WO2022210495A1 - 固体電解質材および全固体電池 - Google Patents

固体電解質材および全固体電池 Download PDF

Info

Publication number
WO2022210495A1
WO2022210495A1 PCT/JP2022/014887 JP2022014887W WO2022210495A1 WO 2022210495 A1 WO2022210495 A1 WO 2022210495A1 JP 2022014887 W JP2022014887 W JP 2022014887W WO 2022210495 A1 WO2022210495 A1 WO 2022210495A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
positive electrode
negative electrode
electrode mixture
Prior art date
Application number
PCT/JP2022/014887
Other languages
English (en)
French (fr)
Inventor
春菜 加藤
長 鈴木
哲也 上野
千映子 清水
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US18/283,968 priority Critical patent/US20240162480A1/en
Priority to DE112022001825.9T priority patent/DE112022001825T5/de
Priority to CN202280025852.9A priority patent/CN117203718A/zh
Publication of WO2022210495A1 publication Critical patent/WO2022210495A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides

Definitions

  • the present invention relates to a solid electrolyte material and an all-solid battery. This application claims priority based on Japanese Patent Application No. 2021-054538 filed in Japan on March 29, 2021, the contents of which are incorporated herein.
  • oxide-based solid electrolytes examples include nasicon -type solid electrolytes such as Li1.3Al0.3Ti1.7 ( PO4 ) 3 ( LATP ) and perovskites such as La0.51Li0.34TiO2.94 .
  • type solid electrolytes garnet - type solid electrolytes such as Li7La3Zr2O12 are known.
  • Patent Document 1 discloses, as an all-solid battery using a halide-based solid electrolyte, a positive electrode provided with a positive electrode layer containing a positive electrode active material containing an Li element and a positive electrode current collector, and a negative electrode layer containing a negative electrode active material. and a negative electrode current collector, and a solid electrolyte sandwiched between the positive electrode layer and the negative electrode layer and made of a compound represented by the following general formula.
  • Li 3-2X M X In 1-Y M' Y L 6-Z L' Z (wherein M and M' are metal elements, L and L' are halogen elements, and X, Y and Z are independently 0 ⁇ X ⁇ 1.5, 0 ⁇ Y ⁇ 1, 0 ⁇ satisfy Z ⁇ 6.)
  • Patent Document 2 discloses a halide-based solid electrolyte material represented by the following compositional formula. Li 6-3Z Y Z X 6 Here, 0 ⁇ Z ⁇ 2 is satisfied, and X is Cl or Br. Further, Patent Document 2 describes a battery in which at least one of a negative electrode and a positive electrode contains the solid electrolyte material.
  • Patent Document 3 as an all-solid battery using a sulfide-based solid electrolyte, an active material and an anion component that is in contact with the active material and is different from the anion component of the active material, a single-phase electron-
  • a first solid electrolyte material that is an ion-mixed conductor, and a second ion conductor that is in contact with the first solid electrolyte material has the same anion component as the first solid electrolyte material, and does not have electronic conductivity.
  • a battery is disclosed that includes an electrode active material layer having a solid electrolyte material.
  • the first solid electrolyte material is Li 2 ZrS 3
  • the conventional all-solid-state battery using a solid electrolyte has a problem of low discharge capacity at high current density, that is, poor rate characteristics.
  • the present invention has been made in view of the above problems, and aims to provide a solid electrolyte material with high ionic conductivity and an all-solid-state battery with improved rate characteristics that includes the solid electrolyte material.
  • the inventors have made extensive studies. As a result, it contains one or more of a halide-based solid electrolyte and a sulfide-based solid electrolyte, and is roughened so that the surface has a ten-point average roughness Rz JIS of 20 nm or more and 1500 nm or less.
  • the inventors have found that an all-solid-state battery using such a solid electrolyte material has improved rate characteristics, and have conceived the present invention. That is, the present invention provides the following means in order to solve the above problems.
  • a solid electrolyte material having a pair of surfaces facing each other and containing at least one of a halide-based solid electrolyte and a sulfide-based solid electrolyte represented by the following formula (1), At least one of the pair of surfaces has a surface ten-point average roughness Rz JIS of 20 nm or more and 1.5 ⁇ m or less.
  • E is at least one element selected from the group consisting of Al, Sc, Y, Zr, Hf, and lanthanides
  • G is Na, K, Rb, Cs, Mg, Ca , Sr, Ba, B, Si, Ti, Cu, Nb, Ag, In, Sn, Sb, Ta, W, Au, and Bi
  • D is CO 3 , at least one group selected from the group consisting of SO 4 , BO 3 , PO 4 , NO 3 , SiO 3 , OH and O 2
  • X is selected from the group consisting of F, Cl, Br and I at least one, 0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 5, 0 ⁇ d ⁇ 6.1.
  • FIG. 1 is a schematic cross-sectional view of an all-solid-state battery according to an embodiment of the present invention
  • FIG. 4 is a SEM photograph of the surface of the solid electrolyte pellet produced in Example 1 after being roughened.
  • 4 is an SEM photograph of the surface of the solid electrolyte pellet produced in Example 1 before being roughened.
  • a solid electrolyte material and an all-solid battery according to an embodiment of the present invention will be described in detail below.
  • Solid electrolyte material The solid electrolyte material of this embodiment has a pair of surfaces facing each other.
  • a pair of surfaces facing each other means, for example, two surfaces exposed in mutually different directions (such as opposite directions).
  • a solid electrolyte material is used as a solid electrolyte layer of an all-solid-state battery. When used as a solid electrolyte layer of an all-solid-state battery, one of a pair of surfaces of the solid electrolyte material is in contact with the positive electrode mixture layer, and the other is in contact with the negative electrode mixture layer.
  • the solid electrolyte material may have any shape as long as it has a pair of surfaces, and may be, for example, in the form of a film (layer) or pellets. At least one of the pair of surfaces of the solid electrolyte material has a surface ten-point average roughness Rz JIS within the range of 20 nm or more and 1500 nm or less, and has fine unevenness.
  • the surface of the solid electrolyte material having fine irregularities may be the side in contact with the positive electrode mixture layer or the side in contact with the negative electrode mixture layer. Both of the pair of surfaces of the solid electrolyte material preferably have fine irregularities.
  • the surface ten-point average roughness Rz JIS is obtained by extracting a reference length from the roughness curve in the direction of the average line, and measuring from the average line of this extracted part in the direction of the vertical magnification, from the highest peak to the fifth peak and the average absolute value of the altitudes of the lowest to fifth valley bottoms, and this value was expressed in nanometers.
  • the solid electrolyte material may have an average thickness of 2.0 ⁇ m or more.
  • the thickness of the solid electrolyte material is the distance between a pair of surfaces.
  • the thickness of the solid electrolyte material can be measured by observing the cross section of the cross-sectionally polished sample using a SEM (scanning electron microscope).
  • Average thickness is the average of ten thickness measurements. The ten measurement points are preferably separated from each other, and more preferably separated by 10% or more of the maximum length (maximum diameter) on each surface of the solid electrolyte material.
  • the average thickness of the solid electrolyte material is preferably 2.0 ⁇ m or more, particularly preferably 10 ⁇ m or more.
  • the average thickness of the solid electrolyte material may be 1000 ⁇ m or less.
  • the solid electrolyte material contains at least one of a halide-based solid electrolyte and a sulfide-based solid electrolyte. That is, the solid electrolyte material contains at least one compound among a plurality of types of compounds listed as halide-based solid electrolytes and a plurality of types of compounds listed as sulfide-based solid electrolytes.
  • the solid electrolyte material may be a single halide-based solid electrolyte, a single sulfide-based solid electrolyte, or a mixture of a halide-based solid electrolyte and a sulfide-based solid electrolyte. .
  • the solid electrolyte material may contain a binder.
  • a compound represented by the following formula (1) is used as the halide-based solid electrolyte. Li 2+a E 1-b G b D c X d (1)
  • E is an essential component and one of the elements forming the skeleton of the compound represented by formula (1).
  • E is selected from the group consisting of Al, Sc, Y, Zr, Hf, Lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) is at least one element
  • the solid electrolyte has a wide potential window and high ionic conductivity.
  • E preferably contains Al, Sc, Y, Zr, Hf, and La, and particularly preferably Zr and Y, in order to provide a solid electrolyte with higher ionic conductivity.
  • G is a component that is optionally contained.
  • G is selected from the group consisting of Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Si, Ti, Cu, Nb, Ag, In, Sn, Sb, Ta, W, Au, Bi is at least one element
  • G may be a monovalent element selected from Na, K, Rb, Cs, Ag and Au among the above.
  • G may be a divalent element selected from Mg, Ca, Sr, Ba, Cu and Sn among the above.
  • G may be trivalent selected from B, Si, Ti, Nb, In, Sb, Ta, W and Bi among the above.
  • D is a component that is optionally contained.
  • D is at least one group selected from the group consisting of CO3 , SO4 , BO3 , PO4, NO3 , SiO3, OH and O2 . Inclusion of D widens the potential window on the reduction side.
  • D is preferably at least one group selected from the group consisting of SO 4 and CO 3 , particularly preferably SO 4 .
  • X is at least one halogen element selected from the group consisting of F, Cl, Br and I; X has a large ionic radius per valence. Therefore, when the compound represented by formula (1) contains X, lithium ions move more easily, resulting in an increase in ion conductivity. As X, it is preferable to contain Cl because the solid electrolyte has high ionic conductivity.
  • a, b, c, and d are 0 ⁇ a ⁇ 1.5, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 5, 0 ⁇ d ⁇ 6.1, respectively. is a number that satisfies It is preferable that 0 ⁇ a ⁇ 1.0, 0 ⁇ b ⁇ 0.35, 0 ⁇ c ⁇ 3, and 1.5 ⁇ d ⁇ 6.1.
  • Examples of compounds represented by formula ( 1 ) include Li2ZrCl6 , Li2ZrSO4Cl4 , Li2ZrCO3Cl4 , Li3YSO4Cl4 , and Li3YCO3Cl4 . can.
  • the compound represented by formula (1) can be produced, for example, by mixing raw material powders containing predetermined elements in a predetermined molar ratio and reacting them. 2.
  • the compound represented by formula (1) can be produced, for example, by a mechanochemical method.
  • a planetary ball mill for example, can be used as a mixing device for raw material powders in order to cause a mechanochemical reaction.
  • a planetary ball mill device puts media (balls to promote grinding or mechanochemical reaction) and raw material powder into a closed container, rotates and revolves, applies kinetic energy to the raw material powder, and starts grinding or mechanochemical reaction. It is a device that causes
  • the sealed container and balls of the planetary ball mill device can be made of, for example, zirconia.
  • a compound containing Li, S, Si and/or P can be used as the sulfide-based solid electrolyte.
  • the sulfide-based solid electrolyte may further contain Ge, Cl, Br, and I.
  • the sulfide-based solid electrolyte may be amorphous, crystalline, or aldirodite type.
  • Examples of sulfide-based solid electrolytes include Li 2 SP 2 S 5 -based solid electrolytes (Li 7 P 3 S 11 , Li 3 PS 4 , Li 8 P 2 S 9 , etc.), Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 SP 2 S 5 , LiI—LiBr—Li 2 SP 2 S 5 , Li 2 SP 2 S 5 —GeS 2 -based solid electrolytes (Li 13 GeP 3 S 16 , Li 10 GeP 2 S 12 , etc.), LiI-Li 2 SP 2 O 5 , LiI-Li 3 PO 4 -P 2 S 5 , Li 7 -xPS 6 -xCl x (x is 1 .0 to 1.9) can be mentioned.
  • the sulfide-based solid electrolyte may be a compound represented by the following formula (2).
  • Li is lithium
  • M is a tetravalent metal
  • P is phosphorus
  • O oxygen
  • S sulfur
  • X is F
  • q, r, s, t, u, and v are 1 ⁇ q ⁇ 20, 0 ⁇ r ⁇ 2, 1 ⁇ s ⁇ 5, 0, respectively.
  • ⁇ t ⁇ 5, 0 ⁇ u ⁇ 5, and v q/2+2 ⁇ r+2.5 ⁇ s ⁇ t ⁇ u/2.
  • M is preferably Si or Ge.
  • the solid electrolyte material for example, a flat solid electrolyte material having a pair of surfaces with a ten-point average roughness Rz JIS of less than 20 nm is produced, and then the surface of the solid electrolyte material is roughened to form fine unevenness. It can be manufactured by forming. A pressing method, a rolling method, or a coating method can be used as a method for producing the solid electrolyte material.
  • a pellet-shaped solid is produced by pressing a solid electrolyte using a pellet-making jig having a cylindrical holder (die) and an upper punch and a lower punch that can be inserted into the cylindrical holder.
  • a pellet-making jig having a cylindrical holder (die) and an upper punch and a lower punch that can be inserted into the cylindrical holder.
  • This is a method of producing an electrolyte material. Specifically, a lower punch is inserted into a cylindrical holder, a solid electrolyte is put on the lower punch, and then an upper punch is inserted on the solid electrolyte. Then, by placing the pellet production jig on a press and pressing the lower punch and the upper punch, a pellet-shaped solid electrolyte material can be produced.
  • the rolling method is a method of producing a film-like solid electrolyte material by rolling a solid electrolyte composition containing a solid electrolyte and a binder using pressure rollers. Specifically, a solid electrolyte composition is obtained by dry-mixing a solid electrolyte powder and a binder. Then, by rolling the solid electrolyte composition using pressure rollers, a film-like solid electrolyte material can be produced.
  • the binder for example, fluororesin (PTFE) can be used.
  • the coating method is a method of producing a film-like solid electrolyte material by coating a substrate with a solid electrolyte coating liquid containing a solid electrolyte, a binder, and a solvent and drying it. Specifically, a solid electrolyte, a binder, and a solvent are mixed to obtain a solid electrolyte coating liquid. Next, the solid electrolyte coating solution is applied using a coating device such as a bar coater, and then dried to produce a film-like solid electrolyte material.
  • a coating device such as a bar coater
  • An electron beam irradiation method can be used as a method for roughening the surface of the solid electrolyte material.
  • the electron beam irradiation method is a method of forming fine unevenness on the surface of a solid electrolyte material by irradiating the surface of the solid electrolyte material with an electron beam.
  • This electron beam irradiation method it is possible to obtain a solid electrolyte material in which at least one of a pair of surfaces has a surface ten-point average roughness Rz JIS within the range of 20 nm or more and 1500 nm or less.
  • the solid electrolyte material of the present embodiment configured as described above has a pair of surfaces facing each other, and at least one of the pair of surfaces has a surface ten-point average roughness Rz JIS of 20 nm or more.
  • Rz JIS surface ten-point average roughness
  • an all-solid-state battery using the solid electrolyte material of the present embodiment as a solid electrolyte layer has improved rate characteristics.
  • the thickness of the solid electrolyte material of the present embodiment when the average thickness is 2.0 ⁇ m or more, the thickness of the solid electrolyte material is larger than the unevenness of the surface. It is thought that breakage is less likely to occur.
  • FIG. 1 is a cross-sectional schematic diagram of an all-solid-state battery according to one embodiment of the present invention.
  • the all-solid-state battery 10 shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and a solid electrolyte layer 3.
  • Solid electrolyte layer 3 is sandwiched between positive electrode 1 and negative electrode 2 .
  • the above solid electrolyte material is used for the solid electrolyte layer 3 .
  • An external terminal (not shown) is connected to the positive electrode 1 and the negative electrode 2 so as to be electrically connected to the outside.
  • the all-solid-state battery 10 is charged or discharged by transferring ions between the positive electrode 1 and the negative electrode 2 via the solid electrolyte layer 3 and electrons via an external circuit.
  • the all-solid-state battery 10 may be a laminated body in which the positive electrode 1, the negative electrode 2, and the solid electrolyte layer 3 are laminated, or may be a wound body in which the laminated body is wound.
  • the all-solid-state battery can be, for example, a laminate battery, a square battery, a cylindrical battery, a coin battery, or a button battery.
  • the positive electrode 1 includes a positive electrode mixture layer 1B provided on a plate-like (foil-like) positive electrode current collector 1A.
  • the positive electrode 1 is arranged such that the positive electrode mixture layer 1B is adjacent to the solid electrolyte layer 3 .
  • the positive electrode current collector 1A may be made of an electronically conductive material that resists oxidation during charging and is resistant to corrosion.
  • a metal such as aluminum, stainless steel, nickel, or titanium, or a conductive resin can be used.
  • the positive electrode current collector 1A may be in the form of powder, foil, punched, or expanded.
  • the positive electrode mixture layer 1B contains a positive electrode active material and, if necessary, a solid electrolyte, a binder and a conductive aid.
  • the positive electrode active material is not particularly limited as long as it is capable of reversibly occluding/releasing, inserting/deintercalating (intercalating/deintercalating) lithium ions.
  • a positive electrode active material used in known lithium ion secondary batteries can be used.
  • positive electrode active materials include lithium-containing metal oxides and lithium-containing metal phosphates.
  • LiCoO 2 lithium cobalt oxide
  • LiNiO 2 lithium nickel oxide
  • LiMn 2 O 4 lithium manganese spinel
  • LiNi x Co y Mnz O 2 ( x + y + z 1
  • LiVOPO 4 lithium vanadium compounds
  • Li 3 V 2 (PO 4 ) 3 olivine-type LiMPO 4 (where M is selected from Co, Ni, M
  • a positive electrode active material that does not contain lithium can also be used.
  • Such positive electrode active materials include lithium-free metal oxides ( MnO2 , V2O5 , etc.), lithium-free metal sulfides (MoS2, etc.), lithium - free fluorides ( FeF3 , VF3 , etc.). ) and the like.
  • the negative electrode may be doped with lithium ions in advance, or a negative electrode containing lithium ions may be used.
  • the solid electrolyte may be the same as or different from the solid electrolyte contained in the solid electrolyte layer 3 .
  • the solid electrolyte in positive electrode mixture layer 1B and the solid electrolyte in solid electrolyte layer 3 are the same, the ion conductivity between positive electrode mixture layer 1B and solid electrolyte layer 3 is improved.
  • the content of the solid electrolyte in the positive electrode mixture layer 1B is not particularly limited, but is preferably 1% by volume to 50% by volume based on the total volume of the positive electrode active material, the solid electrolyte, the conductive aid, and the binder. Preferably, it is 5% to 50% by volume.
  • binder The binder mutually binds the positive electrode active material, the solid electrolyte, and the conductive aid that constitute the positive electrode mixture layer 1B. Further, the binder adheres the positive electrode mixture layer 1B and the positive electrode current collector 1A. Properties required for the binder include oxidation resistance and good adhesion.
  • Binders used in the positive electrode mixture layer 1B include polyvinylidene fluoride (PVDF) or its copolymer, polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole ( PBI), polyethersulfone (PES), polyacrylic acid (PA) and its copolymer, metal ion cross-linked polyacrylic acid (PA) and its copolymer, maleic anhydride-grafted polypropylene (PP) , maleic anhydride-grafted polyethylene (PE), or mixtures thereof.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PA polyamide
  • PI polyimide
  • PAI polyamideimide
  • PBI polybenzimidazole
  • PES polyethersulfone
  • PA polyacrylic acid
  • PA metal ion cross-linked polyacrylic acid
  • PP maleic anhydride-grafted
  • the content of the binder in the positive electrode mixture layer 1B is not particularly limited, but is preferably 1% by volume to 15% by volume based on the total volume of the positive electrode active material, the solid electrolyte, the conductive aid and the binder. , more preferably 3% to 5% by volume. If the binder content is too low, there is a tendency that the positive electrode 1 having sufficient adhesive strength cannot be formed. Also, common binders are electrochemically inactive and do not contribute to discharge capacity. Therefore, if the binder content is too high, it tends to be difficult to obtain a sufficient volume energy density or mass energy density.
  • the conductive aid is not particularly limited as long as it improves the electron conductivity of the positive electrode mixture layer 1B, and known conductive aids can be used. Examples thereof include carbon materials such as carbon black, graphite (graphite), carbon nanotubes, and graphene, metals such as aluminum, copper, nickel, stainless steel, iron, and amorphous metals, conductive oxides such as ITO, and mixtures thereof. .
  • the conductive aid may be in the form of powder or fiber.
  • the content of the conductive aid in the positive electrode mixture layer 1B is not particularly limited.
  • the positive electrode mixture layer 1B contains a conductive aid it is preferably 0.5% by volume to 20% by volume based on the total volume of the positive electrode active material, the solid electrolyte, the conductive aid, and the binder. , more preferably 1% to 10% by volume.
  • the negative electrode 2 has a negative electrode mixture layer 2B provided on a negative electrode current collector 2A.
  • the negative electrode 2 is arranged such that the negative electrode mixture layer 2B is adjacent to the solid electrolyte layer 3 .
  • the negative electrode current collector 2A may be electronically conductive.
  • a metal such as copper, aluminum, nickel, stainless steel, iron, or a conductive resin can be used.
  • the negative electrode current collector 2A may be in the form of powder, foil, punched, or expanded.
  • the negative electrode mixture layer 2B contains a negative electrode active material and, if necessary, a solid electrolyte, a binder, and a conductive aid.
  • the negative electrode active material is not particularly limited as long as it can reversibly absorb and desorb lithium ions and intercalate and desorb lithium ions.
  • a negative electrode active material used in known lithium ion secondary batteries can be used.
  • negative electrode active materials include carbon materials such as natural graphite, artificial graphite, mesocarbon microbeads, mesocarbon fibers (MCF), cokes, vitreous carbon, and baked organic compounds, Si, SiO x , Sn, and aluminum.
  • the solid electrolyte may be the same as or different from the solid electrolyte contained in the solid electrolyte layer 3 .
  • the solid electrolyte in negative electrode mixture layer 2B and the solid electrolyte in solid electrolyte layer 3 are the same, the ion conductivity between negative electrode mixture layer 2B and solid electrolyte layer 3 is improved.
  • the content of the solid electrolyte in the negative electrode mixture layer 2B is not particularly limited, but is preferably 1% by volume to 50% by volume based on the total volume of the negative electrode active material, the solid electrolyte, the conductive aid, and the binder. Preferably, it is 5% to 50% by volume.
  • binder The binder mutually binds the negative electrode active material, the solid electrolyte, and the conductive aid that constitute the negative electrode mixture layer 2B. Further, the binder bonds the negative electrode mixture layer 2B and the negative electrode current collector 2A. Properties required for the binder include reduction resistance and good adhesiveness.
  • Binders used in the negative electrode mixture layer 2B include polyvinylidene fluoride (PVDF) or its copolymer, polytetrafluoroethylene (PTFE), polyamide (PA), polyimide (PI), polyamideimide (PAI), polybenzimidazole ( PBI), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), polyacrylic acid (PA) and its copolymers, polyacrylic acid (PA) and its copolymer metal ion cross-linked products, grafted with maleic anhydride Polypropylene (PP) grafted with maleic anhydride, polyethylene (PE) grafted with maleic anhydride, or mixtures thereof.
  • the binder it is preferable to use one or more selected from SBR, CMC and PVDF.
  • the content of the binder in the negative electrode mixture layer 2B is not particularly limited, but is preferably 1% by volume to 15% by volume based on the total volume of the negative electrode active material, conductive aid and binder. It is more preferably 5% by volume to 10% by volume. If the binder content is too low, there is a tendency that the negative electrode 2 having sufficient adhesive strength cannot be formed. Also, common binders are electrochemically inactive and do not contribute to discharge capacity. Therefore, if the binder content is too high, it tends to be difficult to obtain a sufficient volume energy density or mass energy density.
  • a carbon material, a metal, a conductive oxide, or a mixture thereof can be used as the conductive aid that may be contained in the negative electrode mixture layer 2B.
  • Examples of carbon materials, metals, and conductive oxides are the same as in the conductive aid that may be contained in the positive electrode mixture layer 1B described above.
  • the content of the conductive aid in the negative electrode mixture layer 2B is not particularly limited. When the negative electrode mixture layer 2B contains a conductive aid, it is preferably 0.5% by volume to 20% by volume based on the total volume of the negative electrode active material, the solid electrolyte, the conductive aid, and the binder. , more preferably 1% to 10% by volume.
  • the battery element including the positive electrode 1, the solid electrolyte layer 3, and the negative electrode 2 is housed and sealed in an exterior body.
  • the exterior body is not particularly limited as long as it can prevent moisture or the like from entering from the outside to the inside.
  • a metal laminate film formed by coating both sides of a metal foil with a polymer film can be used in the form of a bag.
  • Such an exterior body is hermetically sealed by heat-sealing the opening.
  • metal foil aluminum foil, stainless steel foil, etc. can be used as the metal foil forming the metal laminate film.
  • a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide. It is preferable to use, for example, polyethylene (PE), polypropylene (PP), or the like as the polymer film arranged inside the exterior body.
  • a positive electrode terminal is electrically connected to the positive electrode 1 of the battery element.
  • a negative electrode terminal is electrically connected to the negative electrode 2 .
  • the positive electrode terminal is electrically connected to the positive electrode current collector 1A.
  • a negative electrode terminal is electrically connected to the negative electrode current collector 2A.
  • Connection portions between the positive electrode current collector 1A or the negative electrode current collector 2A and the external terminals (positive electrode terminal and negative electrode terminal) are arranged inside the exterior body.
  • the external terminal for example, one made of a conductive material such as aluminum or nickel can be used.
  • maleic anhydride-grafted PE (hereinafter sometimes referred to as “acid-modified PE”) or maleic anhydride-grafted PP (hereinafter referred to as “acid-modified PP ) is preferably arranged.
  • acid-modified PE Maleic anhydride-grafted PE
  • acid-modified PP maleic anhydride-grafted PP
  • a method for manufacturing the all-solid-state battery 10 will be described.
  • a solid electrolyte material to be the solid electrolyte layer 3 of the all-solid battery 10 is prepared.
  • the positive electrode mixture layer 1B is formed on one surface of the solid electrolyte material, and the negative electrode mixture layer 2B is formed on the other surface.
  • a pressing method, a coating method, or a pressure bonding method can be used as a method for forming the positive electrode mixture layer 1B and the negative electrode mixture layer 2B.
  • a positive electrode mixture arranged on one surface of a solid electrolyte material and a negative electrode mixture arranged on the other surface are placed in a cylindrical holder (die), and a top that can be inserted into this cylindrical holder.
  • the pellet-shaped positive electrode mixture layer 1B and the negative electrode mixture layer 2B are formed by applying pressure using a pellet manufacturing jig having a punch and a lower punch. Specifically, a solid electrolyte material is inserted into a cylindrical holder. Next, after the negative electrode mixture is put on one surface of the solid electrolyte material, a lower punch is inserted on the negative electrode mixture.
  • the positive electrode mixture layer 1B and the negative electrode mixture layer 2B in the form of pellets can be manufactured by placing the pellet manufacturing jig on a pressing machine and pressing the lower punch and the upper punch.
  • the negative electrode mixture coating liquid is applied to one surface of the solid electrolyte material and dried to form the film-like negative electrode mixture layer 2B, and the positive electrode mixture coating liquid is applied to the other surface of the solid electrolyte material. is applied and dried to form the film-like positive electrode mixture layer 1B.
  • a negative electrode mixture coating solution is obtained by mixing a negative electrode mixture and a solvent
  • a positive electrode mixture coating solution is obtained by mixing a positive electrode mixture and a solvent.
  • the negative electrode mixture coating liquid is applied to one surface of the solid electrolyte material using a coating device such as a bar coater, and then dried to form a film-like negative electrode mixture layer 2B.
  • the direction of the solid electrolyte material is reversed, and the positive electrode mixture coating solution is applied to the other surface of the solid electrolyte material in the same manner, and then dried to form a film-like positive electrode mixture layer 1B.
  • a solid electrolyte material, a film-like positive electrode mixture, and a film-like negative electrode mixture are prepared, respectively, and a film-like positive electrode mixture layer 1B is formed on one surface of the solid electrolyte material, and the film-like positive electrode mixture layer 1B is formed on the other surface of the solid electrolyte material.
  • a film-like negative electrode mixture layer 2B is laminated on each surface, and the obtained laminated body is pressurized and crimped.
  • a laminate in which the positive electrode mixture layer 1B, the solid electrolyte layer 3, and the negative electrode mixture layer 2B are laminated in this order.
  • the positive electrode current collector 1A and the negative electrode current collector 2A are pressure-bonded to the surface of the positive electrode mixture layer 1B and the negative electrode mixture layer 2B of the obtained laminate, respectively, thereby forming the positive electrode 1, the solid electrolyte layer 3 and the negative electrode. 2 are laminated in this order to obtain a laminate.
  • external terminals are welded by a known method to the positive electrode current collector 1A of the positive electrode 1 and the negative electrode current collector 2A of the negative electrode 2 forming the laminate thus obtained, and the positive electrode current collector 1A or the negative electrode is The current collector 2A and the external terminal are electrically connected.
  • the laminate connected to the external terminals is housed in an exterior body, and the opening of the exterior body is heat-sealed to seal.
  • the solid electrolyte layer 3 is made of the solid electrolyte material described above, so the rate characteristics are improved.
  • the raw material powder mixture is mixed and reacted for 24 hours using a planetary ball mill at a rotation speed of 500 rpm and a revolution rotation speed of 500 rpm, with the rotation direction of rotation and the rotation direction of revolution reversed, to form a solid electrolyte. (Li 2 ZrCl 6 ) was produced.
  • the sealed container and balls for the planetary ball mill were made of zirconia.
  • the solid electrolyte (Li 2 ZrCl 6 ) obtained in (1) above was produced into solid electrolyte pellets with a diameter of 10 mm using a pellet production jig as follows.
  • the pellet making jig has a resin holder with a diameter of 10 mm and upper and lower punches with a diameter of 9.99 mm.
  • the material of the upper and lower punches is die steel (SKD material).
  • a lower punch was inserted into the resin holder of the pellet production jig, and the solid electrolyte was put on the lower punch.
  • An upper punch was then inserted over the solid electrolyte.
  • This pellet-producing jig was placed on a pressing machine and pressurized with a molding pressure of 24 tons.
  • the pellet production jig was taken out from the press machine, and the solid electrolyte pellet was taken out from the pellet production jig.
  • a solid electrolyte pellet was placed on an aluminum sample stage and introduced into an electron beam irradiation apparatus.
  • the electron beam irradiation apparatus was evacuated, and when the degree of vacuum reached a predetermined value (5 ⁇ 10 ⁇ 3 Pa), electron beam irradiation was performed under the conditions of a voltage of 5 kV, a current of 500 pA, and a treatment time of 20 seconds. to roughen one surface of the solid electrolyte pellet. After the roughening treatment, the solid electrolyte pellet was taken out from the electron beam irradiation device, turned over and placed on an aluminum sample table, and the other surface of the solid electrolyte pellet was roughened.
  • This pellet-producing jig was placed on a pressing machine and pressurized with a molding pressure of 24 tons to obtain a laminate in which negative electrode mixture pellets, solid electrolyte pellets, and positive electrode mixture pellets were laminated in this order.
  • the obtained laminate had a diameter of 10 mm and a thickness of 450 ⁇ m.
  • An insulating resin sheet (length 20 mm x width 30 mm x thickness 300 ⁇ m) having a through hole of 11 mm in diameter in the center was prepared.
  • the laminate was inserted so that the layer was exposed and the negative electrode mixture layer was exposed on the other side.
  • an aluminum foil (positive electrode current collector) was placed on the surface of the positive electrode mixture layer of the laminate, and an aluminum foil (negative electrode current collector) was placed on the surface of the negative electrode mixture layer.
  • a solid battery cell was produced by fixing the negative electrode current collector to an insulating resin sheet with an adhesive tape. Terminals were attached to the positive electrode current collector and the negative electrode current collector of the obtained solid battery cell, and the solid battery cell was housed in an aluminum laminate bag so that the terminals were exposed, and the aluminum laminate bag was sealed. Then, an all-solid-state battery was produced.
  • the all-solid-state battery was fabricated in a glove box in an argon gas atmosphere with a dew point of -70°C.
  • FIG. 2 shows an SEM photograph of the surface of the solid electrolyte pellet after roughening treatment
  • FIG. 3 shows an SEM photograph of the surface of the solid electrolyte pellet before roughening treatment.
  • the surface ten-point average roughness Rz JIS was measured six times in total at three points on the upper punch side surface and the lower punch side surface of the solid electrolyte pellet.
  • the surface ten-point average roughness Rz JIS listed in Table 1 is the average value of the surface ten-point average roughness Rz JIS measured six times.
  • Examples 2 and 3 Comparative Examples 1 and 2
  • An all-solid-state battery was produced in the same manner as in Example 1, except that in the preparation of the solid electrolyte pellet, the conditions of the voltage, current, and treatment time for the roughening treatment were set to the conditions shown in Table 1 below.
  • the surface ten-point average roughness Rz JIS of the solid electrolyte pellet and the rate characteristics of the all-solid-state battery were measured. The results are shown in Table 1.
  • Li 2 ZrSO 4 Cl 4 was used as the solid electrolyte in (2) preparation of the negative electrode mixture and (3) preparation of the positive electrode mixture.
  • Li 2 ZrSO 4 Cl 4 was used as the solid electrolyte, and the voltage, current, and treatment time conditions for the surface roughening treatment were set to the conditions shown in Table 1 below.
  • Li 2.3 Al 0.3 Zr 0.7 Cl 6 was used as the solid electrolyte in (2) preparation of the negative electrode mixture and (3) preparation of the positive electrode mixture.
  • Lithium chloride (LiCl), zirconium chloride (ZrCl 4 ) and silicon dioxide (SiO 2 ) in a molar ratio of 2:1:2 ( LiCl:ZrCl 4 :SiO 2 ) in the production of the solid electrolyte and reacted to form Li 2 Zr(SiO 2 ) 2 Cl 6 .
  • Li 2 Zr(SiO 2 ) 2 Cl 6 was used as the solid electrolyte in (2) preparation of the negative electrode mixture and (3) preparation of the positive electrode mixture.
  • the all-solid-state batteries of Examples 1 to 3 using pellets of a halide-based solid electrolyte (Li 2 ZrCl 6 ) having a surface ten-point average roughness Rz JIS within the range of the present invention have a surface It can be seen that the rate characteristics are improved as compared with the all-solid-state batteries of Comparative Examples 1 and 2 using solid electrolyte pellets having a ten-point average roughness Rz JIS outside the range of the present invention. Further, from the results of Examples 4 to 6, it was confirmed that the rate characteristics of the all-solid-state battery were improved when the surface ten-point average roughness Rz JIS of Li 2 ZrSO 4 Cl 4 was within the range of the present invention. rice field.
  • the oxide-based solid electrolyte Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 has a surface ten-point average roughness Rz JIS of the present invention. It was confirmed that the rate characteristics of the all-solid-state battery were inferior even within the range.
  • Li 6 PS 5 Cl was used as the solid electrolyte in (2) preparation of the negative electrode mixture and (3) preparation of the positive electrode mixture. Furthermore, in the preparation of (4) solid electrolyte pellets, Li 6 PS 5 Cl was used as the solid electrolyte, and the conditions of voltage, current, and treatment time for roughening treatment were set to the conditions shown in Table 2 below. Except for the above, an all-solid-state battery was produced in the same manner as in Example 1, and the surface ten-point average roughness Rz JIS of the solid electrolyte pellet and the rate characteristics of the all-solid-state battery were measured. The results are shown in Table 2.
  • Li 7 P 3 S 11 was used as the solid electrolyte in (2) preparation of the negative electrode mixture and (3) preparation of the positive electrode mixture. Furthermore, in the preparation of (4) solid electrolyte pellets, Li 7 P 3 S 11 was used as the solid electrolyte, and the voltage, current, and treatment time conditions for the surface roughening treatment were set to the conditions shown in Table 2 below. Except for the above, an all-solid-state battery was produced in the same manner as in Example 1, and the surface ten-point average roughness Rz JIS of the solid electrolyte pellet and the rate characteristics of the all-solid-state battery were measured. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)

Abstract

本発明の固体電解質材は、互いに対向する一対の表面を有し、所定のハロゲン化物系固体電解質又は硫化物系固体電解質のいずれか1種以上を含む固体電解質材であって、前記一対の表面の少なくとも一方は、表面十点平均粗さRzJISが20nm以上1500nm以下の範囲内にある。

Description

固体電解質材および全固体電池
 本発明は、固体電解質材および全固体電池に関する。
 本願は、2021年3月29日に、日本に出願された特願2021-054538号に基づき優先権を主張し、それらの内容をここに援用する。
 近年、エレクトロニクス技術の発達はめざましく、携帯電子機器の小型軽量化、薄型化、多機能化が図られている。それに伴って、電子機器の電源となる電池に対して、小型軽量化、薄型化、信頼性向上が強く望まれている。このため、電解質として固体電解質を用いる全固体電池が注目されている。固体電解質としては、酸化物系固体電解質、硫化物系固体電解質、ハロゲン化物系固体電解質、錯体水素化物系固体電解質(LiBHなど)などが知られている。
 酸化物系固体電解質としては、Li1.3Al0.3Ti1.7(PO(LATP) などのナシコン型固体電解質、La0.51Li0.34TiO2.94などのペロブスカイト型固体電解質、LiLaZr12などのガーネット型固体電解質が知られている。
 特許文献1には、ハロゲン化物系固体電解質を用いた全固体電池として、Li元素を含む正極活物質を含有する正極層および正極集電体を備えた正極と、負極活物質を含有する負極層および負極集電体を備えた負極と、前記正極層および前記負極層の間に挟持され、下記一般式で表される化合物からなる固体電解質と、を有する電池が開示されている。 Li3-2XIn1-YM´6-ZL´
(式中、MおよびM´は金属元素であり、LおよびL´はハロゲン元素である。また、X、YおよびZは独立に0≦X<1.5、0≦Y<1、0≦Z≦6を満たす。)
 特許文献2には、下記の組成式により表される、ハロゲン化物系固体電解質材料が開示されている。
 Li6-3Z
 ここで、0<Z<2、を満たし、Xは、ClまたはBrである。
 また、特許文献2には、負極と正極のうちの少なくとも1つは、前記固体電解質材料を含む電池が記載されている。
 特許文献3には、硫化物系固体電解質を用いた全固体電池として、活物質と、前記活物質に接触し、前記活物質のアニオン成分とは異なるアニオン成分を有し、単相の電子-イオン混合伝導体である第一固体電解質材料と、前記第一固体電解質材料に接触し、前記第一固体電解質材料と同じアニオン成分を有し、電子伝導性を有しないイオン伝導体である第二固体電解質材料と、を有する電極活物質層を備える電池が開示されている。また、特許文献3には、第一固体電解質材料がLiZrSであり、前記第一固体電解質材料が、CuKα線を用いたX線回折測定における2θ=34.2°±0.5°の位置にLiZrSのピークを有し、前記2θ=34.2°±0.5°におけるLiZrSのピークの回折強度をIとし、2θ=31.4°±0.5°におけるZrOのピークの回折強度をIとした場合に、I/Iの値が0.1以下であることが開示されている。
日本国特開2006-244734号公報(A) 国際公開第2018/025582号(A) 日本国特開2013-257992号公報(A)
 しかしながら、従来の全固体電池では、固体電解質のイオン伝導度が不十分であった。このため、従来の固体電解質を用いた全固体電池は、高電流密度での放電容量が低い、すなわちレート特性が劣るという問題があった。
 本発明は、上記課題に鑑みてなされたものであり、イオン伝導性が高い固体電解質材およびそれを備えるレート特性が向上した全固体電池を提供することを目的とする。
 本発明者らは、上記の課題を解決するために、鋭意検討を重ねた。その結果、ハロゲン化物系固体電解質又は硫化物系固体電解質のいずれか1種以上を含み、表面が表面十点平均粗さRzJISで20nm以上1500nm以下の範囲内となるように粗面化処理された固体電解質材を用いた全固体電池は、レート特性が向上することを見出し、本発明を想到した。
 すなわち、本発明は、上記の課題を解決するため、下記の手段を提供する。
[1]互いに対向する一対の表面を有し、下記式(1)で表されるハロゲン化物系固体電解質又は硫化物系固体電解質のいずれか1種以上を含む固体電解質材であって、
 前記一対の表面の少なくとも一方は、表面十点平均粗さRzJISが20nm以上1.5μm以下の範囲内にある、固体電解質材。
Li2+a1-b・・・(1)
(式(1)中において、Eは、Al、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1つの元素であり、Gは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Si、Ti、Cu、Nb、Ag、In、Sn、Sb、Ta、W、Au、Biからなる群から選択される少なくとも1つの元素であり、Dは、CO、SO、BO、PO、NO、SiO、OH、Oからなる群から選択される少なくとも1つの基であり、Xは、F、Cl、Br、Iからなる群から選択される少なくとも1種であり、0≦a<1.5、0≦b<0.5、0≦c≦5、0<d≦6.1である。)
[2]前記固体電解質材は、平均厚さが2.0μm以上である、上記[1]に記載の固体電解質材。
[3]上記[1]又は[2]に記載の固体電解質材と、前記固体電解質材の前記一対の表面の一方に接する正極合剤層と、前記固体電解質材の前記一対の表面の他方に接する負極合剤層とを備える、全固体電池。
 本発明によれば、イオン伝導性が高い固体電解質材およびそれを備えるレート特性が向上した全固体電池を提供することが可能となる。
本発明の一実施形態に係る全固体電池の断面模式図である。 実施例1で作製した固体電解質ペレットを粗面化処理した後の表面のSEM写真である。 実施例1で作製した固体電解質ペレットを粗面化処理する前の表面のSEM写真である。
 以下、本発明の一実施形態に係る固体電解質材および全固体電池について、詳細に説明する。
[固体電解質材]
 本実施形態の固体電解質材は、互いに対向する一対の表面を有する。ここでの「互いに対向する一対の表面は」、例えば、互いに異なる方向(反対方向等)に露出する二つの表面等を意味する。固体電解質材は、全固体電池の固体電解質層として用いられる。全固体電池の固体電解質層として用いる場合は、固体電解質材の一対の表面の一方が正極合剤層と接触し、他方が負極合剤と接触する。
 固体電解質材は、一対の表面を有する形状であればよく、例えば、膜状(層状)であってもよいし、ペレット状であってもよい。固体電解質材の一対の表面の少なくとも一方は、表面十点平均粗さRzJISが20nm以上1500nm以下の範囲内にあり、微細な凹凸を有する。固体電解質材の微細な凹凸を有する表面は、正極合剤層と接触する側であってもよいし、負極合剤層と接触する側であってもよい。固体電解質材は、一対の表面の両方が微細な凹凸を有することが好ましい。
 表面十点平均粗さRzJISは、粗さ曲線からその平均線の方向に基準長さだけ抜き取り、この抜き取り部分の平均線から縦倍率の方向に測定した、最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和を求め、この値をナノメートルで表したものとした。
 固体電解質材は、平均厚さが2.0μm以上であってもよい。固体電解質材の厚さは、一対の表面の間の距離である。固体電解質材の厚さは、断面研磨した試料の断面を、SEM(走査型電子顕微鏡)を用いて観察することによって測定することができる。平均厚さは、10カ所で測定した厚さの平均である。測定する10カ所は、互いに離間していることが好ましく、固体電解質材の各表面における最大長さ(最大径)の10%以上離れていればより好ましい。固体電解質材の平均厚さは2.0μm以上であることが好ましく、10μm以上であることが特に好ましい。固体電解質材の平均厚さは1000μm以下であってもよい。
 固体電解質材は、ハロゲン化物系固体電解質又は硫化物系固体電解質のいずれか1種以上を含む。すなわち、固体電解質材は、ハロゲン化物系固体電解質として挙げられる複数種の化合物、硫化物系固体電解質として挙げられる複数種の化合物のうち、少なくとも一種の化合物を含む。固体電解質材は、ハロゲン化物系固体電解質単体であってもよいし、硫化物系固体電解質単体であってもよいし、ハロゲン化物系固体電解質と硫化物系固体電解質との混合物であってもよい。固体電解質材は、バインダーを含んでいてもよい。
 ハロゲン化物系固体電解質としては、下記式(1)で表される化合物が用いられる。 Li2+a1-b・・・(1)
 式(1)で表される化合物において、Eは、必須成分であり、式(1)で表される化合物の骨格を形成する元素での一つである。Eは、Al、Sc、Y、Zr、Hf、ランタノイド(La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)からなる群から選択される少なくとも1種の元素である。
 Eを含むことにより、電位窓が広く、高いイオン伝導度を有する固体電解質となる。Eとしては、よりイオン伝導度の高い固体電解質となるため、Al、Sc、Y、Zr、Hf、Laを含むことが好ましく、特にZr、Yを含むことが好ましい。
 式(1)で表される化合物において、Gは、必要に応じて含有される成分である。Gは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Si、Ti、Cu、Nb、Ag、In、Sn、Sb、Ta、W、Au、Biからなる群から選択される少なくとも1つの元素である。式(1)で表される化合物において、Gは上記のうち、Na、K、Rb、Cs、Ag、Auから選ばれる1価の元素であってもよい。式(1)で表される化合物において、Gは上記のうち、Mg、Ca、Sr、Ba、Cu、Snから選ばれる2価の元素であってもよい。式(1)で表される化合物において、Gは上記のうち、B、Si、Ti、Nb、In、Sb、Ta、W、Biから選ばれる3価であってもよい。
 式(1)で表される化合物において、Dは、必要に応じて含有される成分である。Dは、CO、SO、BO、PO、NO、SiO、OH、Oからなる群から選択される少なくとも1つの基である。Dを含むことにより、還元側の電位窓が広いものとなる。DはSO、COからなる群から選択される少なくとも1種の基であることが好ましく、特にSOであることが好ましい。
 式(1)で表される化合物において、必須成分であり、式(1)で表される化合物の骨格を形成する元素での一つである。XはF、Cl、Br、Iからなる群から選択される少なくとも1種以上のハロゲン元素である。Xは価数当たりのイオン半径が大きい。このため、式(1)で表される化合物がXを含むことにより、リチウムイオンが移動しやすくなり、イオン伝導度が高くなるという効果が得られる。Xとしては、イオン伝導度の高い固体電解質となるため、Clを含むことが好ましい。
 式(1)で表される化合物において、a、b、c、dはそれぞれ、0≦a<1.5、0≦b<0.5、0≦c≦5、0<d≦6.1を満足する数である。0≦a<1.0、0≦b<0.35、0≦c≦3、1.5<d≦6.1であることが好ましい。
 式(1)で表される化合物の例としては、LiZrCl、LiZrSOCl、LiZrCOCl、LiYSOCl、LiYCOClを挙げることができる。
 式(1)で表される化合物は、例えば、所定のモル比で所定の元素を含む原料粉末を混合し、反応させる方法により製造できる。2、式(1)で表される化合物は、例えば、メカノケミカル法により製造できる。メカノケミカル反応を起こすために、原料粉末の混合装置としては、例えば、遊星型ボールミル装置を用いることができる。遊星型ボールミル装置は、密閉容器にメディア(粉砕又はメカノケミカル反応を促進するためのボール)と原料粉末を投入し、自転および公転を行い、原料粉末に運動エネルギーを加えて、粉砕又はメカノケミカル反応を起こす装置である。遊星型ボールミル装置の密閉容器およびボールは、例えばジルコニア製のものを使用することができる。
 硫化物系固体電解質としては、Liと、Sと、Siおよび/またはPを含む化合物を用いることができる。硫化物系固体電解質は、さらにGe、Cl、Br、Iを含んでいてもよい。硫化物系固体電解質は、非晶質であってもよいし、結晶質であってもよいし、アルジロダイト型であってもよい。硫化物系固体電解質の例としては、LiS-P系固体電解質(Li11、LiPS、Li等)、LiS-SiS、LiI-LiS-SiS、LiI-LiS-P、LiI-LiBr-LiS-P、LiS-P-GeS系固体電解質(Li13GeP16、Li10GeP12等)、LiI-LiS-P、LiI-LiPO-P、Li-xPS-xCl(xは、1.0~1.9)を挙げることができる。
 硫化物系固体電解質は、下記式(2)で表される化合物であってもよい。
Li・・・(2)
 式(2)において、Liは、リチウムであり、Mは、4価の金属であり、Pは、リンであり、Oは、酸素であり、Sは、硫黄であり、Xは、F、Cl、Br、Iからなる群から選択される少なくとも1種であり、q、r、s、t、u、vはそれぞれ、1≦q≦20、0≦r≦2、1≦s≦5、0≦t≦5、0≦u≦5、v=q/2+2×r+2.5×s-t-u/2を満足する数である。Mは、Si、Geであることが好ましい。
 固体電解質材は、例えば、一対の表面の表面十点平均粗さRzJISが20nm未満である平坦な固体電解質素材を作製し、次いで固体電解質素材の表面を粗面化処理して微細な凹凸を形成することによって製造することができる。固体電解質素材の作製方法としては、プレス法、圧延法、塗布法を用いることができる。
 プレス法は、固体電解質を、筒状のホルダー(ダイ)と、この筒状のホルダーに挿入可能な上パンチおよび下パンチとを有するペレット作製治具を用いて加圧することによって、ペレット状の固体電解質素材を作製する方法である。具体的には、筒状のホルダーに下パンチを挿入し、下パンチの上に固体電解質を投入した後、固体電解質の上に上パンチを挿入する。そして、ペレット作製治具をプレス機に載置し、下パンチと上パンチとを加圧することによって、ペレット状の固体電解質素材を作製することができる。
 圧延法は、固体電解質とバインダーとを含む固体電解質組成物を、加圧ローラを用いて圧延することによって膜状の固体電解質素材を作製する方法である。具体的には、固体電解質の粉末とバインダーとを乾式で混合して、固体電解質組成物を得る。次いで、固体電解質組成物を、加圧ローラを用いて圧延することによって、膜状の固体電解質素材を作製することができる。バインダーとしては、例えば、フッ素樹脂(PTFE)を用いることができる。
 塗布法は、固体電解質とバインダーと溶媒とを含む固体電解質塗布液を、基板に塗布して乾燥することによって膜状の固体電解質素材を作製する方法である。具体的には、固体電解質とバインダーと溶媒とを混合して、固体電解質塗布液を得る。次いで、固体電解質塗布液を、バーコータなどの塗布装置を用いて塗布した後、乾燥することによって膜状の固体電解質素材を作製することができる。バインダーとしては、例えば、カルボキシメチルセルロース(CMC)を用いることができる。
 固体電解質素材の表面を粗面化処理する方法としては、電子線照射法を用いることができる。電子線照射法とは、固体電解質素材の表面に電子線を照射することによって、固体電解質素材の表面に微細な凹凸を形成する方法である。この電子線照射法を用いることによって、一対の表面の少なくとも一方は、表面十点平均粗さRzJISが20nm以上1500nm以下の範囲内にある固体電解質材を得ることができる。
 以上のような構成とされた本実施形態の固体電解質材は、互いに対向する一対の表面を有し、その一対の表面の少なくとも一方は、表面十点平均粗さRzJISが20nm以上とされている。このため、この固体電解質材を全固体電池の固体電解質層として用いることによって、固体電解質材と隣接する電極合剤層(正極合剤層、負極合剤層)との接触面積を増大させることができる。これにより、固体電解質材と電極合剤層との接触抵抗を下げることができ、固体電解質材と電極合剤層とのイオン伝導性が向上する。また、固体電解質材の表面は、表面十点平均粗さRzJISが1500nm以下とされているので、電位分布が均一で、電気的な劣化が局所的に生じにくいと考えられる。このため、本実施形態の固体電解質材を固体電解質層として用いた全固体電池は、レート特性が向上する。
 また、本実施形態の固体電解質材において、平均厚さが2.0μm以上である場合は、表面の凹凸よりも固体電解質材の厚さが大きいので、表面の凹凸による局所的な強度の低下や破損が生じにくくなると考えられる。
[全固体電池]
 図1は、本発明の一実施形態に係る全固体電池の断面模式図である。
 図1に示す全固体電池10は、正極1と負極2と固体電解質層3とを備える。
 固体電解質層3は、正極1と負極2とに挟まれている。固体電解質層3は、上述した固体電解質材が用いられている。
 正極1および負極2には、外部端子(不図示)が接続されており、外部と電気的に接続されている。
 全固体電池10は、正極1と負極2の間での固体電解質層3を介したイオンおよび外部回路を介した電子の授受により、充電または放電する。全固体電池10は、正極1と負極2と固体電解質層3が積層された積層体であってもよいし、積層体を巻回した巻回体であってもよい。全固体電池は、例えば、ラミネート電池、角型電池、円筒型電池、コイン型電池、ボタン型電池とすることができる。
(正極)
 図1に示すように、正極1は、板状(箔状)の正極集電体1A上に、正極合剤層1Bが設けられたものである。正極1は、正極合剤層1Bが固体電解質層3に隣接するように配置されている。
(正極集電体)
 正極集電体1Aは、充電時の酸化に耐え、腐食しにくい電子伝導性の材料であれば良い。正極集電体1Aとしては、例えば、アルミニウム、ステンレス、ニッケル、チタンなどの金属、または、伝導性樹脂を用いることができる。正極集電体1Aは、粉体、箔、パンチング、エクスパンドの各形態であっても良い。
(正極合剤層)
 正極合剤層1Bは、正極活物質を含み、必要に応じて、固体電解質、バインダーおよび導電助剤を含む。
(正極活物質)
 正極活物質は、リチウムイオンの吸蔵・放出、挿入・脱離(インターカレーション・デインターカレーション)を可逆的に進行させることが可能なものであればよく、特に限定されない。正極活物質としては、公知のリチウムイオン二次電池に用いられている正極活物質を使用できる。正極活物質としては、例えば、リチウム含有金属酸化物、リチウム含有金属リン酸化物などが挙げられる。
 リチウム含有金属酸化物としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、一般式:LiNiCoMn(x+y+z=1)で表される複合金属酸化物、リチウムバナジウム化合物(LiVOPO、Li(PO)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Feから選択される少なくとも1種を示す)、チタン酸リチウム(LiTi12)などが挙げられる。
 また、リチウムを含有していない正極活物質も使用できる。このような正極活物質としては、リチウム非含有金属酸化物(MnO、Vなど)、リチウム非含有金属硫化物(MoSなど)、リチウム非含有フッ化物(FeF、VFなど)などが挙げられる。
 これらのリチウムを含有していない正極活物質を用いる場合、あらかじめ負極にリチウムイオンをドープしておく、またはリチウムイオンを含有する負極を用いればよい。
(固体電解質)
 固体電解質は、固体電解質層3に含まれている固体電解質と同じであってもよいし、異なっていてもよい。正極合剤層1B中の固体電解質と固体電解質層3中の固体電解質とを同じである場合は、正極合剤層1Bと固体電解質層3との間のイオン伝導性が向上する。
 正極合剤層1Bにおける固体電解質の含有率は、特に限定されないが、正極活物質、固体電解質、導電助剤及びバインダーの体積の総和を基準にして、1体積%~50体積%であることが好ましく、5体積%~50体積%であることがより好ましい。
(バインダー)
 バインダーは、正極合剤層1Bを構成する正極活物質と固体電解質と導電助剤とを相互に結合する。また、バインダーは、正極合剤層1Bと正極集電体1Aとを接着する。バインダーに要求される特性としては、耐酸化性があること、接着性が良いことが挙げられる。
 正極合剤層1Bに用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)またはそのコポリマー、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、ポリエーテルスルホン(PES)、ポリアクリル酸(PA)及びその共重合体、ポリアクリル酸(PA)及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)、無水マレイン酸をグラフト化したポリエチレン(PE)、または、これらの混合物などが挙げられる。これらの中でも、バインダーとしては、特にPVDFを用いることが好ましい。
 正極合剤層1Bにおけるバインダーの含有率は、特に限定されないが、正極活物質、固体電解質、導電助剤及びバインダーの体積の総和を基準にして、1体積%~15体積%であることが好ましく、3体積%~5体積%であることがより好ましい。バインダーの含有率が少な過ぎると、十分な接着強度を有する正極1を形成できなくなる傾向がある。また、一般的なバインダーは、電気化学的に不活性であり、放電容量に寄与しない。このため、バインダーの含有率が多過ぎると、十分な体積エネルギー密度または質量エネルギー密度を得ることが困難となる傾向がある。
(導電助剤)
 導電助剤は、正極合剤層1Bの電子伝導性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、カーボンブラック、グラファイト(黒鉛)、カーボンナノチューブ、グラフェンなどの炭素材料、アルミニウム、銅、ニッケル、ステンレス、鉄、アモルファス金属などの金属、ITOなどの伝導性酸化物、またはこれらの混合物が挙げられる。前記導電助剤は、粉体、繊維の各形態であっても良い。
 正極合剤層1Bにおける導電助剤の含有率は、特に限定されない。正極合剤層1Bが、導電助剤を含有する場合、正極活物質、固体電解質、導電助剤及びバインダーの体積の総和を基準にして、0.5体積%~20体積%であることが好ましく、1体積%~10体積%であることがより好ましい。
(負極)
 図1に示すように、負極2は、負極集電体2A上に、負極合剤層2Bが設けられたものである。負極2は、負極合剤層2Bが固体電解質層3に隣接するように配置されている。
(負極集電体)
 負極集電体2Aは、電子伝導性であれば良い。負極集電体2Aとしては、例えば、銅、アルミニウム、ニッケル、ステンレス、鉄などの金属、または、伝導性樹脂を用いることができる。負極集電体2Aは、粉体、箔、パンチング、エクスパンドの各形態であっても良い。
(負極合剤層)
 負極合剤層2Bは、負極活物質を含み、必要に応じて、固体電解質、バインダーおよび導電助剤を含む。
(負極活物質)
 負極活物質は、リチウムイオンの吸蔵及び放出、リチウムイオンの挿入及び脱離を可逆的に進行させることができればよく、特に限定されない。負極活物質としては、公知のリチウムイオン二次電池に用いられている負極活物質を使用できる。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛、メソカーボンマイクロビーズ、メソカーボンファイバー(MCF)、コークス類、ガラス状炭素、有機化合物焼成体などの炭素材料、Si、SiO、Sn、アルミニウムなどのリチウムと化合できる金属、これらの合金、これら金属と炭素材料との複合材料、チタン酸リチウム(LiTi12)、SnOなどの酸化物、金属リチウムなどが挙げられる。
(固体電解質)
 固体電解質は、固体電解質層3に含まれている固体電解質と同じであってもよいし、異なっていてもよい。負極合剤層2B中の固体電解質と固体電解質層3中の固体電解質とを同じである場合は、負極合剤層2Bと固体電解質層3との間のイオン伝導性が向上する。
 負極合剤層2Bにおける固体電解質の含有率は、特に限定されないが、負極活物質、固体電解質、導電助剤及びバインダーの体積の総和を基準にして、1体積%~50体積%であることが好ましく、5体積%~50体積%であることがより好ましい。
(バインダー)
 バインダーは、負極合剤層2Bを構成する負極活物質と固体電解質と導電助剤とを相互に結合する。また、バインダーは、負極合剤層2Bと負極集電体2Aとを接着する。バインダーに要求される特性としては、耐還元性があること、接着性が良いことが挙げられる。
 負極合剤層2Bに用いられるバインダーとしては、ポリフッ化ビニリデン(PVDF)またはそのコポリマー、ポリテトラフルオロエチレン(PTFE)、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリベンゾイミダゾール(PBI)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PA)及びその共重合体、ポリアクリル酸(PA)及びその共重合体の金属イオン架橋体、無水マレイン酸をグラフト化したポリプロピレン(PP)、無水マレイン酸をグラフト化したポリエチレン(PE)、またはこれらの混合物などが挙げられる。これらの中でもバインダーとしては、SBR、CMC、PVDFから選ばれる1種または2種以上を用いることが好ましい。
 負極合剤層2Bにおけるバインダーの含有率は、特に限定されないが、負極活物質、導電助剤及びバインダーの体積の総和を基準にして、1体積%~15体積%であることが好ましく、1.5体積%~10体積%であることがより好ましい。バインダーの含有率が少な過ぎると、十分な接着強度を有する負極2を形成できなくなる傾向がある。また、一般的なバインダーは、電気化学的に不活性であり、放電容量に寄与しない。このため、バインダーの含有率が多過ぎると、十分な体積エネルギー密度または質量エネルギー密度を得ることが困難となる傾向がある。
(導電助剤)
 負極合剤層2Bに含まれてもよい導電助剤としては、炭素材料、金属、伝導性酸化物、またはこれらの混合物を用いることができる。炭素材料、金属、伝導性酸化物の例は、上述の正極合剤層1Bに含まれてもよい導電助剤の場合と同じである。
 負極合剤層2Bにおける導電助剤の含有率は、特に限定されない。負極合剤層2Bが、導電助剤を含有する場合、負極活物質、固体電解質、導電助剤及びバインダーの体積の総和を基準にして、0.5体積%~20体積%であることが好ましく、1体積%~10体積%であることがより好ましい。
(外装体)
 本実施形態の全固体電池では、正極1と固体電解質層3と負極2とからなる電池要素は、外装体に収納され、密封されている。外装体は、外部から内部への水分などの侵入を抑止できるものであればよく、特に限定されない。
 例えば、外装体として、金属箔の両面を高分子フィルムでコーティングしてなる金属ラミネートフィルムを、袋状に形成したものを用いることができる。このような外装体は、開口部をヒートシールすることにより密閉される。
 金属ラミネートフィルムを形成している金属箔としては、例えばアルミニウム箔、ステンレス箔などを用いることができる。外装体の外側に配置される高分子フィルムとしては、融点の高い高分子を用いることが好ましく、例えばポリエチレンテレフタレート(PET)、ポリアミドなどを用いることが好ましい。外装体の内側に配置される高分子フィルムとしては、例えばポリエチレン(PE)、ポリプロピレン(PP)などを用いることが好ましい。
(外部端子)
 電池要素の正極1には、正極端子が電気的に接続されている。また、負極2には、負極端子が電気的に接続されている。本実施形態では、正極集電体1Aに正極端子が電気的に接続されている。また、負極集電体2Aに負極端子が電気的に接続されている。正極集電体1Aまたは負極集電体2Aと、外部端子(正極端子および負極端子)との接続部分は、外装体の内部に配置されている。
 外部端子としては、例えば、アルミニウム、ニッケルなどの導電材料で形成されたものを用いることができる。
 外装体と外部端子との間には、無水マレイン酸をグラフト化したPE(以降、「酸変性PE」という場合がある。)、または無水マレイン酸をグラフト化したPP(以降、「酸変性PP」という場合がある。)からなるフィルムが配置されていることが好ましい。酸変性PEまたは酸変性PPからなるフィルムの配置されている部分が、ヒートシールされていることにより、外装体と外部端子との密着性が良好な全固体電池となる。
 次に、全固体電池10の製造方法について説明する。
 まず、全固体電池10固体電解質層3となる固体電解質材を準備する。次いで、固体電解質材の一方の表面に正極合剤層1Bを形成し、他方の表面に負極合剤層2Bを形成する。正極合剤層1B及び負極合剤層2Bの形成方法としては、プレス法、塗布法、圧着法を用いることができる。
 プレス法は、固体電解質材の一方の表面に配置した正極合剤と、他方の表面に配置した負極合剤とを、筒状のホルダー(ダイ)と、この筒状のホルダーに挿入可能な上パンチおよび下パンチとを有するペレット作製治具を用いて加圧することによって、ペレット状の正極合剤層1Bと負極合剤層2Bを形成する方法である。具体的には、筒状のホルダーに固体電解質材を挿入する。次いで、固体電解質材の一方の表面に負極合剤を投入した後、負極合剤の上に下パンチを挿入する。次いで、固体電解質材の向きを反転させて、固体電解質材の他方の表面に正極合剤を投入した後、正極合剤の上に上パンチを挿入する。そして、ペレット作製治具をプレス機に載置し、下パンチと上パンチとを加圧することによって、ペレット状の正極合剤層1Bと負極合剤層2Bを作製することができる。
 塗布法は、固体電解質材の一方の表面に負極合剤塗布液を塗布して乾燥することによって膜状の負極合剤層2Bを形成し、固体電解質材の他方の表面に正極合剤塗布液を塗布して乾燥することによって膜状の正極合剤層1Bを形成する方法である。具体的には、負極合剤と溶媒とを混合して負極合剤塗布液を、正極合剤と溶媒とを混合して正極合剤塗布液をそれぞれ得る。次いで、負極合剤塗布液を、バーコータなどの塗布装置を用いて固体電解質材の一方の表面に塗布した後、乾燥することによって膜状の負極合剤層2Bを形成する。次いで、固体電解質材の向きを反転させて、固体電解質材の他方の表面に正極合剤塗布液を同様に塗布した後、乾燥することによって膜状の正極合剤層1Bを形成する。
 圧着法は、固体電解質材と、膜状の正極合剤と、膜状の負極合剤とをそれぞれ作成して、固体電解質材の一方の表面に膜状の正極合剤層1Bを、他方の表面に膜状の負極合剤層2Bをそれぞれ積層し、得られた積層体を加圧して圧着させる方法である。
 こうして、正極合剤層1Bと固体電解質層3と負極合剤層2Bとが、この順に積層された積層体が得られる。得られた積層体の正極合剤層1Bの表面に正極集電体1Aを、負極合剤層2Bの表面に負極集電体2Aをそれぞれ圧着することによって、正極1と固体電解質層3と負極2が、この順に積層された積層体が得られる。
 次に、得られた積層体を形成している正極1の正極集電体1Aおよび負極2の負極集電体2Aに、それぞれ公知の方法により外部端子を溶接し、正極集電体1Aまたは負極集電体2Aと外部端子とを電気的に接続する。その後、外部端子と接続された積層体を外装体に収納し、外装体の開口部をヒートシールすることにより密封する。
 以上の工程により、本実施形態の全固体電池10が得られる。
 以上のような構成とされた本実施形態の全固体電池10は、固体電解質層3が上記の固体電解質材とされているので、レート特性が向上する。
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
[実施例1]
(1)固体電解質の作製
 塩化リチウム(LiCl)と塩化ジルコニウム(ZrCl)とを、モル比で2:1(=LiCl:ZrCl)の割合で混合して原料粉末混合物を得た。原料粉末混合物を、遊星型ボールミル装置を用いて、自転回転数500rpm、公転回転数500rpmとし、自転の回転方向と公転の回転方向とを逆方向として、24時間混合して反応させて、固体電解質(LiZrCl)を生成させた。なお、遊星型ボールミル用の密閉容器およびボールは、ジルコニア製のものを用いた。
(2)負極合剤の作製
 チタン酸リチウム(LiTi12、LTO)と、上記(1)で得た固体電解質(LiZrCl)と、グラファイト(C)とを、体積比で4:5:1(=LTO:LiZrCl:C)の割合で秤量し、めのう製の乳棒と乳鉢を用いて15分間混合して負極合剤を得た。
(3)正極合剤の作製
 コバルト酸リチウム(LiCoO)と、上記(1)で得た固体電解質(LiZrCl)と、グラファイト(C)とを、体積比で4:5:1(=LiCoO:LiZrCl:C)の割合で秤量し、めのう製の乳棒と乳鉢を用いて15分間混合して正極合剤を得た。
(4)固体電解質ペレットの作製
 上記(1)で得た固体電解質(LiZrCl)を、ペレット作製治具を用いて、次のようにして直径10mmの固体電解質ペレットを作製した。ペレット作製治具は、直径10mmの樹脂ホルダーと、直径9.99mmの上パンチおよび下パンチとを有する。上下パンチの材質はダイス鋼(SKD材)である。
 ペレット作製治具の樹脂ホルダーに下パンチを挿入し、下パンチの上に固体電解質を投入した。次いで、固体電解質の上に上パンチを挿入した。このペレット作製治具をプレス機に載置し、成型圧力24トンで加圧した。ペレット作製治具をプレス機から取り出し、ペレット作製治具から固体電解質ペレットを取りだした。
 固体電解質ペレットをアルミニウム製試料台の上に配置して、電子線照射装置に導入した。電子線照射装置を真空引きして、真空度が所定の値(5×10-3Pa)に達したところで、電圧が5kV、電流が500pA、処理時間が20秒の条件で電子線照射を行って、固体電解質ペレットの一方の表面を粗面化処理した。粗面化処理後、電子線照射装置から固体電解質ペレットを取り出し、固体電解質ペレットを反転してアルミニウム製試料台の上に配置して、固体電解質ペレットの他方の表面を粗面化処理した。
(5)全固体電池の作製
 ペレット作製治具の樹脂ホルダーに、上記(4)で得た固体電解質ペレットを挿入した。固体電解質ペレットの一方の表面に、上記(2)で得た負極合剤を投入した。樹脂ホルダーを振動して、負極合剤の表面を均し、次いで負極合剤の上に下パンチを挿入して、負極合剤の表面を平滑とした。次に、固体電解質ペレットの向きを反転させて、固体電解質ペレットの他方の表面に、上記(3)で得た正極合剤を投入し、上記の負極合剤と同様にして、正極合剤の表面を均した後、正極合剤の上に上パンチを挿入して、正極合剤の表面を平滑とした。このペレット作製治具をプレス機に載置し、成型圧力24トンで加圧して、負極合剤ペレット、固体電解質ペレット、正極合剤ペレットがこの順で積層した積層体を得た。得られた積層体は、直径が10mm、厚さが450μmであった。
 中央に直径11mmの貫通孔を有する絶縁性樹脂シート(縦20mm×横30mm×厚さ300μm)を用意し、この絶縁性樹脂シートの貫通孔に、絶縁性樹脂シートの一方の面に正極合剤層が露出し、他方の面に負極合剤層が露出するように積層体を挿入した。次いで、積層体の正極合剤層の表面にアルミニウム箔(正極集電体)を配置し、負極合剤層の表面にアルミニウム箔(負極集電体)をそれぞれ配置して、正極集電体と負極集電体とを粘着テープで絶縁性樹脂シートに固定して、固体電池セルを作製した。得られた固体電池セルの正極集電体と負極集電体とに端子を取り付け、その端子が露出するように、固体電池セルをアルミラミネート袋の中に収容し、アルミラミネート袋を封止して、全固体電池を作製した。なお、全固体電池の作製は、露点が-70℃のアルゴンガス雰囲気のグローブボックス内で行った。
(6)評価
 固体電解質ペレットについて、表面観察と表面十点平均粗さRzJISとを下記の方法により行った。また、全固体電池のレート特性を下記の方法により測定した。表面十点平均粗さRzJISとレート特性の測定結果を、表1に示す。
(表面観察)
 固体電解質ペレットの表面を、SEM(走査型電子顕微鏡)を用いて観察した。図2に、固体電解質ペレットを粗面化処理した後の表面のSEM写真を、図3に固体電解質ペレットを粗面化処理する前の表面のSEM写真を示す。
(固体電解質ペレットの表面十点平均粗さRzJIS
 固体電解質ペレットを、切断し、切断面を研磨した後、アルゴンイオンミリングにて処理して、断面観察用の試料を作製した。切断面の面積は、約1mmであった。得られた試料を、SEM(走査型電子顕微鏡)を用いて観察して、断面の粗さ曲線を得た。得られた粗さ曲線から最も高い山頂から5番目までの山頂の標高の絶対値の平均値と、最も低い谷底から5番目までの谷底の標高の絶対値の平均値との和を算出し、得られた値を表面十点平均粗さRzJISとした。なお、表面十点平均粗さRzJISは、固体電解質ペレットの上パンチ側の表面と下パンチ側の表面とについてそれぞれ3カ所ずつ合計6回測定した。表1に記載した表面十点平均粗さRzJISは、6回測定した表面十点平均粗さRzJISの平均値である。
(全固体電池のレート特性)
 以下の条件で充放電を行った。電圧範囲は、2.8Vから1.3Vまでとした。充電は0.1Cの定電流充電にて行い、定電圧後、0.05C相当の電流になった時点で充電を終了した。放電は0.1Cと1.0Cで行った。0.1Cの放電容量に対する1.0Cの放電容量の比をレート特性(%)とした。また、レート特性の結果を、0.1Cの放電容量に対する1.0Cの放電容量の比(1.0Cの放電容量/0.1Cの放電容量)が、0.8以上である場合を「A」とし、0.7以上0.8未満の場合を「B」とし、0.7未満の場合を「C」として判定した。なお、充放電試験は、25℃の恒温槽内にて行った。
[実施例2、3、比較例1、2]
 (4)固体電解質ペレットの作製において、粗面化処理の電圧、電流、処理時間の条件を下記の表1に記載の条件としたこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表1に示す。
[実施例4~6]
 (1)固体電解質の製造において、硫酸リチウム(LiSO)と塩化ジルコニウム(ZrCl)とを、モル比で1:1(=LiSO:ZrCl)の割合で混合して反応させて、LiZrSOClを生成させた。そして、(2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLiZrSOClを用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLiZrSOClを用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表1に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表1に示す。
[実施例7~9]
 (1)固体電解質の製造において、塩化リチウム(LiCl)と塩化イットリウム(YCl)とを、モル比で3:1(=LiCl:YCl)の割合で混合して反応させて、LiYClを生成させた。そして、(2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLiYClを用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLiYClを用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表1に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表1に示す。
[実施例10~12]
 (1)固体電解質の製造において、塩化リチウム(LiCl)と塩化アルミニウム(AlCl)と塩化ジルコニウム(ZrCl)とを、モル比で2.3:0.3:0.7(=LiCl:AlCl:ZrCl)の割合で混合して反応させて、Li2.3Al0.3Zr0.7Clを生成させた。そして、(2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLi2.3Al0.3Zr0.7Clを用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLi2.3Al0.3Zr0.7Clを用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表1に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表1に示す。
[実施例13~15]
 (1)固体電解質の製造において、塩化リチウム(LiCl)と塩化ジルコニウム(ZrCl)と二酸化ケイ素(SiO)を、モル比で2:1:2(=LiCl:ZrCl:SiO)の割合で混合して反応させて、LiZr(SiOClを生成させた。そして、(2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLiZr(SiOClを用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLiZr(SiOClを用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表1に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表1に示す。
[比較例3~5]
 (2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLi1.3Al0.3Ti1.7(POを用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLi1.3Al0.3Ti1.7(POを用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表1に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図2及び図3のSEM写真から、固体電解質ペレットを粗面化処理することによって、固体電解質ペレットの表面に多数の凹凸が形成されることがわかる。
 表1の結果から、表面十点平均粗さRzJISが本発明の範囲内にあるハロゲン化物系固体電解質(LiZrCl)のペレットを用いた実施例1~3の全固体電池は、表面十点平均粗さRzJISが本発明の範囲外にある固体電解質ペレットを用いた比較例1、2の全固体電池と比較してレート特性が向上していることがわかる。また、実施例4~6の結果から、LiZrSOClについても表面十点平均粗さRzJISが本発明の範囲内にあると、全固体電池のレート特性が向上することが確認された。さらに、比較例3~4の結果から、酸化物系固体電解質であるLi1.3Al0.3Ti1.7(POについては、表面十点平均粗さRzJISが本発明の範囲内にあっても全固体電池のレート特性が劣ることが確認された。
[実施例16~18、比較例6、7]
 (2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLiPSClを用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLiPSClを用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表2に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表2に示す。
[実施例19~21]
 (2)負極合剤の作製および(3)正極合剤の作製において、固体電解質としてLi11を用いた。さらに、(4)固体電解質ペレットの作製において、固体電解質としてLi11を用い、かつ粗面化処理の電圧、電流、処理時間の条件を下記の表2に記載の条件とした。以上のこと以外は、実施例1と同様にして、全固体電池を作製し、固体電解質ペレットの表面十点平均粗さRzJISと、全固体電池のレート特性とを測定した。その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、表面十点平均粗さRzJISが本発明の範囲内にある硫化物系固体電解質(LiPSCl)のペレットを用いた実施例7~9の全固体電池は、表面十点平均粗さRzJISが本発明の範囲外にある硫化物系固体電解質ペレットを用いた比較例6、7の全固体電池と比較してレート特性が向上していることがわかる。また、実施例10~12の結果から、Li11についても、表面十点平均粗さRzJISが本発明の範囲内にあると、全固体電池のレート特性が向上することが確認された。
 1  正極
 1A  正極集電体
 1B  正極合剤層
 2  負極
2A  負極集電体
2B  負極合剤層
3  固体電解質層
10  全固体電池

Claims (3)

  1.  互いに対向する一対の表面を有し、下記式(1)で表されるハロゲン化物系固体電解質又は硫化物系固体電解質のいずれか1種以上を含む固体電解質材であって、
     前記一対の表面の少なくとも一方は、表面十点平均粗さRzJISが20nm以上1500nm以下の範囲内にある、固体電解質材。
    Li2+a1-b・・・(1)
    (式(1)中において、Eは、Al、Sc、Y、Zr、Hf、ランタノイドからなる群から選択される少なくとも1つの元素であり、Gは、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、B、Si、Ti、Cu、Nb、Ag、In、Sn、Sb、Ta、W、Au、Biからなる群から選択される少なくとも1つの元素であり、Dは、CO、SO、BO、PO、NO、SiO、OH、O、からなる群から選択される少なくとも1つの基であり、Xは、F、Cl、Br、Iからなる群から選択される少なくとも1種であり、0≦a<1.5、0≦b<0.5、0≦c≦5、0<d≦6.1である。)
  2.  前記固体電解質材は、平均厚さが2.0μm以上である、請求項1に記載の固体電解質材。
  3.  請求項1又は2に記載の固体電解質材と、前記固体電解質材の前記一対の表面の一方に接する正極合剤層と、前記固体電解質材の前記一対の表面の他方に接する負極合剤層とを備える、全固体電池。
PCT/JP2022/014887 2021-03-29 2022-03-28 固体電解質材および全固体電池 WO2022210495A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/283,968 US20240162480A1 (en) 2021-03-29 2022-03-28 Solid electrolyte material and all-solid-state battery
DE112022001825.9T DE112022001825T5 (de) 2021-03-29 2022-03-28 Festelektrolytmaterial und festkörperbatterie
CN202280025852.9A CN117203718A (zh) 2021-03-29 2022-03-28 固体电解质材料及全固体电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054538 2021-03-29
JP2021054538A JP2022151964A (ja) 2021-03-29 2021-03-29 固体電解質材および全固体電池

Publications (1)

Publication Number Publication Date
WO2022210495A1 true WO2022210495A1 (ja) 2022-10-06

Family

ID=83459230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014887 WO2022210495A1 (ja) 2021-03-29 2022-03-28 固体電解質材および全固体電池

Country Status (5)

Country Link
US (1) US20240162480A1 (ja)
JP (1) JP2022151964A (ja)
CN (1) CN117203718A (ja)
DE (1) DE112022001825T5 (ja)
WO (1) WO2022210495A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195183A (ja) * 2014-03-28 2015-11-05 富士フイルム株式会社 全固体二次電池、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2021024785A1 (ja) * 2019-08-07 2021-02-11 Tdk株式会社 固体電解質、固体電解質層および固体電解質電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5108205B2 (ja) 2005-02-28 2012-12-26 国立大学法人静岡大学 全固体型リチウム二次電池
JP5660079B2 (ja) 2012-06-11 2015-01-28 トヨタ自動車株式会社 全固体電池および全固体電池の製造方法
CN114937812A (zh) 2016-08-04 2022-08-23 松下知识产权经营株式会社 固体电解质材料和电池
JP2021054538A (ja) 2019-09-26 2021-04-08 京セラドキュメントソリューションズ株式会社 原稿検査装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015195183A (ja) * 2014-03-28 2015-11-05 富士フイルム株式会社 全固体二次電池、電池用電極シートの製造方法および全固体二次電池の製造方法
WO2021024785A1 (ja) * 2019-08-07 2021-02-11 Tdk株式会社 固体電解質、固体電解質層および固体電解質電池

Also Published As

Publication number Publication date
DE112022001825T5 (de) 2024-01-11
JP2022151964A (ja) 2022-10-12
US20240162480A1 (en) 2024-05-16
CN117203718A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2021024785A1 (ja) 固体電解質、固体電解質層および固体電解質電池
US11362366B2 (en) Secondary battery composite electrolyte, secondary battery, and battery pack
CN114207896B (zh) 固体电解质、固体电解质层以及固体电解质电池
US20220294007A1 (en) Solid electrolyte, solid electrolyte layer, and solid electrolyte battery
US20230253614A1 (en) Solid electrolyte and solid electrolyte battery
US9899662B2 (en) Method for producing electrodes for all-solid battery and method for producing all-solid battery
US20210135292A1 (en) All sulfide electrochemical cell
WO2022186211A1 (ja) 電池及び電池の製造方法
JP2022110517A (ja) 活物質層、負極及び全固体電池
JP2021163522A (ja) 固体電解質、固体電解質層および固体電解質電池
WO2023127357A1 (ja) 固体電解質電池用負極及び固体電解質電池
KR20220129544A (ko) 전고체 리튬 이온 전지용 정극 활물질, 전극 및 전고체 리튬 이온 전지
JP6674072B1 (ja) 全固体電池用集電層、全固体電池、及び炭素材料
WO2022210495A1 (ja) 固体電解質材および全固体電池
WO2023153394A1 (ja) 固体電解質電池用負極及び固体電解質電池
WO2023171825A1 (ja) 固体電解質、固体電解質層及び固体電解質電池
WO2022172945A1 (ja) 電池及び電池の製造方法
WO2024071221A1 (ja) 全固体電池
JP2022139060A (ja) 全固体電池
JP2022122849A (ja) 全固体電池
WO2023106128A1 (ja) 電池
WO2024096113A1 (ja) 電池及び積層体
WO2022203014A1 (ja) 電池
US20240105988A1 (en) All-solid battery and method of manufacturing the same
EP4369454A1 (en) All solid state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780706

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18283968

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280025852.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022001825

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780706

Country of ref document: EP

Kind code of ref document: A1