WO2022209364A1 - 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法 - Google Patents

連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法 Download PDF

Info

Publication number
WO2022209364A1
WO2022209364A1 PCT/JP2022/005756 JP2022005756W WO2022209364A1 WO 2022209364 A1 WO2022209364 A1 WO 2022209364A1 JP 2022005756 W JP2022005756 W JP 2022005756W WO 2022209364 A1 WO2022209364 A1 WO 2022209364A1
Authority
WO
WIPO (PCT)
Prior art keywords
soaking zone
steel sheet
continuous annealing
zone
temperature
Prior art date
Application number
PCT/JP2022/005756
Other languages
English (en)
French (fr)
Inventor
顕一 大須賀
麻衣子 渡邊
慎介 小峯
秀行 ▲高▼橋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP22779591.1A priority Critical patent/EP4306665A1/en
Priority to JP2022526835A priority patent/JP7334861B2/ja
Priority to MX2023011532A priority patent/MX2023011532A/es
Priority to US18/549,589 priority patent/US20240158885A1/en
Priority to KR1020237033655A priority patent/KR20230151109A/ko
Priority to CN202280024444.1A priority patent/CN117120639A/zh
Publication of WO2022209364A1 publication Critical patent/WO2022209364A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/005Furnaces in which the charge is moving up or down
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a continuous annealing facility, a continuous annealing method, a cold-rolled steel sheet manufacturing method, and a plated steel sheet manufacturing method.
  • the present disclosure relates to a continuous annealing facility, a continuous annealing method, a cold-rolled steel sheet manufacturing method, and a plated steel sheet manufacturing method for manufacturing high-strength steel sheets used for automobile structural materials and the like.
  • a radiant tube burner which heats a metal tube with gas combustion and indirectly heats the steel sheet with the radiant heat, is commonly used as a heating means for an annealing furnace.
  • a direct-fired furnace that heats the steel sheets by directly injecting flames of gas combustion into the steel sheets may be used as the front stage of the heating furnace in order to ensure the plating properties.
  • a preheating zone utilizing exhaust heat of the combustion gas generated by the gas combustion is installed in front of the heating zone.
  • the radiant tube furnace heats the steel plate with radiant heat from the furnace wall, so it has a large thermal inertia. Therefore, it is difficult to quickly follow changes in the set temperature.
  • the temperature rise rate of the steel plate is slow at the final stage of heating, and a certain soaking time is required to control the structure. is delayed more.
  • the temperature of a part of the steel sheet exceeds the specified annealing temperature range, resulting in a decrease in yield due to variations in mechanical properties, a decrease in productivity due to changes in line speed for temperature control, etc. problems can occur.
  • Patent Document 1 discloses that an induction heating device is installed between a preheating zone and a heating zone (a direct heating furnace) or between a heating zone composed of a plurality of direct heating furnaces. is installed to compensate for the heating capacity, thereby improving the responsiveness.
  • Patent Document 2 discloses a technique of performing slow heating to 650° C. or higher and 750° C. or lower and then rapidly heating to the highest annealing temperature of 750° C. or higher and 910° C. or lower.
  • Patent Document 3 discloses stabilizing variations in mechanical properties due to variations in steel composition and hot rolling conditions by changing the maximum annealing temperature in the longitudinal direction of the steel sheet using a recrystallization/grain growth model.
  • Patent Document 1 in order to prevent excessive oxidation of the surface of the steel sheet, the temperature of the steel sheet at the outlet of the direct heating furnace is low, and it is necessary to heat the steel sheet even in a radiant tube furnace. Therefore, it becomes difficult to shorten the furnace length, and the effect of changing the furnace temperature setting is wide-ranging. Furthermore, it is possible to absorb the effects of furnace temperature fluctuations by controlling the output of the induction heating device at high speed. It is difficult to be flexible. Therefore, the effect of absorbing the effects of furnace temperature fluctuations cannot be sufficiently exhibited.
  • Patent Document 2 targets interstitial free steel (IF steel), controls the maximum annealing temperature by rapid heating using an induction heating device or an electric heating device before soaking, and predicts from the previous process results.
  • the variation in material quality is absorbed by the change in grain size of ⁇ -recrystallized grains after annealing.
  • DP steel Dual Phase steel
  • DP steel must be transformed from the ⁇ phase to the ⁇ phase during annealing. It is necessary to control the fraction of Therefore, if the temperature is rapidly raised to the soaking temperature, that is, the maximum temperature after slow heating, as in the technique of Patent Document 2, the ⁇ phase will be rapidly transformed into the ⁇ phase while the grain size is still fine. Therefore, it becomes impossible to control the target phase fraction.
  • the present disclosure is a continuous annealing facility, a continuous annealing method, a cold-rolled steel sheet manufacturing method, and a plating that can respond quickly to changes in material properties and minimize changes in the mechanical properties of products. It aims at providing the manufacturing method of a steel plate.
  • a continuous annealing facility includes: A continuous annealing facility for steel sheets comprising a heating zone and a soaking zone in this order, The soaking zone includes a first soaking zone and a second soaking zone provided after the first soaking zone, a first induction heating device provided between the first soaking zone and the second soaking zone; and a measuring device for measuring the austenite fraction of the steel sheet at the outlet of the second soaking zone.
  • a continuous annealing method includes: A continuous annealing method performed in a steel sheet continuous annealing facility comprising a heating zone and a soaking zone in this order,
  • the soaking zone includes a first soaking zone and a second soaking zone provided after the first soaking zone
  • the continuous annealing equipment includes a first induction heating device provided between the first soaking zone and the second soaking zone, and an austenite fraction of the steel sheet at the outlet of the second soaking zone.
  • a measuring device for measuring A step of adjusting the output of the first induction heating device and adjusting the furnace temperature of the second soaking zone based on the austenite fraction of the steel sheet measured by the measuring device.
  • a continuous annealing method includes: A continuous annealing method performed in a steel sheet continuous annealing facility comprising a heating zone and a soaking zone in this order,
  • the soaking zone includes a first soaking zone and a second soaking zone provided after the first soaking zone
  • the continuous annealing equipment includes a first induction heating device provided between the first soaking zone and the second soaking zone, and an austenite fraction of the steel sheet at the outlet of the second soaking zone.
  • a measuring device for measuring a step of raising the temperature of the steel sheet in the heating zone so as to increase the temperature of the steel sheet in a temperature range lower than the A1 transformation point ; maintaining the temperature of the steel sheet in a temperature range lower than the A1 transformation point in the first soaking zone; A step of raising the temperature of the steel sheet by the first induction heating device at a rate of 10° C./s or more and 200° C./s or less so that the temperature of the steel sheet is included in a temperature range of A1 transformation point or more and A3 transformation point or less.
  • a method for manufacturing a cold-rolled steel sheet according to an embodiment of the present disclosure includes: The steel sheet, which is a cold-rolled steel sheet, is annealed by the continuous annealing method described above.
  • a method for manufacturing a plated steel sheet according to an embodiment of the present disclosure includes: subjecting the surface of the steel sheet annealed by the above cold-rolled steel sheet manufacturing method to a plating treatment,
  • the plating treatment is an electrogalvanizing treatment, a hot dip galvanizing treatment or an alloyed hot dip galvanizing treatment.
  • a continuous annealing facility, a continuous annealing method, a cold-rolled steel sheet manufacturing method, and a plated steel sheet manufacturing method that can respond quickly to fluctuations in material properties and can minimize fluctuations in mechanical properties of products is provided. Therefore, it becomes possible to manufacture thin steel sheets and the like having the target mechanical properties more stably than in conventional annealing furnaces.
  • FIG. 1 is a schematic diagram showing a hot dip galvanizing process with continuous annealing equipment according to one embodiment.
  • FIG. 2 is a diagram showing an example of steel sheet temperature history.
  • FIG. 3 is a flow chart showing an example of a continuous annealing method.
  • a continuous annealing facility, a continuous annealing method, a cold-rolled steel sheet manufacturing method, and a plated steel sheet manufacturing method according to an embodiment of the present disclosure will be described below with reference to the drawings.
  • FIG. 1 shows part of a hot dip galvanizing process with continuous annealing equipment according to the present embodiment.
  • the steel material manufactured using the hot-dip galvanizing process is a steel sheet.
  • the steel materials to be manufactured are cold-rolled steel sheets.
  • the arrow in FIG. 1 indicates the direction of travel of the line.
  • the upstream side in this traveling direction may be expressed as "front” and the downstream side as "rear”.
  • the continuous annealing equipment includes a payoff reel 1 , a welder 2 , an electrolytic cleaner 3 , an inlet looper 4 , a preheating zone 5 , a heating zone 6 , a soaking zone 7 and a cooling zone 8 .
  • the continuous annealing equipment also includes a first induction heating device 9 (hereinafter sometimes referred to as “IH”) and a transformation rate meter 10 .
  • IH first induction heating device 9
  • the soaking zone 7 includes a first soaking zone 7A and a second soaking zone 7B.
  • the cooling zone 8 includes a first cooling zone 8A and a second cooling zone 8B.
  • the continuous annealing facility may further include a second induction heating device, which will be described later.
  • the continuous annealing equipment includes a galvanizing tank (zinc pot 11) in which the thin steel sheet cooled to a predetermined temperature is immersed, an alloying zone, a holding zone, a final cooling zone, a temper rolling facility, a delivery side looper, and a tension reel. etc. may be further provided.
  • the thin steel sheet coiled in the previous process is unwound by the payoff reel 1.
  • the unwound steel sheet enters the preheating zone 5 of the annealing furnace.
  • the continuous annealing equipment comprises a preheating zone 5 followed by a heating zone 6, a first soaking zone 7A, a first induction heating device 9 and a second soaking zone 7B in this order.
  • the continuous annealing facility is equipped with a transformation rate meter 10 after the second soaking zone 7B.
  • the transformation rate meter 10 is an example of a measuring device that measures the austenite fraction ( ⁇ phase fraction) of the steel sheet.
  • a second induction heating device may be provided in front of the transformation rate meter 10.
  • the continuous annealing equipment is configured to have a mechanism for adjusting the output of the first induction heating device 9 and the furnace temperature of the second soaking zone 7B using the measurement result of the ⁇ phase fraction of the transformation rate meter 10. be.
  • FIG. 2 illustrates temperature histories of steel sheets when annealed in a conventional conventional annealing furnace and when annealed in an annealing furnace according to the present embodiment.
  • the vertical axis is temperature.
  • the horizontal axis is time.
  • the line speed is 100 mpm.
  • board thickness of a steel plate is 1 mm.
  • the temperature history for this embodiment is indicated by the solid line and the corresponding steps are listed below.
  • the temperature history of the prior art is shown in dashed lines and the corresponding steps are written above.
  • the time required for the process can be shortened as compared with the prior art due to the configuration described below.
  • thermosetting zone A thin steel sheet discharged from the payoff reel 1 at a temperature of about room temperature to about 100°C first enters the preheating zone 5 and is heated to about 200°C.
  • the temperature of the steel sheet may be simply increased by heating.
  • the preheating zone 5 adopts a method of utilizing high-temperature exhaust gas generated in the heating zone 6 .
  • the steel sheet enters the heating zone 6 and is heated to a steel sheet temperature of about 600-700.degree.
  • the temperature of the steel sheet may be simply increased by heating.
  • the heating zone 6 employs a direct heating furnace system in order to raise the temperature to a certain level in a short period of time and to control the surface state.
  • the direct heating furnace has a high heating capacity and can reduce the volume of the furnace.
  • the first soaking zone 7A plays a role in promoting recrystallization of the ⁇ -phase.
  • the furnace temperature is controlled in the range of about 700 to 800° C. so that the temperature of the steel sheet is in the temperature range (about 600 to 730° C.) lower than the A1 transformation point. retained.
  • the A1 transformation point is the temperature at which austenite transformation occurs, and the set furnace temperature is 730° C. as an example.
  • the austenitic phase begins to occur at temperatures above the A1 transformation point .
  • a radiant heating (radiant tube heating) method using gas combustion is adopted because of its high efficiency and uniformity of heating.
  • the temperature of the steel sheet is less than 600° C. in the first soaking zone 7A, recrystallization of the ⁇ -phase does not proceed and sufficient workability cannot be obtained.
  • the temperature of the steel sheet in the first soaking zone 7A is equal to or higher than the A1 transformation point (750°C), the ⁇ -recrystallized grains become coarse and the strength becomes insufficient. Since the A1 transformation point and the A3 transformation point , which will be described later, may vary slightly depending on the composition of the steel sheet, it is preferable to obtain them in advance by measurement or calculation.
  • the conveying speed (line speed) of the steel sheet in the hot-dip galvanizing process equipped with continuous annealing equipment is generally about 50 to 150 mpm.
  • the line length of the first soaking zone 7A is desirably 40 to 60 m in order to satisfy the above soaking conditions.
  • the first induction heating device 9 adjusts the output so that the temperature of the steel sheet is included in the temperature range (about 750 to 900 ° C.) equal to or higher than the A1 transformation point and lower than the A3 transformation point , and heats the steel sheet. to heat quickly.
  • the A3 transformation point is the upper limit temperature at which the ⁇ phase fraction can be suppressed.
  • the purpose of this process is to uniformly raise the temperature of the entire steel sheet to a temperature equal to or higher than the A1 transformation point in a short period of time, and it also contributes to downsizing of the entire facility. Also, if there is variation in the progress of the ⁇ -phase transformation, the mechanical properties of the final product will vary.
  • the first induction heating device 9 may raise the temperature at 10° C./s or more and 200° C./s or less. This is because if it is less than 10° C./s, coarsening of the ⁇ -grains is caused, and if it is more than 200° C./s, local high-temperature portions are generated in the width direction, and uniformity cannot be maintained. More preferably, the first induction heating device 9 raises the temperature at 20° C./s or more and 100° C./s or less. This is because if the heating rate is 20° C./s or more, the length of the line can be shortened, and if it is 100° C./s or less, the risk of buckling deformation of the steel sheet due to thermal stress can be further reduced.
  • the first induction heating device 9 is used as means for rapid heating from the viewpoint of high heating capacity and speed of response to temperature control. Moreover, when heating in such a temperature range, the first induction heating device 9 is preferably of a transverse type because it exceeds the Curie point at which the magnetism of the steel plate changes. When the first induction heating device 9 is of the transverse type, the output is induction heating by magnetic flux.
  • the temperature of the steel sheet heated by the first induction heating device 9 is lower than the A1 transformation point (less than 730 ° C.), it only promotes recrystallization or grain growth of the ⁇ phase, resulting in variations in mechanical properties. cannot be resolved. Moreover, if the temperature of the steel sheet heated by the first induction heating device 9 is higher than the A3 transformation point (900° C. or higher), it becomes difficult to control the ⁇ phase fraction, and the workability of the final product deteriorates.
  • the first induction heating device 9 has a high heating capacity and a high heating rate compared to the radiation heating method. Is required. Therefore, it is desirable that the equipment length be 5 to 10 m, the heating time to be 2 to 10 seconds, and the heating rate to be 20 to 100° C./s, as the equipment scale that can be realized from the balance between heating capacity and equipment cost.
  • the radiant tube heating method is adopted as the heating method for the second soaking zone 7B, like the first soaking zone 7A.
  • the second soaking zone 7B controls the furnace temperature to about 800 to 950° C., which is near the target annealing temperature. If it is less than 800° C., the transformation to the ⁇ phase is slow and the ⁇ phase partially remains, resulting in insufficient strength. On the other hand, if it exceeds 950° C., it becomes difficult to control the ⁇ phase fraction, and the workability of the final product deteriorates.
  • the residence time is determined by the length of the facility and the line speed. Therefore, in actual operation, while controlling the temperature reached by induction heating, if the ⁇ phase fraction is too large, the furnace temperature is lowered to delay the progress of transformation, and if it is too small, the furnace temperature is raised. What is necessary is just to promote progress of metamorphosis.
  • the line length of the second soaking zone 7B is desirably about 30 to 50 m, considering the general strip threading speed.
  • transformation rate meter 10 for measuring the ⁇ phase fraction of the steel sheet is arranged on the exit side of the second soaking zone 7B, and the ⁇ Phase fractions (transformation rates) of phase and gamma phase are measured.
  • This transformation rate meter 10 is provided for the purpose of adjusting the output of the first induction heating device 9 and the temperature of the second soaking zone 7B based on the measured ⁇ phase fraction. By such adjustment, the mechanical properties of the steel sheet can be stably obtained.
  • the method for measuring the transformation rate is not particularly limited, but a method that applies the X-ray diffraction method is suitable because it can be measured online and without contact. Due to the difference in crystal structure, the ⁇ phase and the ⁇ phase produce diffraction peaks at unique angles when the steel sheet is irradiated with X-rays. This is a method of quantifying the ⁇ -phase fraction based on this diffraction peak intensity.
  • Commercially available ones include, for example, X-CAP manufactured by SMS.
  • a magnetic detector that is, a device for measuring the magnetic transformation rate of the steel strip
  • a magnetic transformation rate measuring device composed of a drive coil that generates a magnetic field and a detection coil that measures the magnetic field that has passed through the steel strip is used. Then the austenite fraction may be measured.
  • the device described in JP-A-2019-7907 can be used.
  • a second induction heating device may be further provided between the second soaking zone 7B and the transformation rate meter 10 .
  • the measurement result of the transformation rate meter 10 can be reflected without delay, and the control based on the transformation rate can be performed more flexibly, and the mechanical properties of the final product can be further improved. Stabilize.
  • the second induction heating device it is possible to reduce the load to be controlled (temperature adjusted) by the furnace temperature of the second soaking zone 7B. That is, the temperature adjustment based on the measurement result of the transformation rate meter 10 can be performed not only in the second soaking zone 7B but also in the second induction heating device.
  • the second induction heating device additionally, it is possible to prevent plate thickness fluctuations at coil joints and delays in temperature control when changing annealing conditions.
  • the cooling zone 8 is equipment for cooling the steel sheet to a predetermined temperature, and gas jet cooling, roll cooling, water cooling (water quench), etc. are used as cooling means. As in the present embodiment, the cooling zone 8 is divided into a plurality of zones such as the first cooling zone 8A and the second cooling zone 8B, and different cooling means are combined or the cooling conditions of the same type of cooling means are changed. Thus, the thermal history of the steel plate during cooling may be controlled.
  • Hot-dip galvanizing bath The cooling zone 8 is followed by a hot dip galvanizing bath, and the steel sheet exiting the cooling zone 8 can be hot dip galvanized.
  • Hot-dip galvanizing may be performed according to a conventional method, and if necessary, a snout, a bath roll, or the like may be provided.
  • An alloying treatment facility may follow the hot dip galvanizing bath. In the alloying equipment, the steel sheet is heated and alloyed. An alloying treatment may be performed according to a conventional method.
  • a holding zone, a cooling zone, a temper rolling facility, a straightening machine, a delivery side looper, a tension reel, etc. may be further provided in order to improve the quality of the final product and to improve the manufacturing stability and efficiency.
  • These facilities are not particularly limited as long as they are provided and used according to the quality required for the product.
  • ⁇ Operation method control method
  • the optimal ⁇ phase fraction range for each product is grasped in advance and a transformation rate control model is constructed so that the measurement result of the ⁇ phase fraction with the transformation rate meter 10 falls within the target range.
  • the output of the first induction heating device 9 and the furnace temperature of the second soaking zone 7B are controlled as follows. This makes it possible to more reliably produce products with very stable mechanical properties.
  • a transformation rate control model is constructed for each product, and strength grade is used as an element for classifying products in this embodiment.
  • the product segmentation factor is not limited to strength grades. For example, products may be classified according to required product characteristics such as steel type, mechanical characteristics other than strength, and surface characteristics, and a transformation rate control model for each product may be constructed.
  • FIG. 3 is a flow chart showing an example of the continuous annealing method performed in the above continuous annealing equipment in this embodiment.
  • the material prediction model used may be not only a physical model obtained by off-line laboratory experiments or numerical analysis, but also a machine learning model obtained from accumulated manufacturing experience.
  • a target range of mechanical properties is provided by a host computer.
  • the host computer is a computer that gives manufacturing information and the like to the process computer that controls the operation of the continuous annealing equipment. If the continuous annealing equipment is within the target range (Yes in FIG. 3, "Mechanical property within target range” is Yes), the operation is continued under the current conditions. The continuous annealing equipment changes the operating conditions when it is out of the target range ("within the target range of mechanical properties" in FIG. 3 is No).
  • the transformation rate control model may be a physical model obtained by off-line laboratory experiments or numerical analysis, or may be a machine learning model obtained from accumulated manufacturing experience.
  • the continuous annealing equipment determines that the required temperature control range is included in the range that can be controlled by the first induction heating device 9 ("within IH output control range" in FIG. 3 is Yes)
  • the first The output of the induction heating device 9 is changed.
  • the second The furnace temperature of the soaking zone 7B is also changed accordingly.
  • the steel plate temperature be controlled at high speed by the first induction heating device 9, but also the furnace length of the soaking zone 7 can be shortened (for example, 70 to 110 m), so that the furnace temperature response is high. .
  • the furnace length of the soaking zone 7 can be shortened (for example, 70 to 110 m), so that the furnace temperature response is high.
  • the steel sheet may be subjected to plating treatment, alloying treatment, temper rolling, and shape correction treatment following the annealing treatment in the continuous annealing equipment.
  • the plating treatment and alloying treatment may be conventional methods for satisfying the quality required for the surface properties of the product, and are not particularly limited.
  • the shape may be straightened by continuously temper rolling and passing through a straightening machine.
  • the temper rolling and straightening may be performed under conditions that merely correct the shape without affecting the mechanical properties of the steel sheet, and are not limited.
  • Tables 1 and 2 show the conditions and results of producing thin steel sheets using conventional continuous annealing equipment and the continuous annealing equipment according to the present embodiment (see FIG. 1).
  • 30 coils each of products with a plurality of strength levels were manufactured in order to examine variations in the mechanical properties of the products.
  • Three kinds of strength levels of 780 MPa, 980 MPa and 1180 MPa grades were manufactured, and 10 pieces each of thicknesses of 1.0, 1.5 and 2.0 mm were manufactured for each strength level.
  • These 10 slabs of each grade and each plate thickness were all cast in different lots in a continuous casting machine. Therefore, although within the manufacturing control range, the chemical composition of each slab varies and the transformation behavior is not uniform.
  • Each slab is hot rolled and pickled by conventional methods, annealed and cold rolled as required, and then subjected to laboratory annealing, prior art continuous annealing equipment and the present invention. It was heat-treated in the disclosed continuous annealing equipment, and then subjected to post-treatments such as cooling and plating.
  • Tensile specimens were taken from three arbitrary locations on the final product to measure mechanical properties.
  • JIS No. 5 was used as a tensile test piece.
  • a tensile test was performed according to JISZ2241.
  • TS Tensile Strength
  • the mechanical properties were considered to be stable, and if it was greater than ⁇ 30 MPa, the mechanical properties were considered to be variable. In other words, it was assumed that the mechanical properties were stable when the range of TS variation was ⁇ 30 MPa, that is, 60 MPa or less. Further, in each grade of 780 MPa, 980 MPa, and 1180 MPa, the required strength ranges are 780 MPa or more, 980 MPa or more, and 1180 MPa or more, respectively.
  • Comparative Example 1 includes a preheating zone 5, a heating zone 6, and a soaking zone 7 (first soaking zone 7A and second soaking zone 7A in FIG. 7B was produced from the above material using a conventional annealing furnace consisting of a continuous furnace length).
  • the line speed in production ranged from 60 to 120 mpm and the change in strip temperature was controlled according to the strip thickness.
  • the temperature of the steel sheet at the exit of the heating zone 6 was set within the range of 600 to 700° C. to control the oxidation-reduction reaction on the surface. After that, it was introduced into the radiant tube type soaking zone 7 for further heating, and the residence time in the recrystallization zone was 20 to 60 seconds.
  • the heating/soaking time after the recrystallization zone was 100-200 seconds.
  • the temperature of the steel sheet at the outlet of the soaking zone 7 (the inlet of the cooling zone 8) was in the range of 750-850°C.
  • the furnace temperature of the soaking zone 7 was controlled so that the temperature of the steel sheet at the outlet reached the target value.
  • Comparative Example 2 is an experiment using numerical calculations and a cut plate, and is the result of examining the case of rapid heating to the target annealing temperature at the inlet of the soaking zone 7 .
  • the residence time in the recrystallization region was extremely short, and the transformation from the ⁇ phase to the ⁇ phase progressed rapidly without progressing recrystallization. Therefore, the structure after cooling remained martensite single phase, and structure control could not be performed, cracks occurred, and mechanical properties could not be measured.
  • Comparative Example 3 an induction heating facility was installed in the middle of the soaking zone 7 of the conventional annealing furnace (the same position as between the first soaking zone 7A and the second soaking zone 7B in FIG. 1). The sheet threading speed and the steel sheet temperature at the exit of the heating zone 6 were controlled within the same range as in Comparative Example 1.
  • the first induction heating device 9 is provided, the measured value of the transformation rate meter 10 is not fed back to the output of the first induction heating device 9 and the furnace temperature, and control is performed only by the steel plate temperature as in the conventional case. rice field. As a result, the temperature increase rate was 5°C/s.
  • the highly responsive first induction heating device 9 and the small-sized soaking zone 7 are used, the controllability of the steel plate temperature is improved and the variation in the mechanical properties of the product is slightly improved. No example. In addition, there were some materials that could not absorb fluctuations due to the chemical composition of the material, had insufficient transformation to the ⁇ phase, and were below the lower limit of the mechanical properties.
  • Comparative Example 4 similarly to Comparative Example 3, an induction heating facility was installed in the middle of the soaking zone 7 of the conventional annealing furnace. As in Comparative Example 3, the steel plate temperature was controlled within the same range as in Comparative Example 1. When the heating rate of the first induction heating device 9 was set to 250°C/s, some of the plate edge portions had an excessively high tensile strength, and some exceeded the allowable range of mechanical properties. .
  • the phase fraction during annealing was measured by the transformation rate meter 10 at the outlet of the soaking zone 7, and the output of the first induction heating device 9 and the furnace temperature of the soaking zone 7 were controlled. Since the first induction heating device 9 and the second soaking zone 7B were operated within suitable ranges, no adjustments were made. However, the strip threading speed was not optimized, and the stay time in the first soaking zone 7A was 70 seconds. As a result, the ⁇ grains became coarse, and there were places where the strength of the final product was insufficient.
  • Example 1 is the result of manufacturing a product from the above materials using the continuous annealing equipment of the present disclosure shown in FIG.
  • the sheet threading speed and the steel sheet temperature at the exit of the heating zone 6 were controlled within the same range as in Comparative Example 1.
  • the phase fraction during annealing was measured by the transformation rate meter 10 at the outlet of the soaking zone 7, and the output of the first induction heating device 9 and the furnace temperature of the soaking zone 7 were controlled.
  • the steel plate temperature range at the inlet of the cooling zone 8 became larger than that of Comparative Example 1, the variation in the mechanical properties of the product was greatly improved by controlling based on the phase fraction. In addition, there were no locations below the lower limit of the mechanical properties.
  • Example 2 the same control as in Example 1 was performed, but the furnace temperatures of the first induction heating device 9 and the second soaking zone 7B were controlled, and the temperature increase rate of the first induction heating device 9 and This is an example in which the temperature of the second soaking zone 7B is adjusted. As a result of controlling within the preferred range, the mechanical properties of the product fell within the target range.
  • Example 3 is the result of manufacturing using an auxiliary second induction heating device installed between the outlet of the soaking zone 7 and the transformation rate meter 10 of the continuous annealing facility.
  • the second induction heating device was also used to control the phase fraction at the outlet of the soaking zone 7, so the variation in mechanical properties was smaller than in Example 1.
  • the continuous annealing equipment, the continuous annealing method, the cold-rolled steel sheet manufacturing method, and the plated steel sheet manufacturing method according to the present embodiment can quickly respond to fluctuations in material properties due to the above configurations. , can minimize the variation of the mechanical properties of the product.
  • the continuous annealing equipment according to the present embodiment can reduce the line length as compared with the conventional equipment, it is expected that the introduction cost of manufacturing equipment can be reduced.
  • the continuous annealing facility for steel sheets that is configured to include the preheating zone 5, the heating zone 6, and the soaking zone 7 in this order has been described, but the continuous annealing facility does not need to be equipped with the preheating zone 5.
  • the treatment in preheating zone 5 described above may be carried out by heating zone 6 .
  • the zinc pot 11 in the above embodiment was described as a galvanizing bath for immersing the thin steel sheet, another plating process may be performed.
  • the plating process may be, for example, an electro-galvanizing process, a hot-dip galvanizing process, or a hot-dip galvanizing process.
  • a process of predicting the mechanical properties of the finally obtained product from the material prediction model by reading and executing a program stored in the storage unit (e.g., memory) of the process computer by the processor of the process computer, and , a process for constructing a transformation rate control model and controlling the output of the first induction heating device 9 and the furnace temperature of the second soaking zone 7B so that the ⁇ phase fraction falls within the target range may be executed.
  • the material prediction model and the transformation rate control model may be stored in the storage unit of the process computer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

素材特性の変動に対して迅速に応答可能であり、製品の機械特性の変動を極小化できる連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法が提供される。連続焼鈍設備は、加熱帯(6)及び均熱帯(7)をこの順に備えて構成される鋼板の連続焼鈍設備であって、均熱帯(7)は、第1の均熱帯(7A)と、第1の均熱帯(7A)の後に設けられた第2の均熱帯(7B)と、を含み、第1の均熱帯(7A)と第2の均熱帯(7B)との間に設けられた第1の誘導加熱装置(9)と、第2の均熱帯(7B)の出口に鋼板のオーステナイト分率を測定する測定装置(10)と、を備える。

Description

連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
 本開示は、連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法に関する。本開示は、特に、自動車用構造材などに用いられる高強度鋼板を製造する連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法に関する。
 自動車用薄鋼板の製造では、連続鋳造されたスラブは最終板厚に達するまで、熱間圧延、冷間圧延によって大きく加工される。続いて行われる焼鈍処理において、冷間加工組織の回復、再結晶及び粒成長、さらに、変態組織制御が行われ、強度と加工性のバランスが調整される。
 近年、焼鈍処理では、帯状に繋がった鋼板を搬送しながら加熱、均熱、冷却を連続的に行う、連続焼鈍炉が用いられるのが一般的である。また、鋼板の用途に応じて、上記冷却の後に、溶融亜鉛めっき処理及び過時効処理などが行われる。
 焼鈍炉の加熱手段としては、ガス燃焼で金属管を加熱して、その輻射熱で鋼板を間接加熱するラジアントチューブバーナーが一般的である。また、溶融亜鉛めっき鋼板の製造では、めっき性確保のため、ガス燃焼の火炎を直接鋼板に噴射して加熱する直火炉を加熱炉の前段部分に採用することがある。さらに、一般に、上記のガス燃焼により生じた燃焼ガスの排熱を利用した予熱帯が加熱帯の前に設置される。
 ラジアントチューブ炉は、炉壁からの輻射熱で鋼板を加熱するため、熱慣性が大きい。そのため、設定温度の変化に迅速に追随することが難しい。さらに、加熱終盤は鋼板の温度上昇速度が遅く、組織制御のために一定の均熱時間が必要であることから、必要な炉長が伸び、熱慣性がさらに大きくなるため、目標温度への追随がより遅延する。その結果、コイルを連続処理する過程で、鋼板の一部の温度が所定の焼鈍温度範囲を超えて、機械的特性のばらつきによる歩留まり低下、温度制御のためのライン速度変更による生産性の低下などの問題が生じ得る。
 上記のような問題に対して、特許文献1は、予熱帯と加熱帯(直火加熱炉)の間に、又は、複数の直火加熱炉で構成される加熱帯の中間に、誘導加熱装置を設置して、加熱能力を補うことで応答性を高める技術を開示する。特許文献2は、650℃以上750℃以下までは緩速加熱し、そこから750℃以上910℃以下の焼鈍最高到達温度まで急速加熱する技術を開示する。特許文献3は、再結晶・粒成長モデルによって鋼板長手方向に焼鈍最高到達温度を変化させることで、鋼成分及び熱延条件の変動による機械特性のばらつきを安定化することを開示する。
特開平11-61277号公報 特開2000-144262号公報 特開平10-152728号公報
 しかし、特許文献1の技術は、鋼板表面の過剰酸化を防ぐため、直下式加熱炉の出口での鋼板温度が低く、ラジアントチューブ炉でも加熱を行う必要がある。そのため、炉長の短縮は困難となり、炉温設定変更の影響が広範囲に及ぶ。さらに、誘導加熱装置の出力を高速に制御することで炉温変動の影響を吸収できるとしているが、誘導加熱装置に続く直下式加熱炉では鋼板の酸化制御に重点が置かれ、鋼板温度制御を柔軟に行うことは難しい。そのため、炉温変動の影響を吸収する効果は十分に発揮できない。
 特許文献2の技術は、Interstitial Free鋼(IF鋼)を対象とし、均熱前の誘導加熱装置又は通電加熱装置を用いた急速加熱によって焼鈍最高到達温度を制御して、前工程の実績から予測される材質ばらつきを焼鈍後のα再結晶粒の粒径変化で吸収させている。しかし、近年の製品の高強度化が求められる中で、Dual Phase鋼(DP鋼)の製造量が増加している。DP鋼は、焼鈍中にα相からγ相に変態させる必要があり、焼鈍炉内でA変態点以上A変態点未満の最高到達温度まで加熱し、その到達温度によってα相とγ相の分率を制御する必要がある。そのため、特許文献2の技術のように、緩速加熱後に均熱温度つまり最高到達温度まで急激に昇温させると、結晶粒径が微細なままα相が急激にγ相へと変態してしまうため、狙った相分率に制御することができなくなってしまう。
 特許文献3の技術は、再結晶域まで鋼板を加熱した後、いったんその領域で保持することで再結晶を十分進行させてから再度急速加熱で目標焼鈍温度まで加熱する。この手法であれば、急速加熱によるα相からγ相への急激な変態を防ぐことが可能になり、原理的には最高到達温度を制御することで相分率を制御することが可能になる。しかし、実際の製造工程では素材の化学成分の変動によって変態挙動が変動するため単純に鋼板温度のみで相分率を制御することは難しく、製品毎の材質ばらつきを抑制することができない。
 本開示は、上記の問題を鑑み、素材特性の変動に対して迅速に応答可能であり、製品の機械特性の変動を極小化できる連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法を提供することを目的とする。
 本開示の一実施形態に係る連続焼鈍設備は、
 加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備であって、
 前記均熱帯は、第1の均熱帯と、前記第1の均熱帯の後に設けられた第2の均熱帯と、を含み、
 前記第1の均熱帯と前記第2の均熱帯との間に設けられた第1の誘導加熱装置と、
 前記第2の均熱帯の出口に前記鋼板のオーステナイト分率を測定する測定装置と、を備える。
 本開示の一実施形態に係る連続焼鈍方法は、
 加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備で実行される連続焼鈍方法であって、
 前記均熱帯は、第1の均熱帯と、前記第1の均熱帯の後に設けられた第2の均熱帯と、を含み、
 前記連続焼鈍設備は、前記第1の均熱帯と前記第2の均熱帯との間に設けられた第1の誘導加熱装置と、前記第2の均熱帯の出口に前記鋼板のオーステナイト分率を測定する測定装置と、を備え、
 前記測定装置によって測定された前記鋼板のオーステナイト分率に基づいて、前記第1の誘導加熱装置の出力を調整し、前記第2の均熱帯の炉温を調整するステップを含む。
 本開示の一実施形態に係る連続焼鈍方法は、
 加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備で実行される連続焼鈍方法であって、
 前記均熱帯は、第1の均熱帯と、前記第1の均熱帯の後に設けられた第2の均熱帯と、を含み、
 前記連続焼鈍設備は、前記第1の均熱帯と前記第2の均熱帯との間に設けられた第1の誘導加熱装置と、前記第2の均熱帯の出口に前記鋼板のオーステナイト分率を測定する測定装置と、を備え、
 前記加熱帯で、A変態点より低い温度域で前記鋼板の温度が増加するように昇温するステップと、
 前記第1の均熱帯で、A変態点より低い温度域で前記鋼板の温度を保持するステップと、
 前記第1の誘導加熱装置で、前記鋼板の温度がA変態点以上かつA変態点より低い温度域に含まれるように、10℃/s以上かつ200℃/s以下で昇温するステップと、
 前記第2の均熱帯で、A変態点以上かつA変態点より低い温度域で前記鋼板の温度を保持するステップと、を含む。
 本開示の一実施形態に係る冷延鋼板の製造方法は、
 上記の連続焼鈍方法によって冷延鋼板である前記鋼板を焼鈍する。
 本開示の一実施形態に係るめっき鋼板の製造方法は、
 上記の冷延鋼板の製造方法によって焼鈍された前記鋼板の表面にめっき処理を施し、
 前記めっき処理は、電気亜鉛めっき処理、溶融亜鉛めっき処理又は合金化溶融亜鉛めっき処理である。
 本開示によれば、素材特性の変動に対して迅速に応答可能であり、製品の機械特性の変動を極小化できる連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法が提供される。そのため、従来の焼鈍炉よりも、安定的に目標の機械特性を備えた薄鋼板などを製造することが可能になる。
図1は、一実施形態に係る連続焼鈍設備を備えた溶融亜鉛めっきプロセスを示す模式図である。 図2は、鋼板温度履歴の一例を示す図である。 図3は、連続焼鈍方法の一例を示すフローチャートである。
 以下、図面を参照して本開示の一実施形態に係る連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法が説明される。
<設備構成>
 図1は、本実施形態に係る連続焼鈍設備を備えた溶融亜鉛めっきプロセスの一部を示す。本実施形態において、溶融亜鉛めっきプロセスを用いて製造される鋼材は薄鋼板である。また、製造される鋼材は冷延鋼板である。図1の矢印はライン進行方向を示す。以下において、この進行方向における上流側を「前」と、下流側を「後」と表現することがある。連続焼鈍設備は、ペイオフリール1、溶接機2、電解清浄装置3、入側ルーパー4、予熱帯5、加熱帯6、均熱帯7及び冷却帯8を備える。また、連続焼鈍設備は、第1の誘導加熱装置9(Induction Heating device、以下「IH」と称されることがある)及び変態率計10を備える。図1に示すように、均熱帯7は第1の均熱帯7Aと、第2の均熱帯7Bと、を含む。本実施形態において、冷却帯8は第1の冷却帯8Aと、第2の冷却帯8Bと、を含む。連続焼鈍設備は、後述する第2の誘導加熱装置をさらに備えてよい。また、連続焼鈍設備は、所定の温度まで冷却された薄鋼板を浸漬する亜鉛めっき槽(亜鉛ポット11)、合金化帯、保熱帯、最終冷却帯、調質圧延設備、出側ルーパー、テンションリールなどをさらに備えてよい。
 前工程でコイル状に巻き取られた薄鋼板はペイオフリール1で巻き戻される。巻き戻された薄鋼板は、焼鈍炉の予熱帯5へ進入する。連続焼鈍設備は、予熱帯5に続く、加熱帯6、第1の均熱帯7A、第1の誘導加熱装置9及び第2の均熱帯7Bを、この順に備えて構成される。また、連続焼鈍設備は、第2の均熱帯7Bの後に、変態率計10を備える。変態率計10は、鋼板のオーステナイト分率(γ相分率)を測定する測定装置の一例である。ここで、変態率計10の前に、第2の誘導加熱装置が設けられてよい。
 さらに、連続焼鈍設備は、変態率計10のγ相分率の測定結果を用いて、第1の誘導加熱装置9の出力及び第2の均熱帯7Bの炉温を調整する機構を備える構成である。
<構成要素の詳細>
 図2は、一般的な従来技術の焼鈍炉で焼鈍した場合と本実施形態における焼鈍炉で焼鈍した場合の鋼板の温度履歴を例示する。縦軸は温度である。横軸は時間である。ライン速度は100mpmである。また、鋼板の板厚は1mmである。本実施形態での温度の履歴が実線で示され、対応する工程は下方に記載されている。また、従来技術の温度の履歴が点線で示され、対応する工程は上方に記載されている。図2に示すように、本実施形態における焼鈍炉では、以下に説明する構成によって、従来技術と比較してプロセスにかかる時間も短くて済む。
(予熱帯)
 常温~100℃程度の温度でペイオフリール1から払い出された薄鋼板は、まず、予熱帯5に進入し200℃程度まで加熱される。薄鋼板の温度は加熱によって単純増加してよい。本実施形態において、予熱帯5は加熱帯6で生じる高温の排気を利用する方式が採用されている。
(加熱帯)
 続いて、鋼板は加熱帯6に進入し、鋼板温度が600~700℃程度まで加熱される。薄鋼板の温度は加熱によって単純増加してよい。本実施形態において、加熱帯6は、短時間である程度の温度まで昇温し、かつ、表面状態を制御するため、直火加熱炉方式が採用されている。直火式加熱炉は、加熱能力が高く炉の容積を小さくできることに加え、鋼板表面の酸化還元反応について、後のめっきプロセスを考慮した柔軟な制御が可能である。
(第1の均熱帯)
 第1の均熱帯7Aは、α相の再結晶を進行させる役割を担う。本実施形態において、第1の均熱帯7Aにおいて、炉温は700~800℃程度の範囲で制御され、鋼板の温度がA変態点より低い温度域(600~730℃程度)にあるように保持される。ここで、A変態点は、オーステナイト変態を生じさせる温度であって、一例として設定炉温が730℃である。換言すると、A変態点以上の温度でオーステナイト相が発生し始める。本実施形態において、第1の均熱帯7Aの加熱方式として、効率と加熱均一性の高さからガス燃焼による輻射加熱(ラジアントチューブ加熱)方式が採用された。
 ここで、第1の均熱帯7Aにおいて鋼板の温度が600℃未満だと、α相の再結晶が進行せず、十分な加工性が得られない。一方、第1の均熱帯7Aにおいて鋼板の温度がA変態点(750℃)以上だと、α再結晶粒が粗大になり、強度が不足する。A変態点及び後述するA変態点は、鋼板の成分によって若干変動する場合があるため、あらかじめ測定あるいは計算により求めておくことが好ましい。
 第1の均熱帯7Aにおける鋼板の滞在時間が短すぎればα相の再結晶の進行が不十分になり、長すぎれば結晶粒が粗大になり機械特性が低下してしまう。そこで、事前に最適な滞在時間を実験により検討した結果、20~60秒程度必要であることが分かった。20秒未満だと、α相の再結晶は進行が不十分で加工性に劣り、60秒を超えると部分的に粗大な結晶粒が発生し、強度が不均一になるためである。
 ここで、連続焼鈍設備を備えた溶融亜鉛めっきプロセスにおける鋼板の搬送速度(ライン速度)は、一般的に50~150mpm程度である。このことを考慮し、上記の均熱条件を満足するために、第1の均熱帯7Aのライン長は40~60mが望ましい。
(第1の誘導加熱装置)
 次に、第1の誘導加熱装置9は、鋼板の温度がA変態点以上かつA変態点より低い温度域(750~900℃程度)に含まれるように、出力を調整して、鋼板を急速加熱する。ここで、A変態点は、γ相分率を抑制できる上限の温度である。このプロセスは、短時間で、鋼板全体を均一にA変態点以上の温度まで昇温することが目的であり、設備全体の小型化にも寄与する。また、γ相変態の進行にばらつきが生じると、最終製品の機械的特性にばらつきが生じるためである。第1の誘導加熱装置9は、10℃/s以上かつ200℃/s以下で昇温してよい。10℃/s未満ではα粒の粗大化を招き、200℃/sより大きいと幅方向で局所的な高温部が生じて均一性が保たれないためである。第1の誘導加熱装置9は、20℃/s以上かつ100℃/s以下で昇温することがより好ましい。加熱速度が20℃/s以上であればライン長の長さをより短くでき、100℃/s以下であれば、熱応力によって鋼板が座屈変形するリスクをさらに低減できるためである。また、本実施形態において、加熱能力の高さ及び温度制御に対する応答性の速さの観点から、急速加熱の手段として、第1の誘導加熱装置9が用いられた。また、このような温度域で加熱する場合、鋼板の磁性が変化するキュリー点を超えるため、第1の誘導加熱装置9はトランスバース式であることが望ましい。第1の誘導加熱装置9がトランスバース式の場合に、出力とは、磁束による誘導加熱である。
 第1の誘導加熱装置9によって昇温された鋼板の温度がA変態点より低い温度(730℃未満)だと、α相の再結晶若しくは粒成長を促すのみであり、機械的特性のばらつきを解消できない。また、第1の誘導加熱装置9によって昇温された鋼板の温度がA変態点以上(900℃以上)だと、γ相分率の制御が困難となり、最終製品の加工性が低下する。
 第1の誘導加熱装置9は輻射加熱方式と比較して加熱能力が高く昇温速度が大きいという特徴があるが、急速加熱するためには投入電力を大きくする必要があり、容量の大きな受電設備が必要となる。そのため、加熱能力と設備コストの兼ね合いから実現可能な設備規模として、設備長が5~10m、加熱時間が2~10秒及び加熱速度が20~100℃/sであることが望ましい。
(第2の均熱帯)
 急速加熱後の鋼板は、第2の均熱帯7Bで目標とするγ相分率に到達するまで均熱保持される。本実施形態において、第2の均熱帯7Bの加熱方式として、第1の均熱帯7Aと同様にラジアントチューブ加熱方式が採用された。第2の均熱帯7Bは炉温を目標焼鈍温度付近である800~950℃程度に制御する。800℃未満だと、γ相への変態が遅く部分的にα相が残るため、強度が不足する。また、950℃を超えると、γ相分率の制御が困難となり、最終製品の加工性が劣る。一方、A変態点以上に加熱することでα相からγ相への変態が生じるが、急速加熱した場合に、昇温直後の金属組織は平衡状態に達していない。そのため、その後の保持中に変態を進行させ、γ相分率を制御する必要がある。十分なγ相分率が得られる滞在時間を検討したころ、20~50秒程度の滞在が必要であった。20秒未満であると、γ相変態が不十分となり、強度が不足する。50秒を超えると、冷却後にα相とγ相の二相にならず、冷却後にマルテンサイト単相となり、加工性が不足する。ここで、滞在時間は設備長とライン速度によって決まるため制御パラメータとして用いることが難しい。そのため、実際の操業において、誘導加熱の到達温度を制御しつつ、γ相分率が過大な場合には炉温を低下させて変態の進行を遅らせて、過少な場合には炉温を上げて変態の進行を促進すればよい。
 この焼鈍条件を達成するために、一般的な通板速度を考慮すると、第2の均熱帯7Bのライン長は30~50m程度であることが望ましい。
(変態率計)
 第2の均熱帯7Bの出側には鋼板のγ相分率を測定する変態率計10が配置されており、冷却帯8及び亜鉛めっき槽などでの後工程に進入する直前の鋼板のα相及びγ相の相分率(変態率)が測定される。この変態率計10は、測定したγ相分率に基づき、第1の誘導加熱装置9の出力及び第2の均熱帯7Bの温度を調整する目的で設けられている。このような調整によって、鋼板の機械的特性を安定して得ることができる。
 ここで、変態率の測定方式は特に限定されないが、X線回折法を応用した手法がオンラインかつ非接触で測定可能なため好適である。γ相とα相は結晶構造の差異により、鋼板にX線を照射すると各々固有の角度で回折ピークを生じる。この回折ピーク強度によりγ相分率を定量化する手法である。市販されているものでは例えばSMS社製のX-CAPなどが挙げられる。また、磁気検出器、すなわち鋼帯の磁気変態率を測定する装置として、磁場を発生する駆動コイルと、鋼帯を通過した磁場を測定する検出コイルとから構成される磁気変態率測定装置を用いて、オーステナイト分率が測定されてよい。具体的には、特開2019-7907号公報に記載された装置を用いることができる。
(第2の誘導加熱装置)
 また、第2の均熱帯7Bと変態率計10の間に、さらに第2の誘導加熱装置が設けられてよい。この位置に第2の誘導加熱装置があることで、変態率計10の測定結果をさらに遅滞なく反映し、より柔軟に変態率に基づく制御が可能となって、最終製品の機械的特性がさらに安定する。また、第2の誘導加熱装置が設けられることによって、第2の均熱帯7Bの炉温によって制御する(温度調整する)負荷を減らすことができる。つまり、変態率計10の測定結果に基づく温度調整を、第2の均熱帯7Bだけでなく、第2の誘導加熱装置で行うことができる。このように、第2の誘導加熱装置が補助的に併用されることにより、コイル継ぎ目での板厚変動、焼鈍条件を変更する際の温度制御の遅延を防ぐことも可能になる。ただし、連続焼鈍設備への第2の誘導加熱装置の設置は必須でなく、少なくとも第1の誘導加熱装置9が設けられればよい。
(冷却帯)
 冷却帯8は、鋼板を所定の温度まで冷却する設備であり、冷却手段としてガスジェット冷却、ロール冷却、水冷却(ウォータークエンチ)などが用いられる。本実施形態のように、冷却帯8を第1の冷却帯8Aと第2の冷却帯8Bなど複数に区分して、異なる冷却手段を組み合わせたり、同種の冷却手段の冷却条件を変更したりして、鋼板の冷却時の熱履歴が制御されてよい。
(溶融亜鉛めっき浴)
 冷却帯8に溶融亜鉛めっき浴を後続させ、冷却帯8から排出される鋼板に溶融亜鉛めっきを施すことができる。溶融亜鉛めっきは常法に従って行えばよく、必要に応じて、スナウト、浴中ロールなどを設けてよい。
(合金化設備)
 溶融亜鉛めっき浴に続いて合金化処理設備が設けられてよい。合金化処理設備では鋼板を加熱し合金化処理を施す。合金化処理は常法に従って行えばよい。
(その他設備)
 合金化設備に続いて、最終製品の品質向上と製造安定性・効率化のため、保熱帯、冷却帯、調質圧延設備、矯正機、出側ルーパー、テンションリールなどがさらに備えられてよい。これらの設備は製品に要求される品質に応じて設け、使用されればよく、特に限定するものではない。
<操業方法(制御方法)>
 本実施形態では、製品毎に最適なγ相分率の範囲を事前に把握して変態率制御モデルを構築し、変態率計10でのγ相分率の測定結果が、目標の範囲に収まるように第1の誘導加熱装置9の出力と第2の均熱帯7Bの炉温を制御する。このことによって、より確実に機械特性が非常に安定した製品を製造することが可能になる。変態率制御モデルは製品毎に構築されるが、本実施形態において製品を区分する要素として強度のグレードが用いられる。製品を区分する要素は、強度のグレードに限定されない。例えば鋼種、強度以外の機械的特性、表面特性など、必要とされる製品特性によって製品の区分が行われて、製品毎の変態率制御モデルが構築されてよい。
 図3は、本実施形態において、上記の連続焼鈍設備で実行される連続焼鈍方法の一例を示すフローチャートである。
 焼鈍炉内の変態率計10を用いたγ相分率測定結果(図3の「変態率情報実績」)と、当該材料を鋳造した際に得られた化学成分の情報(図3の「素材情報」)と、連続焼鈍設備の現在の操業条件(特に冷却帯8の操業条件)から、材質予測モデルを用いて、最終的に得られる製品の機械特性(機械的性質)が予測される。このとき、使用される材質予測モデルはオフラインでのラボ実験又は数値解析によって得られる物理モデルだけでなく、製造実績の蓄積から得られる機械学習モデルを用いてよい。
 次に、予測された機械特性(図3の「機械的性質の予測結果」)が当該製品に許容される機械的性質の目標範囲内に含まれるかを判断する。機械的性質の目標範囲は、上位コンピュータから与えられる。上位コンピュータは、連続焼鈍設備の操業を統括するプロセスコンピュータに対して、製造情報等を与えるコンピュータである。連続焼鈍設備は、目標範囲内であれば(図3の「機械的性質目標範囲内」がYes)、現在の条件のまま操業を継続する。連続焼鈍設備は、目標範囲から外れていた場合に(図3の「機械的性質目標範囲内」がNo)、操業条件の変更を行う。操業条件の変更にあたっては、上記の材質予測モデルから材質を目標範囲内に収めるために必要なγ相分率の調整量を求め、その変態率の調整量を実現するための鋼板温度制御量を求める変態率制御モデルを使用する。変態率制御モデルは、オフラインでのラボ実験又は数値解析によって得られる物理モデルであってよいし、製造実績の蓄積から得られる機械学習モデルであってよい。
 連続焼鈍設備は、必要な温度制御範囲が、第1の誘導加熱装置9によって制御可能な範囲に含まれると判断する場合に(図3の「IH出力制御範囲内」がYes)、第1の誘導加熱装置9の出力を変更する。連続焼鈍設備は、必要な温度制御範囲が、第1の誘導加熱装置9によって制御可能な範囲に含まれないと判断する場合に(図3の「IH出力制御範囲内」がNo)、第2の均熱帯7Bの炉温も合わせて変更する。第2の均熱帯7Bの炉温が変化している間にも、上記の制御フローに従って第1の誘導加熱装置9の出力と第2の均熱帯7Bの炉温を制御していくことで、製品の機械的特性が目標から外れる量を最小限に抑えることができる。つまり、素材特性の変動に対して迅速に応答可能であり、製品の機械特性の変動を極小化することができる。
 ここで、従来の連続焼鈍設備でも、変態率計10を設置し板温の高精度制御によって変態率の制御を試みることは可能である。しかし、従来の輻射加熱式の焼鈍炉のみの設備仕様では加熱に時間がかかるため(例えば100~200秒程度)、炉容積が非常に大きくなる(例えばライン長150~250m)。そのため、制御指令に対する炉温の応答性が非常に悪いだけでなく、炉温変化の影響を受ける鋼板長も長くなるため、鋼板温度を細かく制御することができない。一方、本開示によれば、第1の誘導加熱装置9によって鋼板温度を高速に制御できるだけでなく、均熱帯7の炉長を短縮できるため(例えば70~110m)炉温の応答性が高くなる。その結果、素材起因の変態挙動変動への応答だけでなく、製品継目で焼鈍条件が変化する際にも加熱条件の変更を素早く反映させることが可能になる。そして、狙いの焼鈍条件から外れる範囲を縮小することができ歩留まりが格段に向上する。
 鋼板には、連続焼鈍設備での焼鈍処理に続いて、めっき処理、合金化処理、調質圧延、形状矯正処理を実施してよい。めっき処理及び合金化処理は、製品の表面特性に要求される品質を満足するための常法でよく、特に限定するものではない。
 また、形状の乱れが生じた場合は、続けて調質圧延及び矯正機を通板させて矯正してよい。調質圧延及び矯正は、鋼板の機械的特性に影響を与えずに形状を矯正するに留まる条件で行えばよく、限定するものではない。
(実施例)
 表1及び表2は、従来の連続焼鈍設備、本実施形態に係る連続焼鈍設備(図1参照)を用いて、薄鋼板を製造した条件と結果を示す。ここで比較例2以外では、製品の機械特性のばらつきを調べるために、複数の強度レベルの製品をそれぞれコイルで30本ずつ製造した。強度レベルが780MPa、980MPa、1180MPa級の3種類を製造し、板厚は各々の強度レベルで1.0、1.5、2.0mmの3種類を10本ずつ製造した。これら各グレード及び各板厚の10本のスラブは、連続鋳造機において全て異なるロットで鋳造されたものを使用した。そのため、製造管理範囲内ではあるが各スラブの化学成分はばらついており変態挙動も均一にはなっていない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 各々のスラブは、一般的な手法で熱間圧延、酸洗を施され、必要に応じて、焼鈍、冷間圧延を施された後、実験室での焼鈍、従来技術の連続焼鈍設備及び本開示の連続焼鈍設備で熱処理されて、その後に、冷却、めっき等の後処理が実施された。最終製品の任意の3か所から引張り試験片が採取されて、機械的特性が測定された。ここで、引張り試験片はJIS5号とした。引張り試験はJISZ2241に従って行われた。引張試験によって測定したTS(Tensile Strength、引張強さ)のばらつきが±30MPa以下であれば機械的特性が安定し、±30MPaより大きい場合、機械的特性がばらついているとした。つまり、TSばらつきの範囲が±30MPの幅、すなわち60MPa以下であれば機械的特性が安定しているとした。また、780MPa、980MPa、1180MPa級の各グレードにおいて、必要な強度範囲はそれぞれ780MPa以上、980MPa以上、1180MPa以上である。
 比較例1は、第1の誘導加熱装置9及び変態率計10が設置されていない、予熱帯5、加熱帯6、均熱帯7(図1の第1の均熱帯7Aと第2の均熱帯7Bが連続した炉長)から構成される従来の焼鈍炉を用いて、上記の素材から製造された。製造におけるライン速度は60~120mpmの範囲であり、板厚に応じて鋼板温度の変化が制御された。加熱帯6(直火加熱)の出口の鋼板温度は600~700℃の範囲内として、表面の酸化還元反応を制御した。その後ラジアントチューブ方式の均熱帯7に導入して更に加熱を行い、再結晶域での滞在時間は20~60秒であった。再結晶域以降の加熱/均熱時間は100~200秒であった。均熱帯7の出口(冷却帯8の入口)の鋼板温度は750~850℃の範囲にあった。均熱帯7の炉温は出口の鋼板温度が目標値となるよう制御された。その後、冷却、溶融亜鉛めっき、合金化処理等を経て最終製品から材料試験片が複数採取されて、機械特性のばらつきが調査された。その結果、各グレードで引っ張り強さは大きくばらつき、グレード毎の下限値を下回るものが存在した。この原因は、素材の化学成分の変動で焼鈍時の相分率が狙った値になっていなかったことと、板厚及びグレードの異なるコイルの継目で焼鈍条件が変化した際に、加熱条件が追随できない部分が生じたことであると推定される。
 比較例2は、数値計算と切り板を用いた実験で、均熱帯7の入口において目標焼鈍温度まで急速に加熱した場合を検討した結果である。比較例2では、再結晶域での滞在時間が非常に短く、再結晶が進行しないままα相からγ相への変態が急速に進んだ。そのため、冷却後の組織はマルテンサイト単相のままで組織制御が行えず、割れが発生し、機械特性の測定ができなかった。
 比較例3は、従来の焼鈍炉の均熱帯7の中間(図1の第1の均熱帯7Aと第2の均熱帯7Bの間と同じ位置)に誘導加熱設備を設けた。通板速度及び加熱帯6の出口における鋼板温度は、比較例1と同様の範囲で制御した。第1の誘導加熱装置9を設けたものの、変態率計10の測定値を第1の誘導加熱装置9の出力及び炉温にフィードバックせずに、従来と同様に鋼板温度のみで制御が行われた。その結果、昇温速度は5℃/sであった。応答性の高い第1の誘導加熱装置9とサイズの小さな均熱帯7を使用しているため鋼板温度の制御性は向上し、製品の機械特性のばらつきもやや改善されているが、後述する実施例には及ばない。また、素材の化学成分による変動を吸収することができず、γ相への変態が不十分であり、機械特性の下限を下回るものが存在した。
 比較例4は、比較例3と同様に、従来の焼鈍炉の均熱帯7の中間に誘導加熱設備を設けた。比較例3と同じく、鋼板温度は比較例1と同様の範囲で制御した。第1の誘導加熱装置9の昇温速度を250℃/sにしたところ、板エッジ部分の引張強度が過剰に大きくなるものが存在し、機械的特性の許容範囲をオーバーするものが出てきた。
 比較例5は、均熱帯7の出口の変態率計10によって焼鈍時の相分率を測定し、第1の誘導加熱装置9の出力と均熱帯7の炉温を制御した。第1の誘導加熱装置9及び第2の均熱帯7Bは好適範囲で操業されていたため、調整は実施しなかった。しかし、通板速度の最適化を実施しておらず、第1の均熱帯7Aの滞在時間が70秒となってしまった。これにより、α粒が粗大化し、最終製品の強度が不足する箇所が出てきた。
 実施例1は、図1に示す本開示の連続焼鈍設備を用いて、上記の素材から製品を製造した結果である。通板速度及び加熱帯6の出口における鋼板温度は、比較例1と同様の範囲で制御した。ただし、実施例1では均熱帯7の出口の変態率計10によって焼鈍時の相分率を測定し、第1の誘導加熱装置9の出力と均熱帯7の炉温を制御した。その結果、冷却帯8の入口の鋼板温度の範囲は比較例1に比べて大きくなったものの、相分率に基づいて制御したことによって、製品の機械特性のばらつきが大きく改善した。また、機械特性の下限値を下回る箇所は存在しなかった。
 実施例2は、実施例1と同様の制御を実施したが、第1の誘導加熱装置9と第2の均熱帯7Bの炉温を制御し、第1の誘導加熱装置9の昇温速度と第2の均熱帯7Bの温度を調整した例である。好適範囲に制御した結果、製品の機械的特性は目標範囲内におさまる結果となった。
 実施例3は、連続焼鈍設備の均熱帯7の出口から変態率計10の間に設置された補助的な第2の誘導加熱装置も使用して製造した結果である。第2の誘導加熱装置も用いて、均熱帯7の出口において相分率を制御できるようになったため、機械特性のばらつきが、実施例1より小さくなった。
 以上のように、本実施形態に係る連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法は、上記の構成によって、素材特性の変動に対して迅速に応答可能であり、製品の機械特性の変動を極小化できる。また、本実施形態に係る連続焼鈍設備は、従来よりもライン長を抑えられるため、製造設備の導入コスト低減も期待できる。
 本開示の実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部又は各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部又はステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。本開示に係る実施形態は装置が備えるプロセッサにより実行されるプログラム又はプログラムを記録した記憶媒体としても実現し得るものである。本開示の範囲にはこれらも包含されるものと理解されたい。
 上記の実施形態において、予熱帯5、加熱帯6及び均熱帯7をこの順に備えて構成される鋼板の連続焼鈍設備を説明したが、連続焼鈍設備は予熱帯5を備えなくてよい。予熱帯5を備えない構成の場合に、上記の予熱帯5における処理は加熱帯6によって実行されてよい。
 上記の実施形態において亜鉛ポット11は薄鋼板を浸漬する亜鉛めっき槽であるとして説明されたが、別のめっき処理が実行されてよい。めっき処理は、例えば電気亜鉛めっき処理、溶融亜鉛めっき処理又は合金化溶融亜鉛めっき処理であってよい。
 また、例えばプロセスコンピュータの記憶部(例えばメモリ)に記憶されたプログラムを、プロセスコンピュータのプロセッサが読み込んで実行することによって、材質予測モデルから最終的に得られる製品の機械特性を予測する処理、及び、変態率制御モデルを構築し、γ相分率が目標の範囲に収まるように第1の誘導加熱装置9の出力と第2の均熱帯7Bの炉温を制御する処理などを実行してよい。また、材質予測モデル及び変態率制御モデルは、プロセスコンピュータの記憶部に記憶されてよい。
 1 ペイオフリール
 2 溶接機
 3 電解清浄装置
 4 入側ルーパー
 5 予熱帯
 6 加熱帯
 7 均熱帯
 7A 第1の均熱帯
 7B 第2の均熱帯
 8 冷却帯
 8A 第1の冷却帯
 8B 第2の冷却帯
 9 第1の誘導加熱装置
 10 変態率計
 11 亜鉛ポット

Claims (8)

  1.  加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備であって、
     前記均熱帯は、第1の均熱帯と、前記第1の均熱帯の後に設けられた第2の均熱帯と、を含み、
     前記第1の均熱帯と前記第2の均熱帯との間に設けられた第1の誘導加熱装置と、
     前記第2の均熱帯の出口に前記鋼板のオーステナイト分率を測定する測定装置と、を備える連続焼鈍設備。
  2.  前記第2の均熱帯の出口であって、前記測定装置の前に、第2の誘導加熱装置をさらに備える、請求項1に記載の連続焼鈍設備。
  3.  加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備に続いて、溶融亜鉛めっき浴をさらに備える、請求項1又は2に記載の連続焼鈍設備。
  4.  加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備で実行される連続焼鈍方法であって、
     前記均熱帯は、第1の均熱帯と、前記第1の均熱帯の後に設けられた第2の均熱帯と、を含み、
     前記連続焼鈍設備は、前記第1の均熱帯と前記第2の均熱帯との間に設けられた第1の誘導加熱装置と、前記第2の均熱帯の出口に前記鋼板のオーステナイト分率を測定する測定装置と、を備え、
     前記測定装置によって測定された前記鋼板のオーステナイト分率に基づいて、前記第1の誘導加熱装置の出力を調整し、前記第2の均熱帯の炉温を調整するステップを含む、連続焼鈍方法。
  5.  前記第1の誘導加熱装置が出力を調整し、前記第2の均熱帯が炉温を調整するステップは、製品毎に構築された変態率制御モデルを用いる、請求項4に記載の連続焼鈍方法。
  6.  加熱帯及び均熱帯をこの順に備えて構成される鋼板の連続焼鈍設備で実行される連続焼鈍方法であって、
     前記均熱帯は、第1の均熱帯と、前記第1の均熱帯の後に設けられた第2の均熱帯と、を含み、
     前記連続焼鈍設備は、前記第1の均熱帯と前記第2の均熱帯との間に設けられた第1の誘導加熱装置と、前記第2の均熱帯の出口に前記鋼板のオーステナイト分率を測定する測定装置と、を備え、
     前記加熱帯で、A変態点より低い温度域で前記鋼板の温度が増加するように昇温するステップと、
     前記第1の均熱帯で、A変態点より低い温度域で前記鋼板の温度を保持するステップと、
     前記第1の誘導加熱装置で、前記鋼板の温度がA変態点以上かつA変態点より低い温度域に含まれるように、10℃/s以上かつ200℃/s以下で昇温するステップと、
     前記第2の均熱帯で、A変態点以上かつA変態点より低い温度域で前記鋼板の温度を保持するステップと、を含む、連続焼鈍方法。
  7.  請求項4から6のいずれか一項に記載の連続焼鈍方法によって冷延鋼板である前記鋼板を焼鈍する、冷延鋼板の製造方法。
  8.  請求項7に記載の冷延鋼板の製造方法によって焼鈍された前記鋼板の表面にめっき処理を施し、
     前記めっき処理は、電気亜鉛めっき処理、溶融亜鉛めっき処理又は合金化溶融亜鉛めっき処理である、めっき鋼板の製造方法。
PCT/JP2022/005756 2021-03-30 2022-02-14 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法 WO2022209364A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22779591.1A EP4306665A1 (en) 2021-03-30 2022-02-14 Continuous annealing equipment, continuous annealing method, cold-rolled steel sheet manufacturing method, and plated steel sheet manufacturing method
JP2022526835A JP7334861B2 (ja) 2021-03-30 2022-02-14 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
MX2023011532A MX2023011532A (es) 2021-03-30 2022-02-14 Equipo de recocido continuo, metodo de recocido continuo, metodo para producir laminas de acero laminadas en frio y metodo para producir laminas de acero recubiertas o chapadas.
US18/549,589 US20240158885A1 (en) 2021-03-30 2022-02-14 Continuous annealing equipment, continuous annealing method, method of producing cold-rolled steel sheets and method of producing coated or plated steel sheets
KR1020237033655A KR20230151109A (ko) 2021-03-30 2022-02-14 연속 어닐링 설비, 연속 어닐링 방법, 냉연 강판의 제조 방법 및 도금 강판의 제조 방법
CN202280024444.1A CN117120639A (zh) 2021-03-30 2022-02-14 连续退火设备、连续退火方法、冷轧钢板的制造方法和镀覆钢板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-057791 2021-03-30
JP2021057791 2021-03-30

Publications (1)

Publication Number Publication Date
WO2022209364A1 true WO2022209364A1 (ja) 2022-10-06

Family

ID=83458363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005756 WO2022209364A1 (ja) 2021-03-30 2022-02-14 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US20240158885A1 (ja)
EP (1) EP4306665A1 (ja)
JP (1) JP7334861B2 (ja)
KR (1) KR20230151109A (ja)
CN (1) CN117120639A (ja)
MX (1) MX2023011532A (ja)
WO (1) WO2022209364A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070278A1 (ja) * 2022-09-27 2024-04-04 Jfeスチール株式会社 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089203A (ja) * 1973-12-11 1975-07-17
JPS6269160A (ja) * 1985-09-24 1987-03-30 Kawasaki Steel Corp 鋼材の相分率測定方法
WO1997000975A1 (fr) * 1995-06-23 1997-01-09 Nippon Steel Corporation Procede de recuit en continu de toles d'acier laminees a froid et equipement correspondant
JPH10152728A (ja) 1996-11-25 1998-06-09 Nippon Steel Corp 加工性および表面性状に優れる冷延鋼板の製造方法
JPH1161277A (ja) 1997-08-28 1999-03-05 Nkk Corp 鋼板の連続熱処理方法
JP2000144262A (ja) 1998-11-02 2000-05-26 Nippon Steel Corp 機械的特性の安定した加工用冷延鋼板の製造方法
JP2019007907A (ja) 2017-06-28 2019-01-17 Jfeスチール株式会社 焼鈍炉中の鋼板の磁気変態率測定方法および磁気変態率測定装置、連続焼鈍プロセス、連続溶融亜鉛めっきプロセス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5089203A (ja) * 1973-12-11 1975-07-17
JPS6269160A (ja) * 1985-09-24 1987-03-30 Kawasaki Steel Corp 鋼材の相分率測定方法
WO1997000975A1 (fr) * 1995-06-23 1997-01-09 Nippon Steel Corporation Procede de recuit en continu de toles d'acier laminees a froid et equipement correspondant
JPH10152728A (ja) 1996-11-25 1998-06-09 Nippon Steel Corp 加工性および表面性状に優れる冷延鋼板の製造方法
JPH1161277A (ja) 1997-08-28 1999-03-05 Nkk Corp 鋼板の連続熱処理方法
JP2000144262A (ja) 1998-11-02 2000-05-26 Nippon Steel Corp 機械的特性の安定した加工用冷延鋼板の製造方法
JP2019007907A (ja) 2017-06-28 2019-01-17 Jfeスチール株式会社 焼鈍炉中の鋼板の磁気変態率測定方法および磁気変態率測定装置、連続焼鈍プロセス、連続溶融亜鉛めっきプロセス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070278A1 (ja) * 2022-09-27 2024-04-04 Jfeスチール株式会社 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法

Also Published As

Publication number Publication date
EP4306665A1 (en) 2024-01-17
KR20230151109A (ko) 2023-10-31
CN117120639A (zh) 2023-11-24
MX2023011532A (es) 2023-10-06
JP7334861B2 (ja) 2023-08-29
JPWO2022209364A1 (ja) 2022-10-06
US20240158885A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
CN103649347B (zh) 生产退火钢的设备和生产所述退火钢的工艺
JP2010533788A (ja) 長さ方向において厚さが変化する鋼ストリップを焼きなましする方法
ES2926146T3 (es) Método para operar una línea de procesamiento continuo
WO2022209364A1 (ja) 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
WO2022054500A1 (ja) 材料特性値予測システム及び金属板の製造方法
JP7342812B2 (ja) 鋼帯の材質予測方法、材質制御方法、製造方法および材質予測モデルの生成方法
KR102283932B1 (ko) 열적 처리된 강판의 제조를 위한 동적 조정 방법
JP5335179B2 (ja) 熱延コイル及びその製造方法
WO2024070279A1 (ja) 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
WO2024070278A1 (ja) 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
JP6402696B2 (ja) 高張力鋼板の製造設備および製造方法
JP2002069534A (ja) 薄鋼板および薄鋼板の製造方法
RU2727385C1 (ru) Способ динамического подстраивания для изготовления термообработанной листовой стали
WO2022049859A1 (ja) 鋼帯の鋼中水素量予測方法、鋼中水素量制御方法、製造方法、鋼中水素量予測モデルの生成方法及び鋼中水素量予測装置
TW202120711A (zh) 提高鉻鉬鋼材之球化率之方法
JP7088244B2 (ja) 鋼帯の鋼中水素量予測方法、鋼中水素量制御方法、製造方法、鋼中水素量予測モデルの生成方法及び鋼中水素量予測装置
JPH0762447A (ja) 高品質加工用冷延鋼板の製造方法
JP4336269B2 (ja) 溶融亜鉛めっき高張力鋼板の製造装置
JP2938292B2 (ja) 金属帯の連続浸炭方法
JP7218224B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP7031707B1 (ja) 鋼帯の鋼中水素量予測方法、鋼中水素量制御方法、製造方法、鋼中水素量予測モデルの生成方法及び鋼中水素量予測装置
JP4547936B2 (ja) 高強度冷延鋼板の製造方法
EP2691550A2 (en) Method of heat treating a coated metal strip and heat treated coated metal strip
JP2022055557A (ja) 冷延鋼板の連続焼鈍方法
JP2983398B2 (ja) 金属帯の連続焼鈍及び連続浸炭方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022526835

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18549589

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237033655

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2301006195

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011532

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2022779591

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779591

Country of ref document: EP

Effective date: 20231009

NENP Non-entry into the national phase

Ref country code: DE