WO2022209769A1 - 包装体及びその製造方法 - Google Patents

包装体及びその製造方法 Download PDF

Info

Publication number
WO2022209769A1
WO2022209769A1 PCT/JP2022/010970 JP2022010970W WO2022209769A1 WO 2022209769 A1 WO2022209769 A1 WO 2022209769A1 JP 2022010970 W JP2022010970 W JP 2022010970W WO 2022209769 A1 WO2022209769 A1 WO 2022209769A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide powder
bag
powder
gas
Prior art date
Application number
PCT/JP2022/010970
Other languages
English (en)
French (fr)
Inventor
宏幸 塩月
輝洋 相京
貴史 福田
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020237032865A priority Critical patent/KR20230150999A/ko
Priority to EP22779990.5A priority patent/EP4296229A1/en
Priority to US18/279,409 priority patent/US20240190639A1/en
Priority to CN202280022617.6A priority patent/CN117015507A/zh
Priority to JP2023510837A priority patent/JPWO2022209769A1/ja
Publication of WO2022209769A1 publication Critical patent/WO2022209769A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/04Magnesia by oxidation of metallic magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B31/00Packaging articles or materials under special atmospheric or gaseous conditions; Adding propellants to aerosol containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • B65D81/20Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas
    • B65D81/2069Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere
    • B65D81/2084Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient under vacuum or superatmospheric pressure, or in a special atmosphere, e.g. of inert gas in a special atmosphere in a flexible container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Definitions

  • the present invention relates to a package for metal oxide powder and a method for manufacturing the package.
  • Materials used in mobile communication systems include, for example, metal oxide powders, in particular composites of silica or magnesia powders and resins. Since silica powder and magnesia powder have a low dielectric constant and dielectric loss tangent, a composite material of silica powder or magnesia powder and resin may increase signal propagation speed and reduce signal transmission loss. However, when OH groups are formed on the surface of silica powder and magnesia powder, the dielectric loss tangent of silica powder and magnesia powder increases.
  • silica powder and magnesia powder having a low density of OH groups formed on the surface are desired.
  • a silica powder having a low OH group density for example, a silica powder described in Patent Document 1 is known as a prior art.
  • the density of hydrogen-bonded OH groups in the silica powder described in Patent Document 1 is 0 to 4/nm 2 and the density of isolated OH groups is 3 to 8/nm 2 .
  • an object of the present invention is to provide a package of metal oxide powder that can suppress deterioration of the dielectric loss tangent of the metal oxide powder due to long-term storage, and a method of manufacturing the package.
  • the present inventors found that the above problems can be solved by storing the metal oxide powder in a bag having a predetermined moisture permeability and filled with a predetermined gas.
  • the present invention is based on the above findings, and has the following gist. [1] A metal oxide powder, and a sealed bag containing the metal oxide powder, wherein the bag is selected from the group consisting of rare gas, nitrogen gas, oxygen gas and dry air.
  • the bag is filled with at least one kind of gas, the metal oxide powder is silica powder or magnesia powder, and the moisture permeability of the bag measured in accordance with JIS Z 0222-1959 is 0.30 g/(m 2 ⁇ day) a package that is: [2] The package according to [1] above, wherein the water content of at least one gas selected from the group consisting of rare gas, nitrogen gas, oxygen gas and dry air is 3500 mass ppm or less. [3] The package according to the above [1] or [2], wherein the metal oxide powder has a dielectric loss tangent of 0.004 or less.
  • the metal oxide powder of [1] to [4] above is a particle size distribution-adjusted product that has undergone a classification process to remove metal oxide particles having a particle size equal to or larger than a predetermined particle size.
  • a sealing step of storing and then sealing the bag wherein the metal oxide powder is silica powder or magnesia powder, and the moisture permeability of the bag measured in accordance with JIS Z 0222-1959 is 0.30 g / (m 2 ⁇ day) or less.
  • the metal oxide powder is placed in the bag and the bag is sealed [6] or [ 7].
  • [11] further comprising a pre-treatment sealing step of placing the metal oxide powder in a bag and sealing the bag within 40 minutes after producing the metal oxide powder in the production step;
  • a pre-treatment sealing step of placing the metal oxide powder in a bag and sealing the bag within 40 minutes after producing the metal oxide powder in the production step;
  • the present invention it is possible to provide a package of metal oxide powder that can suppress deterioration of the dielectric loss tangent of the metal oxide powder due to long-term storage, and a method of manufacturing the package.
  • the package of the present invention includes a metal oxide powder and a sealed bag containing the metal oxide powder, wherein the bag contains a gas selected from the group consisting of rare gas, nitrogen gas, oxygen gas and dry air.
  • the metal oxide powder is silica powder or magnesia powder, and the moisture permeability of the bag measured in accordance with JIS Z 0222-1959 is 0.30 g / (m 2 ⁇ day) is as follows. As a result, even if the metal oxide powder is stored for a long time, the dielectric loss tangent of the metal oxide powder does not deteriorate, or if it does deteriorate, the degree of deterioration is small. In addition, aggregation of powder due to long-term storage can be suppressed.
  • the metal oxide powder in the package of the present invention is silica powder or magnesia powder.
  • Silica powder and magnesia powder have small dielectric constant and dielectric loss tangent. Therefore, by using silica powder or magnesia powder as a material for mobile communication systems, it is possible to increase the speed of signal propagation in mobile communication systems and reduce signal transmission loss.
  • silica and magnesia powders are used, for example, in the form of composites with resins. Resins used together with silica powder and magnesia powder are not particularly limited.
  • Polyamides such as polyetherimide, polyesters such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber ⁇ Styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, and the like.
  • the proportions of silica powder and magnesia powder in the resin are appropriately selected according to target physical properties such as dielectric constant and dielectric loss tangent.
  • the amount of resin to be used is appropriately selected in the range of 5 to 300 parts by mass with respect to 100 parts by mass of silica powder or magnesia powder.
  • the particles are filled in a resin, it is effective to perform surface treatment and particle size distribution adjustment from the viewpoint of compatibility with the resin and viscosity control. Therefore, it is highly necessary to perform a surface treatment step and a particle size distribution adjustment step when manufacturing a package of metal oxide powder to be filled in a resin.
  • silica powder is used to increase the viscosity of silicone oil, epoxy resin, etc., to impart thixotropy to liquid paints, to prevent sedimentation of pigments, to reinforce silicone rubber, and to improve fluidity of sealants.
  • it can be used to reduce friction resistance or prevent adhesion by coating powder such as powder paint, agricultural chemicals, super absorbent resin, powder soup, and toner. It can also be used as a heat insulating material, a raw material for quartz glass, a catalyst carrier, an anti-blocking agent for films, and the like.
  • magnesia powder can also be used as raw materials for high-purity crucibles, substrates for electronic materials, optical materials, sintering aids for ceramics, and the like.
  • deterioration of the dielectric loss tangent of the silica powder and the magnesia powder due to long-term storage can be suppressed, as well as aggregation of the powder due to long-term storage can be suppressed. Therefore, even when silica powder and magnesia powder are used for applications other than the materials used in mobile communication systems, the package of the present invention has a remarkable effect.
  • the dielectric loss tangent of the metal oxide powder is preferably 0.004 or less.
  • the metal oxide powder has a dielectric loss tangent of 0.004 or less, transmission loss can be reduced when a material containing the metal oxide powder is used in a mobile communication system.
  • the dielectric loss tangent of the metal oxide powder is more preferably 0.003 or less, and still more preferably 0.001 or less. According to the package of the present invention, even if the metal oxide powder is stored for a long time, the dielectric loss tangent of the metal oxide can be maintained within the above range.
  • the dielectric loss tangent of the metal oxide powder can be measured by the method described in Examples below.
  • the method for manufacturing the package of the present invention described later further includes a pretreatment sealing step etc., so that the surface treatment and / or Even in the package of the metal oxide powder in which the particle size distribution is adjusted, the dielectric loss tangent of the metal oxide powder in the package can be kept low.
  • the dielectric loss tangent of the surface-treated metal oxide powder can be maintained at preferably 0.004 or less, more preferably 0.003 or less.
  • the metal oxide powder is preferably surface-treated with a silane coupling agent. This can further suppress aggregation of the metal oxide powder during storage.
  • a silane coupling agent can be used for the surface treatment of the metal oxide powder with the silane coupling agent.
  • silane coupling agents include epoxysilanes such as ⁇ -glycidoxypropyltriethoxysilane and ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, aminopropyltriethoxysilane, N-phenylaminopropyltriethoxysilane, and the like.
  • examples include aminosilanes such as methoxysilane, vinylsilanes such as vinyltrimethoxysilane, acrylicsilanes such as acryloxytrimethoxysilane and 3-methacryloxypropyltrimethoxysilane, and octenyltrimethoxysilane.
  • the metal oxide powder is preferably a particle size distribution-adjusted product that has undergone a classification process to remove metal oxide particles having a particle size equal to or greater than a predetermined particle size.
  • a classification process to remove metal oxide particles having a particle size equal to or greater than a predetermined particle size.
  • the classification process includes, for example, classification by a sieve, classification by a gravity classifier, classification by an inertial force classifier, classification by a centrifugal force classifier, and the like.
  • sieving is preferred from the viewpoint that coarse particles can be precisely removed.
  • the average particle size of the metal oxide powder is preferably 0.7 to 10 ⁇ m, more preferably 0.8 to 6.0 ⁇ m. Moreover, the average particle size of the metal oxide powder is preferably 20 to 150 ⁇ m in the case of magnesia powder.
  • the average particle size of the metal oxide powder is the median size of the particle size distribution measured by the laser diffraction scattering method (the particle size when the cumulative frequency of the particle size distribution is 50% by volume (d50)).
  • the bag in the package of the present invention contains the metal oxide powder and is sealed.
  • the moisture permeability of the bag measured according to JIS Z 0222-1959 is 0.30 g/(m 2 ⁇ day) or less. If the moisture permeability of the bag is higher than 0.30 g/(m 2 ⁇ day), water vapor outside the bag may enter the bag and form OH groups on the surface of the metal oxide powder. As a result, the dielectric loss tangent of the metal oxide powder may deteriorate.
  • the moisture permeability of the bag is preferably 0.10 g/(m 2 ⁇ day) or less, more preferably 0.08 g/(m 2 ⁇ day) or less.
  • the lower limit of the moisture permeability range of the bag is not particularly limited, but is, for example, 0.04 g/(m 2 ⁇ day). Specifically, the moisture permeability of the bag can be measured by the method described in Examples below.
  • Examples of materials for the above-mentioned moisture-permeable bags include films with gas barrier properties such as metal aluminum, alumina, silica, and silicon oxynitride, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and polyether sulfone. , ethylene-vinyl alcohol copolymer (EVOH), vinylidene chloride, and the like, gas barrier films obtained by coating plastic films, multilayer films of these, and the like. Among these gas barrier films, a multi-layer film is preferable, and a metal aluminum film sandwiched between polyethylene terephthalate films is preferable.
  • gas barrier properties such as metal aluminum, alumina, silica, and silicon oxynitride, polyethylene, polypropylene, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, and polyether sulfone.
  • EVOH ethylene-vinyl alcohol copolymer
  • the thickness of the bag is preferably 0.01 mm or more, more preferably 0.06 mm or more. From the viewpoint of the balance between the effect of suppressing moisture permeation due to the thickness of the bag and the cost, the thickness of the bag is preferably 1.0 mm or less, more preferably 0.7 mm or less.
  • the bag in the package of the present invention is filled with at least one gas selected from the group consisting of rare gas, nitrogen gas, oxygen gas and dry air.
  • the water content of the gas in the bag is preferably 3500 mass ppm or less, more preferably 1000 mass ppm or less, and still more preferably 500 mass ppm or less.
  • the lower limit of the water content range of the gas in the bag is not particularly limited, it is usually 50 mass ppm from the viewpoint of cost.
  • the water content in the gas can be measured by the method described in Examples.
  • a preferable rare gas is argon gas.
  • the method for manufacturing the package of the present invention includes a production step of producing a metal oxide powder, a pretreatment sealing step of storing the metal oxide powder in a bag and temporarily sealing the bag, and a silane coupling agent.
  • the pre-treatment sealing step, the surface treatment step, and the particle size distribution adjustment step are optional steps.
  • the metal oxide powder is silica powder or magnesia powder, and the moisture permeability of the bag measured according to JIS Z 0222-1959 is 0.30 g/(m 2 ⁇ day) or less.
  • silica powder can be produced by a known method.
  • silica powder may be produced by hydrolyzing silicon tetrachloride at a high temperature of 1000° C. or higher in an oxygen/hydrogen flame, or silica powder may be produced by flame spraying silica or metallic silicon. good too.
  • magnesia powder can be manufactured by a known method.
  • magnesia powder may be produced by a basic magnesium carbonate purification method
  • magnesia powder may be produced by an underwater spark discharge method
  • magnesia powder may be produced by a vapor phase oxidation method
  • Magnesium powder may be produced by flame spraying magnesium oxide or magnesium metal.
  • the pre-treatment sealing step is a step of placing the metal oxide powder in a bag and then temporarily sealing the bag before performing the surface treatment step and/or the particle size distribution adjustment step.
  • the surface treatment step and the particle size distribution adjustment step are optional steps, and the pre-treatment sealing step is also an optional step.
  • the bag used in the processing and sealing step is the same as the bag described in the item of the package, so the description is omitted.
  • sealing of the bag can be performed, for example, by heat sealing (thermal fusion bonding).
  • the metal oxide powder in the manufacturing process it is preferable to put the metal oxide powder in a bag and seal the bag in the pre-treatment sealing step. As a result, it is possible to suppress the formation of OH groups due to moisture in the outside air adhering to the surface of the metal oxide powder. From this point of view, it is preferable to seal within 40 minutes after the metal oxide powder is produced in the production process.
  • a surface treatment step is an optional step. As described above, it is preferable to provide a surface treatment step in the production of a package of metal oxide powder to be filled in a resin.
  • the method for manufacturing the package of the present invention preferably further includes a surface treatment step of surface-treating the metal oxide powder produced in the production step using a silane coupling agent. This can further suppress aggregation of the metal oxide powder during storage.
  • the silane coupling agent used in the surface treatment step is the same as the silane coupling agent explained in the item of the package, so the explanation of the silane coupling agent is omitted.
  • the surface treatment of the metal oxide with the silane coupling agent is preferably performed by a dry treatment method.
  • the particle size distribution adjustment step is an optional step. As described above, it is preferable to provide a particle size distribution adjustment step in the production of a package of metal oxide powder to be filled in a resin.
  • the method for producing the package of the present invention includes a particle size distribution adjusting step of performing a classification treatment for removing metal oxide particles having a particle diameter equal to or larger than a predetermined particle diameter from the metal oxide powder produced in the production process. It is preferable to further include. As a result, when the metal oxide powder is filled in the liquid resin, the viscosity of the liquid resin filled with the metal oxide powder can be kept low, and the metal oxide powder can be highly filled.
  • the classification treatment in the particle size distribution adjustment step and the particle size of the particles to be removed in the classification treatment are the same as those explained in the item of the package, so the explanation is omitted.
  • the sealing step includes placing the metal oxide powder in a bag filled with at least one gas selected from the group consisting of rare gas, nitrogen gas, oxygen gas and air, and then sealing the bag. is.
  • the gas and bag used in the sealing process are the same as the gas and bag explained in the item of the package, so the explanation is omitted. It is preferable that it takes less than 300 hours from the production of the metal oxide powder in the production process to the sealing in the sealing process.
  • the metal oxide powder can be stored with a sufficiently low dielectric loss tangent by keeping the time until sealing within 300 hours. If there are optional steps such as the surface treatment step and the particle size distribution adjustment step, the time from the end of the step immediately before the sealing step to the sealing of the bag containing the metal oxide powder should be within 40 minutes. preferable.
  • the water content of the gas was measured by gas chromatography.
  • the water content in the sealed bag was obtained by piercing the bag with an injection needle and sucking the gas stored in the bag with a syringe. Then, the water content of the sampled gas was measured by gas chromatography.
  • the dielectric loss tangent of the metal oxide powder was measured at a frequency of 1.0 GHz using a perturbation-type cavity resonator measurement system (manufactured by KEYENCE CORPORATION).
  • the metal oxide powder was placed in a Karl Fischer trace moisture analyzer (trade name “CA-100”, manufactured by Mitsubishi Chemical Corporation), and the moisture generated while heating with an electric heater was measured by the Karl Fischer coulometric titration method. At times, the water generated up to a temperature of 200°C was defined as "physically adsorbed water”. Then, the water content (% by mass) in the metal oxide powder was calculated by dividing the water content of the physically adsorbed water by the mass of the metal oxide powder used for measurement.
  • the specific surface area of the metal oxide powder was measured by the BET method using a specific surface area measuring instrument (trade name “Macsorb HM model-1208” manufactured by MACSORB).
  • the particle size (d50) at which the cumulative frequency of the particle size distribution of the metal oxide powder becomes 50% is determined as the average particle size. measured as
  • silane coupling agent compound name: 3-methacryloxypropyltrimethoxysilane, trade name “KBM-503”, manufactured by Shin-Etsu Chemical Co., Ltd.
  • a pot mill (capacity: 10 L) containing 5 kg of ⁇ 10 mm alumina balls was filled with 1.5 kg of silica powder, and 0.51 g of a silane coupling agent was added.
  • the surface treatment was performed for 15 minutes by rotating the pot mill. Thereafter, silica powder containing aggregated particles of 1000 ⁇ m or more was removed using a sieve with an opening of 1 mm to prepare silica powder A.
  • gas A gas type: nitrogen, water content: 53 mass ppm
  • the time from the adjustment of the particle size distribution to the completion of sealing of the bag A was 30 minutes.
  • the package 1 was stored for up to 60 days under an environment of a temperature of 50° C., a relative humidity of 90%, and atmospheric pressure to produce a package 1 after storage.
  • the silica powder A was taken out from the package 1, and the dielectric loss tangent and water content were measured.
  • the dielectric loss tangent was 0.0029, and the water content (200° C.) was 262 mass ppm.
  • Silica powder B was produced in the same manner as silica powder A, except that the silica powder was not treated with a silane coupling agent. Then, a package 2 was produced in the same manner as the package 1, except that the silica powder B was used instead of the silica powder A. After being stored for 60 days, the silica powder B was taken out from the package 2, and the dielectric loss tangent and water content were measured. The dielectric loss tangent was 0.0010, and the water content (200° C.) was 535 mass ppm.
  • the package 3 was stored for a maximum of 2 months (long-term storage) under an environment of 50° C. temperature, 90% relative humidity and atmospheric pressure to produce a package 3 after storage.
  • the magnesia powder A was taken out from the package 3, and the dielectric loss tangent and water content were measured.
  • the dielectric loss tangent was 0.0009, and the water content (200° C.) was 126 mass ppm.
  • Bag 4 (trade name “Nylon Poly Barrier TL Type 28-40”, moisture permeability: 9.8 g/(m 2 ⁇ day)) was used instead of bag A.
  • Package 3 was produced in the same manner as package 1 except for the above. After long-term storage, the silica powder A was taken out from the package 4, and the dielectric loss tangent and water content were measured. The dielectric loss tangent was 0.0048, and the water content (200° C.) was 1310 mass ppm.
  • At least one gas selected from the group consisting of rare gas, nitrogen gas, oxygen gas and dry air is filled, and the moisture permeability is 0.30 g / (m 2 day) or less. It was found that by enclosing the metal oxide powder in a certain bag, deterioration of the dielectric loss tangent due to long-term storage of the metal oxide powder can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Packages (AREA)
  • Wrappers (AREA)

Abstract

本発明の包装体は、金属酸化物粉末と、金属酸化物粉末を収納し、密閉された袋とを含み、袋の中は、希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスで満たされており、金属酸化物粉末はシリカ粉末又はマグネシア粉末であり、JIS Z 0222-1959に準拠して測定した袋の透湿度が0.30g/(m・day)以下である。本発明の包装体の製造方法は、金属酸化物粉末を製造する製造工程、及び希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスが満たされている袋に金属酸化物粉末を収納し、その後、袋を密封する密封工程を含み、金属酸化物粉末がシリカ粉末又はマグネシア粉末であり、JIS Z 0222-1959に準拠して測定した前記袋の透湿度が0.30g/(m・day)以下である。本発明によれば、長時間の保管による金属酸化物粉末の誘電正接の悪化を抑制できる金属酸化物粉末の包装体及びその包装体の製造方法を提供することができる。

Description

包装体及びその製造方法
 本発明は、金属酸化物粉末の包装体及びその包装体の製造方法に関する。
 近年、移動通信システムでは、データ通信が、益々大容量及び高速となるため、移動通信システムに使用される材料は、信号伝播を高速化できるとともに、信号の伝送損失を低減できるものであることが好ましい。移動通信システムで使用される材料として、例えば、金属酸化物粉末、特にシリカ粉末又はマグネシア粉末と樹脂との複合材料が挙げられる。シリカ粉末及びマグネシア粉末は誘電率及び誘電正接が低いので、シリカ粉末又はマグネシア粉末と樹脂との複合材料は、信号伝播を高速化できるとともに信号の伝送損失を小さくできる可能性がある。しかし、シリカ粉末及びマグネシア粉末の表面にOH基が形成されると、シリカ粉末及びマグネシア粉末の誘電正接が高くなる。このため、表面に形成されるOH基の密度が低いシリカ粉末及びマグネシア粉末が望まれている。OH基密度が低いシリカ粉末として、例えば、特許文献1に記載されているシリカ粉末が従来技術として知られている。特許文献1に記載のシリカ粉末の水素結合OH基の密度は0~4個/nmであり、孤立OH基の密度は3~8個/nmである。
特開2005-139295号公報
 しかしながら、特許文献1に記載されているようなOH基の密度が低いシリカ粉末であっても、長時間保管すると、誘電正接が高くなってしまうという問題が発生した。
 そこで、本発明は、長時間の保管による金属酸化物粉末の誘電正接の悪化を抑制できる金属酸化物粉末の包装体及びその包装体の製造方法を提供することを目的とする。
 本発明者らは、鋭意研究を進めたところ、所定の透湿度を有し、所定のガスで満たされた袋に金属酸化物粉末を収納することによって、上記課題を解決できることを見出した。
 本発明は、上記の知見に基づくものであり、以下を要旨とする。
[1]金属酸化物粉末と、前記金属酸化物粉末を収納し、密閉された袋とを含み、前記袋の中は、希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスで満たされており、前記金属酸化物粉末はシリカ粉末又はマグネシア粉末であり、JIS Z 0222-1959に準拠して測定した前記袋の透湿度が0.30g/(m・day)以下である包装体。
[2]前記希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスの水分量が3500質量ppm以下である上記[1]に記載の包装体。
[3]前記金属酸化物粉末の誘電正接が0.004以下である上記[1]又は[2]に記載の包装体。
[4]前記金属酸化物粉末は、シランカップリング剤により表面処理されている上記[1]~[3]のいずれか1つに記載の包装体。
[5]前記金属酸化物粉末は、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理が実施された粒度分布調整品である上記[1]~[4]のいずれか1つに記載の包装体。
[6]金属酸化物粉末を製造する製造工程、及び希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスが満たされている袋に前記金属酸化物粉末を収納し、その後、前記袋を密封する密封工程を含み、前記金属酸化物粉末がシリカ粉末又はマグネシア粉末であり、JIS Z 0222-1959に準拠して測定した前記袋の透湿度が0.30g/(m・day)以下である包装体の製造方法。
[7]前記希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスの水分量が3500質量ppm以下である上記[6]に記載の包装体の製造方法。
[8]前記製造工程で前記金属酸化物粉末を製造してから300時間以内に、前記密閉工程において、前記金属酸化物粉末を前記袋に収納し、前記袋を密封する上記[6]又は[7]に記載の包装体の製造方法。
[9]シランカップリング剤を用いて前記製造工程で製造した前記金属酸化物粉末の表面処理を実施する表面処理工程をさらに含む上記[6]~[8]のいずれか1つに記載の包装体の製造方法。
[10]前記製造工程で製造した前記金属酸化物粉末から、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理を実施する粒度分布調整工程をさらに含む上記[6]~[9]のいずれか1つに記載の包装体の製造方法。
[11]前記製造工程で前記金属酸化物粉末を製造してから40分以内に、前記金属酸化物粉末を袋に収納し、前記袋を密封する処理前密封工程をさらに有し、前記処理前密封工程後に、密封した前記袋を開封し、前記表面処理工程及び/又は粒度分布調整工程を行う上記[9]又は[10]に記載の包装体の製造方法。
 本発明によれば、長時間の保管による金属酸化物粉末の誘電正接の悪化を抑制できる金属酸化物粉末の包装体及びその包装体の製造方法を提供することができる。
[包装体]
 以下、本発明の包装体を説明する。本発明の包装体は、金属酸化物粉末と、金属酸化物粉末を収納し、密閉された袋とを含み、袋の中は、希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスで満たされており、金属酸化物粉末はシリカ粉末又はマグネシア粉末であり、JIS Z 0222-1959に準拠して測定した上記袋の透湿度が0.30g/(m・day)以下である。これにより、金属酸化物粉末を長時間保管しても、金属酸化物粉末の誘電正接は悪化しないか、又は悪化したとしても悪化の程度は小さい。また、長時間保管による粉末の凝集も抑制できる。
(金属酸化物粉末)
 本発明の包装体における金属酸化物粉末は、シリカ粉末又はマグネシア粉末である。シリカ粉末及びマグネシア粉末は、誘電率及び誘電正接が小さい。このため、移動通信システムに使用する材料にシリカ粉末もしくはマグネシア粉末を使用することにより、移動通信システムにおける信号伝播を高速化できるとともに、信号の伝送損失を低減することができる。移動通信システムでは、シリカ粉末及びマグネシア粉末は、例えば、樹脂との複合材料の形態で使用される。シリカ粉末及びマグネシア粉末と一緒に使用される樹脂は特に限定されないが、例えば、ポリエチレン、ポリプロピレン、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル-アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂等が挙げられる。樹脂中におけるシリカ粉末及びマグネシア粉末の割合は、目標とする誘電率や誘電正接等の物性に応じて適宜選択される。例えば、樹脂の使用量は、シリカ粉末もしくはマグネシア粉末100質量部に対して、5~300質量部の範囲で適宜選択される。樹脂に充填される用途においては樹脂との相溶性や粘度制御の観点から表面処理や粒度分布調整を行うことが有効である。したがって、樹脂に充填される金属酸化物粉末の包装体の製造の際には表面処理工程や粒度分布調整工程を行う必要性が高い。
 また、シリカ粉末は、移動通信システムに使用する材料の他に、シリコーンオイル、エポキシ樹脂等の増粘に、液体塗料のチキソトロピー付与に、顔料の沈降防止に、シリコーンゴムの補強に、シーラントの流動化防止に、粉体塗料、農薬、高吸水性樹脂、粉末スープ、トナーなどの粉体のコーティングによる摩擦抵抗減少もしくは付着防止に使用できる。また、断熱材、石英ガラスの原料、触媒担体、フィルムのブロッキング防止剤などにも使用できる。また、マグネシア粉末は、移動通信システムに使用する材料の他に、高純度るつぼ、電子材料用基板、光学材料などの原料、セラミックス用焼結助剤などにも使用できる。上述したように、本発明の包装体によれば、長時間保管によるシリカ粉末及びマグネシア粉末の誘電正接の悪化を抑制できる他に、長時間保管による粉末の凝集も抑制できる。したがって、移動通信システムに使用する材料の用途以外の用途でシリカ粉末及びマグネシア粉末を使用する場合も、本発明の包装体は顕著な効果を有する。
 金属酸化物粉末の誘電正接は、好ましくは0.004以下である。金属酸化物粉末の誘電正接が0.004以下であると、金属酸化物粉末を含む材料が移動通信システムに使用された場合、伝送損失を低減することができる。このような観点から、金属酸化物粉末の誘電正接は、より好ましくは0.003以下であり、さらに好ましくは0.001以下である。本発明の包装体によれば、金属酸化物粉末を長時間保管しても、金属酸化物の誘電正接を上述の範囲内に維持することができる。金属酸化物粉末の誘電正接は、後述の実施例に記載の方法により測定することができる。また、金属酸化物粉末の製造後に、金属酸化物粉末表面に水分が吸着することで、包装体とする前に誘電正接が高くなってしまう。なお、表面処理を行うと金属酸化物粉末の誘電正接は高くなる傾向にあるが、後述の本発明の包装体の製造方法では、処理前密封工程等をさらに含むことで、表面処理及び/又は粒度分布調整がされた金属酸化物粉末の包装体でも、包装体中の金属酸化物粉末の誘電正接を低い状態に維持することができる。例えば、表面処理を行った金属酸化物粉末の誘電正接を好ましくは0.004以下、より好ましくは0.003以下に保てる。
 金属酸化物粉末は、シランカップリング剤により表面処理されていることが好ましい。これにより、金属酸化物粉末が保管中に凝集することをさらに抑制することができる。また、金属酸化物粉末を樹脂と混合して使用する場合に、金属酸化物粉末及び樹脂の間の界面の強度を改善したり、金属酸化物粉末及び樹脂の混合物の成形性を改善したりすることができる。金属酸化物粉末のシランカップリング剤による表面処理には、すでに公知の種々のシランカップリング剤を使用できる。シランカップリング剤には、例えば、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン等のアミノシラン、ビニルトリメトキシシラン等のビニルシラン、アクリロキシトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン等のアクリルシランやオクテニルトリメトキシシラン等が挙げられる。
 金属酸化物粉末は、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理が実施された粒度分布調整品であることが好ましい。これにより、金属酸化物粉末を液状樹脂に充填したとき、金属酸化物粉末を充填した液状樹脂の粘度を低く抑えることができ、金属酸化物粉末の高充填が可能となる。このような観点から、分級処理で、30μm以上の粒子径を有する粒子を除去することが好ましく、20μm以上の粒子径を有する粒子を除去することがより好ましく、10μm以上の粒子径を有する粒子を除去することがさらに好ましい。また、分級処理には、例えば、ふるいによる分級、重力分級装置による分級、慣性力分級器による分級、遠心力分級器による分級等が挙げられる。これらの分級処理の中で、粗大粒子を精密に除去できるという観点から、ふるいによる分級が好ましい。
 金属酸化物粉末の平均粒子径は、シリカ粉末の場合、0.7~10μmであることが好ましく、0.8~6.0μmであることがより好ましい。また、金属酸化物粉末の平均粒子径は、マグネシア粉末の場合、20~150μmであることが好ましい。なお、金属酸化物粉末の平均粒子径は、レーザー回折散乱法により測定された粒度分布のメジアン径(粒度分布の累積頻度が50体積%(d50)となるときの粒径)である。
(袋)
 本発明の包装体における袋は、金属酸化物粉末を収納するとともに、密閉されている。そして、JIS Z 0222-1959に準拠して測定した袋の透湿度が0.30g/(m・day)以下である。袋の透湿度が0.30g/(m・day)よりも大きいと、袋の外部にある水蒸気が袋の中に侵入し、金属酸化物粉末の表面にOH基を形成する場合がある。その結果、金属酸化物粉末の誘電正接が悪化する場合がある。このような観点から、袋の透湿度は、好ましくは0.10g/(m・day)以下であり、より好ましくは0.08g/(m・day)以下である。また、袋の透湿度の範囲の下限値は特に限定されないが、例えば、0.04g/(m・day)である。袋の透湿度は、具体的には、後述の実施例に記載の方法により測定することができる。
 上述の透湿度を有する袋の材料としては、例えば、金属アルミニウム、アルミナ、シリカ、酸窒化ケイ素等のガスバリア性のある膜を、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルサルフォン、エチレン-ビニルアルコール共重合体(EVOH)、塩化ビニリデンなどのプラスチックフィルムにコーティングすることによって得られるガスバリアフィルムやこれらの多層フィルム等が挙げられる。これらのガスバリアフィルムの中で、多層フィルムであってよく、金属アルミニウムの膜をポリエチレンテレフタレートフィルムで挟んだものが好ましい。
 袋の厚みは、袋の強度の観点から、好ましくは0.01mm以上であり、より好ましくは0.06mm以上である。また、袋の厚みによる透湿抑制の効果とコストとのバランスの観点から、袋の厚みは、好ましくは1.0mm以下であり、より好ましくは0.7mm以下である。
(ガス)
 本発明の包装体における袋の中は、希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスで満たされている。これにより、袋中のガスの水分によって金属酸化物粉末の表面にOH基が形成され、金属酸化物粉末の誘電正接が悪化することをさらに抑制できる。このような観点から、袋中のガスの水分量は、好ましくは水分量3500質量ppm以下であり、より好ましくは1000質量ppm以下であり、さらに好ましくは500質量ppm以下である。袋中のガスの水分量の範囲の下限値は特に限定されないが、通常、コストの観点から、50質量ppmである。ガス中の水分量は実施例の記載の方法により測定することができる。なお、好ましい希ガスはアルゴンガスである。
[包装体の製造方法]
 以下、本発明の包装体の製造方法を説明する。本発明の包装体の製造方法は、金属酸化物粉末を製造する製造工程、金属酸化物粉末を袋に収納し、その袋を仮に密封する処理前密封工程、シランカップリング剤を用いて、製造工程で製造した金属酸化物粉末の表面処理を実施する表面処理工程、製造工程で製造した金属酸化物粉末から、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理を実施する粒度分布調整工程、及び希ガス、窒素ガス、酸素ガス及び空気からなる群から選択される少なくとも1種のガスが満たされている袋に金属酸化物粉末を収納し、その後、その袋を密封する密封工程を含む。なお、後述するように、処理前密封工程、表面処理工程及び粒度分布調整工程は任意工程であるので、本発明の包装体の製造方法は、処理前密封工程、表面処理工程及び粒度分布調整工程を含まなくてもよい。そして、金属酸化物粉末がシリカ粉末又はマグネシア粉末であり、JIS Z 0222-1959に準拠して測定した袋の透湿度が0.30g/(m・day)以下である。
(製造工程)
 製造工程において、シリカ粉末は公知の方法により製造することができる。例えば、四塩化ケイ素を酸素/水素火炎中で1000℃以上の高温下で加水分解することによりシリカ粉末を製造してもよいし、シリカ又は金属シリコンを火炎溶射することによりシリカ粉末を製造してもよい。
 製造工程において、マグネシア粉末は公知の方法により製造することができる。例えば、塩基性炭酸マグネシウムの精製法によりマグネシア粉末を製造してもよいし、水中火花放電法によりマグネシア粉末を製造してもよいし、気相酸化法によりマグネシア粉末を製造してもよいし、酸化マグネシウム又は金属マグネシウムの火炎溶射によりマグネシウム粉末を製造してもよい。
(処理前密封工程)
 処理前密封工程は表面処理工程及び/又は粒度分布調整工程を行う前に、金属酸化物粉末を袋に収納し、その後、その袋を仮に密封する工程である。なお、後述する通り表面処理工程及び粒度分布調整工程は任意工程であり、処理前密封工程も任意工程である。
 処理密封工程において使用する袋は、包装体の項目で説明した袋と同様であるので、説明は省略する。なお、袋の密封は、例えばヒートシール(熱融着)により実施することができる。また、空気が入らないように空気を抜きながら金属酸化物粉末を袋詰めすることが好ましい。
 製造工程で金属酸化物粉末を製造してから40分以内に、処理前密閉工程において、金属酸化物粉末を袋に収納し、袋を密封することが好ましい。これにより、金属酸化物粉末の表面に外気中の水分が付着してOH基が形成されることを抑制できる。このような観点から、製造工程で金属酸化物粉末を製造してから40分以内に密封することが好ましい。
(表面処理工程)
 表面処理工程は任意工程である。上述の通り、樹脂に充填される金属酸化物粉末の包装体の製造においては、表面処理工程を設けることが好ましい。
 本発明の包装体の製造方法は、シランカップリング剤を用いて、製造工程で製造した金属酸化物粉末の表面処理を実施する表面処理工程をさらに含むことが好ましい。これにより、金属酸化物粉末が保管中に凝集することをさらに抑制することができる。なお、表面処理工程で使用するシランカップリング剤は、包装体の項目で説明したシランカップリング剤と同様であるので、シランカップリング剤の説明は省略する。シランカップリング剤による金属酸化物の表面処理は、乾式処理法で行うことが好ましい。
(粒度分布調整工程)
 粒度分布調整工程は任意工程である。上述の通り、樹脂に充填される金属酸化物粉末の包装体の製造においては、粒度分布調整工程を設けることが好ましい。
 本発明の包装体の製造方法は、製造工程で製造した金属酸化物粉末から、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理を実施する粒度分布調整工程をさらに含むことが好ましい。これにより、金属酸化物粉末を液状樹脂に充填したとき、金属酸化物粉末を充填した液状樹脂の粘度を低く抑えることができ、金属酸化物粉末の高充填が可能となる。なお、粒度分布調整工程における分級処理及び分級処理で除去する粒子の粒径は、包装体の項目で説明したものと同様であるので、説明を省略する。
(密封工程)
 密封工程は、希ガス、窒素ガス、酸素ガス及び空気からなる群から選択される少なくとも1種のガスが満たされている袋に前記金属酸化物粉末を収納し、その後、前記袋を密封する工程である。
 密封工程で使用するガス及び袋については包装体の項目で説明したガス及び袋と同様であるので、説明は省略する。
 製造工程で金属酸化物粉末を製造してから密封工程で密封するまでは300時間以内であることが好ましい。上記表面処理工程や粒度分布調整工程を行う場合であっても、密封までを300時間以内に抑えることで、誘電正接を十分低い状態で金属酸化物粉末を保管できる。
 上記表面処理工程や粒度分布調整工程等の任意工程がある場合、密封工程の直前の工程が終了してから金属酸化物粉末を収納した袋を密封するまでの時間は40分以内であることが好ましい。
 以下、本発明について、実施例及び比較例により、詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
 実施例及び比較例の包装体について、以下の評価を行った。
(袋の透湿度)
 JIS Z 0222-1959に準拠して袋の透湿度を測定した。
(ガスの水分量)
 ガスクロマトグラフィーでガスの水分量を測定した。なお、密閉した袋内の水分量は、袋に注射針を突き刺し、袋の中に保存されたガスを注射器で吸引して採取した。そして、ガスクロマトグラフィーで採取したガスの水分量を測定した。
(金属酸化物粉末の誘電正接)
 金属酸化物粉末の誘電正接は、摂動方式空洞共振器測定システム(株式会社キーエンス製)を用いて周波数1.0GHzにて測定した。
(金属酸化物粉末の水分量)
 カールフィッシャー微量水分測定装置(商品名「CA-100」、三菱化学株式会社製)に金属酸化物粉末を入れ、電気ヒーターで加熱昇温しながら発生した水分をカールフィッシャー電量滴定法にて測定したときに、温度200℃までに発生した水分を「物理的吸着水」と定義した。そして、物理的吸着水の水分量を、測定に用いた金属酸化物粉末の質量で割り算することにより、金属酸化物粉末における水分量(質量%)を算出した。
(比表面積)
 金属酸化物粉末の比表面積は、比表面積測定機(商品名「Macsorb HM model-1208」、MACSORB社製)を使用して、BET法により測定した。
(平均粒子径)
 レーザー式粒度分布測定機(商品名「MT-3300EX」、日機装株式会社製)を使用して、金属酸化物粉末の粒度分布の頻度の累積が50%となる粒子径(d50)を平均粒子径として測定した。
 以下の包装体を作製した。
(包装体1)
<シリカ粉末Aの作製>
 火炎溶融法を用いて平均粒径0.8μm、比表面積6.0m/g、d100(粒度分布の頻度の累積が100%となる粒子径)=5.1μmのシリカ粒子を合成した。得られたシリカ粉末は内容積8Lのムライト容器に1.6kg充填し、マッフル炉で大気雰囲気のもと970℃で加熱処理を8時間行った。加熱処理で得られたシリカ粉末は30分以内にアルミ袋へ空気を抜きながら移し替えた(処理前密封工程に相当)。この時の試料温度は23℃であった。
 そして、開封して、シランカップリング剤(化合物名:3-メタクリロキシプロピルトリメトキシシラン、商品名「KBM-503」、信越化学工業株式会社製)を用いて表面処理した。具体的には、φ10mmのアルミナボールが5kg入っているポットミル(容量:10L)にシリカ粉末1.5kgを充填し、シランカップリング剤を0.51g添加した。そして、ポットミルを回転させて15分間表面処理を行った。
 その後目開き1mmのふるいを使用して、1000μm以上の凝集粒子を含むシリカ粉末を除去し、シリカ粉末Aを作製した。
<シリカ粉末Aの封入>
 シリカ粉末A1500gを340mm×480mm×60mmの大きさの袋A(商品名「ラミジップ」、株式会社生産日本社製、透湿度:0.1g/(m・day)、材質:アルミフィルムにPEをコーティングしたガスバリアフィルム)に収納した。そして、袋Aの中の空気を除去した後、ガスA(ガスの種類:窒素、水分量:53質量ppm)5000mlを袋Aの中に充填し、そして、ヒートシーラー(商品名「FV-801-01」、白光株式会社製)を使用して、袋Aを密封して包装体1を作製した。なお、粒度分布を調整してから袋Aの密封が完了するまでの時間は30分であった。その後、包装体1を50℃の温度、90%の相対湿度及び大気圧の環境下で最大60日間保管し、保管後の包装体1を作製した。
 長期間保管後に包装体1からシリカ粉末Aを取り出し、誘電正接及び水分量を測定した。誘電正接は0.0029、水分量(200℃)は262質量ppmであった。
(包装体2)
 シランカップリング剤処理をしない以外はシリカ粉末Aと同様にしてシリカ粉末Bを製造した。そして、シリカ粉末Aの代わりにシリカ粉末Bを使用した以外は、包装体1と同様にして、包装体2を作製した。60日間保管後に包装体2からシリカ粉末Bを取り出し、誘電正接及び水分量を測定した。誘電正接は0.0010、水分量(200℃)は535質量ppmであった。
(包装体3)
<マグネシア粉末Aの作製>
球状マグネシウム(DMG-120、タテホ化学工業株式会社製)を300μm以上の粒子径を有する粒子を除去し、マグネシア粉末を作製した。31℃まで冷却し30分以内にアルミ袋へ空気を抜きながら移し替えた。アルミ袋の封を開けて粒度分布を調整して、マグネシア粉末Aとした。
<マグネシア粉末Aの封入>
 マグネシア粉末A1000gを340mm×480mm×60mmの大きさの袋A(商品名「ラミジップ」、株式会社生産日本社製、透湿度:0.1g/(m・day)、材質:アルミフィルムにPEをコーティングしたガスバリアフィルム)に収納した。そして、袋Aの中の空気を除去した後、ガスA(ガスの種類:アルゴン、水分量:30質量ppm)を袋Aの中に充填し、そして、ヒートシーラー(商品名「FV-801-01」、白光株式会社製)を使用して、袋Aを密封して包装体3を作製した。なお、マグネシア粉末Aを製造してから袋Aの密封が完了するまでの時間は25分であった。その後、包装体3を50℃の温度、90%の相対湿度及び大気圧の環境下で最大2か月間保管(長期間保管)し、保管後の包装体3を作製した。長期間保管後に包装体3からマグネシア粉末Aを取り出し、誘電正接及び水分量を測定した。誘電正接は0.0009、水分量(200℃)は126質量ppmであった。
(包装体4)
 袋Aの代わりに袋B(商品名「ナイロンポリ バリアTLタイプ 28-40」、透湿度:9.8g/(m・day))を使用した。それ以外は、包装体1と同様な方法で包装体3を作製した。長期間保管後に包装体4からシリカ粉末Aを取り出し、誘電正接及び水分量を測定した。誘電正接は0.0048、水分量(200℃)は1310質量ppmであった。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の実施例から、希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスが充填されており、透湿度が0.30g/(m・day)以下である袋の中に金属酸化物粉末を封入することによって、金属酸化物粉末の長時間保管による誘電正接の悪化が抑制できることがわかった。

Claims (11)

  1.  金属酸化物粉末と、前記金属酸化物粉末を収納し、密閉された袋とを含み、
     前記袋の中は、希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスで満たされており、
     前記金属酸化物粉末はシリカ粉末又はマグネシア粉末であり、
     JIS Z 0222-1959に準拠して測定した前記袋の透湿度が0.30g/(m・day)以下である包装体。
  2.  前記希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスの水分量が3500質量ppm以下である請求項1に記載の包装体。
  3.  前記金属酸化物粉末の誘電正接が0.004以下である請求項1又は2に記載の包装体。
  4.  前記金属酸化物粉末は、シランカップリング剤により表面処理されている請求項1~3のいずれか1項に記載の包装体。
  5.  前記金属酸化物粉末は、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理が実施された粒度分布調整品である請求項1~4のいずれか1項に記載の包装体。
  6.  金属酸化物粉末を製造する製造工程、及び
     希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスが満たされている袋に前記金属酸化物粉末を収納し、その後、前記袋を密封する密封工程を含み、
     前記金属酸化物粉末がシリカ粉末又はマグネシア粉末であり、
     JIS Z 0222-1959に準拠して測定した前記袋の透湿度が0.30g/(m・day)以下である包装体の製造方法。
  7.  前記希ガス、窒素ガス、酸素ガス及び乾燥空気からなる群から選択される少なくとも1種のガスの水分量が3500質量ppm以下である請求項6に記載の包装体の製造方法。
  8.  前記製造工程で前記金属酸化物粉末を製造してから300時間以内に、前記密閉工程において、前記金属酸化物粉末を前記袋に収納し、前記袋を密封する請求項6又は7に記載の包装体の製造方法。
  9.  シランカップリング剤を用いて前記製造工程で製造した前記金属酸化物粉末の表面処理を実施する表面処理工程をさらに含む請求項6~8のいずれか1項に記載の包装体の製造方法。
  10.  前記製造工程で製造した前記金属酸化物粉末から、所定の粒子径以上の粒子径を有する金属酸化物粒子を除去するための分級処理を実施する粒度分布調整工程をさらに含む請求項6~9のいずれか1項に記載の包装体の製造方法。
  11.  前記製造工程で前記金属酸化物粉末を製造してから40分以内に、前記金属酸化物粉末を袋に収納し、前記袋を密封する処理前密封工程をさらに有し、
     前記処理前密封工程後に、密封した前記袋を開封し、前記表面処理工程及び/又は粒度分布調整工程を行う請求項9又は10に記載の包装体の製造方法。
PCT/JP2022/010970 2021-03-31 2022-03-11 包装体及びその製造方法 WO2022209769A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237032865A KR20230150999A (ko) 2021-03-31 2022-03-11 포장체 및 그 제조 방법
EP22779990.5A EP4296229A1 (en) 2021-03-31 2022-03-11 Packaging body and production method therefor
US18/279,409 US20240190639A1 (en) 2021-03-31 2022-03-11 Packaging body and production method therefor
CN202280022617.6A CN117015507A (zh) 2021-03-31 2022-03-11 包装体及其制造方法
JP2023510837A JPWO2022209769A1 (ja) 2021-03-31 2022-03-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-061694 2021-03-31
JP2021061694 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209769A1 true WO2022209769A1 (ja) 2022-10-06

Family

ID=83456183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010970 WO2022209769A1 (ja) 2021-03-31 2022-03-11 包装体及びその製造方法

Country Status (7)

Country Link
US (1) US20240190639A1 (ja)
EP (1) EP4296229A1 (ja)
JP (1) JPWO2022209769A1 (ja)
KR (1) KR20230150999A (ja)
CN (1) CN117015507A (ja)
TW (1) TW202241777A (ja)
WO (1) WO2022209769A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473725B1 (ja) 2023-08-25 2024-04-23 デンカ株式会社 シリカ粉末
JP7473726B1 (ja) 2023-08-25 2024-04-23 デンカ株式会社 シリカ粉末

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268085A (ja) * 1991-02-22 1992-09-24 Mitsubishi Gas Chem Co Inc 被酸化性粉体の保存方法
JPH1045161A (ja) * 1996-07-30 1998-02-17 Mitsui Petrochem Ind Ltd 包装体
JP2003026251A (ja) * 2001-07-18 2003-01-29 Ngk Spark Plug Co Ltd 吸湿性セラミックスの包装方法及び保管方法
JP2016204054A (ja) * 2011-08-12 2016-12-08 株式会社日本触媒 フッ素原子を含むイオン性化合物またはフッ素原子を含むイオン性化合物含有組成物を包装してなる包装体
WO2020195205A1 (ja) * 2019-03-26 2020-10-01 デンカ株式会社 球状シリカ粉末

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4192073B2 (ja) 2003-11-06 2008-12-03 電気化学工業株式会社 シリカ粉末の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04268085A (ja) * 1991-02-22 1992-09-24 Mitsubishi Gas Chem Co Inc 被酸化性粉体の保存方法
JPH1045161A (ja) * 1996-07-30 1998-02-17 Mitsui Petrochem Ind Ltd 包装体
JP2003026251A (ja) * 2001-07-18 2003-01-29 Ngk Spark Plug Co Ltd 吸湿性セラミックスの包装方法及び保管方法
JP2016204054A (ja) * 2011-08-12 2016-12-08 株式会社日本触媒 フッ素原子を含むイオン性化合物またはフッ素原子を含むイオン性化合物含有組成物を包装してなる包装体
WO2020195205A1 (ja) * 2019-03-26 2020-10-01 デンカ株式会社 球状シリカ粉末

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7473725B1 (ja) 2023-08-25 2024-04-23 デンカ株式会社 シリカ粉末
JP7473726B1 (ja) 2023-08-25 2024-04-23 デンカ株式会社 シリカ粉末

Also Published As

Publication number Publication date
EP4296229A1 (en) 2023-12-27
TW202241777A (zh) 2022-11-01
JPWO2022209769A1 (ja) 2022-10-06
CN117015507A (zh) 2023-11-07
US20240190639A1 (en) 2024-06-13
KR20230150999A (ko) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2022209769A1 (ja) 包装体及びその製造方法
EP1630250B1 (en) Chemical vapor deposition film formed by plasma cvd process and method for forming same
KR101356828B1 (ko) 향상된 질화붕소 조성물 및 이를 사용하여 제조되는 조성물
US7270851B2 (en) Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method
JP4887808B2 (ja) プラズマcvd法による蒸着膜
CN1446124A (zh) 通过等离子体沉积的、包括一个界面层的封隔涂层,以及得到这种涂层的方法和有这样涂层的容器
JP2005231039A (ja) バリア性フィルムおよびそれを使用した積層材
KR20070110883A (ko) 플라즈마 cvd법에 의한 증착막
JP2005089859A (ja) プラズマcvd法による蒸着膜
JP5045299B2 (ja) 水分吸収性積層体、およびそれを使用した水分吸収性パウチ
TW201536683A (zh) 氧化鎂、導熱性塡料及含有其之導熱性樹脂組成物以及氧化鎂之製造方法
JP2018158862A (ja) 六方晶窒化ホウ素の保管方法
JP5159422B2 (ja) ポリエステル樹脂製容器
JP2004330669A (ja) 高防湿ガスバリア性を有する透明積層体
JP4380197B2 (ja) プラズマcvd法による化学蒸着膜の形成方法
JP2013035187A (ja) 消臭性能を有する積層体およびそれを用いた包装体
JP7036969B2 (ja) シリカ被覆シリカチタニア複合酸化物粉末の製造方法
CN111094184A (zh) 表面处理溶胶凝胶二氧化硅及其制造方法
JP4432423B2 (ja) プラズマcvd法による化学蒸着膜
JP2001031887A (ja) 高熱伝導性粉末およびその製造方法
JP2004059154A (ja) 封着材料梱包体及び封着材料の梱包方法
JP4903370B2 (ja) ガスバリア性積層体
WO2024135242A1 (ja) 石英ガラスクロスの梱包方法
JP7375902B1 (ja) 石英ガラスクロスの梱包方法
JP7480832B1 (ja) 石英ガラス繊維の保管方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510837

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18279409

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022779990

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280022617.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032865

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022779990

Country of ref document: EP

Effective date: 20230918

NENP Non-entry into the national phase

Ref country code: DE