WO2022054500A1 - 材料特性値予測システム及び金属板の製造方法 - Google Patents

材料特性値予測システム及び金属板の製造方法 Download PDF

Info

Publication number
WO2022054500A1
WO2022054500A1 PCT/JP2021/029901 JP2021029901W WO2022054500A1 WO 2022054500 A1 WO2022054500 A1 WO 2022054500A1 JP 2021029901 W JP2021029901 W JP 2021029901W WO 2022054500 A1 WO2022054500 A1 WO 2022054500A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
metal plate
value
material property
temperature
Prior art date
Application number
PCT/JP2021/029901
Other languages
English (en)
French (fr)
Inventor
真由美 小島
義正 船川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180061689.7A priority Critical patent/CN116056813A/zh
Priority to US18/043,579 priority patent/US20230323503A1/en
Priority to MX2023002990A priority patent/MX2023002990A/es
Priority to KR1020237011473A priority patent/KR20230061513A/ko
Priority to EP21866460.5A priority patent/EP4183495A4/en
Publication of WO2022054500A1 publication Critical patent/WO2022054500A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32193Ann, neural base quality management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32194Quality prediction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45234Thin flat workpiece, sheet metal machining

Definitions

  • This disclosure relates to a material property value prediction system and a method for manufacturing a metal plate.
  • the present disclosure relates to the manufacturing conditions of the process after the process so that the desired material property value can be finally obtained when the parameters related to the production deviate from the set range in the middle of the process of manufacturing the metal plate.
  • the present invention relates to a material property value prediction system and a method for manufacturing a metal plate, which enables optimization.
  • the molten metal becomes a slab (slab) in the continuous casting process after component adjustment.
  • the slab is heated to become a hot-rolled steel sheet in the hot-rolling (hot-rolling) process.
  • the hot-rolled steel sheet can become a cold-rolled steel sheet through a cold rolling (cold rolling) step and a continuous annealing step. Further, the hot-rolled steel sheet can become a hot-dip galvanized steel sheet through a cold rolling step and a continuous annealing hot-dip galvanizing step.
  • Patent Document 1 constructs a quality prediction model from manufacturing results using a statistical probability model such as a linear regression model, and limits the quality control of steel manufactured by the quality prediction model. Disclose the decision.
  • Patent Document 2 discloses a system for predicting a material from manufacturing record data.
  • Patent Document 2 is a technique for predicting outliers from a target value and performing material control with high accuracy by using a prior prediction model as learning data (teacher data) and finding a difference from the prediction model derived each time. To propose.
  • Patent Document 3 is a quality prediction system based on manufacturing results, and is a system that predicts the quality of a target product from the similarity between the prediction model for learning and the quality prediction model derived from the operating conditions of the actual target product. Disclose. Patent Document 3 discloses a technique for highly predicting the probability of occurrence of defects by applying a machine learning algorithm instead of conventional linear prediction to the construction of a prediction model.
  • Patent Documents 1 to 3 consider only directly adjustable manufacturing conditions, and do not consider disturbances such as air temperature and water temperature. However, such disturbances have a great influence on the material property values of the final product.
  • the technique of Patent Document 1 uses a statistical probability model to set a highly accurate manufacturing condition target value for the product quality to match the target value before the start of manufacturing, and is a subsequent process during manufacturing. The conditions cannot be changed.
  • the techniques of Patent Document 2 and Patent Document 3 do not assume a change in the conditions of a subsequent process during manufacturing. Further, the techniques of Patent Document 2 and Patent Document 3 require a large amount of training data in order to generate a highly accurate prediction model.
  • An object of the present disclosure made in view of this point is to provide a material property value prediction system capable of predicting material property values with high accuracy.
  • Another object of the present disclosure is a metal capable of improving the yield of a product by appropriately changing the manufacturing conditions of a subsequent process based on the material property values predicted by the material property value prediction system. The purpose is to provide a method for manufacturing a plate.
  • the material property value prediction system is An input data including an equipment output factor, a disturbance factor, and a component value of the metal plate being manufactured in a facility for manufacturing a metal plate is acquired, and the input data is input using a prediction model of the metal plate to be manufactured. Equipped with a material property value prediction unit that predicts material property values,
  • the prediction model is A machine learning model generated by machine learning that inputs the input data and outputs manufacturing condition factors, A metallurgical model that inputs the manufacturing condition factor and outputs the material property value, including.
  • the method for manufacturing a metal plate according to an embodiment of the present disclosure is as follows.
  • a method for manufacturing a metal plate including a hot rolling process, a cold rolling process, and an annealing process.
  • a step of acquiring the input data in the hot rolling process and predicting the material characteristic value of the metal plate by using the material characteristic value prediction system is provided.
  • the manufacturing condition factor is at least one of coarse rolling ratio, finish rolling ratio, rolling inlet side temperature, rolling exit side temperature, rolling pass temperature, cooling start time, cooling temperature, cooling rate, line speed and winding temperature. including.
  • a method for manufacturing a metal plate including a hot rolling process, a cold rolling process, and an annealing process.
  • a step of acquiring the input data in the cold rolling process and predicting the material characteristic value of the metal plate by using the material characteristic value prediction system is provided.
  • the manufacturing condition factor includes at least one of a rolling rate, a cold pressure rate and a friction coefficient.
  • a method for manufacturing a metal plate including a hot rolling process, a cold rolling process, and an annealing process.
  • a step of acquiring the input data in the annealing step and predicting the material characteristic value of the metal plate is provided.
  • the production condition factor includes at least one of line speed, annealing temperature, annealing time, heating rate, cooling temperature, cooling time, cooling rate, reheating temperature, reheating rate and reheating time.
  • a method for manufacturing a metal plate including an annealing process, a plating process, and a reheating process.
  • the production condition factors include line speed, annealing temperature, annealing time, heating rate, cooling temperature, cooling time, cooling rate, reheating temperature, reheating rate, reheating time, alloying temperature, alloying time and dew point. Includes at least one of them.
  • a material property value prediction system capable of predicting material property values with high accuracy.
  • a method for manufacturing a metal plate capable of improving the yield of a product by appropriately changing the manufacturing conditions of a subsequent process based on the material property values predicted by the material property value prediction system. Can be provided.
  • FIG. 1 is a diagram showing a configuration example of a material property value prediction system.
  • FIG. 2 is a diagram for explaining another configuration example of the material property value prediction system.
  • FIG. 3 is a block diagram of the information processing device.
  • FIG. 4 is a diagram showing a flow of prediction of material property values using a prediction model.
  • FIG. 5 is a diagram showing a flow of prediction of the tensile strength of a hot-rolled steel sheet using a prediction model.
  • FIG. 6 is a flowchart showing a process related to prediction of material property values executed in the manufacture of a metal plate.
  • FIG. 1 shows a configuration example of a material property value prediction system 100 for, for example, steel according to an embodiment of the present disclosure.
  • the material characteristic value prediction system 100 includes an information processing device 10 used in the manufacture of a metal plate.
  • the information processing device 10 may be a process computer that controls operations.
  • the steel strip 9 obtained by winding a steel plate in a coil shape is a product, but the product is not limited to the steel strip 9.
  • the product may be a flat plate of metal, which is a steel material. That is, the material property value prediction system 100 can be used in a method for manufacturing a metal plate in a broad sense.
  • the steel material may be carbon steel or alloy steel.
  • the metal plate is not limited to steel, and for example, an aluminum alloy, copper, titanium, magnesium, or the like may be used as a material.
  • the material characteristic value prediction system 100 includes a converter 1, a continuous casting machine 2, a heating furnace 3, a scale breaker 4, a rough rolling mill 5, a finishing rolling mill 6, and a cooling device 7.
  • the winding device 8, the steel strip 9, and the information processing device 10 are included.
  • the raw material iron ore is first charged into the blast furnace together with limestone and coke, and molten pig iron is produced.
  • the components of carbon and the like are adjusted in the converter 1 for the pig iron produced in the blast furnace, and the final components are adjusted by secondary refining.
  • refined steel is cast to produce an intermediate material called a slab.
  • the slab is heated by the heating step in the heating furnace 3, and the steel strip 9 is manufactured through the hot rolling step by the rough rolling mill 5 and the finishing rolling mill 6, the cooling step by the cooling device 7, and the winding device 8. .
  • the manufacturing step may appropriately include a pickling step, a cold rolling step, an annealing step, a skin pass step, an inspection step, and other treatment steps after the cooling step.
  • the material characteristic value prediction system 100 may be configured to include a metal plate manufacturing facility different from that shown in FIG. 1. As shown in FIG. 2, for example, the material property value prediction system 100 may be provided with a continuous annealing facility (hereinafter referred to as a hot-dip galvanizing line) for manufacturing a hot-dip galvanized steel sheet. In the hot-dip plating line of FIG. 2, the cold-rolled steel sheet is made into a hot-dip galvanized steel sheet.
  • a hot-dip galvanizing line a continuous annealing facility for manufacturing a hot-dip galvanized steel sheet.
  • the hot-dip plating line has a heating zone 11, a soaking zone 12, and a cooling zone 13 as annealed portions.
  • the annealing step in the hot-dip plating line is a heat treatment step performed in the annealed portion, in which the temperature of the steel sheet is raised from around room temperature, kept at a predetermined temperature, and then the temperature of the steel sheet is suitable for zinc plating. Lower the temperature.
  • the hot-dip plating line has a plating portion on the downstream side of the annealed portion.
  • the hot-dip plating line has a snout 14, a zinc plating tank 15, and a wiping device 16 as plating portions.
  • the plating step in the hot-dip plating line is a step of adhering an appropriate amount of plating to the steel sheet executed in the plating portion.
  • the hot-dip plating line has a reheating section on the downstream side of the plating section.
  • the hot-dip plating line has an alloying zone 17, a tropical zone 18, and a final cooling zone 19 as reheating portions.
  • the reheating step in the hot-dip plating line is a heat treatment step performed in the reheating section.
  • the heating zone 11 is a facility for raising the temperature of the steel sheet, and heats the steel sheet to a preset temperature in the range of about 650 to 950 ° C. depending on the steel type.
  • the soothing tropics 12 is a facility that keeps a steel plate at a predetermined temperature.
  • the cooling zone 13 is a facility for cooling to about 450 ° C. as a temperature suitable for performing zinc plating.
  • the snout 14 is supplied with a mixed gas containing hydrogen, nitrogen, and water vapor inside, and adjusts the atmosphere gas until the steel sheet is immersed in the galvanizing tank 15.
  • the zinc plating tank 15 has a sink roll inside, and the steel sheet that has passed through the snout 14 is immersed downward, and the steel sheet to which molten zinc is adhered to the surface is pulled up above the plating bath.
  • the wiping device 16 blows wiping gas from nozzles arranged on both sides of the steel sheet to scrape off excess molten zinc adhering to the surface of the steel sheet, and adjusts the amount of molten zinc adhering (weight).
  • the alloying zone 17 raises the temperature of the steel sheet that has passed through the wiping device 16 to the temperature at which the Zn—Fe alloying reaction proceeds (usually about 500 ° C.).
  • the tropical 18 keeps the temperature of the steel sheet in order to secure the time required for the alloying reaction to proceed.
  • the final cooling zone 19 finally cools the alloyed steel sheet to near room temperature.
  • the material characteristic value prediction system 100 can be configured to include, for example, a metal plate manufacturing facility including a hot rolling process, a cold rolling process, and an annealing process. Further, the material characteristic value prediction system 100 may be configured to include, for example, a metal plate manufacturing facility including an annealing step, a plating step, and a reheating step.
  • FIG. 3 shows a block diagram of the information processing apparatus 10.
  • the information processing device 10 includes a control unit 110, a storage unit 120, a communication unit 130, an input unit 140, and an output unit 150.
  • the information processing apparatus 10 calculates necessary manufacturing conditions based on desired material property values of the product, and sets a manufacturing condition factor for each manufacturing device.
  • the material property value is a value indicating physical properties such as strength of the product and resistance to external force. Tensile strength is an example of material property values.
  • the manufacturing condition factor is a parameter (manufacturing parameter) that can be adjusted in the process of manufacturing the product. Rolling rate is an example of a manufacturing condition factor.
  • the information processing apparatus 10 generates a prediction model 122 including a machine learning model generated by machine learning and a metallurgy model.
  • the information processing apparatus 10 functions as a material characteristic value prediction device that predicts material characteristic values using the prediction model 122. Further, the information processing apparatus 10 can modify the manufacturing condition factor in the subsequent process based on the predicted material property value. The details of the prediction model 122 and the flow of prediction of material property values will be described later.
  • the control unit 110 includes at least one processor, at least one dedicated circuit, or a combination thereof.
  • the processor is a general-purpose processor such as a CPU (central processing unit) or a dedicated processor specialized for a specific process.
  • the dedicated circuit is, for example, FPGA (field-programmable gate array) or ASIC (application specific integrated circuit).
  • the control unit 110 executes processing related to the operation of the information processing device 10 while controlling each unit of the information processing device 10.
  • control unit 110 includes a material characteristic value prediction unit 111.
  • the material characteristic value prediction unit 111 acquires input data including equipment output factors, disturbance factors, and component values of the metal plate being manufactured in the equipment for manufacturing the metal plate, and uses the prediction model 122 for inputting the input data. Predict the material property values of the manufactured metal plate.
  • the storage unit 120 includes at least one semiconductor memory, at least one magnetic memory, at least one optical memory, or at least two combinations thereof.
  • the semiconductor memory is, for example, a RAM (random access memory) or a ROM (read only memory).
  • the RAM is, for example, SRAM (static random access memory) or DRAM (dynamic random access memory).
  • the ROM is, for example, EEPROM (electrically erasable programmable read only memory).
  • the storage unit 120 functions as, for example, a main storage device, an auxiliary storage device, or a cache memory.
  • the storage unit 120 stores data used for the operation of the information processing device 10 and data obtained by the operation of the information processing device 10.
  • the storage unit 120 stores the actual database 121 and the prediction model 122.
  • the performance database 121 stores various measured values and set values related to the manufacturing equipment and the operation using the manufacturing equipment.
  • the measured values and set values stored in the actual database 121 include those used as training data for the information processing apparatus 10 to generate the prediction model 122.
  • the communication unit 130 includes at least one communication interface.
  • the communication interface is, for example, a LAN interface, a WAN interface, an interface compatible with mobile communication standards such as LTE (Long Term Evolution), 4G (4th generation) or 5G (5th generation), or a short-range wireless such as Bluetooth (registered trademark). It is an interface that supports communication.
  • the communication unit 130 receives data used for the operation of the information processing device 10. Further, the communication unit 130 transmits data obtained by the operation of the information processing device 10.
  • the input unit 140 includes at least one input interface.
  • the input interface is, for example, a physical key, a capacitive key, a pointing device, a touch screen or a microphone integrated with a display.
  • the input unit 140 accepts an operation for inputting data used for the operation of the information processing apparatus 10.
  • the input unit 140 may be connected to the information processing device 10 as an external input device instead of being provided in the information processing device 10.
  • any method such as USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface) or Bluetooth (registered trademark) can be used.
  • the output unit 150 includes at least one output interface.
  • the output interface is, for example, a display or a speaker.
  • the display is, for example, an LCD (liquid crystal display) or an organic EL (electroluminescence) display.
  • the output unit 150 outputs the data obtained by the operation of the information processing apparatus 10.
  • the output unit 150 may be connected to the information processing device 10 as an external output device instead of being provided in the information processing device 10.
  • any method such as USB, HDMI (registered trademark) or Bluetooth (registered trademark) can be used.
  • the function of the information processing apparatus 10 is realized by executing the information processing program performed in the present embodiment by a processor corresponding to the control unit 110. That is, the function of the information processing apparatus 10 is realized by software.
  • the program causes the computer to function as the information processing apparatus 10 by causing the computer to execute the operation of the information processing apparatus 10.
  • a part or all the functions of the information processing apparatus 10 may be realized by a dedicated circuit corresponding to the control unit 110. That is, some or all the functions of the information processing apparatus 10 may be realized by hardware.
  • FIG. 4 is a diagram showing a flow of prediction of material property values using the prediction model 122.
  • the prediction accuracy of material property values can be improved by using the hybrid parameters of metallurgy and operation results, which are converted from metallurgy parameters to actual operation parameters. rice field.
  • the prediction model 122 used by the information processing apparatus 10 to predict the material property value is configured to include a machine learning model and a metallurgy model.
  • the machine learning model inputs input data including equipment output factors, disturbance factors, and component values of the metal plate being manufactured, and outputs manufacturing condition factors.
  • the manufacturing condition factor is a parameter that can be adjusted in the process of manufacturing the product.
  • the manufacturing condition factor indicates the manufacturing conditions of a part of the metal plate manufacturing process, and the content differs depending on which process is targeted. Specific examples of production condition factors will be described later.
  • the machine learning model is generated by machine learning, and can reflect the influence of the disturbance factor on the manufacturing condition factor, for example, by using the learning data including the disturbance factor.
  • the machine learning model can accurately show the relationship between the actual operation parameters, the operation performance parameters, and the production condition factors regarding the operation of the manufacturing equipment for manufacturing the metal plate.
  • the metallurgical model inputs a manufacturing condition factor and outputs a material property value.
  • Material property values include tensile strength, yield strength, elongation, hole expansion rate, bendability, r value, hardness, fatigue characteristics, impact value, delayed fracture value, wear value, chemical conversion treatment, high temperature characteristics, and low temperature toughness. , Corrosion resistance, magnetic properties and surface properties may be included.
  • the metallurgical model is a predictive formula based on the physicochemical phenomenon of metals.
  • the metallurgical model may be composed of a plurality of models.
  • the metallurgical model is a first metallurgical model in which a manufacturing condition factor is input and a metallurgical phenomenon factor is output, and a second metallurgical model in which the metallurgical phenomenon factor is input and a material property value is output.
  • Metallurgical phenomenon factors include body integral ratio, surface texture, precipitate size, precipitate density, precipitate shape, precipitate dispersion state, recrystallization rate, phase fraction, crystal grain shape, texture, residual stress, dislocation density. And at least one of the crystal grain sizes may be included. If the metallurgical phenomenon can be actually measured, the measured value of the metallurgical phenomenon factor may be used. Examples of the method for measuring a metallurgical phenomenon include an in-line X-ray measuring instrument, an ultrasonic flaw detector, and a magnetic measuring instrument.
  • the metallurgical model shows the metallurgical phenomenon with high accuracy based on the theoretical formula of the physicochemical phenomenon.
  • the metallurgical model may further reflect a rule of thumb based on the operational performance of the manufacturing equipment.
  • the metallurgical model can accurately show the relationship between metallurgical parameters, manufacturing condition factors and material property values. Further, the metallurgy model is generated without machine learning, and the accuracy does not change depending on the number of training data. Therefore, it is possible to accurately adjust the manufacturing condition factors by performing the inverse analysis using the metallurgical model even when the past manufacturing results are small or absent.
  • the input value is randomly given to the prediction model of the material property value by the metallurgical model constructed with the manufacturing condition factor as the input value within the applicable range of the model, the material property value is estimated, and the target material property value is estimated.
  • the input value close to is the optimum manufacturing condition factor.
  • FIG. 5 is a diagram showing the flow of prediction of the tensile strength of a hot-rolled steel sheet using the prediction model 122.
  • the prediction of the tensile strength shown in FIG. 5 is executed in the middle of the process of processing the slab manufactured in the steelmaking process in the hot rolling process, the cold rolling process and the baking process to finally manufacture the steel sheet. Will be done.
  • the information processing device 10 determines the component values of the equipment output factor, the disturbance factor, and the hot-rolled steel sheet in the subsequent hot rolling process.
  • Equipment output factors include, for example, heating furnace heater output in hot rolling process, heating furnace continuous output time, transfer roll rotation speed, bar heater output value, rolling load, vertical roll rolling load difference, spray pressure between stands, runout table cooling water amount. And at least one of the runout table cooling water pressures.
  • the disturbance factor includes, for example, at least one of the cooling water temperature and the air temperature in the hot rolling process.
  • the component value is, for example, at least one of C, Si, Mn, P, S, Al, N, O, Ca, Ni, B, Ti, Nb, Mo, Cr, Sn, W and Ta measured for the hot-rolled steel sheet.
  • the disturbance factor for example, the cooling water temperature in the hot rolling process, the air temperature, and the expected air temperature when passing through each process may be used.
  • the component value the value of the steelmaking process may be used.
  • the information processing device 10 inputs input data to the machine learning model to obtain a manufacturing condition factor.
  • the machine learning model outputs the manufacturing condition factors that can be set in the hot rolling process.
  • the manufacturing condition factor includes, for example, at least one of a rough rolling rate, a finished rolling rate, a rolling inlet temperature, a rolling exit temperature, a cooling start time, a cooling rate, a line rate and a take-up temperature in a hot rolling process.
  • the information processing apparatus 10 inputs a manufacturing condition factor into the metallurgical model to obtain the predicted tensile strength of the steel sheet.
  • the metallurgy model has a first metallurgy model in which a manufacturing condition factor is input and a metallurgy phenomenon factor is output, and a second metallurgy model in which a metallurgy phenomenon factor is input and a material property value is output.
  • the first metallurgical model is, for example, a model based on the Zener-Hollomon law.
  • the second metallurgical model is, for example, a model based on the Hall-Petch rule.
  • the Zener-Hollomon rule is an empirical rule for estimating the recrystallization of a metal structure when a metal is processed at a high temperature.
  • a metallurgical phenomenon factor for example, a crystal grain size, is output by an improved model based on the Zener-Hollomon rule using the actual manufacturing value as an input value.
  • the Hall-Petch rule is an empirical rule for estimating the material strength from the crystal grain size of the metal structure.
  • the tensile strength is output from the crystal grain size of the metal structure by an improved model based on the Hall-Petch rule using the actual manufacturing value as the input value.
  • the prediction model 122 including the machine learning model and the metallurgy model is generated according to the process of the metal plate manufacturing equipment.
  • FIG. 5 is an example of the prediction model 122 in the hot rolling process.
  • different prediction models 122 are prepared for the cold rolling process and the annealing process.
  • the prediction model 122 in the cold rolling process after the hot rolling process is, for example, when the hot rolling process is executed and it is determined that the rolling conditions of the hot-rolled steel sheet are out of the set range, the material characteristic value is Used for prediction.
  • the information processing apparatus 10 acquires the input data in the cold rolling process.
  • the equipment output factor input to the machine learning model includes, for example, at least one of rolling load, vertical roll rolling load difference, roll diameter, roll rotation speed and lubrication condition in the cold rolling process.
  • the manufacturing condition factor output by the machine learning model includes, for example, at least one of a rolling ratio, a cold pressure ratio, and a friction coefficient in a cold rolling process.
  • the prediction model 122 in the annealing process after the cold rolling process is a material characteristic value when, for example, the cold rolling process is executed and it is determined that the rolling conditions of the cold-rolled steel sheet are out of the set range. Used for prediction.
  • the information processing apparatus 10 acquires the input data in the annealing process.
  • the equipment output factor input to the machine learning model includes, for example, at least one of the annealing furnace output value, the cooling gas injection amount, the gas type fraction, and the alloying furnace output value in the annealing step.
  • the manufacturing condition factors output by the machine learning model are, for example, the line speed, annealing temperature, annealing time, heating rate, cooling temperature, cooling time, cooling rate, reheating temperature, reheating rate and reheating time in the annealing process. Includes at least one of.
  • the tensile strength Prediction can be performed.
  • the prediction model 122 is used for predicting the material property value of the plated steel sheet, for example, when it is determined that the slab component is out of the set range.
  • the information processing apparatus 10 acquires input data in a process after the steelmaking process, that is, an annealing process, a plating process, and a reheating process.
  • the equipment output factor input to the machine learning model includes, for example, at least one of the annealing furnace output value, the cooling gas injection amount, the gas type fraction and the alloying furnace output value.
  • the manufacturing condition factors output by the machine learning model are, for example, line speed, annealing temperature, annealing time, temperature rise rate, cooling temperature, cooling time, cooling rate, reheating temperature, reheating rate, reheating time, alloying. Includes at least one of temperature, alloying time and dew point.
  • the input data includes the equipment output factor of a plurality of processes after the steelmaking process, that is, the equipment output factor of the annealing process, the equipment output factor of the plating process, and the equipment output factor of the reheating process.
  • the output of the machine learning model includes manufacturing condition factors of a plurality of steps after the steelmaking process, that is, manufacturing condition factors of the annealing step, manufacturing condition factors of the plating step, and manufacturing condition factors of the reheating step.
  • the machine learning model outputs manufacturing condition factors related to the subsequent process from the input data related to the later process, but the subsequent process may be one process or may be a plurality of processes as in this example.
  • the information processing apparatus 10 acquires learning data from the performance database 121 and generates a machine learning model using the learning data.
  • the training data is selected according to the process of manufacturing the metal plate in which the machine learning model is used.
  • the training data for generating a machine learning model for a hot rolling process can be input as heating furnace heater output, heating furnace continuous output time, transfer roll rotation speed, bar heater output value, rolling load, vertical roll. Includes rolling load difference, spray pressure between stands, runout table cooling water amount and runout table cooling water pressure, and outputs are rough rolling rate, finish rolling rate, rolling inlet side temperature, rolling exit side temperature, rolling pass temperature, cooling start time. , Cooling temperature, cooling rate, line speed and winding temperature may be selected.
  • the training data for generating a machine learning model for a cold rolling process includes rolling load, vertical roll rolling load difference, roll diameter, roll rotation speed and lubrication conditions as inputs, and rolling ratio and cold as outputs. Those including the rolling ratio and the coefficient of friction may be selected.
  • the training data for generating a machine learning model for the manufacturing process of cold-rolled steel sheets includes the annealing furnace output value and the cooling gas injection amount as inputs, and the line speed, annealing temperature, annealing time, as outputs. Those including a heating rate, a cooling temperature, a cooling time, a cooling rate, a reheating temperature, a reheating rate and a reheating time may be selected.
  • the training data for generating a machine learning model for the manufacturing process of a plated steel plate includes the annealing furnace output value, the cooling gas injection amount, the gas type fraction and the alloying furnace output value as the output, as the output.
  • all the training data contains at least one disturbance factor as an input. Therefore, the machine learning model takes into account disturbances that affect the material property values of the product. Also, the input of all training data includes at least one component value.
  • the method for generating a machine learning model using such learning data may be, for example, a neural network, but is not limited thereto. As another example, a machine learning model may be generated by a method such as a decision tree or a random forest.
  • the method for manufacturing a metal plate can be executed by using the above-mentioned material characteristic value prediction system 100, including a step of predicting the material characteristic value of the metal plate.
  • FIG. 6 is a flowchart showing a process related to prediction of material property values executed in the manufacture of a metal plate.
  • the material property value prediction system 100 waits if the executed metal plate manufacturing process is not the verification target process (No in step S1), and proceeds to the process in step S2 if the execution target process is the verification target process (Yes in step S1). ..
  • the verification target process is a part of the process selected from the metal plate manufacturing process, and is a step of executing the determination in step S2.
  • the metal plate manufacturing process consists of a steelmaking process, a hot rolling process, a first pickling process, a cold rolling process, an annealing process, a second pickling process, a skin pass process, an inspection process, and a shipping process.
  • the verification target process may be a steelmaking process, a hot rolling process, a cold rolling process, and an annealing process.
  • the number of processes to be verified may be plurality or one as described above. Further, the process to be verified may be selected on the condition that it has a plurality of production condition factors, that is, the production conditions can be adjusted by a plurality of parameters.
  • the material property value prediction system 100 returns to the process of step S1 if the parameter related to the process to be verified does not deviate from the set range (No in step S2), and proceeds to the process of step S3 if the parameter deviates from the set range (No). Yes in step S2).
  • the parameters related to the process to be verified are the measured values of the manufactured products or the manufacturing equipment that can predict that the material characteristic values of the final product deviate from the target (desired material characteristic values). It is a measured value.
  • the parameter may be a measured value of the C component of the slab. Then, when the measured value of the component C of the slab deviates greatly beyond the range of error from the normal reference value, the material property value prediction system 100 may proceed to the process of step S3.
  • the material characteristic value prediction system 100 predicts the material characteristic value using the prediction model 122 (step S3).
  • the material property value prediction system 100 predicts the material property value only when it is determined that there is an abnormality in the product being manufactured. In other words, if it is determined that there is no problem with the manufacturing conditions, the prediction calculation of the material property values is not executed, and the manufacturing conditions described later are not modified. Therefore, it is possible to efficiently proceed with the production of the metal plate.
  • the material property value prediction system 100 calculates the manufacturing condition factor of the subsequent process using the metallurgical model based on the predicted material property value and the desired material property value (step S4).
  • the material property value prediction system 100 performs an inverse analysis using a metallurgical model to calculate, for example, a modified value of a manufacturing condition factor for reducing the difference between the predicted material property value and the desired material property value. ..
  • the material property value prediction system 100 uses the prediction model 122 in the hot rolling process, which is a subsequent step, to make a final product. Material property values may be predicted. Then, the material property value prediction system 100 back-analyzes the metallurgical model and calculates the correction value of the manufacturing condition factor in the hot rolling process in order to bring the predicted material property value closer to the target value at the time of manufacturing. good.
  • the material characteristic value prediction system 100 modifies the manufacturing conditions in the subsequent process based on the values calculated in step S4 (step S5). After that, the material property value prediction system 100 returns to the process of step S1 and executes the same process in the next verification target process. For example, when the manufacturing conditions of the hot rolling process are modified as described above and the hot rolling process, which is the verification target process, is executed, a series of processes may be executed. If the components of the hot-rolled steel sheet are out of the set range even under the modified manufacturing conditions, the material property value prediction system 100 uses the prediction model 122 in the subsequent cold rolling process to make the final production. The material property value of the object may be predicted.
  • the material property value prediction system 100 back-analyzes the metallurgical model and calculates the correction value of the manufacturing condition factor in the cold rolling process in order to bring the predicted material property value closer to the target value at the time of manufacturing. good.
  • the material property value prediction system 100 may modify the manufacturing conditions of the cold rolling process based on the modified values.
  • the material property value prediction system 100 uses the prediction model 122 that takes into consideration the disturbance that greatly affects the material property value of the final product due to the above configuration, and uses the material property.
  • the value can be predicted with high accuracy.
  • the yield of a product is improved by appropriately changing the manufacturing conditions of a subsequent process based on the material property values predicted by the material property value prediction system 100. Is possible.
  • each means, each step, etc. can be rearranged so as not to be logically inconsistent, and a plurality of means, steps, etc. can be combined or divided into one. ..
  • the metal plate manufactured by using the material property value prediction system 100 is not limited to the one used in a specific field. That is, the metal plate manufactured by using the material characteristic value prediction system 100 is widely used for transportation equipment such as automobiles, construction machinery, trains, trains, medical care, food, and home appliances.
  • an unexpected change in air temperature and water temperature such as cooling water is exemplified as a disturbance, but the disturbance is not limited to these.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Manufacturing & Machinery (AREA)
  • General Factory Administration (AREA)
  • Control Of Metal Rolling (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Feedback Control In General (AREA)

Abstract

材料特性値を高精度に予測可能な材料特性値予測システムが提供される。また、その材料特性値予測システムが予測した材料特性値に基づいて後の工程の製造条件を適切に変更することによって、製品の歩留まりを向上させることが可能な金属板の製造方法が提供される。材料特性値予測システム(100)は、金属板を製造する設備における設備出力因子、外乱因子及び製造中の金属板の成分値を含む入力データを取得し、入力データを入力する予測モデルを用いて、製造される金属板の材料特性値を予測する、材料特性値予測部を備え、予測モデルは、入力データを入力して製造条件因子を出力する、機械学習によって生成された機械学習モデルと、製造条件因子を入力して材料特性値を出力する金属学モデルと、を含む。

Description

材料特性値予測システム及び金属板の製造方法
 本開示は、材料特性値予測システム及び金属板の製造方法に関する。本開示は、特に、金属板の製造工程の途中において製造に関するパラメータが設定範囲から外れた場合に、最終的に所望の材料特性値が得られるように、その工程より後の工程の製造条件の適正化を可能にする、材料特性値予測システム及び金属板の製造方法に関する。
 鋼板の製造工程において、成分調整後の連続鋳造工程で溶湯がスラブ(鋳片)となる。スラブは加熱されて、熱間圧延(熱延)工程で熱延鋼板となる。熱延鋼板は、冷間圧延(冷延)工程及び連続焼鈍工程を経て冷延鋼板となり得る。また、熱延鋼板は、冷間圧延工程及び連続焼鈍溶融亜鉛めっき工程を経て溶融亜鉛めっき鋼板となり得る。
 例えば鋼板などの金属板の製造では、所望の材料特性値を得るために、各工程において最適な製造条件が設定される。しかし、製鋼から焼鈍までの長い製造工程ですべての製造条件を目標通りとすることは困難である。その結果、材質のばらつきを低減することは難しかった。
 このような材質のばらつきを低減するために、特許文献1は、線形回帰モデルなどの統計確率モデルを使って製造実績から品質予測モデルを構築し、品質予測モデルによって製造する鋼の品質管理限界を決定することを開示する。
 特許文献2は、製造実績データから材質を予測するシステムを開示する。特許文献2は、事前予測モデルを学習データ(教師データ)とし、都度導出される予測モデルとの差異を求めることで、目標値からの外れ値を予測して、高精度に材質制御を行う技術を提案する。
 特許文献3は、製造実績を基にした品質予測システムで、学習用の予測モデルと、実際の対象製品の操業条件から導き出した品質予測モデルの類似度から、対象製品の品質を予測するシステムを開示する。特許文献3は、予測モデル構築に、従来の線形予測ではなく機械学習アルゴリズムを適用し、欠陥の発生確率を高度に予測する技術を開示する。
特開2013-84057号公報 特開2018-10521号公報 特開2019-74969号公報
 本開示者が検討を重ねた結果、従来技術は以下のような課題があることがわかった。まず、特許文献1~3に記載される技術は、直接的に調整可能な製造条件だけを考慮しており、例えば気温及び水温といった外乱を考慮していない。しかし、このような外乱は最終的な製造物の材料特性値に大きく影響を及ぼす。
 また、製造設備において新規材料を用いる場合などであって、製造工程の途中で目的の材料特性値を得られないと判定されるときに、後の工程の条件を変えて目的の材料特性値に近づけたいとの要望がある。しかし、特許文献1の技術は、統計確率モデルを用いて、製品品質が目標値に一致するための高精度な製造条件目標値を製造開始前に設定するものであり、製造途中における後の工程の条件変更ができない。また、特許文献2及び特許文献3の技術は、製造途中における後の工程の条件変更を想定していない。さらに、特許文献2及び特許文献3の技術は、精度の高い予測モデルを生成するために数多くの学習データが必要である。そのため、過去の製造実績が少ない又は無いときの適用が困難である。したがって、これらの従来技術と異なる予測モデルを用いて、高精度に材料特性値を予測するシステムが求められている。また、同一規格の材料を異なる日に製造することもあり、気温などの外乱因子により材料特性値がばらつくことがある。
 かかる点に鑑みてなされた本開示の目的は、材料特性値を高精度に予測可能な材料特性値予測システムを提供することにある。また、本開示の他の目的は、その材料特性値予測システムが予測した材料特性値に基づいて後の工程の製造条件を適切に変更することによって、製品の歩留まりを向上させることが可能な金属板の製造方法を提供することにある。
 本開示の一実施形態に係る材料特性値予測システムは、
 金属板を製造する設備における設備出力因子、外乱因子及び製造中の前記金属板の成分値を含む入力データを取得し、前記入力データを入力する予測モデルを用いて、製造される前記金属板の材料特性値を予測する、材料特性値予測部を備え、
 前記予測モデルは、
  前記入力データを入力して製造条件因子を出力する、機械学習によって生成された機械学習モデルと、
  前記製造条件因子を入力して前記材料特性値を出力する金属学モデルと、
 を含む。
 本開示の一実施形態に係る金属板の製造方法は、
 熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造方法であって、
 上記の材料特性値予測システムを用いて、前記熱間圧延工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
 前記製造条件因子は、粗圧延率、仕上圧延率、圧延入側温度、圧延出側温度、圧延パス間温度、冷却開始時間、冷却温度、冷却速度、ライン速度及び巻取温度のうち少なくとも1つを含む。
 また、本開示の一実施形態に係る金属板の製造方法は、
 熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造方法であって、
 上記の材料特性値予測システムを用いて、前記冷間圧延工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
 前記製造条件因子は、圧延率、冷圧率及び摩擦係数のうち少なくとも1つを含む。
 また、本開示の一実施形態に係る金属板の製造方法は、
 熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造方法であって、
 上記の材料特性値予測システムを用いて、前記焼鈍工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
 前記製造条件因子は、ライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度及び再加熱時間のうち少なくとも1つを含む。
 また、本開示の一実施形態に係る金属板の製造方法は、
 焼鈍工程、めっき工程及び再加熱工程を含む金属板の製造方法であって、
 上記の材料特性値予測システムを用いて、前記焼鈍工程、前記めっき工程及び前記再加熱工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
 前記製造条件因子は、ライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度、再加熱時間、合金化温度、合金化時間及び露点のうち少なくとも1つを含む。
 本開示によれば、材料特性値を高精度に予測可能な材料特性値予測システムを提供することができる。本開示によれば、その材料特性値予測システムが予測した材料特性値に基づいて後の工程の製造条件を適切に変更することによって、製品の歩留まりを向上させることが可能な金属板の製造方法を提供することができる。
図1は、材料特性値予測システムの構成例を示す図である。 図2は、材料特性値予測システムの別の構成例を説明するための図である。 図3は、情報処理装置のブロック図である。 図4は、予測モデルを用いた材料特性値の予測の流れを示す図である。 図5は、予測モデルを用いた熱延鋼板の引張強さの予測の流れを示す図である。 図6は、金属板の製造において実行される材料特性値の予測に関する処理を示すフローチャートである。
(材料特性値予測システムの構成)
 図1は、本開示の一実施形態に係る、例えば鉄鋼における材料特性値予測システム100の構成例を示す。材料特性値予測システム100は、金属板の製造で使用される情報処理装置10を備えて構成される。情報処理装置10は、操業を統括するプロセスコンピュータであってよい。図1の例において、鋼板をコイル状に巻いた鋼帯9が製造物であるが、製造物は鋼帯9に限られない。例えば製造物は鉄鋼材料である金属の平板であってよい。つまり、材料特性値予測システム100は、広義の金属板の製造方法で用いられ得る。また、鉄鋼材料は炭素鋼であってよいし、合金鋼であってよい。また、金属板は鉄鋼に限定されず、例えばアルミ合金、銅、チタン、マグネシウム等を素材としてよい。
 図1に示すように材料特性値予測システム100は、転炉1と、連続鋳造機2と、加熱炉3と、スケールブレーカー4と、粗圧延機5と、仕上圧延機6と、冷却装置7と、巻取装置8と、鋼帯9と、情報処理装置10とを含む。
 製造工程において、まず原料の鉄鉱石は、石灰石及びコークスとともに高炉に装入され、溶融状態の銑鉄が生成される。高炉で出銑された銑鉄に対して転炉1において炭素等の成分調整が行われ、二次精錬により最終的な成分調整がなされる。連続鋳造機2では、精錬された鉄鋼を鋳造して鋳片(スラブ)と呼ばれる中間素材を製造する。その後、加熱炉3における加熱工程によりスラブを加熱し、粗圧延機5と仕上圧延機6による熱間圧延工程、冷却装置7による冷却工程、巻取装置8を経て、鋼帯9が製造される。製造工程は、冷却工程の後に、適宜、酸洗工程、冷間圧延工程、焼鈍工程、スキンパス工程及び検査工程等の処理工程を含んでよい。
 ここで、材料特性値予測システム100は、図1と異なる金属板の製造設備を備えて構成されてよい。材料特性値予測システム100は、例えば図2に示すように、溶融亜鉛めっき鋼板を製造するための連続焼鈍設備(以下、溶融めっきライン)を備えてよい。図2の溶融めっきラインは、冷間圧延された鋼板を溶融亜鉛めっき鋼板にする。
 溶融めっきラインは、焼鈍部として、加熱帯11、均熱帯12及び冷却帯13を有する。溶融めっきラインにおける焼鈍工程とは、焼鈍部で実行される熱処理工程であって、鋼板を室温付近から昇温させ、所定の温度に保持した後、亜鉛めっきを行うのに適した温度まで鋼板の温度を低下させる。
 また、溶融めっきラインでは、焼鈍部の下流側にめっき部を有する。溶融めっきラインは、めっき部として、スナウト14、亜鉛めっき槽15及びワイピング装置16を有する。溶融めっきラインにおけるめっき工程とは、めっき部で実行される鋼板に適量のめっきを付着させる工程である。
 また、溶融めっきラインでは、めっき部の下流側に再加熱部を有する。溶融めっきラインは、再加熱部として、合金化帯17、保熱帯18、最終冷却帯19を有する。溶融めっきラインにおける再加熱工程とは、再加熱部で実行される熱処理工程である。
 加熱帯11は、鋼板を昇温させるための設備であり、鋼種によって650~950℃程度の範囲で予め設定された温度まで加熱する。均熱帯12は、鋼板を所定温度に保持する設備である。冷却帯13は、亜鉛めっきを行うのに適した温度として450℃程度まで冷却する設備である。
 スナウト14は、内部に水素、窒素、水蒸気を含む混合ガスが供給され、鋼板が亜鉛めっき槽15に浸漬されるまでの雰囲気ガスを調整する。亜鉛めっき槽15は、内部にシンクロールを有し、スナウト14を通過した鋼板を下方に向けて浸漬し、表面に溶融亜鉛が付着した鋼板をめっき浴の上方に引き上げる。ワイピング装置16は、鋼板の両側に配置されたノズルからワイピングガスを吹き付けて、鋼板の表面に付着した余剰の溶融亜鉛を掻き取り、溶融亜鉛の付着量(目付量)を調節する。
 合金化帯17は、ワイピング装置16を通過した鋼板を、Zn-Fe合金化反応が進行する温度(通常、500℃程度)まで昇温する。保熱帯18は、合金化反応の進行に必要な時間を確保するために、鋼板の温度を保持する。最終冷却帯19は、合金化処理を行った鋼板を室温付近まで最終冷却する。
 このように、材料特性値予測システム100は、例えば熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造設備を備えて構成され得る。また、材料特性値予測システム100は、例えば焼鈍工程、めっき工程及び再加熱工程を含む金属板の製造設備を備えて構成され得る。
(情報処理装置の構成)
 図3は情報処理装置10のブロック図を示す。情報処理装置10は、制御部110と、記憶部120と、通信部130と、入力部140と、出力部150とを備える。情報処理装置10は、製造物の所望の材料特性値に基づき必要な製造条件を算出して、各製造装置に対して製造条件因子を設定する。材料特性値は、製造物の強度及び外力等への抵抗性などの物理的特性を示す値である。材料特性値の一例として引張強さが挙げられる。また、製造条件因子は、製造物を製造する工程で調整可能なパラメータ(製造パラメータ)である。製造条件因子の一例として圧延率が挙げられる。
 本実施形態において、情報処理装置10は、機械学習によって生成された機械学習モデルと金属学モデルとを含む予測モデル122を生成する。情報処理装置10は、予測モデル122を用いて材料特性値を予測する材料特性値予測装置として機能する。また、情報処理装置10は、予測した材料特性値に基づいて、後の工程の製造条件因子を修正することができる。予測モデル122の詳細及び材料特性値の予測の流れについては後述する。
 制御部110には、少なくとも1つのプロセッサ、少なくとも1つの専用回路又はこれらの組み合わせが含まれる。プロセッサは、CPU(central processing unit)等の汎用プロセッサ又は特定の処理に特化した専用プロセッサである。専用回路は、例えば、FPGA(field-programmable gate array)又はASIC(application specific integrated circuit)である。制御部110は、情報処理装置10の各部を制御しながら、情報処理装置10の動作に関わる処理を実行する。
 本実施形態において、制御部110は材料特性値予測部111を備える。材料特性値予測部111は、金属板を製造する設備における設備出力因子、外乱因子及び製造中の金属板の成分値を含む入力データを取得し、入力データを入力する予測モデル122を用いて、製造される金属板の材料特性値を予測する。
 記憶部120には、少なくとも1つの半導体メモリ、少なくとも1つの磁気メモリ、少なくとも1つの光メモリ又はこれらのうち少なくとも2種類の組み合わせが含まれる。半導体メモリは、例えばRAM(random access memory)又はROM(read only memory)である。RAMは、例えばSRAM(static random access memory)又はDRAM(dynamic random access memory)である。ROMは、例えばEEPROM(electrically erasable programmable read only memory)である。記憶部120は、例えば、主記憶装置、補助記憶装置又はキャッシュメモリとして機能する。記憶部120には、情報処理装置10の動作に用いられるデータと、情報処理装置10の動作によって得られたデータとが記憶される。例えば記憶部120は実績データベース121及び予測モデル122を記憶する。実績データベース121は製造設備及びそれを用いた操業に関する様々な測定値及び設定値を記憶する。実績データベース121に記憶される測定値及び設定値は、情報処理装置10が予測モデル122を生成するための学習データとして用いられるものを含む。
 通信部130には、少なくとも1つの通信用インタフェースが含まれる。通信用インタフェースは、例えばLANインタフェース、WANインタフェース、LTE(Long Term Evolution)、4G(4th generation)又は5G(5th generation)等の移動通信規格に対応したインタフェース又はBluetooth(登録商標)等の近距離無線通信に対応したインタフェースである。通信部130は、情報処理装置10の動作に用いられるデータを受信する。また、通信部130は、情報処理装置10の動作によって得られるデータを送信する。
 入力部140には、少なくとも1つの入力用インタフェースが含まれる。入力用インタフェースは、例えば物理キー、静電容量キー、ポインティングデバイス、ディスプレイと一体的に設けられたタッチスクリーン又はマイクである。入力部140は、情報処理装置10の動作に用いられるデータを入力する操作を受け付ける。入力部140は、情報処理装置10に備えられる代わりに、外部の入力機器として情報処理装置10に接続されてよい。接続方式としては、例えばUSB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)又はBluetooth(登録商標)等の任意の方式を用いることができる。
 出力部150には、少なくとも1つの出力用インタフェースが含まれる。出力用インタフェースは、例えば、ディスプレイ又はスピーカである。ディスプレイは、例えば、LCD(liquid crystal display)又は有機EL(electro luminescence)ディスプレイである。出力部150は、情報処理装置10の動作によって得られるデータを出力する。出力部150は、情報処理装置10に備えられる代わりに、外部の出力機器として情報処理装置10に接続されてよい。接続方式としては、例えば、USB、HDMI(登録商標)又はBluetooth(登録商標)等の任意の方式を用いることができる。
 情報処理装置10の機能は、本実施形態で行われる情報処理のプログラムを、制御部110に相当するプロセッサで実行することにより実現される。すなわち、情報処理装置10の機能は、ソフトウェアにより実現される。プログラムは、情報処理装置10の動作をコンピュータに実行させることで、コンピュータを情報処理装置10として機能させる。
 ここで、情報処理装置10の一部又は全ての機能が、制御部110に相当する専用回路により実現されてよい。すなわち、情報処理装置10の一部又は全ての機能が、ハードウェアにより実現されてよい。
(予測モデル)
 図4は、予測モデル122を用いた材料特性値の予測の流れを示す図である。本開示者が予測モデル122に関して鋭意検討を重ねた結果、金属学パラメータを実操業パラメータへ変換した、金属学と操業実績のハイブリッドパラメータを用いることにより、材料特性値の予測精度を向上できることがわかった。
 情報処理装置10が材料特性値を予測するために用いる予測モデル122は、機械学習モデルと金属学モデルとを含んで構成される。本実施形態において、機械学習モデルは、設備出力因子、外乱因子及び製造中の金属板の成分値を含む入力データを入力して、製造条件因子を出力する。製造条件因子は、上記のとおり、製造物を製造する工程で調整可能なパラメータである。本実施形態において、製造条件因子は、金属板の製造工程の一部の工程の製造条件を示し、どの工程を対象とするかによって内容が異なる。製造条件因子の具体例については後述する。機械学習モデルは、機械学習によって生成され、例えば外乱因子を含む学習データを用いることで、製造条件因子に対する外乱因子の影響を反映することができる。機械学習モデルは、金属板を製造する製造設備の操業に関する実操業パラメータ、操業実績のパラメータ及び製造条件因子の関係を精度よく示すことができる。
 また、本実施形態において、金属学モデルは、製造条件因子を入力して材料特性値を出力する。材料特性値は、引張強さ、降伏強さ、伸び、穴広げ率、曲げ性、r値、硬さ、疲労特性、衝撃値、遅れ破壊値、摩耗値、化成処理性、高温特性、低温靭性、耐食性、磁気特性及び表面性状のうち少なくとも1つを含んでよい。金属学モデルは、金属の物理化学現象に基づく予測式である。ここで、金属学モデルは、複数のモデルで構成されてよい。例えば、金属学モデルは、製造条件因子を入力して金属学現象因子を出力する第1の金属学モデルと、その金属学現象因子を入力して材料特性値を出力する第2の金属学モデルと、を含んでよい。金属学現象因子は、体積分率、表面性状、析出物寸法、析出物密度、析出物形状、析出物分散状態、再結晶率、相分率、結晶粒形状、集合組織、残留応力、転位密度及び結晶粒径のうち少なくとも1つを含んでよい。金属学現象が実測できる場合は、金属学現象因子実測値を用いてよい。金属学現象を測定する方法としては、例えばインラインX線測定器、超音波探傷測定器、磁気測定器などが挙げられる。
 金属学モデルは、物理化学現象の理論式に基づいて、金属学現象を高精度に示す。金属学モデルは、さらに製造装置の操業実績に基づく経験則を反映するものであってよい。金属学モデルは、金属学パラメータ、製造条件因子及び材料特性値の関係を精度よく示すことができる。また、金属学モデルは、機械学習によらずに生成されるものであり、学習データの数の多少によって精度が変化するものではない。よって、過去の製造実績が少ない又は無いときであっても、金属学モデルを用いて逆解析を行うことによって、製造条件因子の調整を正確に行うことが可能である。逆解析では、例えば、製造条件因子を入力値として構築した金属学モデルによる材料特性値の予測モデルに、モデルの適用範囲でランダムに入力値を与え、材料特性値を推定し目標の材料特性値に近い入力値を最適な製造条件因子とする。
 図5は、予測モデル122を用いた熱延鋼板の引張強さの予測の流れを示す図である。例えば、製鋼工程で製造されたスラブを熱間圧延工程、冷間圧延工程及び焼鈍工程で処理して最終的に鋼板を製造する過程の途中で、図5に示される引張強さの予測が実行される。
 材料特性値予測システム100の情報処理装置10は、スラブの成分が設定範囲から外れていると判定した場合に、その後の熱間圧延工程における設備出力因子、外乱因子及び熱延鋼板の成分値を含む入力データを取得する。設備出力因子は、例えば熱間圧延工程における加熱炉ヒーター出力、加熱炉連続出力時間、搬送ロール回転数、バーヒーター出力値、圧延荷重、上下ロール圧延荷重差、スタンド間スプレー圧力、ランナウトテーブル冷却水量及びランナウトテーブル冷却水圧の少なくとも1つを含む。外乱因子は、例えば熱間圧延工程における冷却水温及び気温の少なくとも1つを含む。成分値は、例えば熱延鋼板について測定されたC、Si、Mn、P、S、Al、N、O、Ca、Ni、B、Ti、Nb、Mo、Cr、Sn、W及びTaの少なくとも1つの値を含む。ここで、外乱因子は、例えば、熱延工程での冷却水温、気温、さらに各工程を通過する際の予想される気温などが用いられてよい。また、成分値は、製鋼工程の値が使用されてよい。
 情報処理装置10は、機械学習モデルに入力データを入力して、製造条件因子を得る。図5の例において、機械学習モデルは熱間圧延工程において設定可能な製造条件因子を出力する。製造条件因子は、例えば熱間圧延工程における粗圧延率、仕上圧延率、圧延入側温度、圧延出側温度、冷却開始時間、冷却速度、ライン速度及び巻取温度のうち少なくとも1つを含む。
 情報処理装置10は、金属学モデルに製造条件因子を入力して、予測値である鋼板の引張強さを得る。図5の例において、金属学モデルは、製造条件因子を入力して金属学現象因子を出力する第1の金属学モデルと、金属学現象因子を入力して材料特性値を出力する第2の金属学モデルと、を含む。第1の金属学モデルは、例えばZener-Hollomon則をベースとしたモデルである。第2の金属学モデルは、例えばHall-Petch則をベースとしたモデルである。
 Zener-Hollomon則とは、金属が高温で加工された際の金属組織の再結晶を推定する経験則である。本開示では、入力値に製造実績値を用いたZener-Hollomon則をベースとした改良モデルにより金属学現象因子、例えば結晶粒径を出力する。
 Hall-Petch則とは、金属組織の結晶粒径から材料強度を推定する経験則である。本開示では、入力値に製造実績値を用いたHall-Petch則をベースとした改良モデルにより金属組織の結晶粒径から引張強さを出力する。
 機械学習モデル及び金属学モデルを含む予測モデル122は、金属板の製造設備の工程に合わせて生成される。図5は、熱間圧延工程における予測モデル122の例である。例えば冷間圧延工程及び焼鈍工程について、それぞれ異なる予測モデル122が用意される。
 熱間圧延工程の後の冷間圧延工程における予測モデル122は、例えば熱間圧延工程が実行されて熱延鋼板の圧延条件が設定範囲から外れていると判定された場合に、材料特性値の予測に用いられる。このとき、情報処理装置10は冷間圧延工程における入力データを取得する。機械学習モデルに入力される設備出力因子は、例えば冷間圧延工程における圧延荷重、上下ロール圧延荷重差、ロール径、ロール回転数及び潤滑条件の少なくとも1つを含む。また、機械学習モデルが出力する製造条件因子は、例えば冷間圧延工程における圧延率、冷圧率及び摩擦係数のうち少なくとも1つを含む。
 また、冷間圧延工程の後の焼鈍工程における予測モデル122は、例えば冷間圧延工程が実行されて冷延鋼板の圧延条件が設定範囲から外れていると判定された場合に、材料特性値の予測に用いられる。このとき、情報処理装置10は焼鈍工程における入力データを取得する。機械学習モデルに入力される設備出力因子は、例えば焼鈍工程における焼鈍炉出力値、冷却ガス噴射量、ガス種の分率及び合金化炉出力値のうち少なくとも1つを含む。また、機械学習モデルが出力する製造条件因子は、例えば焼鈍工程におけるライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度及び再加熱時間のうち少なくとも1つを含む。
 また、例えば製鋼工程で製造されたスラブを熱間圧延工程、冷間圧延工程、焼鈍工程、めっき工程及び再加熱工程で処理して最終的にめっき鋼板を製造する過程の途中でも、引張強さの予測が実行され得る。
 予測モデル122は、例えばスラブの成分が設定範囲から外れていると判定された場合に、めっき鋼板の材料特性値の予測に用いられる。このとき、情報処理装置10は製鋼工程よりも後の工程、すなわち焼鈍工程、めっき工程及び再加熱工程における入力データを取得する。機械学習モデルに入力される設備出力因子は、例えば焼鈍炉出力値、冷却ガス噴射量、ガス種の分率及び合金化炉出力値の少なくとも1つを含む。また、機械学習モデルが出力する製造条件因子は、例えばライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度、再加熱時間、合金化温度、合金化時間及び露点のうち少なくとも1つを含む。この例において、入力データは、製鋼工程の後の複数の工程の設備出力因子、すなわち焼鈍工程の設備出力因子、めっき工程の設備出力因子及び再加熱工程の設備出力因子を含む。また、機械学習モデルの出力は、製鋼工程の後の複数の工程の製造条件因子、すなわち焼鈍工程の製造条件因子、めっき工程の製造条件因子及び再加熱工程の製造条件因子を含む。機械学習モデルは、後の工程に関する入力データから後の工程に関する製造条件因子を出力するが、後の工程が1つの工程であってよいし、この例のように複数の工程であってよい。
(機械学習モデルの生成)
 情報処理装置10は、上記の予測を実行する前に、実績データベース121から学習データを取得し、学習データを用いて機械学習モデルを生成する。学習データは、機械学習モデルが用いられる金属板の製造方法の工程に応じて選択される。例えば熱間圧延工程を対象とする機械学習モデルを生成するための学習データは、入力として、加熱炉ヒーター出力、加熱炉連続出力時間、搬送ロール回転数、バーヒーター出力値、圧延荷重、上下ロール圧延荷重差、スタンド間スプレー圧力、ランナウトテーブル冷却水量及びランナウトテーブル冷却水圧を含み、出力として、粗圧延率、仕上圧延率、圧延入側温度、圧延出側温度、圧延パス間温度、冷却開始時間、冷却温度、冷却速度、ライン速度及び巻取温度を含むものが選択されてよい。例えば冷間圧延工程を対象とする機械学習モデルを生成するための学習データは、入力として圧延荷重、上下ロール圧延荷重差、ロール径、ロール回転数及び潤滑条件を含み、出力として圧延率、冷圧率及び摩擦係数を含むものが選択されてよい。例えば冷延鋼板の製造工程を対象とする機械学習モデルを生成するための学習データは、入力として、焼鈍炉出力値及び冷却ガス噴射量を含み、出力として、ライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度及び再加熱時間を含むものが選択されてよい。例えばめっき鋼板の製造工程を対象とする機械学習モデルを生成するための学習データは、入力として焼鈍炉出力値、冷却ガス噴射量、ガス種の分率及び合金化炉出力値を含み、出力としてライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度、再加熱時間、合金化温度、合金化時間及び露点を含むものが選択されてよい。
 ここで、全ての学習データは、入力として少なくとも1つの外乱因子を含む。そのため、機械学習モデルは、製造物の材料特性値に影響を及ぼす外乱を考慮したものになる。また、全ての学習データの入力は少なくとも1つの成分値を含む。このような学習データを用いて機械学習モデルを生成する手法は、例えばニューラルネットワークであってよいが、これに限定されない。別の例として、決定木又はランダムフォレスト等の手法によって機械学習モデルが生成されてよい。
(金属板の製造方法)
 金属板の製造方法は、上記の材料特性値予測システム100を用いて、金属板の材料特性値を予測する工程を含んで実行され得る。図6は、金属板の製造において実行される材料特性値の予測に関する処理を示すフローチャートである。
 材料特性値予測システム100は、実行された金属板の製造工程が検証対象工程でなければ待機し(ステップS1のNo)、検証対象工程であればステップS2の処理に進む(ステップS1のYes)。ここで、検証対象工程は、金属板の製造工程から選択される一部の工程であって、ステップS2の判定を実行する工程である。例えば、金属板の製造工程が製鋼工程、熱間圧延工程、第1の酸洗工程、冷間圧延工程、焼鈍工程、第2の酸洗工程、スキンパス工程、検査工程及び出荷工程で構成される場合に、検証対象工程は、製鋼工程、熱間圧延工程、冷間圧延工程及び焼鈍工程であってよい。検証対象工程は、このように複数であってよいし、1つであってよい。また、検証対象工程は、複数の製造条件因子を有すること、すなわち複数のパラメータで製造条件を調整可能であることを条件に選択されてよい。
 材料特性値予測システム100は、検証対象工程に関するパラメータが設定範囲を外れていなければステップS1の処理に戻り(ステップS2のNo)、パラメータが設定範囲を外れていればステップS3の処理に進む(ステップS2のYes)。ここで、検証対象工程に関するパラメータは、最終的な製造物の材料特性値が目標(所望の材料特性値)の範囲から外れることを予測させ得る、製造途中の製造物の測定値又は製造設備の測定値である。例えば、検証対象工程である製鋼工程が実行された場合に、パラメータはスラブのCの成分の測定値であってよい。そして、スラブのCの成分の測定値が、通常の基準値から誤差の範囲を大きく超えて外れている場合に、材料特性値予測システム100はステップS3の処理に進んでよい。
 材料特性値予測システム100は、上記のように、予測モデル122を用いて材料特性値を予測する(ステップS3)。ここで、材料特性値予測システム100は、製造途中の製造物に異常があると判定する場合にだけ材料特性値を予測する。換言すると、製造条件に問題がないと判定される場合には、材料特性値の予測演算を実行せず、後述する製造条件の修正も行わない。そのため、効率的に金属板の製造を進めることができる。
 材料特性値予測システム100は、予測された材料特性値と所望の材料特性値とに基づき、金属学モデルを用いて、後の工程の製造条件因子を算出する(ステップS4)。材料特性値予測システム100は、金属学モデルを用いて逆解析を行って、例えば予測された材料特性値と所望の材料特性値との差異を小さくするための製造条件因子の修正値を算出する。例えば、製鋼工程が実行されてスラブの成分が設定範囲を外れた場合に、材料特性値予測システム100は、その後の工程である熱間圧延工程における予測モデル122を用いて、最終的な製造物の材料特性値を予測してよい。そして、材料特性値予測システム100は、予測された材料特性値を製造当初の目標値に近づけるために、金属学モデルを逆解析して熱間圧延工程の製造条件因子の修正値を算出してよい。
 材料特性値予測システム100は、ステップS4で算出した値に基づいて、後の工程の製造条件を修正する(ステップS5)。その後、材料特性値予測システム100はステップS1の処理に戻り、次の検証対象工程で同様の処理を実行する。例えば上記のように熱間圧延工程の製造条件が修正されて、検証対象工程である熱間圧延工程が実行された場合に、一連の処理が実行されてよい。修正された製造条件でも熱延鋼板の成分が設定範囲を外れている場合に、材料特性値予測システム100は、その後の工程である冷間圧延工程における予測モデル122を用いて、最終的な製造物の材料特性値を予測してよい。そして、材料特性値予測システム100は、予測された材料特性値を製造当初の目標値に近づけるために、金属学モデルを逆解析して冷間圧延工程の製造条件因子の修正値を算出してよい。材料特性値予測システム100は、修正値に基づいて冷間圧延工程の製造条件を修正してよい。
 以上のように、本実施形態に係る材料特性値予測システム100は、上記の構成によって、最終的な製造物の材料特性値に大きく影響を及ぼす外乱を考慮した予測モデル122を用いて、材料特性値を高精度に予測することができる。また、本実施形態に係る金属板の製造方法は、材料特性値予測システム100が予測した材料特性値に基づいて後の工程の製造条件を適切に変更することによって、製品の歩留まりを向上させることが可能である。
 本開示を図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。従って、これらの変形及び修正は本開示の範囲に含まれることに留意されたい。例えば、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段及びステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。
 ここで、材料特性値予測システム100を用いて製造される金属板は、特定の分野で使用されるものに限定されない。つまり、材料特性値予測システム100を用いて製造される金属板は、自動車、建機、電車、列車等の輸送機器、医療、食料及び家電など幅広く使用されるものである。
 また、上記の実施形態において、気温及び冷却水などの水温の予期できない変化を外乱として例示したが、外乱はこれらに限定されない。
 1 転炉
 2 連続鋳造機
 3 加熱炉
 4 スケールブレーカー
 5 粗圧延機
 6 仕上圧延機
 7 冷却装置
 8 巻取装置
 9 鋼帯
 10 情報処理装置
 11 加熱帯
 12 均熱帯
 13 冷却帯
 14 スナウト
 15 亜鉛めっき槽
 16 ワイピング装置
 17 合金化帯
 18 保熱帯
 19 最終冷却帯
 100 材料特性値予測システム
 110 制御部
 111 材料特性値予測部
 120 記憶部
 121 実績データベース
 122 予測モデル
 130 通信部
 140 入力部
 150 出力部

Claims (14)

  1.  金属板を製造する設備における設備出力因子、外乱因子及び製造中の前記金属板の成分値を含む入力データを取得し、前記入力データを入力する予測モデルを用いて、製造される前記金属板の材料特性値を予測する、材料特性値予測部を備え、
     前記予測モデルは、
      前記入力データを入力して製造条件因子を出力する、機械学習によって生成された機械学習モデルと、
      前記製造条件因子を入力して前記材料特性値を出力する金属学モデルと、
     を含む、材料特性値予測システム。
  2.  前記金属学モデルは金属の物理化学現象に基づく予測式である、請求項1に記載の材料特性値予測システム。
  3.  前記金属学モデルは、前記製造条件因子を入力して金属学現象因子を出力する第1の金属学モデルと、前記金属学現象因子を入力して前記材料特性値を出力する第2の金属学モデルと、を含み、
     前記金属学現象因子は、体積分率、表面性状、析出物寸法、析出物密度、析出物形状、析出物分散状態、再結晶率、相分率、結晶粒形状、集合組織、残留応力、転位密度及び結晶粒径のうち少なくとも1つを含む、請求項1又は2に記載の材料特性値予測システム。
  4.  前記材料特性値は、引張強さ、降伏強さ、伸び、穴広げ率、曲げ性、r値、硬さ、疲労特性、衝撃値、遅れ破壊値、摩耗値、化成処理性、高温特性、低温靭性、耐食性、磁気特性及び表面性状のうち少なくとも1つを含む、請求項1から3のいずれか一項に記載の材料特性値予測システム。
  5.  前記金属板は鉄鋼である、請求項1から4のいずれか一項に記載の材料特性値予測システム。
  6.  熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造方法であって、
     請求項1から5のいずれか一項に記載の材料特性値予測システムを用いて、前記熱間圧延工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
     前記製造条件因子は、粗圧延率、仕上圧延率、圧延入側温度、圧延出側温度、圧延パス間温度、冷却開始時間、冷却温度、冷却速度、ライン速度及び巻取温度のうち少なくとも1つを含む、金属板の製造方法。
  7.  前記設備出力因子は、加熱炉ヒーター出力、加熱炉連続出力時間、搬送ロール回転数、バーヒーター出力値、圧延荷重、上下ロール圧延荷重差、スタンド間スプレー圧力、ランナウトテーブル冷却水量及びランナウトテーブル冷却水圧のうち少なくとも1つを含む、請求項6に記載の金属板の製造方法。
  8.  熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造方法であって、
     請求項1から5のいずれか一項に記載の材料特性値予測システムを用いて、前記冷間圧延工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
     前記製造条件因子は、圧延率、冷圧率及び摩擦係数のうち少なくとも1つを含む、金属板の製造方法。
  9.  前記設備出力因子は、圧延荷重、上下ロール圧延荷重差、ロール径、ロール回転数及び潤滑条件のうち少なくとも1つを含む、請求項8に記載の金属板の製造方法。
  10.  熱間圧延工程、冷間圧延工程及び焼鈍工程を含む金属板の製造方法であって、
     請求項1から5のいずれか一項に記載の材料特性値予測システムを用いて、前記焼鈍工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
     前記製造条件因子は、ライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度及び再加熱時間のうち少なくとも1つを含む、金属板の製造方法。
  11.  前記設備出力因子は、焼鈍炉出力値、冷却ガス噴射量、ガス種の分率及び合金化炉出力値のうち少なくとも1つを含む、請求項10に記載の金属板の製造方法。
  12.  焼鈍工程、めっき工程及び再加熱工程を含む金属板の製造方法であって、
     請求項1から5のいずれか一項に記載の材料特性値予測システムを用いて、前記焼鈍工程、前記めっき工程及び前記再加熱工程における前記入力データを取得し、前記金属板の材料特性値を予測する工程を備え、
     前記製造条件因子は、ライン速度、焼鈍温度、焼鈍時間、昇温速度、冷却温度、冷却時間、冷却速度、再加熱温度、再加熱速度、再加熱時間、合金化温度、合金化時間及び露点のうち少なくとも1つを含む、金属板の製造方法。
  13.  前記設備出力因子は、焼鈍炉出力値、冷却ガス噴射量、ガス種の分率及び合金化炉出力値のうち少なくとも1つを含む、請求項12に記載の金属板の製造方法。
  14.  予測された前記金属板の材料特性値と所望の材料特性値とに基づき、製造条件を修正する工程を含む、請求項6から13のいずれか一項に記載の金属板の製造方法。
PCT/JP2021/029901 2020-09-14 2021-08-16 材料特性値予測システム及び金属板の製造方法 WO2022054500A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180061689.7A CN116056813A (zh) 2020-09-14 2021-08-16 材料特性值预测系统及金属板的制造方法
US18/043,579 US20230323503A1 (en) 2020-09-14 2021-08-16 Material characteristic value prediction system and method of manufacturing metal sheet
MX2023002990A MX2023002990A (es) 2020-09-14 2021-08-16 Sistema de prediccion del valor caracteristico del material y metodo para fabricar lamina de metal.
KR1020237011473A KR20230061513A (ko) 2020-09-14 2021-08-16 재료 특성값 예측 시스템 및 금속판의 제조 방법
EP21866460.5A EP4183495A4 (en) 2020-09-14 2021-08-16 MATERIAL CHARACTERISTIC VALUE PREDICTION SYSTEM AND METAL SHEET PRODUCTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020154166A JP7200982B2 (ja) 2020-09-14 2020-09-14 材料特性値予測システム及び金属板の製造方法
JP2020-154166 2020-09-14

Publications (1)

Publication Number Publication Date
WO2022054500A1 true WO2022054500A1 (ja) 2022-03-17

Family

ID=80632272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029901 WO2022054500A1 (ja) 2020-09-14 2021-08-16 材料特性値予測システム及び金属板の製造方法

Country Status (7)

Country Link
US (1) US20230323503A1 (ja)
EP (1) EP4183495A4 (ja)
JP (1) JP7200982B2 (ja)
KR (1) KR20230061513A (ja)
CN (1) CN116056813A (ja)
MX (1) MX2023002990A (ja)
WO (1) WO2022054500A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810000B (zh) * 2022-07-29 2023-07-21 中國鋼鐵股份有限公司 用於鋼帶連續退火製程之自動溫控方法及電腦程式產品

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022203248A1 (de) * 2022-04-01 2023-10-05 Sms Group Gmbh Verfahren zum Herstellen eines Metallproduktes
CN117724433B (zh) * 2024-02-07 2024-04-19 东北大学 基于多通道分布式深度集成预测的冷轧生产前馈控制方法
CN118460840B (zh) * 2024-07-09 2024-10-15 辰信轴承科技(山东)有限公司 罩式球化退火炉自动连续式生产线的智能监控系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045607A2 (de) 2001-11-30 2003-06-05 Voest-Alpine Industrieanlagenbau Gmbh & Co Verfahren zum stranggiessen
JP2005315703A (ja) 2004-04-28 2005-11-10 Nippon Steel Corp 鋼材の材質予測方法
JP2010172962A (ja) * 2009-02-02 2010-08-12 Toshiba Mitsubishi-Electric Industrial System Corp 圧延製品の特性予測方法
JP2019087152A (ja) * 2017-11-09 2019-06-06 新日鐵住金株式会社 製造プロセスの状態予測装置、方法及びプログラム、並びに製造プロセスの制御システム
WO2020148917A1 (ja) 2019-01-17 2020-07-23 Jfeスチール株式会社 金属材料の製造仕様決定方法、製造方法、および製造仕様決定装置
JP2020115258A (ja) * 2019-01-17 2020-07-30 Jfeスチール株式会社 金属材料の設計支援方法及び設計支援装置
WO2020152993A1 (ja) 2019-01-21 2020-07-30 Jfeスチール株式会社 金属材料の設計支援方法、予測モデルの生成方法、金属材料の製造方法、及び設計支援装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806267A1 (de) * 1997-11-10 1999-05-20 Siemens Ag Verfahren und Einrichtung zur Steuerung einer hüttentechnischen Anlage
JP5704040B2 (ja) 2011-10-06 2015-04-22 新日鐵住金株式会社 製品品質の管理方法、及び製品品質の管理装置
JP6834209B2 (ja) 2016-07-14 2021-02-24 日本製鉄株式会社 製品の状態予測装置、製品の状態制御装置、製品の状態予測方法及びプログラム
US20200024712A1 (en) * 2016-09-30 2020-01-23 Uacj Corporation Device for predicting aluminum product properties, method for predicting aluminum product properties, control program, and storage medium
JP6953990B2 (ja) 2017-10-17 2021-10-27 日本製鉄株式会社 品質予測装置及び品質予測方法
US11915105B2 (en) * 2019-02-05 2024-02-27 Imagars Llc Machine learning to accelerate alloy design

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003045607A2 (de) 2001-11-30 2003-06-05 Voest-Alpine Industrieanlagenbau Gmbh & Co Verfahren zum stranggiessen
JP2005315703A (ja) 2004-04-28 2005-11-10 Nippon Steel Corp 鋼材の材質予測方法
JP2010172962A (ja) * 2009-02-02 2010-08-12 Toshiba Mitsubishi-Electric Industrial System Corp 圧延製品の特性予測方法
JP2019087152A (ja) * 2017-11-09 2019-06-06 新日鐵住金株式会社 製造プロセスの状態予測装置、方法及びプログラム、並びに製造プロセスの制御システム
WO2020148917A1 (ja) 2019-01-17 2020-07-23 Jfeスチール株式会社 金属材料の製造仕様決定方法、製造方法、および製造仕様決定装置
JP2020115258A (ja) * 2019-01-17 2020-07-30 Jfeスチール株式会社 金属材料の設計支援方法及び設計支援装置
EP3912740A1 (en) 2019-01-17 2021-11-24 JFE Steel Corporation Production specification determination method, production method, and production specification determination device for metal material
WO2020152993A1 (ja) 2019-01-21 2020-07-30 Jfeスチール株式会社 金属材料の設計支援方法、予測モデルの生成方法、金属材料の製造方法、及び設計支援装置
EP3916651A1 (en) 2019-01-21 2021-12-01 JFE Steel Corporation Design assistance method for metal material, prediction model generation method, metal material manufacturing method, and design assistance device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KUEGEL M.: "Five use case ideas to inspire data driven innovation", WHITE PAPER, 1 June 2020 (2020-06-01), pages 1 - 11, XP093115724
LI, F. ET AL.: "Ensemble Machine Learning Systems for the Estimation of Steel Quality", IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA, 2018, pages 2245 - 2252, XP033508549, DOI: 10.1109/BigData.2018.8622583
See also references of EP4183495A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI810000B (zh) * 2022-07-29 2023-07-21 中國鋼鐵股份有限公司 用於鋼帶連續退火製程之自動溫控方法及電腦程式產品

Also Published As

Publication number Publication date
JP7200982B2 (ja) 2023-01-10
KR20230061513A (ko) 2023-05-08
EP4183495A1 (en) 2023-05-24
JP2022048038A (ja) 2022-03-25
CN116056813A (zh) 2023-05-02
MX2023002990A (es) 2023-04-10
US20230323503A1 (en) 2023-10-12
EP4183495A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2022054500A1 (ja) 材料特性値予測システム及び金属板の製造方法
CN113272079B (zh) 金属材料的制造规格决定方法、制造方法和制造规格决定装置
US20170002440A1 (en) Method for optimally producing metal steel and iron alloys in hot-rolled and thick plate factories using a microstructure simulator, monitor, and/or model
WO2022054499A1 (ja) 鋼帯及びその製造方法
CN102632082B (zh) 基于性能预报模型的热轧带钢力学性能的动态控制方法
US9732396B2 (en) Method for operating a continuous annealing line for the processing of a rolled good
CN107002206A (zh) 具有高强度和高度可成形性的钢带材、具有热浸锌基涂层的钢带材
JP2022024340A (ja) 鋼帯の材質予測方法、材質制御方法、製造方法および材質予測モデルの生成方法
JP7197037B2 (ja) 金属材料の製造仕様決定方法、製造方法、および製造仕様決定装置
WO2021193309A1 (ja) 製品情報決定方法、製造方法、システム、及び製品情報決定装置
JP7287416B2 (ja) 厚鋼板の製造仕様決定支援装置および製造仕様探索方法、コンピュータプログラム、コンピュータ読み取り可能な記録媒体ならびに厚鋼板の製造方法
Perlade et al. Application of microstructural modelling for quality control and process improvement in hot rolled steels
TW202120711A (zh) 提高鉻鉬鋼材之球化率之方法
CN107429347B (zh) 罐盖用钢板及其制造方法
Salganik et al. Influence of Steel Chemical Composition and Modes of the Thermomechanical Treatment on Mechanical Properties of a Hot Rolled Plate
JP2938292B2 (ja) 金属帯の連続浸炭方法
WO2024070279A1 (ja) 連続焼鈍設備、連続焼鈍方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
Wigley Property prediction of continuous annealed steels
JP7294242B2 (ja) 表面粗さの予測方法、鋼帯の製造方法および学習済の機械学習モデルの生成方法
JP7031707B1 (ja) 鋼帯の鋼中水素量予測方法、鋼中水素量制御方法、製造方法、鋼中水素量予測モデルの生成方法及び鋼中水素量予測装置
JP2005133158A (ja) 脱炭層深さ予測方法、脱炭層深さ制御方法及び鋼材の圧延方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866460

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317015962

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021866460

Country of ref document: EP

Effective date: 20230220

ENP Entry into the national phase

Ref document number: 20237011473

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE