13は、埋設層として機能するため、構成する成分及び物性の少なくともいずれかが第1の樹脂層12と異なることが好ましい。特に限定されるものではないが、例えば、第1の樹脂層12と第2の樹脂層13とが異なる態様としては、第1の樹脂層12にポリイミド樹脂、第2の樹脂層13にエポキシ化合物を用いるなど、樹脂種などが異なることにより成分が異なる場合や、各層に含まれる成分の配合比、又は、硬化状態(例えば、各層の塗工条件を変更することで、第1の樹脂層12を完全に硬化させ、第2の樹脂層13を半硬化状態にするなど)によって物性が異なる場合、並びに、これらを複合した場合などが挙げられる。
[銅箔]
 銅箔11は、通常のプリント配線板に用いられるものであればどのようなものでもよく、例えば、電解銅箔、圧延銅箔及び銅合金フィルムが挙げられる。銅箔11には、例えば、マット処理、コロナ処理、ニッケル処理及びコバルト処理等の公知の表面処理が施されていてもよい。本実施形態における銅箔11としては、市販品を用いることができ、例えば、JX金属(株)製の「GHY5」(商品名、12μm厚銅箔)及び「JXUT-I」(商品名、1.5μm厚銅箔)、三井金属鉱業(株)製の「MT-FL」(商品名、3μm厚銅箔)、「3EC-VLP」(商品名、12μm厚銅箔)、「3EC-III」(商品名、12μm厚銅箔)及び「3EC-M2S-VLP」(商品名、12μm厚銅箔)、並びに、古河電気工業(株)製の銅箔「GTS-MP」(商品名、12μm厚銅箔)を挙げることができる。
 銅箔11の表面の十点平均粗さRz、すなわち第1の樹脂層12が形成されている側における銅箔11の表面の十点平均粗さRzは0.3μm以上10μm以下であることが好ましい。0.3μm以上とすることにより、めっき密着性を向上させることができるからである。また、10μmよりも大きくすると、絶縁性を確保するために、第1の樹脂層12の厚みを厚くしなければならないからである。銅箔11の表面の十点平均粗さRzのより好ましい範囲は、例えば、0.6μm以上2.5μm以下である。なお、銅箔11の表面の十点平均粗さRzは、第1の樹脂層12の厚みよりも小さくすることが好ましい。絶縁性を高めるためである。銅箔11の表面の十点平均粗さRzは、市販の形状測定顕微鏡(レーザー顕微鏡、例えば、キーエンス株式会社製、「VK-X1000」(商品名))を用いて測定できる。
 銅箔11の厚さは、特に限定されないが、表面の粗化処理を考慮すると、1μm~18μmの範囲が好ましく、薄型のプリント配線板及び半導体素子搭載用基板を好適に得ることができることから、2μm~15μmの範囲であることがより好ましい。
[第1の樹脂層]
 第1の樹脂層12は、ポリフェニレンエーテル化合物(A)、ポリイミド樹脂(B)、及び、マレイミド化合物(C)を含んでいる。また、第1の樹脂層12は、必要に応じて、他の樹脂成分、無機充填材、及び、他の成分の少なくとも1種を含んでいてもよい。第1の樹脂層12の厚みは、特に限定されるものではないが、薄膜化の観点から5μm以下であることが好ましく、絶縁性の確保も考慮すると1.5μm以上であることが好ましい。第1の樹脂層12の厚みは、例えば、樹脂層付き銅箔10を樹脂で固めて測定用試料を作製し、垂直断面がでるように切断して研磨を行い、垂直断面を顕微鏡で観察して厚さを求めることができる。例えば、測長方法は第1の樹脂層12の銅箔11と反対側の表面から垂直方向に銅箔11との界面までの距離とし、第1の樹脂層12と銅箔11との凹凸界面の平均位置から第1の樹脂層12の銅箔11と反対側の表面までの距離を第1の樹脂層12の厚みとする。第1の樹脂層12は、半硬化状態(B-Stage)であってもよいし、完全硬化状態(C-Stage)であってもよい。第1の樹脂層12は、例えば、塗布等の公知の手段により形成することができる。
<ポリフェニレンエーテル化合物(A)>
 本実施形態に係るポリフェニレンエーテル化合物(A)は、一般式(1)で表される化合物である。ポリフェニレンエーテル化合物(A)を含有することにより、絶縁性、めっき密着性、及び、吸湿耐熱性を向上させることができる。本実施形態に用いられる一般式(1)で表されるポリフェニレンエーテル化合物(A)は、数平均分子量が1000以上7000以下であることが好ましい。数平均分子量を7000以下とすることで樹脂同士の相溶性をコントロールできる。また数平均分子量を1000以上とすることで、ポリフェニレンエーテル樹脂本来の優れた絶縁性及び吸湿耐熱性が得られる。その中でも、より優れた相溶性、絶縁性、及び、吸湿耐熱性を得るためには、ポリフェニレンエーテル化合物(A)の数平均分子量が1100以上5000以下であるとよい。より好ましくは、ポリフェニレンエーテル化合物(A)の数平均分子量が4500以下であるとよく、さらに好ましくは、ポリフェニレンエーテル化合物(A)の数平均分子量が3000以下である。数平均分子量は、定法に従ってゲル浸透クロマトグラフィーを使用して測定される。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)において、Xはアリール基(芳香族基)を示し、-(Y-O)n-はポリフェニレンエーテル部分を示し、R,R,Rは、各々独立して水素原子、アルキル基、アルケニル基又はアルキニル基を示し、nは1~100の整数を示し、nは1~6の整数を示し、nは1~4の整数を示す。好ましくは、nは1以上4以下の整数であるとよく、さらに好ましくは、nは1又は2であるとよく、理想的にはnは1であるとよい。また、好ましくは、nは1以上3以下の整数であるとよく、さらに好ましくは、nは1又は2であるとよく、理想的にはnは2であるとよい。)
 一般式(1)で表されるポリフェニレンエーテル化合物(A)は、以下の一般式(2)で表される構成単位の重合体を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000002
(一般式(2)中、R901,R902,R903,R904は、各々独立に炭素数6以下のアルキル基、アリール基、ハロゲン原子、又は水素原子を表す。)
 前記重合体は、一般式(3)及び一般式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位をさらに含んでもよい。
Figure JPOXMLDOC01-appb-C000003
(一般式(3)中、R905,R906,R907,R911,R912は、各々独立に炭素数6以下のアルキル基又はフェニル基を表す。R908,R909,R910は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。)
Figure JPOXMLDOC01-appb-C000004
(一般式(4)中、R913,R914,R915,R916,R917,R918,R919,R920は、各々独立に水素原子、炭素数6以下のアルキル基又はフェニル基を表す。-A-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
 一般式(1)との関係でいうと、上記一般式(2)、(3)、(4)は一般式(1)の-(Y-O)-であることが好ましい。-(Y-O)-はnの数(1~100)の繰り返し単位を有する。
 一般式(1)のXにおけるアリール基としては、芳香族炭化水素基を用いることができる。具体的には、ベンゼン環構造、ビフェニル構造、インデニル環構造、及びナフタレン環構造から選ばれた1種の環構造から、n個の水素原子を除いた基(例えば、フェニル基、ビフェニル基、インデニル基、及びナフチル基)を用いることができ、好ましくはビフェニル基を用いるとよい。ここで、アリール基は、上記のアリール基が酸素原子で結合されているジフェニルエーテル基等や、カルボニル基で結合されたベンゾフェノン基等、アルキレン基により結合された2,2-ジフェニルプロパン基等を含んでもよい。また、アリール基は、アルキル基(好適には炭素数1~6のアルキル基、特にメチル基)、アルケニル基、アルキニル基やハロゲン原子など、一般的な置換基によって置換されていてもよい。但し、前記「アリール基」は、酸素原子を介してポリフェニレンエーテル部分に置換されているので、一般的置換基の数の限界は、ポリフェニレンエーテル部分の数に依存する。
 ポリフェニレンエーテル化合物(A)としては、下記一般式(5)の構造で表されるポリフェニレンエーテルを含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000005
(一般式(5)中、Xはアリール基(芳香族基)であり、-(Y-O)n-は、それぞれ、ポリフェニレンエーテル部分を示し、nは、それぞれ、1~100の整数を示す。)
 -(Y-O)n-及びnは、一般式(1)におけるものと同義である。nの異なる化合物を複数種含んでいてもよい。
 一般式(1)及び一般式(5)におけるXは、一般式(6)、一般式(7)、又は一般式(8)であることが好ましく、一般式(1)及び一般式(5)における-(Y-O)n-は、一般式(9)若しくは一般式(10)が配列した構造であるか、又は一般式(9)と一般式(10)がランダムに配列した構造がより好ましい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(一般式(7)中、R921,R922,R923,R924は、各々独立に水素原子又はメチル基を表す。-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000008
(一般式(8)中、-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 一般式(5)で表される構造を有する変性ポリフェニレンエーテルの製造方法は、特に限定されるものではなく、例えば、2官能フェノール化合物と1官能フェノール化合物を酸化カップリングさせて得られる2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基をビニルベンジルエーテル化することで製造することができる。
 また、このような変性ポリフェニレンエーテルは市販品を用いることができ、例えば、三菱ガス化学(株)製OPE-2St1200、OPE-2St2200を好適に使用することができる。
 本実施形態におけるポリフェニレンエーテル化合物(A)の割合は、第1の樹脂層12の樹脂固形分100質量部に対し、1質量部以上であることが好ましく、3質量部以上であることがより好ましい。また、前記含有量の上限値としては、20質量部未満であることが好ましい。このような範囲とすることにより、効果的に、層間密着性、めっき密着性、及び、吸湿耐熱性を向上させることができる。第1の樹脂層12は、ポリフェニレンエーテル化合物(A)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<ポリイミド樹脂(B)>
 ポリイミド樹脂(B)としては、市販の製品を適宜選定して用いることができ、例えば、特開2005-15629号公報に記載の製造方法によって合成される溶媒可溶性ポリイミド樹脂を用いることができる。具体的には、溶媒可溶性ポリイミド樹脂は、下記式(11)で表される脂肪族テトラカルボン酸二無水物、下記式(12)で表される脂肪族テトラカルボン酸、及び当該脂肪族テトラカルボン酸の誘導体から選ばれる1種以上と、ジアミン化合物の1種以上とを、3級アミン化合物存在下に溶媒中にて重縮合させることで得ることができる。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは炭素数4~16の4価の脂肪族炭化水素基である。)
Figure JPOXMLDOC01-appb-C000012
(式中、Rは炭素数4~16の4価の脂肪族炭化水素基であり、Y~Yは独立して水素又は炭素数1~8の炭化水素基である。)
 前記製造方法においては、脂肪族テトラカルボン酸類とジアミン化合物との略等モル量を3級アミン化合物存在下に溶媒中にて加熱し、重縮合することができる。また、脂肪族テトラカルボン酸類とジアミン化合物との反応モル比は、どちらか一方に対してもう一方が95~105モル%の範囲であることが好ましい。
 一般的なポリイミド樹脂の製造では、テトラカルボン酸類としてテトラカルボン酸二無水物を使用するのが普通であるが、前記製造方法では、脂肪族テトラカルボン酸二無水物のほかに、その脂肪族テトラカルボン酸や脂肪族テトラカルボン酸とアルコールとのエステル類を使って実用的なポリイミド樹脂を製造することができる。脂肪族テトラカルボン酸をそのまま使用できると、生産設備やコストの面で有利である。
 また、式(11)で表される脂肪族テトラカルボン酸二無水物としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物などを挙げることができる。
 さらに、式(12)で表される脂肪族テトラカルボン酸、及びその誘導体としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、1,2,4,5-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸など、及びそれらのアルコールエステル類を挙げることができる。これらは1種類単独かあるいは2種類以上を混合して使用することができる。これらのうち、好ましいのは1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸が挙げられる。
 前記製造方法では、溶媒可溶性を損なわない範囲で、他のテトラカルボン酸及びその誘導体を混合して用いることができる。例えば、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、2,2-ビス(2,3-ジカルボキシフェニル)プロパン、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)エーテル、ビス(2,3-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、4,4-(p-フェニレンジオキシ)ジフタル酸、4,4-(m-フェニレンジオキシ)ジフタル酸、エチレンテトラカルボン酸、3-カルボキシメチル-1,2,4-シクロペンタントリカルボン酸、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)メタンなど、及びそれらの誘導体を挙げることができる。これらの他のテトラカルボン酸成分の割合は全テトラカルボン酸成分中50モル%未満であることが好ましい。
 前記ジアミン化合物は、6~28の炭素原子を含む芳香族ジアミン化合物、又は2~28の炭素原子を含む脂肪族ジアミン化合物が好ましい。ジアミン化合物としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジトリフルオロメチルビフェニル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、9,9-ビス(4-アミノフェニル)フルオレンなどの芳香族ジアミン化合物、エチレンジアミン、ヘキサメチレンジアミン、ポリエチレングリコールビス(3-アミノプロピル)エーテル、ポリプロピレングリコールビス(3-アミノプロピル)エーテル、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、3(4),8(9)-ビス(アミノメチル)-トリシクロ[5.2.1.02,6]デカン、メタキシリレンジアミン、パラキシリレンジアミン、イソホロンジアミン、ノルボルナンジアミン、シロキサンジアミン類などの脂肪族ジアミン化合物を挙げることができる。これらは1種類単独かあるいは2種類以上を混合して使用することができる。これらのジアミン化合物のうち、芳香族ジアミン化合物では4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジトリフルオロメチルビフェニル、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパンが好ましく、脂肪族ジアミン化合物では4,4’-ジアミノジシクロヘキシルメタン、3(4),8(9)-ビス(アミノメチル)-トリシクロ[5.2.1.02,6]デカンが好ましい。
 前記製造方法では、用いる脂肪族テトラカルボン酸成分1モルに対して3級アミン化合物を0.001~1.0モル使用することが好ましく、0.01~0.2モル使用することがさらに好ましい。
 前記3級アミン化合物としては、例えば、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、N-メチルピペリジン、N-エチルピペリジン、イミダゾール、ピリジン、キノリン、イソキノリンなどを挙げることができる。これらの3級アミン化合物のうち、特に好ましいのはトリエチルアミンである。
 前記製造方法に用いられる溶媒としては、例えば、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、テトラメチレンスルホン、p-クロルフェノール、m-クレゾール、2-クロル-4-ヒドロキシトルエンなどを挙げることができる。これらは1種類単独かあるいは2種類以上を混合して使用することができる。これらのうち、γ-ブチロラクトン、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンが好ましく、γ-ブチロラクトン、N,N-ジメチルアセトアミドがさらに好ましい。また、重合体が析出しない程度にポリイミド樹脂の貧溶媒を併用することもできる。貧溶媒としては、例えば、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クロルベンゼン、o-ジクロロベンゼンなどを挙げることができる。
 前記製造方法における溶媒の使用量は、脂肪族テトラカルボン酸成分及びジアミン成分の総重量が反応液全体の質量に対して1~50質量%が好ましく、20~45重量%がさらに好ましい。
 脂肪族テトラカルボン酸成分とジアミン化合物成分との仕込み方法は特に限定されず、両成分を一括に仕込む方法、どちらか一方の成分を含む溶液中(完全に溶解していなくてもよい)にもう一方の成分を固体かあるいは溶液の状態で徐々に仕込む方法などを行なうことができる。特に、両成分を一括に仕込む方法は仕込み時間を短縮できることから生産性の面で有利である。
 3級アミン化合物は、その触媒効果を十分に発揮させるために、昇温して目標温度に到達するまでに仕込むのが好ましい。特に、溶媒、脂肪族テトラカルボン酸成分、及びジアミン化合物を仕込むのと同時に仕込むのが好ましい。
 前記溶媒の仕込み方法も特に限定されず、あらかじめ反応槽内へ仕込む方法、脂肪族テトラカルボン酸成分、あるいはジアミン化合物のどちらか一方、あるいはその両方が存在する反応槽内へ仕込む方法、脂肪族テトラカルボン酸成分、あるいはジアミン成分のどちらか一方をあらかじめ溶解させてから反応槽内へ仕込む方法などを、それら単独かあるいは組み合わせて行なうことができる。また、反応途中の状態、あるいは反応後に反応槽内にとどまった状態、あるいは反応後に反応槽から取り出した状態の溶媒可溶性ポリイミド樹脂溶液中に、上記したような溶媒を目的に応じて追加することができる。
 また、本実施形態に用いられるポリイミド樹脂(B)としては、例えば、ブロック共重合ポリイミド樹脂を用いることもできる。ブロック共重合ポリイミド樹脂としては、例えば、国際公開WO2010-073952号公報に記載のブロック共重合体ポリイミド樹脂などを挙げることができる。具体的には、ブロック共重合ポリイミド樹脂は、第一の構造単位からなるイミドオリゴマーの末端に第二の構造単位からなるイミドオリゴマーが結合している構造B1、及び、第二の構造単位からなるイミドオリゴマーの末端に第一の構造単位からなるイミドオリゴマーが結合している構造B2、が交互に繰り返される構造を有する共重合ポリイミド樹脂であれば、特に限定されない。なお、第二の構造単位は、第一の構造単位とは異なる。これらのブロック共重合ポリイミド樹脂は、極性溶媒中で、テトラカルボン酸二無水物とジアミンとを反応させイミドオリゴマーとした後、更にテトラカルボン酸二無水物と別のジアミン、或いは、別のテトラカルボン酸二無水物とジアミンを加え、イミド化する逐次重合反応によって合成することができる。
 第1の樹脂層12におけるポリイミド樹脂(B)の割合は、特に限定されないが、耐熱性及び硬化性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、10質量部以上80質量部以下の範囲が好ましく、30質量部以上70質量部以下の範囲が特に好適である。
 第1の樹脂層12は、ポリイミド樹脂(B)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<マレイミド化合物(C)>
 マレイミド化合物(C)を含有することにより、層間密着性、絶縁性、めっき密着性、及び、吸湿耐熱性を向上させることができる。マレイミド化合物(C)としては、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のマレイミド基を有する化合物であれば特に限定されず、従来公知の任意のマレイミド化合物が使用できる。
 マレイミド化合物(C)の具体例としては、例えば、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン等のビスマレイミド化合物;ポリフェニルメタンマレイミドが挙げられる。なお、マレイミド化合物(C)は、これら化合物のプレポリマー、もしくはこれらの化合物とアミン化合物のプレポリマー等の形で配合することもできる。これらのマレイミド化合物(C)は、1種又は2種以上を適宜混合して使用することができる。
 これらの中でも、耐熱性の点から、ビスマレイミド化合物が好ましく、中でも2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパンやビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンがより好ましい。
 第1の樹脂層12におけるマレイミド化合物(C)の割合は、特に限定されないが、耐熱性及びめっき密着性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、5質量部以上75質量部以下の範囲が好ましく、5質量部以上45質量部以下の範囲が更に好ましい。
 第1の樹脂層12は、マレイミド化合物(C)を、1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<その他の樹脂成分>
 その他の樹脂成分としては、例えば、液晶ポリエステル、エポキシ化合物、シアン酸エステル化合物、フェノール化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物が挙げられる。第1の樹脂層12は、これらの1種又は2種以上を含んでいてもよい。
-液晶ポリエステル-
 液晶ポリエステルは、溶融時に液晶性を示す芳香族ポリエステルである。液晶ポリエステルとしては公知のものを適宜選定して用いることができる。公知の液晶ポリエステルとしては、例えば、特開2001-11296号公報に記載の芳香族ポリエステルなどを用いることができる。具体的には、下記式(13)で表される構造単位を90モル%以上含む芳香族ポリエステルなどが挙げられる。
Figure JPOXMLDOC01-appb-C000013
 上述の式(13)で表される構造単位を含む芳香族ポリエステルとしては、例えば、入手性の観点から、実質的に式(13)で表される構造単位のホモポリマーであるポリオキシベンゾエートを用いることができる。当該芳香族ポリエステルの製造方法としては、公知の方法を採用することができる。なお、上述の式(13)で表される構造単位を含む芳香族ポリエステルは、通常の溶剤に対して難溶又は不溶であることが多く、また、難融又は不融であるため、液晶性を示さない。したがって、上述の式(13)で表される構造単位を含む芳香族ポリエステルは、粉末として用いるのが好ましい。該粉末は、芳香族ポリエステルの樹脂又は繊維を粉砕処理して得られる。
 特に限定されるものではないが、液晶ポリエステルの分子量は、通常1000~100000であり、好ましくは10000~50000である。
 液晶ポリエステルとしては、市販の製品を適宜選定して用いることができるが、例えば、住友化学工業(株)製「エコノールE101-F」などを用いることができる。本実施形態において、第1の樹脂層12に液晶ポリエステルを用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、10~90質量部の範囲が好ましく、30~80質量部の範囲が特に好適である。
-エポキシ化合物-
 エポキシ化合物としては、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のエポキシ基を有する化合物であれば特に限定されず、従来公知の任意のエポキシ化合物が使用できる。エポキシ化合物のエポキシ当量は、接着性及び可撓性をより良好にする点から、250g/eq~850g/eqが好ましく、より好ましくは250g/eq~450g/eqである。エポキシ当量は、常法により測定することができる。
 エポキシ化合物の具体例としては、例えば、ポリオキシナフチレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン4官能型エポキシ樹脂、キシレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、ブタジエン等の2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物が挙げられる。これらの中でも、特にめっき銅付着性と難燃性の点から、ポリオキシナフチレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン4官能型エポキシ樹脂、キシレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂であることが好ましい。これらのエポキシ化合物は、1種又は2種以上を適宜混合して使用することができる。
 本実施形態において、第1の樹脂層12にエポキシ化合物を用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、1~60質量部の範囲が好ましく、1~30質量部の範囲が特に好適である。
-シアン酸エステル化合物-
 シアン酸エステル化合物は、耐薬品性、接着性等に優れた特性を有し、その優れた耐薬品性により、均一な粗化面を形成することが可能であるため、本実施形態における樹脂層の成分として好適に使用することができる。
 シアン酸エステル化合物は、シアネート基(シアナト基)を分子内に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)含む化合物であれば特に限定されず、プリント配線板の分野で通常用いられる化合物を広く用いることができる。シアン酸エステル化合物の具体例としては、例えば、式(14)で表されるα-ナフトールアラルキル型シアン酸エステル化合物、式(15)で表されるフェノールノボラック型シアン酸エステル化合物、式(16)で表されるビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、トリスフェノールメタン型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、およびジアリルビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種が挙げられる。これらの中でも、低吸水性をより一層向上させる観点から、式(14)で表されるα-ナフトールアラルキル型シアン酸エステル化合物、式(15)で表されるフェノールノボラック型シアン酸エステル化合物、式(16)で表されるビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、およびジアリルビスフェノールA型シアン酸エステル化合物からなる群より選択される少なくとも1種であることが好ましい。これらのシアン酸エステル化合物は、公知の方法により調製してもよく、市販品を用いてもよい。
 これらの中でも、式(14)で表されるα-ナフトールアラルキル型シアン酸エステル化合物、式(15)で表されるフェノールノボラック型シアン酸エステル化合物、及び式(16)で表されるビフェニルアラルキル型シアン酸エステル化合物が、難燃性に優れ、硬化性が高く、かつ硬化物の熱膨張係数が低いことから好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(14)中、Rは水素原子又はメチル基を示し、nは1以上の整数を示す。nは1~50の整数であることが好ましい。)
Figure JPOXMLDOC01-appb-C000015
 式(15)中、Rは水素原子又はメチル基を示し、nは1以上の整数を示す。nは1~50の整数であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(16)中、Rは水素原子又はメチル基を示し、nは1以上の整数を示す。nは1~50の整数であることが好ましい。
 本実施形態において、第1の樹脂層12にシアン酸エステル化合物を用いる場合、その含有量は、特に限定されないが、耐熱性や銅箔との密着性の点から、第1の樹脂層12の樹脂固形分100質量部に対して、1~60質量部の範囲が好ましく、1~30質量部の範囲が更に好ましい。
-フェノール化合物-
 フェノール化合物としては、1分子中に1以上(好ましくは2~12、より好ましくは2~6、さらに好ましくは2~4、一層好ましくは2または3、より一層好ましくは2)のフェノール性ヒドロキシ基を有するフェノール化合物であれば特に限定されず、従来公知の任意のフェノール化合物が使用できる。フェノール化合物の具体例としては、例えば、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラックフェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられる。これらのフェノール化合物は、1種又は2種以上を適宜混合して使用することができる。
-ベンゾオキサジン化合物-
 ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、特に限定されず、一般に公知のものを用いることができる。ベンゾオキサジン化合物の具体例としては、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF-BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS-BXZ(小西化学製商品名)等が挙げられる。これらのベンゾオキサジン化合物は、1種を単独で又は2種以上混合して用いることができる。
-有機基変性シリコーン化合物-
 有機基変性シリコーン化合物としては、特に限定されず、具体例としては、ジ(メチルアミノ)ポリジメチルシロキサン、ジ(エチルアミノ)ポリジメチルシロキサン、ジ(プロピルアミノ)ポリジメチルシロキサン、ジ(エポキシプロピル)ポリジメチルシロキサン、ジ(エポキシブチル)ポリジメチルシロキサンが挙げられる。これらの有機基変性シリコーン化合物は、1種又は2種以上を適宜混合して使用することができる。
-重合可能な不飽和基を有する化合物-
 重合可能な不飽和基を有する化合物としては、特に限定されず、一般に公知のものを使用できる。重合可能な不飽和基を有する化合物の具体例としては、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は、1種又は2種以上を適宜混合して使用することができる。
<無機充填材>
 第1の樹脂層12は、無機充填材を含んでいなくてもよいが、含んでいてもよい。含む場合には、その含有量は35体積%以下であることが好ましく、31体積%以下であればより好ましい。無機充填材を添加すると加工性は向上するが、含有量が多くなりすぎると柔軟性が低下しクラックの発生や絶縁性の低下が生じてしまうからである。なお、無機充填材の含有量というのは、第1の樹脂層12に対する無機充填材の含有量(無機充填材/第1の樹脂層×100)である。
 無機充填材としては、低熱膨張率、成形性、充填性及び剛性の点から、球状フィラーを用いることができ、プリント配線板の絶縁層に用いられる球状のフィラーであれば特に限定されない。無機充填材としては、例えば、水酸化マグネシウム;酸化マグネシウム;天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ;二硫化モリブデン、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物;アルミナ;窒化アルミニウム;ガラス;タルク;酸化チタン、チタン酸バリウム、チタン酸ストロンチウム等のチタン化合物;酸化ジルコニウム等が挙げられる。これらは、1種又は2種以上を適宜混合して使用することができる。
 中でも、無機充填材としては、低熱膨張性の点から、シリカが好ましく、具体的には、球状溶融シリカが好ましい。市販されている球状溶融シリカとしては、(株)アドマテックス製のSO-C1、SO-E1、YC100C、SC2500-SQ、K180SQ-C1、CIKナノテック(株)製のM273、デンカ(株)製のSFP-20M、SFP-130MC等が挙げられる。
 無機充填材の粒径は、特に限定されないが、5μm以下が好ましく、3μm以下がより好ましく、2μm以下が更に好ましく、1.0μm以下が更により好ましい。無機充填材の粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、マイクロトラック・ベル株式会社製「MT3000II」等を使用することができる。
 また、無機充填材は、シランカップリング剤等で表面処理されていてもよい。シランカップリング剤としては、後述のシランカップリング剤を用いることができる。
[その他の成分]
 その他の成分としては、例えば、吸湿耐熱性向上の目的で、シランカップリング剤を含有してもよい。シランカップリング剤としては、一般に無機物の表面処理に使用されるシランカップリング剤であれば、特に限定されない。具体例としては、アミノシラン系シランカップリング剤(例えば、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン)、エポキシシラン系シランカップリング剤(例えば、γ-グリシドキシプロピルトリメトキシシラン)、アクリルシラン系シランカップリング剤(たとえは、γ-アクリロキシプロピルトリメトキシシラン、ビニルシラン系シランカップリング剤(例えば、γ-メタアクリロキシプロピルトリメトキシシラン)、カチオン性シラン系シランカップリング剤(例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩)、フェニルシラン系シランカップリング剤等が挙げられる。これらのシランカップリング剤は、1種又は2種以上を適宜混合して使用することができる。
 本実施形態において、シランカップリング剤の含有量は、特に限定されないが、吸湿耐熱性向上の点から、無機充填材100質量部に対して、0.05~5質量部の範囲が好ましく、0.1~3質量部の範囲がより好ましい。なお、2種以上のシランカップリング剤を併用する場合には、これらの合計量が前記範囲を満たすことが好ましい。
 その他の成分としては、また、例えば、製造性向上等の目的として、湿潤分散剤を含有してもよい。湿潤分散剤としては、一般に塗料等に使用される湿潤分散剤であれば、特に限定されない。具体例としては、ビックケミー・ジャパン(株)製のDisperbyk(登録商標)-110、同-111、同-118、同-180、同-161、BYK(登録商標)-W996、同-W9010、同-W903等が挙げられる。これらの湿潤分散剤は、1種又は2種以上を適宜混合して使用することができる。
 本実施形態において、湿潤分散剤の含有量は、特に限定されないが、製造性向上の点から、無機充填材100質量部に対して、0.1~5質量部の範囲が好ましく、0.5~3質量部の範囲がより好ましい。なお、2種以上の湿潤分散剤を併用する場合には、これらの合計量が前記範囲を満たすことが好ましい。
 その他の成分としては、更に、例えば、硬化速度の調整等の目的から、硬化促進剤を含有してもよい。硬化促進剤としては、特に限定されないが、銅、亜鉛、コバルト、ニッケル、マンガン等の金属を含む有機金属塩類(例えば、ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、オクチル酸ニッケル、オクチル酸マンガン、アセチルアセトン鉄)、これら有機金属塩をフェノール、ビスフェノールなどの水酸基含有化合物に溶解してなるもの、有機錫化合物(例えば、塩化錫、塩化亜鉛、塩化アルミニウムなどの無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイド)、イミダゾール類及びその誘導体(例えば、2-エチル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,4,5-トリフェニルイミダゾール)、第3級アミン(例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジンなど)、有機過酸化物(例えば、過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート)、アゾ化合物(例えば、アゾビスニトリル)、フェノール類(例えば、フェノール、キシレノール、クレゾール、レゾルシン、カテコール)が挙げられる。これらの硬化促進剤は、1種又は2種以上を適宜混合して使用することができる。
 本実施形態において、硬化促進剤の含有量は、特に限定されないが、高いガラス転移温度を得る点から、第1の樹脂層12の樹脂固形分100質量部に対して、0.001~5質量部の範囲が好ましく、0.01~3質量部の範囲がより好ましい。なお、2種以上の硬化促進剤を併用する場合には、これらの合計量が前記範囲を満たすことが好ましい。
 その他の成分としては、例えば、その他の種々の高分子化合物及び/又は難燃性化合物等を含有してもよい。高分子化合物及び難燃性化合物としては、一般に使用されるものであれば、特に限定されない。
 高分子化合物としては、各種の熱硬化性樹脂及び熱可塑性樹脂並びにそのオリゴマー、エラストマー類等が挙げられる。具体的には、ポリアミドイミド樹脂、ポリスチレン、ポリオレフィン、スチレン-ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム(NBR)、ポリウレタン、ポリプロピレン、(メタ)アクリルオリゴマー、(メタ)アクリルポリマー及びシリコーン樹脂等が挙げられる。相溶性の点から、アクリロニトリルブタジエンゴム若しくはスチレン-ブタジエンゴムが好ましい。
 難燃性化合物の具体例としては、リン含有化合物(例えば、リン酸エステル、リン酸メラミン、リン含有エポキシ化合物)、窒素含有化合物(例えば、メラミン、ベンゾグアナミン)、オキサジン環含有化合物、シリコーン系化合物等が挙げられる。これらの高分子化合物及び/又は難燃性化合物は、1種又は2種以上を適宜混合して使用することができる。
 第1の樹脂層12には、種々の目的により、その他、各種の添加剤を含有してもよい。添加剤の具体例としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤及び光沢剤が挙げられる。これらの添加剤は、1種又は2種以上を適宜混合して使用することができる。
[第2の樹脂層]
 第2の樹脂層13は、熱硬化性樹脂を含んでいる。熱硬化性樹脂は特に限定されるものではないが、例えば、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物が挙げられる。これら化合物としては第1の樹脂層12で例示したものと同様のものを用いることができる。熱硬化性樹脂は、これらの1種又は2種以上を適宜混合して使用することができる。中でも、エポキシ化合物及びフェノール化合物を含むようにすれば、優れたピール強度を得ることができるので好ましく、エポキシ化合物及びフェノール化合物と共に、マレイミド化合物を更に含むことがより好ましい。
 本実施形態において、第2の樹脂層13にエポキシ化合物を用いる場合、その含有量は、特に限定されないが、耐熱性及び硬化性の点から、第2の樹脂層13の樹脂固形分100質量部に対して、10~80質量部の範囲が好ましく、30~70質量部の範囲が特に好適である。
 本実施形態において、第2の樹脂層13にフェノール化合物を用いる場合、その含有量は、特に限定されないが、耐熱性や銅箔との密着性の点から、第2の樹脂層13の樹脂固形分100質量部に対して、10~80質量部の範囲が好ましく、20~60質量部の範囲が更に好ましい。
 本実施形態において、第2の樹脂層13にマレイミド化合物を用いる場合、その含有量は、特に限定されないが、耐熱性と銅箔との密着性の点から、第2の樹脂層13の樹脂固形分100質量部に対して、10~80質量部の範囲が好ましく、10~50質量部の範囲が更に好ましい。
 第2の樹脂層13の厚みは、特に限定されるものではないが、薄膜化の観点から15μm以下であることが好ましく、10μm以下であれば更に好ましい。また、第2の樹脂層13の厚みは、絶縁性の確保も考慮すると1μm以上であることが好ましい。第2の樹脂層13は、半硬化状態(B-Stage)とすることが好ましい。第2の樹脂層13は、例えば、塗布等の公知の手段により形成することができる。
 第2の樹脂層13は、また、必要に応じて、無機充填材、及び、他の成分の少なくとも1種を含んでいてもよい。無機充填材、及び、他の成分は、例えば、第1の樹脂層12において説明したものと同様のものを用いることができる。第2の樹脂層13は、無機充填材を含んでいなくてもよいが、含んでいてもよく、その含有量は35体積%以下であることが好ましい。無機充填材を添加すると加工性は向上するが、含有量が多くなりすぎると柔軟性が低下しクラックが発生しやすくなるからである。なお、無機充填材の含有量というのは、第2の樹脂層13に対する無機充填材の含有量(無機充填材/第1の樹脂層×100)である。
[樹脂層付き銅箔の製造方法]
 本実施形態の樹脂層付き銅箔10を製造する方法は、特に限定されない。製造方法としては、例えば、まず、第1の樹脂層12の組成物を有機溶剤に溶解又は分散させた溶液(ワニス)を、銅箔11の表面に塗布し、加熱及び/又は減圧下で乾燥し、溶媒を除去して固化させ、第1の樹脂層12を形成する。上述のように、第1の樹脂層12は半硬化状態のみならず完全に硬化した状態であってもよい。その後、第1の樹脂層12の上に、第2の樹脂層13の組成物を有機溶剤に溶解又は分散させた溶液(ワニス)を塗布し、加熱及び/又は減圧下で乾燥し、溶媒を除去して固化させ、第2の樹脂層13を形成することが好ましい。この際、第2の樹脂層13はB-stage(半硬化状態)とすることが好ましい。また、第2の樹脂層13の上には、プラスチックフィルムなどの保護層を設けてもよい。当該保護層は、後述の積層体作製時に適宜除去される。
 乾燥条件は、特に限定されないが、第1の樹脂層12又は第2の樹脂層13を100質量部に対して、有機溶剤が通常10質量部以下、好ましくは5質量部以下となるように乾燥させる。乾燥を達成する条件は、ワニス中の有機溶剤量によっても異なるが、例えば、ワニス100質量部に対して、30~60質量部の有機溶剤を含むワニスの場合、50℃~200℃の加熱条件下で3~10分間程度乾燥させればよい。
 有機溶剤としては、各成分を各々好適に溶解又は分散させることができ、かつ、第1の樹脂層12又は第2の樹脂層13の効果を奏する限り、特に限定されない。有機溶剤の具体例としては、アルコール類(例えば、メタノール、エタノール及びプロパノール)、ケトン類(例えば、アセトン、メチルエチルケトン及びメチルイソブチルケトン)、アミド類(例えば、ジメチルアセトアミド及びジメチルホルムアミド)、芳香族炭化水素類(例えば、トルエン及びキシレン)、N-メチル-2-ピロリドン、又は、γ-ブチロラクトン等が挙げられる。これらの有機溶剤は、1種又は2種以上を適宜混合して使用することができる。
 塗布する方法についても特に限定されるものではないが、例えば、バーコーター塗布、エアナイフ塗布、グラビア塗布、リバースグラビア塗布、マイクログラビア塗布、マイクロリバースグラビアコーター塗布、ダイコーター塗布、ディップ塗布、スピンコート塗布、スプレー塗布などが公知の塗布法を用いることができる。
[積層体及びその製造方法]
 本実施形態の樹脂層付き銅箔10を用いた積層体(以下、単に「本実施形態の積層体」と称することがある。)は、例えば、プリント配線板又は半導体素子搭載用基板のビルドアップ材料用途、コアレス基板の作製用途に用いることができる。
 本実施形態の積層体は、例えば、導体層と、樹脂層付き銅箔10を用いて形成された絶縁層と、を交互に積層されたビルドアップ層を有する積層体として構成することができる。ここで、「樹脂層付き銅箔10を用いて形成された絶縁層」とは、例えば、導体層が形成された基板上に、樹脂層付き銅箔10の第2の樹脂層13が接するように積層して構成することができる。また、絶縁層を3つ以上の樹脂層付き銅箔10を用いて形成する場合には、必要に応じて銅箔11を除去し、第1の樹脂層12及び第2の樹脂層13を積層して、絶縁層を形成することができる。また、前記導体層は、樹脂層付き銅箔10の銅箔11がその役割を担ってもよいし、銅張積層板の銅箔など他の導体(銅箔等)を別に積層して導体層を形成してもよい。図2は本実施形態の積層体20の一例を示すものである。この積層体20は、導体層21が形成された基板22の上に、1つの樹脂層付き銅箔10を第2の樹脂層13が接するように積層したものであり、第1の樹脂層12と第2の樹脂層13により絶縁層23が形成されている。
 本実施形態の積層体がビルドアップ層を有する場合、例えば、当該ビルドアップ層は、複数の導体層と絶縁層とを有し、導体層が、各絶縁層の間、及び、ビルドアップ層の最外層の表面に配置される構成とすることができる。この際、絶縁層の数は特に限定はないが、例えば、3層又は4層とすることできる。
 また、本実施形態の積層体を用いて、コアレス基板を作製することができる。前記コアレス基板としては、例えば、2層以上のコアレス基板が挙げられ、例えば、3層コアレス基板が挙げられる。コアレス基板の構成については後述する。
[プリント配線板]
 本実施形態の積層体はプリント配線板として用いることができる。ここで、プリント配線板は、コア基材と呼ばれる絶縁性樹脂層が完全硬化した金属箔張積層板に対し、ビルドアップ材料として本実施形態の樹脂層付き銅箔10を用いた積層体を用いることにより得ることができる。本実施形態の樹脂層付き銅箔10(積層体)を用いると、例えば、厚い支持基板(キャリア基板)を用いずに薄型のプリント配線板を製造することが可能である。
 金属箔張積層板の表面には、通常用いられる金属箔張積層板の金属箔及び/又は金属箔を剥離した後にめっきする等して得られる導体層により導体回路が形成される。また、金属箔張積層板の基材は、特に限定されないが、主として、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板及び熱硬化型ポリフェニレンエーテル基板である。
 本実施形態において、ビルドアップとは、金属箔張積層板の表面の金属箔及び/又は導体層に対して、樹脂層付き銅箔10における第1の樹脂層12及び必要に応じて第2の樹脂層13を積層させることである。プリント配線板又は半導体素子搭載用基板の製造に際し、銅箔11をエッチングした後にめっき処理を施しても、第1の樹脂層12は優れためっき密着性を有するので、めっき密着性が向上する。
 プリント配線板の製造では、必要に応じて、各導体層を電気的に接続するため、ビアホール及び/又はスルーホール等の穴加工が行われる。穴加工は、通常、メカニカルドリル、炭酸ガスレーザー、UVレーザー及びYAGレーザー等を用いて行う。
 穴加工が行われた場合、その後、デスミア処理を含む粗化処理を行う。粗化処理は、通常、膨潤工程、表面粗化及びスミア溶解工程、及び中和工程からなる。膨潤工程は、膨潤剤を用いて絶縁性樹脂層の表面を膨潤させることにより行う。膨潤剤としては、絶縁性樹脂層の表面の濡れ性が向上し、次の表面粗化及びスミア溶解工程において酸化分解が促進される程度にまで絶縁性樹脂層の表面を膨潤させることができるものであれば、特に限定されない。例としては、アルカリ溶液、界面活性剤溶液等が挙げられる。表面粗化及びスミア溶解工程は、酸化剤を用いて行う。酸化剤としては、例えば、アルカリ性の過マンガン酸塩溶液等が挙げられ、好適な具体例としては、過マンガン酸カリウム水溶液、過マンガン酸ナトリウム水溶液等が挙げられる。かかる酸化剤処理はウェットデスミアと呼ばれるが、当該ウェットデスミアに加えて、プラズマ処理やUV処理によるドライデスミア、バフ等による機械研磨、サンドブラスト等の他の公知の粗化処理を、適宜組み合わせて実施してもよい。中和工程は、前工程で使用した酸化剤を還元剤で中和するものである。還元剤としては、アミン系還元剤が挙げられ、好適な具体例としては、ヒドロキシルアミン硫酸塩水溶液、エチレンジアミン四酢酸水溶液、ニトリロ三酢酸水溶液等の酸性水溶液が挙げられる。
 本実施形態において、ビアホール及び/又はスルーホールを設けた後、又はビアホール及び/又はスルーホール内をデスミア処理した後に、各導体層を電気的に接続するために金属めっき処理することが好ましい。金属めっき処理の方法としては、特に限定されず、通常の多層プリント配線板の製造における金属めっき処理の方法を適宜用いることができる。金属めっき処理の方法及びめっきに使用される薬液の種類は、特に限定されず、通常の多層プリント配線板の製造における金属めっき処理の方法及び薬液を適宜用いることができる。金属めっき処理に使用される薬液は、市販品であってもよい。金属めっき処理方法としては、特に限定されず、例えば、脱脂液による処理、ソフトエッチング液による処理、酸洗浄、プレディップ液による処理、キャタリスト液による処理、アクセレーター液による処理、化学銅液による処理、酸洗浄及び硫酸銅液に浸漬し電流を流す処理が挙げられる。
 また、半硬化状態の樹脂層付き銅箔10を用いてビルドアップさせた場合には、通常、半硬化状態の第1の樹脂層12又は第2の樹脂層13に対して熱処理等を行って完全硬化させることでプリント配線板を得ることができる。本実施形態では、得られたプリント配線板に対して、別の樹脂層付き銅箔10を更に積層させてもよい。
 ビルドアップ法における積層方法としては、特に限定されないが、真空加圧式ラミネーターを好適に用いることができる。この場合、樹脂層付き銅箔10に対してゴム等の弾性体を介して積層することもできる。ラミネート条件としては、通常のプリント配線板の積層において使用される条件であれば特に限定されないが、例えば、70℃~140℃の温度、1kgf/cm~11kgf/cmの範囲の接触圧力並びに20hPa以下の雰囲気減圧下で行われる。ラミネート工程の後に、金属板による熱プレスにより、ラミネートされた接着フィルムの平滑化を行ってもよい。ラミネート工程及び平滑化工程は、市販されている真空加圧式ラミネーターによって連続的に行うことができる。ラミネート工程の後に、又は平滑化工程の後に、熱硬化工程を有していてもよい。熱硬化工程を用いることで、第1の樹脂層12及び第2の樹脂層13を完全に硬化させることができる。熱硬化条件は、第1の樹脂層12及び第2の樹脂層13に含まれる成分の種類等によって異なるが、通常、硬化温度が100℃~300℃、圧力が0.1kgf/cm~100kgf/cm(約9.8kPa~約9.8MPa)、硬化時間が30秒~5時間である。
 本実施形態におけるプリント配線板の片面又は両面の銅箔に対して、回路パターンを形成する方法としては、セミアディティブ法、フルアディティブ法、サブトラクティブ法等が挙げられる。中でも、微細配線パターンを形成する点からは、セミアディティブ法が好ましい。
 セミアディティブ法で回路パターンを形成する方法の例としては、めっきレジストを用いて選択的に電解めっきを施し(パターンめっき)、その後めっきレジストを剥離し、全体を適量エッチングして配線パターン形成する手法が挙げられる。セミアディティブ法による回路パターン形成では、無電解めっきと電解めっきとを組み合わせて行うが、その際、無電解めっきの後と、電解めっきの後に、それぞれ乾燥を行うことが好ましい。無電解後の乾燥は、特に限定されないが、例えば、80℃~180℃で10分~120分間行うことが好ましく、電解めっき後の乾燥は、特に限定されないが、例えば、130℃~220℃で10分~120分間行うことが好ましい。めっきとしては、銅めっきが好ましい。
 サブトラクティブ法で回路パターンを形成する方法の例としては、エッチングレジストを用いて選択的に導体層を除去することにより、配線パターンを形成する手法が挙げられる。具体的には、例えば、次のようにして行うことができる。銅箔の全面に、温度110±10℃、圧力0.50±0.02MPaでドライフィルムレジスト(日立化成製RD-1225(商品名))を積層貼着(ラミネート)する。ついで、回路パターンに沿って露光し、マスキングを行う。その後、1%炭酸ナトリウム水溶液にてドライフィルムレジストを現像処理し、最終的にアミン系のレジスト剥離液にてドライフィルムレジストを剥離する。これにより、銅箔に回路パターニングを形成することができる。
 本実施形態では、プリント配線板に、更に絶縁性樹脂層及び/又は導体層を積層させ、多層プリント配線板を得ることもできる。多層プリント配線板の内層には、回路基板を有していてもよい。樹脂層付き銅箔10は、多層プリント配線板の絶縁性樹脂層及び導体層の一つを構成することになる。
 積層の方法は、特に限定されず、通常のプリント配線板の積層成形に一般に使用される方法を用いることができる。積層方法としては、例えば、多段プレス、多段真空プレス、ラミネーター、真空ラミネーター、オートクレーブ成形機等が挙げられる。積層時の温度は、特に限定されないが、例えば、100℃~300℃、圧力は、特に限定されないが、例えば、0.1kgf/cm~100kgf/cm(約9.8kPa~約9.8MPa)、加熱時間は、特に限定されないが、例えば、30秒~5時間の範囲で適宜選択して行う。また、必要に応じて、例えば、150℃~300℃の温度範囲で後硬化を行い、硬化度を調整してもよい。
[半導体素子搭載用基板]
 上述のように、本実施形態の積層体は半導体素子搭載用基板として用いることができる。半導体素子搭載用基板は、例えば、金属箔張積層板に樹脂層付き銅箔10を積層させ、得られた積層体の表面又は片面における銅箔をマスキング及びパターニングすることで作製される。マスキング及びパターニングは、プリント配線板の製造において行われる公知のマスキング及びパターニングを用いることができ、特に限定されないが、前述のサブトラクティブ法によって、回路パターンを形成することが好ましい。回路パターンは、積層体の片面にだけ形成されてもよく、両面に形成されてもよい。
[多層コアレス基板(多層プリント配線板)]
 本実施形態の積層体は、上述のようにコアレス基板とすることができる。前記コアレス基板の一例として、多層コアレス基板が挙げられる。
 多層コアレス基板は、例えば、第1の絶縁層と、第1の絶縁層の片面側に積層された1つ又は複数の第2の絶縁層とからなる複数の絶縁層と、複数の絶縁層の各々の間に配置された第1の導体層と、複数の絶縁層の最外層の表面に配置された第2の導体層とからなる複数の導体層とを有し、第1の絶縁層及び前記第2の絶縁層が、それぞれ、樹脂層付き銅箔10の第1の樹脂層12及び第2の樹脂層13の硬化物を有するように構成することができる。多層コアレス基板の具体例について図3を用いて説明する。図3は、本実施形態における多層コアレス基板の一例を示す模式図である。図3に示す多層コアレス基板100は、第1の絶縁層111と、第1の絶縁層111の片面方向(図示上面方向)に積層された2つの第2の絶縁層112を含み、第1の絶縁層111及び2つの第2の絶縁層112は、それぞれ1つの樹脂層付き銅箔10の第1の樹脂層12及び第2の樹脂層13を用いて形成されている。また、図3に示す多層コアレス基板100は、複数の絶縁層(第1の絶縁層111及び第2の絶縁層112)の各々の間に配置された第1の導体層113、及び、それらの複数の絶縁層(第1の絶縁層111及び第2の絶縁層112)の最外層に配置された第2の導体層114からなる複数の導体層を有する。
 このように本実施の形態によれば、絶縁性、めっき密着性、及び、吸湿耐熱性に優れた樹脂層付き銅箔、及び、これを用いた積層体を得ることができる。
 以下に実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明はこれらの実施例により何ら限定されない。
(実施例1~7)
 末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)15.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)34.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して第1の樹脂層12の組成物を得た。次いで、第1の樹脂層12の組成物をN-メチル-2-ピロリドン(以下、“NMP”と称する)で希釈してワニスAを得た。得られたワニスAを、バーコーターによって12μm厚の銅箔11(製品名:3EC-M2S-VLP、三井金属鉱業(株)製)の表面マット面側に塗布した。その際、銅箔11のマット面側を表面とし、表面の十点平均粗さRzは実施例1~5が1.7μm、実施例6が0.3μm、実施例7が4.5μmとした。その後、塗布膜を180℃で10分間加熱乾燥することにより、銅箔11の上に第1の樹脂層12を形成した。
 また、ビフェニルアラルキル型フェノール樹脂(製品名:KAYAHARD GPH-103,水酸基当量:230g/eq、日本化薬(株)製)35.8質量部、ビス(3-エチル-5-メチル-4-マレイミドジフェニル)メタン(製品名:BMI-70、ケイ・アイ化成(株)製)17.9質量部、ナフタレンアラルキル型エポキシ樹脂(製品名:HP-9900―75M、エポキシ当量:274g/eq.、DIC(株)製)7.0質量部、ビフェニルアラルキル型エポキシ樹脂(製品名:NC-3000-FH―75M、日本化薬(株)製、エポキシ当量:320g/eq.)38.8質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.5質量部を配合(混合)して第2の樹脂層13の組成物を得た。次いで、この第2の樹脂層13の組成物をメチルエチルケトンで希釈してワニスBを得た。得られたワニスBを、バーコーターによって上述の方法で得られた第1の樹脂層12の上に塗布した。その後、塗布膜を150℃で10分間加熱乾燥することにより、第1の樹脂層12と第2の樹脂層13とを有する樹脂層付き銅箔10を得た。
 第1の樹脂層12の厚み及び第2の樹脂層13の厚みは、各実施例で次のように変化させた。実施例1は、第1の樹脂層12の厚みが1.5μm、第2の樹脂層13の厚みが2.5μm、実施例2は、第1の樹脂層12の厚みが2.5μm、第2の樹脂層13の厚みが2.5μm、実施例3は、第1の樹脂層12の厚みが5.0μm、第2の樹脂層13の厚みが2.5μm、実施例4は、第1の樹脂層12の厚みが2.5μm、第2の樹脂層13の厚みが1.5μm、実施例5は、第1の樹脂層12の厚みが2.5μm、第2の樹脂層13の厚みが10μm、実施例6は、第1の樹脂層12の厚みが2.5μm、第2の樹脂層13の厚みが2.5μm、実施例7は、第1の樹脂層12の厚みが2.5μm、第2の樹脂層13の厚みが5.0μmである。
(実施例8)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)18.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)31.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して得た。
(実施例9)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)10.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)51.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)37.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して得た。
(実施例10)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)15.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)34.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部、無機充填材としてシリカ(製品名:K180SQ-C1、平均粒径0.18μm、(株)アドマテックス製)79.8質量部を配合(混合)して得た。第1の樹脂層12における無機充填材の含有量(無機充填材/第1の樹脂層×100)は30.3体積%である。
 また、第2の樹脂層13の組成物を変えたことを除き、他は実施例2と同様にして、第1の樹脂層12の上に、第2の樹脂層13を形成した。第2の樹脂層13の組成物は、ビフェニルアラルキル型フェノール樹脂(製品名:KAYAHARD GPH-103,水酸基当量:230g/eq、日本化薬(株)製)35.8質量部、ビス(3-エチル-5-メチル-4-マレイミドジフェニル)メタン(製品名:BMI-70、ケイ・アイ化成(株)製)17.9質量部、ナフタレンアラルキル型エポキシ樹脂(製品名:HP-9900―75M、エポキシ当量:274g/eq.、DIC(株)製)7.0質量部、ビフェニルアラルキル型エポキシ樹脂(製品名:NC-3000-FH―75M、日本化薬(株)製、エポキシ当量:320g/eq.)38.8質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.5質量部、無機充填材としてスラリーシリカ(製品名:M273、平均粒径0.1μm、CIKナノテック(株)製)99.5質量部を配合(混合)して得た。第2の樹脂層13における無機充填材の含有量(無機充填材/第2の樹脂層×100)は35.2体積%である。
(実施例11)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)10.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)39.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して得た。
(実施例12)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)7.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)42.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して得た。
(実施例13)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)3.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)49.9質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)46.9質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株)製)0.2質量部を配合(混合)して得た。
(比較例1)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)50.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)50.0質量部を配合(混合)して得た。
(比較例2)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)30.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)70.0質量部を配合(混合)して得た。
(比較例3)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、末端スチレン化ポリフェニレンエーテル化合物(製品名:OPE-2St2200、三菱ガス化学(株)製)15.0質量部、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)50.0質量部、エポキシ化合物(製品名:LCE-2615、日本化薬(株)製)35.0質量部を配合(混合)して得た。
(比較例4)
 第1の樹脂層12の組成物を変えたことを除き、他は実施例2と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。第1の樹脂層12の組成物は、ポリイミド樹脂(製品名:ネオプリム(登録商標)S100、三菱ガス化学(株)製)50.0質量部、2,2-ビス-(4-(4-マレイミドフェノキシ)フェニル)プロパン(製品名:BMI-80、ケイ・アイ化成(株)製)50.0質量部を配合(混合)して得た。
(比較例5)
 銅箔11の表面の十点平均粗さRzを10.5μmとしたことを除き、他は実施例7と同様にして、銅箔11の表面に第1の樹脂層12を形成し、第1の樹脂層12の上に第2の樹脂層13を形成した。
(特性評価)
 各実施例及び各比較例の特性を以下の方法により測定した。
(絶縁性の評価)
 銅箔張積層板(HL832NS(商品名)T/T0.2mmt、三菱ガス化学(株)製)における両面の銅箔面を0.5μm~1μm程度エッチング(内層粗化処理、CZ8101(商品名)、メック(株)製)し、その両面に、各実施例及び各比較例の樹脂層付き銅箔10を第2の樹脂層13が内側になるように配置し、圧力30kgf/cm、温度220℃で120分間の積層成形(熱硬化)を行い、銅箔張積層板を得た。次いで、得られた銅張積層板に、サブトラクティブ法により絶縁性評価向けの外層回路を作製し、絶縁性評価用基板を得た。
 得られた絶縁性評価用基板について、HAST試験槽(130℃、85%RH、5.0V)中で300時間にわたり抵抗値を測定し、その後、HAST試験槽から出した後の抵抗値を測定した。その結果、HAST試験槽中において短絡がなく、かつ、HAST試験槽から出した後の抵抗値が1×10Ω以上であった場合に、良好として〇と評価し、それ以外は×と評価した。
(めっき密着性の評価)
 各実施例及び各比較例で得られた樹脂層付き銅箔10について、銅箔10をエッチング後、無電解めっき、及び、電解銅めっきを行い、厚み20μmのめっき層を形成した試験片を得た。この試験片を用いピール強度を測定した。ピール強度は、試験片の下層を板などに固定し、めっき層の端を固定板方向に対して垂直に引っ張り、剥離に必要な荷重値を上層と下層の界面の密着強度とした。このピール強度が0.5kN/m以上の場合に良好と判断する。
(吸湿耐熱性の評価)
 銅箔張積層板(HL832NS(商品名)T/T0.2mmt、三菱ガス化学(株)製)における両面の銅箔面を0.5μm~1μm程度エッチング(内層粗化処理、CZ8101(商品名)、メック(株)製)し、その両面に、各実施例及び各比較例の樹脂層付き銅箔10を第2の樹脂層13が内側になるように配置し、圧力30kgf/cm、温度220℃で120分間の積層成形(熱硬化)を行い、銅箔張積層板を得た。次いで、得られた銅張積層板をサイズ50mm×50mmに切断し、測定用試験片を得た。得られた測定用試験片を、前処理として、120℃の恒温槽にて3時間放置した後、260℃の半田槽に30秒浸漬することで、耐熱性の評価を行った。30秒経過後に(1)銅箔張積層板の表面の銅箔と、第1の樹脂層12及び第2の樹脂層13の硬化物を含む層との層間、及び、(2)第1の樹脂層12及び第2の樹脂層13の硬化物を含む層と、銅箔張積層板(HL832NS(商品名)T/T0.2mmt、三菱ガス化学(株)製)における樹脂組成物の硬化物を含む層との層間の、それぞれのデラミネーションの発生の有無を確認した。(1)及び(2)について、共にデラミネーションが発生しなかった場合を〇とし、少なくとも一方にデラミネーションが発生した場合を×とした。
 各実施例及び各比較例の条件及び評価結果を表1,表2に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表1,2に示したように、実施例1~13によれば、絶縁性、めっき密着性、及び、吸湿耐熱性について良好な結果が得られた。これに対して、比較例1~5では、いずれも良好な結果が得られなかった。すなわち、第1の樹脂層12に、ポリフェニレンエーテル化合物(A)、ポリイミド樹脂(B)、及び、マレイミド化合物(C)を含み、銅箔11の表面の十点平均粗さRzを0.3μm以上10μm以下とすれば、優れた絶縁性、めっき密着性、及び、吸湿耐熱性が得られることが分かった。
 10…樹脂層付き銅箔、11…銅箔、12…第1の樹脂層、13…第2の樹脂層、20…積層体、21…導体層、22…基板、23…絶縁層、100…多層コアレス基板、111…第1の絶縁層、112…第2の絶縁層、113…第1の導体層、114…第2の導体層

Claims (11)

  1.  銅箔と、前記銅箔の表面に積層された第1の樹脂層とを有する樹脂層付き銅箔であって、
     前記第1の樹脂層は、ポリフェニレンエーテル化合物(A)、ポリイミド樹脂(B)、及び、マレイミド化合物(C)を含み、
     前記銅箔の表面の十点平均粗さRzは0.3μm以上10μm以下である
     ことを特徴とする樹脂層付き銅箔。
  2.  前記第1の樹脂層の上に、熱硬化性樹脂を含む第2の樹脂層が設けられた、請求項1に記載の樹脂層付き銅箔。
  3.  前記第1の樹脂層におけるポリフェニレンエーテル化合物(A)の割合は、樹脂固形分100質量部に対して3質量部以上20質量部未満である、請求項1に記載の樹脂層付き銅箔。
  4.  前記第1の樹脂層は、無機充填材を含まないか、又は、35体積%以下の含有量で無機充填材を含む、請求項1に記載の樹脂層付き銅箔。
  5.  前記無機充填材は水酸化マグネシウム、酸化マグネシウム、シリカ、モリブデン化合物、アルミナ、窒化アルミニウム、ガラス、タルク、チタン化合物、酸化ジルコニウムから選択される少なくとも1種を含有する、請求項4に記載の樹脂層付き銅箔。
  6.  前記第1の樹脂層の厚みは1.5μm以上5μm以下である、請求項1に記載の樹脂層付き銅箔。
  7.  前記第2の樹脂層は、エポキシ化合物、シアン酸エステル化合物、マレイミド化合物、フェノール化合物、ポリフェニレンエーテル化合物、ベンゾオキサジン化合物、有機基変性シリコーン化合物、及び、重合可能な不飽和基を有する化合物からなる群より選択される少なくとも1種を含有する、請求項2に記載の樹脂層付き銅箔。
  8.  前記第2の樹脂層は、無機充填材を含まないか、又は、36体積%以下の含有量で無機充填材を含む、請求項2に記載の樹脂層付き銅箔。
  9.  前記無機充填材は水酸化マグネシウム、酸化マグネシウム、シリカ、モリブデン化合物、アルミナ、窒化アルミニウム、ガラス、タルク、チタン化合物、酸化ジルコニウムから選択される少なくとも1種を含有する、請求項8に記載の樹脂層付き銅箔。
  10.  前記第2の樹脂層の厚みは1μm以上15μm以下である、請求項2に記載の樹脂層付き銅箔。
  11.  導体層と、請求項1に記載の樹脂層付き銅箔を用いて形成されたビルドアップ層を有する積層体。
PCT/JP2021/029459 2020-08-13 2021-08-07 樹脂層付き銅箔、及び、これを用いた積層体 WO2022034872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022542847A JPWO2022034872A1 (ja) 2020-08-13 2021-08-07
KR1020237005098A KR20230049098A (ko) 2020-08-13 2021-08-07 수지층 부착 동박 및 이것을 사용한 적층체
CN202180056838.0A CN116096805A (zh) 2020-08-13 2021-08-07 附树脂层的铜箔、以及使用其的积层体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-136713 2020-08-13
JP2020136713 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022034872A1 true WO2022034872A1 (ja) 2022-02-17

Family

ID=80247898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029459 WO2022034872A1 (ja) 2020-08-13 2021-08-07 樹脂層付き銅箔、及び、これを用いた積層体

Country Status (5)

Country Link
JP (1) JPWO2022034872A1 (ja)
KR (1) KR20230049098A (ja)
CN (1) CN116096805A (ja)
TW (1) TW202218874A (ja)
WO (1) WO2022034872A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211071A1 (ja) * 2021-03-31 2022-10-06 太陽ホールディングス株式会社 硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品
EP4282902A1 (en) 2022-05-27 2023-11-29 Mitsubishi Gas Chemical Company, Inc. Resin composition, cured product, sealing material, adhesive, insulating material, coating material, prepreg, multilayered body, and fiber-reinforced composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207550A (ja) * 2007-01-29 2008-09-11 Somar Corp 樹脂被覆金属箔及びその製造方法、並びにこの製造方法で得られた樹脂被覆金属箔を用いた金属張積層板及びその製造方法
WO2010073952A1 (ja) * 2008-12-26 2010-07-01 三菱瓦斯化学株式会社 樹脂複合銅箔
JP2012081586A (ja) * 2010-10-06 2012-04-26 Sumitomo Bakelite Co Ltd 樹脂シート、積層板、電子部品、プリント配線板及び半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252658B2 (ja) 2016-11-16 2017-12-27 味の素株式会社 絶縁樹脂シート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207550A (ja) * 2007-01-29 2008-09-11 Somar Corp 樹脂被覆金属箔及びその製造方法、並びにこの製造方法で得られた樹脂被覆金属箔を用いた金属張積層板及びその製造方法
WO2010073952A1 (ja) * 2008-12-26 2010-07-01 三菱瓦斯化学株式会社 樹脂複合銅箔
JP2012081586A (ja) * 2010-10-06 2012-04-26 Sumitomo Bakelite Co Ltd 樹脂シート、積層板、電子部品、プリント配線板及び半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022211071A1 (ja) * 2021-03-31 2022-10-06 太陽ホールディングス株式会社 硬化性樹脂積層体、ドライフィルム、硬化物及び電子部品
EP4282902A1 (en) 2022-05-27 2023-11-29 Mitsubishi Gas Chemical Company, Inc. Resin composition, cured product, sealing material, adhesive, insulating material, coating material, prepreg, multilayered body, and fiber-reinforced composite material

Also Published As

Publication number Publication date
JPWO2022034872A1 (ja) 2022-02-17
TW202218874A (zh) 2022-05-16
KR20230049098A (ko) 2023-04-12
CN116096805A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
TWI540170B (zh) Resin composition
JP2018111827A (ja) エポキシ樹脂組成物
KR102128231B1 (ko) 경화성 수지 조성물
JP2006037083A (ja) 変性ポリイミド樹脂を含有する熱硬化性樹脂組成物
TW201418357A (zh) 樹脂組成物
KR20140121783A (ko) 경화성 수지 조성물
WO2022034872A1 (ja) 樹脂層付き銅箔、及び、これを用いた積層体
TW201900768A (zh) 樹脂組成物
JP7153242B2 (ja) 絶縁性樹脂層付き銅箔
TWI825152B (zh) 疊層體、覆金屬箔之疊層板、附設有經圖案化之金屬箔之疊層體、有堆積結構之疊層體、印刷配線板、多層無芯基板、以及其製造方法
WO2022034871A1 (ja) 樹脂層付き銅箔、及び、これを用いた積層体
JP2020029494A (ja) 絶縁層用樹脂組成物、シート状積層材料、多層プリント配線板及び半導体装置
JP2003313324A (ja) 基材入りbステージ樹脂組成物シートの製造方法
TWI628074B (zh) Laminated body, laminated board, printed wiring board, and method for manufacturing laminated body and laminated board
WO2020241899A1 (ja) 絶縁性樹脂層付き基材、並びに、これを用いた積層体及び積層体の製造方法
JP6988588B2 (ja) 樹脂組成物、シート状積層材料、プリント配線板及び半導体装置
JP2003283141A (ja) アディティブ用金属箔付きbステージ樹脂組成物シート。
TWI618630B (zh) 積層體、積層板、印刷線路板、積層體的製造方法、及積層板的製造方法
JP2019065072A (ja) 金属箔付き接着シート及び配線基板
WO2023054516A1 (ja) 半導体素子搭載用パッケージ基板の製造方法及び支持基板付積層体
JP2003133704A (ja) 回路基板およびカバ−レイ用接着シ−ト
JP2003298243A (ja) 多層プリント配線板
TW202130509A (zh) 樹脂片以及印刷電路板
JP2022031285A (ja) 樹脂組成物、シート状積層材料、プリント配線板及び半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022542847

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237005098

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21855951

Country of ref document: EP

Kind code of ref document: A1