WO2022206924A1 - 含氮三并环双功能化合物及其制备方法和应用 - Google Patents

含氮三并环双功能化合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022206924A1
WO2022206924A1 PCT/CN2022/084627 CN2022084627W WO2022206924A1 WO 2022206924 A1 WO2022206924 A1 WO 2022206924A1 CN 2022084627 W CN2022084627 W CN 2022084627W WO 2022206924 A1 WO2022206924 A1 WO 2022206924A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
reaction solution
μmol
added
Prior art date
Application number
PCT/CN2022/084627
Other languages
English (en)
French (fr)
Inventor
吴凌云
尤旭
赵乐乐
陈德恒
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Publication of WO2022206924A1 publication Critical patent/WO2022206924A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to a class of nitrogen-containing tricyclic bifunctional compounds, a preparation method and application thereof, in particular to a compound represented by formula (IV) or a pharmaceutically acceptable salt thereof.
  • BTK (Bruton's tyrosine kinase), belonging to the Tec family of non-receptor tyrosine kinases, is expressed in B cells and myeloid cells, distributed in the lymphatic, hematopoietic and blood systems, and also in T cells and plasma cells Low levels of BTK expression were found. Both in vitro and clinical experiments have shown that BTK is involved in B cell malignant tumors and autoimmune diseases (such as rheumatoid arthritis and lupus erythematosus). Adhesive migration, resulting in the death of B cells.
  • the currently marketed BTK irreversible inhibitors mainly function by forming a covalent bond with the cysteine (C481) residue of BTK, and the mutation of cysteine C481 is the main factor leading to the resistance of these inhibitors. reason.
  • PROTAC Protein Degradation Targeting Chimera
  • E3 ligase E3 ligase together through chains to form a ternary complex that utilizes the naturally occurring protein degradation pathway in cells - ubiquitinated proteases body pathway to remove specific proteins that need to be degraded.
  • It is event-driven, which can catalyze the degradation and removal of target proteins and reuse them, which can reduce the level of target proteins more efficiently and lastingly.
  • PROTAC can effectively overcome the drug resistance caused by target protein mutation/overexpression, and at the same time, because the interaction with the target protein does not depend on affinity, it has less risk of off-target degradation, and provides safer and more efficient treatment of various diseases caused by BTK overactivation. treatment effect.
  • the present invention provides a compound of formula (IV) or a pharmaceutically acceptable salt thereof,
  • L is selected from -Ak1-Cy1-* and -Ak2-Cy2-Ak3-Cy3-*, wherein * represents the point of attachment to L1;
  • Ak1, Ak2 and Ak3 are each independently selected from single bond, -O-, -C 1-3 alkyl- and -OC 1-3 alkyl-;
  • Cy1, Cy2 and Cy3 are independently selected from C 3-12 cycloalkyl and 3-12 membered heterocycloalkyl;
  • W is selected from Where # represents the connection point with L;
  • Ring A does not exist, or is selected from Where # represents the connection point between N atom and L;
  • T, T 1 , T 2 and T 3 are each independently selected from N and CH;
  • Each R 3 is independently selected from H, F, Cl, Br, -OH, -NH 2 , -CN, C 1-3 alkyl and C 1-3 alkoxy, wherein said C 1-3 alkyl and C 1-3 alkoxy are each independently optionally substituted with 1 , 2 or 3 R a ;
  • the two R3 together with the carbon atom to which it is attached make the structural unit selected from Where # represents the connection point between N atom and L;
  • each R 4 is independently selected from H, F, Cl, Br, -OH, -NH 2 , C 1-3 alkyl and C 1-3 alkoxy;
  • each R 5 is independently selected from H and C 1-3 alkyl
  • each R a is independently selected from F, Cl, Br, I, -OH, -NH 2 and -CN;
  • t is selected from 1, 2 and 3;
  • u and v are each independently selected from 0, 1, 2, 3 and 4;
  • the 3-12 membered heterocycloalkyl group contains 1, 2, 3 or 4 heteroatoms or groups of heteroatoms independently selected from -O-, -NH-, -S- and -N-.
  • the present invention also provides a compound of formula (II) or a pharmaceutically acceptable salt thereof,
  • T is selected from N and CH;
  • each R is independently selected from H, C 1-3 alkyl and C 1-3 alkoxy;
  • each R 4 is independently selected from H, F, Cl, Br, OH, NH 2 , C 1-3 alkyl and C 1-3 alkoxy;
  • each R 5 is independently selected from H and C 1-3 alkyl
  • L is selected from Where * denotes the connection point of N atom and L 1 ;
  • Y is selected from N and CH;
  • Z is selected from O and CH 2 ;
  • n 0 and 1;
  • v and n are independently selected from 0, 1 and 2, respectively.
  • each of the above R 3 is independently selected from H, F, Cl, Br and -CH 3 , wherein the -CH 3 is optionally substituted with 1, 2 or 3 R a , R a and other variables as defined herein.
  • each of the above R 3 is independently selected from H, -CH 3 and -CH 2 CN, and other variables are as defined in the present invention.
  • each of the above R 3 is independently selected from H and -CH 3 , and other variables are as defined in the present invention.
  • each of the above R 3 is independently selected from -CH 3 , and other variables are as defined in the present invention.
  • each of the above R 4 is independently selected from H, F, Cl, Br, -CH 3 and -OCH 3 , and other variables are as defined in the present invention.
  • each of the above R 4 is selected from H, -CH 3 and -OCH 3 , and other variables are as defined herein.
  • each of the above R 4 is independently selected from H, and other variables are as defined in the present invention.
  • each of the above R 5 is independently selected from H, and other variables are as defined in the present invention.
  • the above-mentioned L 1 is selected from a single bond, and other variables are as defined in the present invention.
  • the above Ak1, Ak2 and Ak3 are independently selected from single bond, -O-, -CH 2 -, -CH 2 -CH 2 -, -CH 2 -CH 2 -CH 2 -, -O-CH2-, -O- CH2 -CH2- and -O - CH2 - CH2 - CH2-, other variables are as defined in the present invention.
  • the above Ak1, Ak2 and Ak3 are independently selected from single bond, -CH 2 - and -CH 2 -CH 2 -, and other variables are as defined in the present invention.
  • the above Ak1 is selected from a single bond, -CH 2 - and -CH 2 -CH 2 -, and other variables are as defined in the present invention.
  • the above Ak1 is selected from -CH2- , and other variables are as defined in the present invention.
  • the above Ak2 is selected from a single bond and -CH 2 -, and other variables are as defined in the present invention.
  • the above Ak3 is selected from a single bond and -CH 2 -, and other variables are as defined in the present invention.
  • Cy1, Cy2 and Cy3 are each independently selected from 4-6 membered heterocycloalkyl and 7-11 membered spiroheterocycloalkyl, and other variables are as defined herein.
  • Cy1, Cy2 and Cy3 are each independently selected from azetidine, azetyl, azetidine, cyclobutylspirooxetan, azetidine Butylspiroazetidine and azacyclohexylspiroazcyclohexyl, other variables are as defined in the present invention.
  • Cy1, Cy2, and Cy3 above are each independently selected from azetidinyl, pyrrolidinyl, piperidinyl, piperazinyl, cyclobutylspiroazetidinyl, azetidinylspiroazetidinyl, and piperidinyl Spiropiperidinyl, other variables are as defined in the present invention.
  • the above L is selected from wherein * represents the point of attachment of the N atom to L 1 , and other variables are as defined in the present invention.
  • the above L is selected from wherein * represents the point of attachment of the N atom to L 1 , and other variables are as defined in the present invention.
  • the above K is selected from R4 and other variables are as defined in the present invention .
  • the above K is selected from R4 and other variables are as defined in the present invention .
  • the above K is selected from Other variables are as defined in the present invention.
  • the above K is selected from Other variables are as defined in the present invention.
  • the above-mentioned compound has the structure represented by formula (IV-1) or (IV-2):
  • T, T 1 , T 2 , T 3 , R 3 , L, L 1 , u and K are as defined in the present invention.
  • the above-mentioned compound has the structure represented by formula (IV-3), (IV-4) or (IV-5):
  • T, T 1 , T 2 , T 3 , R 3 , R 4 , D, L, L 1 , u and v are as defined in the present invention.
  • the above-mentioned compound has the structure represented by formula (IV-3A), (IV-4A) or (IV-5A):
  • T, R 3 , R 4 , D, L, L 1 and v are as defined in the present invention.
  • the above-mentioned compound has the structure represented by formula (II-1) or (II-2):
  • R 4 , D, L, L 1 and v are as defined in the present invention.
  • the above-mentioned compound has the structure represented by formula (II-1A), (II-2A) or (II-1B):
  • Z is selected from O and CH2 ; n is selected from 0, 1 and 2 ; R4, D and v are as defined in the present invention.
  • the present invention also provides a compound of the following formula or a pharmaceutically acceptable salt thereof:
  • the present invention also provides a compound of the following formula or a pharmaceutically acceptable salt thereof:
  • the present invention also provides the synthetic route of the above-mentioned compound: the synthetic route of the compound of general formula (II-1A)
  • U is selected from OTs, OMs, Cl, Br and I; R4, D, Z, n and v are as defined in the present invention.
  • the compound of the present invention has significant degradation activity to BTK, and has good degradation selectivity to IKZF1 (Ikaros family zinc finger protein 1), IKZF3 (Ikaros family zinc finger protein 3) and GSPT1 (G1 to S phase transfer protein 1), etc. , at the same time has good permeability and solubility, and has excellent pharmacokinetic and pharmacodynamic properties.
  • IKZF1 Ikaros family zinc finger protein 1
  • IKZF3 Ikaros family zinc finger protein 3
  • GSPT1 G1 to S phase transfer protein 1
  • the term "pharmaceutically acceptable” refers to those compounds, materials, compositions and/or dosage forms that, within the scope of sound medical judgment, are suitable for use in contact with human and animal tissue , without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • salts refers to salts of the compounds of the present invention, prepared from compounds with specific substituents discovered by the present invention and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting such compounds with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-toluenesulfonic, citric, tartaric, and methanesulfonic acids; also include salts of amino acids such as arginine, etc. , and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain both basic and acidic functional groups and thus can be converted into either base or
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the acid or base containing parent compound by conventional chemical methods. Generally, such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • enantiomers or “optical isomers” refer to stereoisomers that are mirror images of each other.
  • cis-trans isomer or “geometric isomer” result from the inability to rotate freely due to double bonds or single bonds to ring carbon atoms.
  • diastereomer refers to a stereoisomer in which the molecule has two or more chiral centers and the molecules are in a non-mirror-image relationship.
  • tautomer or “tautomeric form” refers to isomers of different functional groups that are in dynamic equilibrium and are rapidly interconverted at room temperature.
  • a chemical equilibrium of tautomers can be achieved if tautomers are possible (eg, in solution).
  • proton tautomers also called prototropic tautomers
  • prototropic tautomers include interconversions by migration of protons, such as keto-enol isomerization and imine-ene Amine isomerization.
  • Valence tautomers include interconversions by recombination of some bonding electrons.
  • keto-enol tautomerization is the interconversion between two tautomers, pentane-2,4-dione and 4-hydroxypent-3-en-2-one.
  • the terms “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in one enantiomer” refer to one of the isomers or pairs
  • the enantiomer content is less than 100%, and the isomer or enantiomer content is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or Greater than or equal to 96%, or greater than or equal to 97%, or greater than or equal to 98%, or greater than or equal to 99%, or greater than or equal to 99.5%, or greater than or equal to 99.6%, or greater than or equal to 99.7%, or greater than or equal to 99.8%, or greater than or equal to 99.9%.
  • isomeric excess or “enantiomeric excess” refer to the difference between two isomers or relative percentages of two enantiomers. For example, if the content of one isomer or enantiomer is 90% and the content of the other isomer or enantiomer is 10%, the isomer or enantiomeric excess (ee value) is 80% .
  • Optically active (R)- and (S)-isomers as well as D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If one enantiomer of a compound of the present invention is desired, it can be prepared by asymmetric synthesis or derivatization with a chiral auxiliary, wherein the resulting mixture of diastereomers is separated and the auxiliary group is cleaved to provide pure desired enantiomer.
  • a diastereomeric salt is formed with an appropriate optically active acid or base, followed by conventional methods known in the art
  • the diastereoisomers were resolved and the pure enantiomers recovered.
  • separation of enantiomers and diastereomers is usually accomplished by the use of chromatography employing a chiral stationary phase, optionally in combination with chemical derivatization (eg, from amines to amino groups) formate).
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with deuterium, and the bonds formed by deuterium and carbon are stronger than those formed by ordinary hydrogen and carbon. Compared with non-deuterated drugs, deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
  • oxygen it means that two hydrogen atoms are substituted. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically achievable basis.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, with independent options for R in each case.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • substituents When a substituent is vacant, it means that the substituent does not exist. For example, when X in A-X is vacant, it means that the structure is actually A. When the listed substituents do not indicate through which atom it is attached to the substituted group, such substituents may be bonded through any of its atoms, for example, pyridyl as a substituent may be through any one of the pyridine ring The carbon atom is attached to the substituted group.
  • the direction of attachment is arbitrary, for example,
  • the linking group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right. It is also possible to connect ring A and ring B in the opposite direction to the reading order from left to right.
  • Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • any one or more sites in the group can be linked to other groups by chemical bonds.
  • connection method of the chemical bond is not located, and there is an H atom at the linkable site, when the chemical bond is connected, the number of H atoms at the site will be correspondingly reduced with the number of chemical bonds connected to the corresponding valence. the group.
  • the chemical bond connecting the site to other groups can be represented by straight solid line bonds straight dotted key or wavy lines express.
  • a straight solid bond in -OCH 3 indicates that it is connected to other groups through the oxygen atom in this group;
  • the straight dashed bond in the group indicates that it is connected to other groups through the two ends of the nitrogen atom in the group;
  • the wavy lines in the phenyl group indicate connections to other groups through the 1 and 2 carbon atoms in the phenyl group.
  • C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (eg methyl), divalent (eg methylene) or multivalent (eg methine) .
  • Examples of C1-3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C1-3alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the remainder of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy and the like.
  • Examples of C 1-3 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • the number of atoms in a ring is generally defined as the number of ring members, eg, "5-7 membered ring” refers to a “ring” of 5-7 atoms arranged around it.
  • Cn-n+m or Cn - Cn+m includes any particular instance of n to n+ m carbons, eg C1-12 includes C1 , C2 , C3, C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range from n to n+ m , eg C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 , etc.; in the same way, n yuan to n +m-membered means that the number of atoms in the ring is from n to n+m, for example, 3-12-membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membere
  • C 3-12 cycloalkyl means a saturated cyclic hydrocarbon group consisting of 3 to 12 carbon atoms, including monocyclic, bicyclic and tricyclic systems, wherein bicyclic and tricyclic systems include Spiro, condensed and bridged rings.
  • the C 3-12 cycloalkyl includes C 3-10 , C 3-8 , C 3-6 , C 3-5 , C 4-10 , C 4-8 , C 4-6 , C 4-5 , C 5-8 and C 5-6 cycloalkyl, etc.; it may be monovalent, divalent or polyvalent.
  • C 3-12 cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, norbornyl, [2.2.2]bicyclooctane, [ 4.4.0] Dicyclodecane, etc.
  • the 3-12 membered heterocycloalkyl includes monocyclic, bicyclic and tricyclic ring systems, wherein bicyclic and tricyclic rings include spiro, paracyclic and bridged rings. Furthermore, with respect to the "3-12 membered heterocycloalkyl", a heteroatom may occupy the position of attachment of the heterocycloalkyl to the rest of the molecule.
  • the 3-12 membered heterocycloalkyl includes 3-10 membered, 3-8 membered, 3-6 membered, 3-5 membered, 4-6 membered, 5-6 membered, 4 membered, 5 membered and 6 membered heterocyclic Cycloalkyl, etc.
  • 3-12 membered heterocycloalkyl examples include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- piperidinyl and 3-piperidyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithianyl, isoxazolidinyl, isothiazolidinyl,
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the remainder of the molecule.
  • the 4-6 membered heterocycloalkyl includes 5-6 membered, 4 membered, 5 membered and 6 membered heterocycloalkyl and the like.
  • 4-6 membered heterocycloalkyl examples include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- piperidinyl and 3-piperidyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithianyl, isoxazolidinyl, isothiazolidinyl,
  • it is 6-14 yuan, more preferably 6-11 yuan.
  • Non-limiting examples thereof include cyclobutylspirocyclobutyl, cyclobutylspirocyclopentyl, cyclobutylspirocyclohexyl, cyclopentylspirocyclopentyl, cyclopentylspirocyclohexyl, cyclohexylspirocyclohexyl, Cyclopropylspirocyclobutyl, cyclopropylspirocyclopentyl, cyclopropylspirocyclohexyl, cyclobutylspiroazetidine, cyclobutylspiroazepinyl, cyclobutylspiroazepine Hexyl, cyclopentylspiroazetidinyl, cyclopentylspiroazepinyl, cyclopentylspiroazepinyl, cyclohexylspiroazetidin
  • a heteroatom may occupy the position of attachment of the heterocycloalkyl to the rest of the molecule.
  • the 7-11-membered heterocycloalkyl includes 7-membered, 8-membered, 9-membered, 10-membered and 11-membered spiroheterocycloalkyl and the like.
  • Examples of 7-11 membered spiroheterocycloalkyl include, but are not limited to, cyclobutylspiroazetidine, cyclobutylspiroazepinyl, cyclobutylspiroazepinyl, cyclopentylspironitrogen Heterobutyl, cyclopentylspiroazepanyl, cyclopentylspiroazepinyl, cyclohexylspiroazetidinyl, cyclohexylspiroazepanyl, cyclohexylspironitro Heterocyclohexyl, azetidine spiroazetidine, azetidine spiroazepanyl, azetidine spiroazepanyl, azetidine spiroazepine pentyl, azacyclopentylspiroazcyclohexyl
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (eg, a nucleophilic substitution reaction).
  • a substitution reaction eg, a nucleophilic substitution reaction
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups such as mesylate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl groups, such as alkanoyl groups (eg, acetyl, trichloroacetyl, or trifluoroacetyl); alkoxycarbonyl groups, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethoxycarbonyl (Fmoc); Arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups such as trimethylsilyl (TMS) and tert-
  • hydroxy protecting group refers to a protecting group suitable for preventing hydroxyl side reactions.
  • Representative hydroxy protecting groups include, but are not limited to: alkyl groups such as methyl, ethyl and tert-butyl; acyl groups such as alkanoyl (eg acetyl); arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and the like.
  • alkyl groups such as methyl, ethyl and tert-butyl
  • acyl groups such as alkanoyl (eg acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenyl
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • the volumes used in the present invention are commercially available.
  • Alloc stands for allyloxycarbonyl
  • SEM stands for trimethylsilylethoxymethyl
  • OTs stands for 4-toluenesulfonyl
  • Boc stands for tert-butoxycarbonyl
  • DCM stands for dichloromethane
  • DIEA represents N,N-diisopropylethylamine
  • MeI represents methyl iodide
  • PE represents petroleum ether
  • EA represents ethyl acetate
  • THF represents tetrahydrofuran
  • EtOH represents ethanol
  • MeOH represents methanol
  • Boc 2 O represents di-tert-butyl dicarbonate ;
  • NH 4 Cl for ammonium chloride
  • T 3 P for 1-propylphosphoric acid tricyclic anhydride
  • Pd/C for palladium/carbon catalyst
  • TMSN 3 for azidotrimethylsilane
  • NCS for N-chlorobutanedi Imide
  • HBr hydrobromic acid
  • Fig. 1 is a graph showing the results of in vivo pharmacodynamic experiments of the compounds of the present invention in a TMD-8 nude mouse xenograft model.
  • Figure 2 is a graph showing the results of the in vivo efficacy experiment of the compounds of the present invention in the ibrutinib-induced drug-resistant LY-24-0041 model.
  • the present invention will be described in detail by the following examples, but it does not mean any unfavorable limitation of the present invention.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments enumerated below, embodiments formed in combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made to the specific embodiments of the present invention without departing from the spirit and scope of the invention.
  • reaction solution was quenched by adding water (10 mL), adjusted to pH 8 with saturated aqueous sodium bicarbonate solution, extracted with dichloromethane/methanol (10/1, 100 mL ⁇ 6), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain the crude product .
  • the crude product was separated by silica gel column chromatography (eluent: petroleum ether/ethyl acetate, 1/1, V/V; dichloromethane/methanol, 30/1, V/V) to obtain compound E-5.
  • MS-ESI calculated [M+H] + 358, found 358.
  • the hydrochloride salt of compound 1-10 (200 mg, 309.98 ⁇ mol) was dissolved in dichloromethane (10 mL), triethylamine (31.37 mg, 309.98 ⁇ mol) was added, and the mixture was stirred at 20° C. for 10 minutes.
  • Acetic acid (18.62 mg, 309.98 ⁇ mol) and Intermediate B (114.50 mg, 309.98 ⁇ mol) were added in this order, followed by stirring at 20° C. for 2 hours.
  • Sodium acetate borohydride (114.50 mg, 309.98 ⁇ mol) was added to the mixture, followed by stirring at 25° C. for 12 hours.
  • reaction solution was concentrated under reduced pressure and separated by silica gel column chromatography (eluent: dichloromethane/methanol, 50/1-30/1, V/V) to obtain compound 2-7.
  • MS-ESI calculated [M+H] + 463 and 465, found 463 and 465.
  • reaction solution was concentrated under reduced pressure, and subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75 ⁇ 30 mm ⁇ 3 ⁇ m; mobile phase: 0.225% aqueous formic acid-acetonitrile; gradient: acetonitrile 18%-48%, 7 minutes ) was isolated to give the formate salt of compound 3.
  • reaction solution was concentrated under reduced pressure, and subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75 ⁇ 30 mm ⁇ 3 ⁇ m; mobile phase: 0.225% aqueous formic acid-acetonitrile; gradient: acetonitrile 18%-48%, 7 minutes ) was isolated to give compound 4.
  • reaction solution was concentrated under reduced pressure, and subjected to preparative high performance liquid chromatography (chromatographic column: Phenomenex Gemini-NX C18 75 ⁇ 30 mm ⁇ 3 ⁇ m; mobile phase: 0.225% aqueous formic acid-acetonitrile; gradient: acetonitrile 18%-48%, 7 minutes ) was isolated to give the formate salt of compound 5.
  • reaction solution was concentrated under reduced pressure, and the crude product was subjected to preparative high performance liquid chromatography (chromatographic column: Waters Xbridge 150*25mm*5 ⁇ m; mobile phase: 10mmol/L aqueous amine bicarbonate solution-acetonitrile; gradient: acetonitrile 33%-63%, 9min ) was separated, concentrated and lyophilized, and continued to be separated by thin layer chromatography (developing solvent: dichloromethane/methanol, 10/1, V/V) to obtain compound 7.
  • MS-ESI calculated [M+H] + 1017, found 1017.
  • the reaction solution was concentrated under reduced pressure, and the crude product was separated by preparative high performance liquid chromatography (chromatographic column: Phenomenex luna C18 250*50mm*15 ⁇ m; mobile phase: 0.225% formic acid aqueous solution-acetonitrile; gradient: acetonitrile 19%-49%, 10min)
  • the formate salt of 11 was obtained.
  • the reaction solution was concentrated under reduced pressure, and the crude product was separated by preparative high performance liquid chromatography (chromatographic column: Phenomenex Luna C18 150*25mm*10 ⁇ m; mobile phase: 0.225% formic acid aqueous solution-acetonitrile; gradient: acetonitrile 16%-46%, 10min)
  • the formate salt of compound 12 was obtained.
  • the crude product was separated by thin-layer chromatography (developing solvent: dichloromethane/methanol, 10/1, V/V), and then continued by preparative high-performance liquid chromatography (chromatographic column: Waters Xbridge 150*25mm*5 ⁇ m; mobile phase: 10 mmol/L aqueous amine bicarbonate solution-acetonitrile; gradient: acetonitrile 45%-75%, 9 min) was separated to obtain compound 16.
  • the crude product was separated by thin-layer chromatography (developing solvent: dichloromethane/methanol, 10/1, V/V), followed by preparative high-performance liquid chromatography (chromatographic column: Waters Xbridge 150*25mm*5 ⁇ m; mobile phase: 10 mmol/L aqueous amine bicarbonate solution-acetonitrile; gradient: acetonitrile 50%-80%, 8 min) was separated to obtain compound 17.
  • reaction solution was concentrated under reduced pressure, diluted with water (200 mL), extracted with ethyl acetate (150 mL x 3), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was separated by silica gel column chromatography (eluent: petroleum ether/ethyl acetate, 1/1, V/V, 1% triethylamine was added) to obtain compound 18-6.
  • MS-ESI calculated [M+H] + 566 and 568, found 566 and 568.
  • reaction solution was diluted with water (30 mL), extracted with ethyl acetate (10 mL ⁇ 3), the organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain a crude product.
  • the crude product was separated by silica gel column chromatography (eluent: dichloromethane/methanol, 20/1-15/1, V/V) to obtain compound 18-8. MS-ESI calculated [M+H] + 795, found 795.
  • CD-1 mice male, 20-40g, 6-10 weeks old, Shanghai Bikai
  • the rodent pharmacokinetic characteristics of the compounds after intravenous injection and oral administration were tested according to standard protocols.
  • the candidate compounds were formulated into clear solutions or suspensions, and were administered to two mice for a single intravenous injection and oral administration, respectively.
  • Intravenous vehicle was 5:95 DMSO and 10% hydroxypropyl ⁇ -cyclodextrin in water
  • oral vehicle was 0.5% w/v methylcellulose and 0.2% w/v Tween 80 in water.
  • the compound of the present invention shows better bioavailability, higher area under the curve, lower clearance rate and tissue distribution in CD-1 mice pharmacokinetics.
  • the rodent pharmacokinetic characteristics of the compounds after intravenous injection and oral administration were tested by standard protocols.
  • the candidate compounds were formulated into clear solutions or suspensions, which were administered to two rats by a single intravenous injection and oral administration.
  • Intravenous vehicle was 5:95 DMSO and 10% hydroxypropyl ⁇ -cyclodextrin aqueous solution
  • oral vehicle was 0.5% w/v methylcellulose and 0.2% w/v Tween 80 aqueous solution.
  • the compound of the present invention shows better bioavailability, higher area under the curve, lower clearance rate and tissue distribution in SD rat pharmacokinetics.
  • RAMOS cells were purchased from Shanghai Xinyu; 1640 medium was purchased from Biological Industries; fetal bovine serum was purchased from Gibco; THUNDER TM Total BTK TR-FRET CELL SIGNALING ASSAY KITS was purchased from BioAuxilim.
  • composition table of KIT is shown in Table 3.
  • RAMOS cells were seeded in a 96-well U-bottom cell culture plate, 80 ⁇ L of cell suspension per well, each well containing 50,000 RAMOS cells, the cell plate was placed in a carbon dioxide incubator, and incubated at 37 degrees overnight;
  • the DC50 value can be obtained by curve fitting with four parameters (log(inhibitor) vs.response- in GraphPad Prism -Variable slope mode derived). Table 4 shows the degradation effect of the compounds of the present invention on total BTK.
  • Min well negative control well reads 0.5% DMSO cell well cell lysate
  • the compound of the present invention has strong degradation activity on Ramos cell BTK protein.
  • TMD-8 cells human diffuse large B lymphoma cells, purchased from Yubo Bio
  • RPMI-1640 medium 10% fetal bovine serum under 5% CO 2 37°C culture condition; according to The cells were passaged according to their growth conditions, and the passage ratio was about 1:4.
  • mice Female BALB/c nude mice (age: 6-7 weeks) were purchased from Beijing Weitong Lihua Laboratory Animal Technology Co., Ltd.
  • TMD-8 cells in logarithmic growth phase were harvested, counted and resuspended in 50% serum-free RPMI-1640 medium and 50% Matrigel, and the cell concentration was adjusted to 4.0 ⁇ 10 7 cells/mL; the cells were placed on ice In the box, draw the cell suspension with a 1 mL syringe and inject it subcutaneously into the axilla of the front right limb of nude mice. Each animal is inoculated with 200 ⁇ L (0.8 ⁇ 10 7 cells/mouse) to establish a TMD-8 xenograft model.
  • Tumor diameters were measured with vernier calipers twice a week.
  • RTV relative tumor volume
  • the compound of the present invention exhibits excellent tumor-inhibiting effect in the TMD-8 nude mouse xenograft model.
  • mice Female CB-17 SCID mice (age: 6-8 weeks, body weight 18-22 g) were purchased from Beijing Weitong Lihua Laboratory Animal Technology Co., Ltd.
  • the establishment of human Ibrutinib-R-LY-24-0041 was originally derived from human lymphoma LY-24-0041.
  • the nomenclature rule for the passage is that the first generation of ibrutinib-resistant tumors is the P0 generation, and the continued passage is the P1 generation, and so on, the resuscitated specimens are named FP.
  • the tumor tissue used in this experiment was the FP7 generation. Tumor tissue pieces of 20-30 mm 3 were subcutaneously inoculated into the right back of each mouse of Ibrutinib-R-LY-24-0041FP7 and waited for tumor growth. When the average tumor volume reached about 150-200 mm 3 , random group administration was started. .
  • the experimental animal groupings and dosing schedules are shown in Table 6.
  • Tumor diameters were measured with vernier calipers twice a week.
  • the tumor-inhibitory efficacy of compounds was evaluated by tumor volume (TV). The experimental results are shown in Figure 2.
  • the compound of the present invention exhibits excellent tumor-inhibiting effect in the ibrutinib-induced drug-resistant LY-24-0041 model.

Abstract

提供了一类含氮三并环双功能化合物及其制备方法和应用,具体为式(Ⅳ)所示化合物及其药学上可接受的盐。

Description

含氮三并环双功能化合物及其制备方法和应用
本申请主张如下优先权:
CN202110361654.7,2021年04月02日;
CN202110680694.8,2021年06月18日;
CN202110994758.1,2021年08月27日;
CN202111165966.7,2021年09月30日;
CN202111387832.X,2021年11月22日。
技术领域
本发明涉及一类含氮三并环双功能化合物及其制备方法和应用,具体涉及式(IV)所示化合物或其药学上可接受的盐。
背景技术
BTK(布鲁顿酪氨酸激酶),属于非受体酪氨酸激酶Tec家族,其表达于B细胞和髓细胞中,分布在淋巴系统、造血和血液系统,在T细胞和浆细胞中也发现了低水平的BTK表达。体外及临床实验均表明,BTK参与B细胞恶性肿瘤与自身免疫疾病(如类风湿性关节炎与红斑狼疮等),BTK抑制剂通过与BTK特异性结合,中断B细胞信号通路,阻碍B细胞的黏着迁移,从而造成B细胞的死亡。目前上市的BTK不可逆抑制剂主要是通过与BTK的半胱氨酸(C481)残基形成共价键发挥作用,而半胱氨酸C481的突变则是导致该类抑制剂耐受性产生的主要原因。
PROTAC(蛋白降解靶向嵌合体)是一个双功能杂合化合物,通过链将目标蛋白和E3连接酶链接在一起形成三元复合物,可利用细胞内天然存在的蛋白降解途径-泛素化蛋白酶体途径来清除需要被降解的特异蛋白。不同于传统的激酶抑制剂的占位驱动,其是事件驱动型,其可催化目标蛋白的降解清除而重复利用,可以更加高效、持久的降低目标蛋白的水平。PROTAC可以有效克服靶蛋白突变/过表达带来的耐药性,同时由于与靶蛋白作用不依赖亲和力,具有较小的脱靶降解风险,提供更加安全、高效的BTK过度活化导致的各类疾病的治疗效果。
发明内容
本发明提供式(Ⅳ)化合物或其药学上可接受的盐,
Figure PCTCN2022084627-appb-000001
其中,
L 1选自单键、-C(=O)-、-CH 2-、-CH 2-O-和-CH 2-NH-;
L选自-Ak1-Cy1-*和-Ak2-Cy2-Ak3-Cy3-*,其中*表示与L 1的连接点;
Ak1、Ak2和Ak3分别独立地选自单键、-O-、-C 1-3烷基-和-O-C 1-3烷基-;
Cy1、Cy2和Cy3分别独立地选自C 3-12环烷基和3-12元杂环烷基;
W选自
Figure PCTCN2022084627-appb-000002
其中#表示与L的连接点;
环A不存在,或者选自
Figure PCTCN2022084627-appb-000003
其中#表示N原子与L的连接点;
T、T 1、T 2和T 3分别独立地选自N和CH;
K选自
Figure PCTCN2022084627-appb-000004
D选自-C(=O)-和-C(R 5) 2-;
各R 3分别独立地选自H、F、Cl、Br、-OH、-NH 2、-CN、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1- 3烷氧基分别独立地任选被1、2或3个R a取代;
或者,两个R 3与其所连接的碳原子一起使结构单元
Figure PCTCN2022084627-appb-000005
选自
Figure PCTCN2022084627-appb-000006
Figure PCTCN2022084627-appb-000007
其中#表示N原子与L的连接点;
各R 4分别独立地选自H、F、Cl、Br、-OH、-NH 2、C 1-3烷基和C 1-3烷氧基;
各R 5分别独立地选自H和C 1-3烷基;
各R a分别独立地选自F、Cl、Br、I、-OH、-NH 2和-CN;
t选自1、2和3;
u和v分别独立地选自0、1、2、3和4;
所述3-12元杂环烷基包含1、2、3或4个独立选自-O-、-NH-、-S-和-N-的杂原子或杂原子团。
本发明还提供式(Ⅱ)化合物或其药学上可接受的盐,
Figure PCTCN2022084627-appb-000008
其中,
T选自N和CH;
D选自-C(=O)-和-C(R 5) 2-;
各R 3分别独立地选自H、C 1-3烷基和C 1-3烷氧基;
各R 4分别独立地选自H、F、Cl、Br、OH、NH 2、C 1-3烷基和C 1-3烷氧基;
各R 5分别独立地选自H和C 1-3烷基;
L 1选自单键、-C(=O)-、-CH 2-、-CH 2-O-和-CH 2-NH-;
L选自
Figure PCTCN2022084627-appb-000009
Figure PCTCN2022084627-appb-000010
其中*表示N原子与L 1的连接点;
当X为CH 2时,Y选自N和CH;
当X为O时,Y为CH;
Z选自O和CH 2
m、s、p和q分别独立地选自0和1;
v和n分别独立地选自0、1和2。
在本发明的一些方案中,上述各R 3分别独立地选自H、F、Cl、Br和-CH 3,其中所述-CH 3任选被1、2或3个R a取代,R a及其他变量如本发明所定义。
在本发明的一些方案中,上述各R 3分别独立地选自H、-CH 3和-CH 2CN,其他变量如本发明所定义。
在本发明的一些方案中,上述各R 3分别独立地选自H和-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R 3分别独立地选自-CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R 4分别独立地选自H、F、Cl、Br、-CH 3和-OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R 4选自H、-CH 3和-OCH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R 4分别独立地选自H,其他变量如本发明所定义。
在本发明的一些方案中,上述各R 5分别独立地选自H,其他变量如本发明所定义。
在本发明的一些方案中,上述L 1选自单键、-CH 2-和-C(=O),其他变量如本发明所定义。
在本发明的一些方案中,上述L 1选自单键和-C(=O)-,其他变量如本发明所定义。
在本发明的一些方案中,上述L 1选自单键,其他变量如本发明所定义。
在本发明的一些方案中,上述Ak1、Ak2和Ak3分别独立地选自单键、-O-、-CH 2-、-CH 2-CH 2-、-CH 2-CH 2-CH 2-、-O-CH 2-、-O-CH 2-CH 2-和-O-CH 2-CH 2-CH 2-,其他变量如本发明所定义。
在本发明的一些方案中,上述Ak1、Ak2和Ak3分别独立地选自单键、-CH 2-和-CH 2-CH 2-,其他变量如本发明所定义。
在本发明的一些方案中,上述Ak1选自单键、-CH 2-和-CH 2-CH 2-,其他变量如本发明所定义。
在本发明的一些方案中,上述Ak1选自-CH 2-,其他变量如本发明所定义。
在本发明的一些方案中,上述Ak2选自单键和-CH 2-,其他变量如本发明所定义。
在本发明的一些方案中,上述Ak3选自单键和-CH 2-,其他变量如本发明所定义。
在本发明的一些方案中,上述Cy1、Cy2和Cy3分别独立地选自4-6元杂环烷基和7-11元螺杂环烷基,其他变量如本发明所定义。
在本发明的一些方案中,上述Cy1、Cy2和Cy3分别独立地选自氮杂环丁基、氮杂环戊基、氮杂环已基、环丁基螺氧杂环丁基、氮杂环丁基螺氮杂环丁基和氮杂环已基螺氮杂环已基,其他变量如本发明所定义。
在本发明的一些方案中,上述Cy1、Cy2和Cy3分别独立地选自吖丁啶基、吡咯烷基、哌啶基、哌嗪基、环丁基螺吖丁啶基、吖丁啶基螺吖丁啶基和哌啶基螺哌啶基,其他变量如本发明所定义。
在本发明的一些方案中,上述Cy1、Cy2和Cy3分别独立地选自
Figure PCTCN2022084627-appb-000011
Figure PCTCN2022084627-appb-000012
其他变量如本发明所定义。
在本发明的一些方案中,上述L选自
Figure PCTCN2022084627-appb-000013
Figure PCTCN2022084627-appb-000014
Figure PCTCN2022084627-appb-000015
Figure PCTCN2022084627-appb-000016
其中*表示N原子与L 1的连接点,其他变量如本发明所定义。
在本发明的一些方案中,上述L选自
Figure PCTCN2022084627-appb-000017
Figure PCTCN2022084627-appb-000018
Figure PCTCN2022084627-appb-000019
其中*表示N原子与L 1的连接点,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000020
选自
Figure PCTCN2022084627-appb-000021
Figure PCTCN2022084627-appb-000022
Figure PCTCN2022084627-appb-000023
Figure PCTCN2022084627-appb-000024
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000025
选自
Figure PCTCN2022084627-appb-000026
Figure PCTCN2022084627-appb-000027
Figure PCTCN2022084627-appb-000028
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000029
选自
Figure PCTCN2022084627-appb-000030
Figure PCTCN2022084627-appb-000031
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000032
选自
Figure PCTCN2022084627-appb-000033
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000034
选自
Figure PCTCN2022084627-appb-000035
Figure PCTCN2022084627-appb-000036
Figure PCTCN2022084627-appb-000037
其中#表示N原子与L的连接点,R 3及其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000038
选自
Figure PCTCN2022084627-appb-000039
Figure PCTCN2022084627-appb-000040
Figure PCTCN2022084627-appb-000041
其中#表示N原子与L的连接点,其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000042
选自
Figure PCTCN2022084627-appb-000043
其中#表示N原子与L的连接点,其他变量如本发明所定义。
在本发明的一些方案中,上述K选自
Figure PCTCN2022084627-appb-000044
R 4及其他变量如本发明所定义。
在本发明的一些方案中,上述K选自
Figure PCTCN2022084627-appb-000045
R 4及其他变量如本发明所定义。
在本发明的一些方案中,上述K选自
Figure PCTCN2022084627-appb-000046
Figure PCTCN2022084627-appb-000047
其他变量如本发明所定义。
在本发明的一些方案中,上述结构单元
Figure PCTCN2022084627-appb-000048
选自
Figure PCTCN2022084627-appb-000049
Figure PCTCN2022084627-appb-000050
其他变量如本发明所定义。
在本发明的一些方案中,上述K选自
Figure PCTCN2022084627-appb-000051
其他变量如本发明所定义。
在本发明的一些方案中,上述化合物具有式(Ⅳ-1)或(Ⅳ-2)所示结构:
Figure PCTCN2022084627-appb-000052
其中,T、T 1、T 2、T 3、R 3、L、L 1、u和K如本发明所定义。
在本发明的一些方案中,上述化合物具有式(Ⅳ-3)、(Ⅳ-4)或(Ⅳ-5)所示结构:
Figure PCTCN2022084627-appb-000053
其中,T、T 1、T 2、T 3、R 3、R 4、D、L、L 1、u和v如本发明所定义。
在本发明的一些方案中,上述化合物具有式(Ⅳ-3A)、(Ⅳ-4A)或(Ⅳ-5A)所示结构:
Figure PCTCN2022084627-appb-000054
Figure PCTCN2022084627-appb-000055
其中,T、R 3、R 4、D、L、L 1和v如本发明所定义。
在本发明的一些方案中,上述化合物具有式(Ⅱ-1)或(Ⅱ-2)所示结构:
Figure PCTCN2022084627-appb-000056
其中,R 4、D、L、L 1和v如本发明所定义。
在本发明的一些方案中,上述化合物具有式(Ⅱ-1A)、(Ⅱ-2A)或(Ⅱ-1B)所示结构:
Figure PCTCN2022084627-appb-000057
Figure PCTCN2022084627-appb-000058
其中,Z选自O和CH 2;n选自0、1和2;R 4、D和v如本发明所定义。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了下式化合物或其药学上可接受的盐:
Figure PCTCN2022084627-appb-000059
Figure PCTCN2022084627-appb-000060
Figure PCTCN2022084627-appb-000061
Figure PCTCN2022084627-appb-000062
Figure PCTCN2022084627-appb-000063
Figure PCTCN2022084627-appb-000064
本发明还提供了下式化合物或其药学上可接受的盐:
Figure PCTCN2022084627-appb-000065
Figure PCTCN2022084627-appb-000066
Figure PCTCN2022084627-appb-000067
Figure PCTCN2022084627-appb-000068
本本发明还提供了上述化合物的合成路线:通式(Ⅱ-1A)化合物的合成路线
合成路线1:
Figure PCTCN2022084627-appb-000069
合成路线2:
Figure PCTCN2022084627-appb-000070
通式(Ⅱ-2A)化合物的合成路线
合成路线1:
Figure PCTCN2022084627-appb-000071
合成路线2:
Figure PCTCN2022084627-appb-000072
其中,U选自OTs、OMs、Cl、Br和I;R4、D、Z、n和v如本发明所定义。
技术效果
本发明化合物对BTK具有显著的降解活性,对IKZF1(Ikaros家族锌指蛋白1),IKZF3(Ikaros家族锌指蛋白3)及GSPT1(G1至S相转移蛋白1)等具有较好的降解选择性,同时具有较好的透膜性和溶解性,且具有优良的药代动力学和药效学性质。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、 丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(+)”表示右旋,“(-)”表示左旋,“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure PCTCN2022084627-appb-000073
和楔形虚线键
Figure PCTCN2022084627-appb-000074
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2022084627-appb-000075
和直形虚线键
Figure PCTCN2022084627-appb-000076
表示立体中心的相对构型,用波浪线
Figure PCTCN2022084627-appb-000077
表示楔形实线键
Figure PCTCN2022084627-appb-000078
或楔形虚线键
Figure PCTCN2022084627-appb-000079
或用波浪线
Figure PCTCN2022084627-appb-000080
表示直形实线键
Figure PCTCN2022084627-appb-000081
和直形虚线键
Figure PCTCN2022084627-appb-000082
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valence tautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构 体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2022084627-appb-000083
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2022084627-appb-000084
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2022084627-appb-000085
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的 化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2022084627-appb-000086
直形虚线键
Figure PCTCN2022084627-appb-000087
或波浪线
Figure PCTCN2022084627-appb-000088
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2022084627-appb-000089
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2022084627-appb-000090
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连。
Figure PCTCN2022084627-appb-000091
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2022084627-appb-000092
Figure PCTCN2022084627-appb-000093
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2022084627-appb-000094
仍包括
Figure PCTCN2022084627-appb-000095
这种连接方式的基团,只是在连接1个化学键时,该位点的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1- 3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,环上原子的数目通常被定义为环的元数,例如,“5-7元环”是指环绕排列5-7个原子的“环”。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
除非另有规定,“C 3-12环烷基”表示由3至12个碳原子组成的饱和环状碳氢基团,其包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。所述C 3-12环烷基包括C 3-10、C 3-8、C 3-6、C 3-5、C 4-10、C 4-8、C 4-6、C 4-5、C 5-8和C 5-6环烷基等;其可以是一价、二价或者多价。C 3-12环烷基的实例包括,但不限于,环丙基、环丁基、环戊基、环己基、环庚基、降冰片烷基、[2.2.2]二环辛烷、[4.4.0]二环癸烷等。
除非另有规定,术语“3-12元杂环烷基”本身或者与其他术语联合分别表示由3至12个环原子组成的 饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(=O) p,p是1或2)。所述3-12元杂环烷基包括单环、双环和三环体系,其中双环和三环体系包括螺环、并环和桥环。此外,就该“3-12元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述3-12元杂环烷基包括3-10元、3-8元、3-6元、3-5元、4-6元、5-6元、4元、5元和6元杂环烷基等。3-12元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,术语“4-6元杂环烷基”本身或者与其他术语联合分别表示由4至6个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(=O) p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“4-6元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-6元杂环烷基包括5-6元、4元、5元和6元杂环烷基等。4-6元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基或六氢哒嗪基等。
除非另有规定,术语“螺环”本身或者与其他术语联合分别表示单环之间共用一个碳原子(称为螺原子)的5-20元多环基团,其可以包含0至5个双键,且可以含有0至5个选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(=O) p,p是1或2)。优选为6-14元,进一步优选为6-11元。其非限定性实例包括环丁基螺环丁基、环丁基螺环戊基、环丁基螺环己基、环戊基螺环戊基、环戊基螺环己基、环己基螺环己基、环丙基螺环丁基、环丙基螺环戊基、环丙基螺环己基、环丁基螺氮杂环丁基、环丁基螺氮杂环戊基、环丁基螺氮杂环已基、环戊基螺氮杂环丁基、环戊基螺氮杂环戊基、环戊基螺氮杂环已基、环已基螺氮杂环丁基、环已基螺氮杂环戊基、环已基螺氮杂环已基、氮杂环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环戊基、氮杂环丁基螺氮杂环已基、氮杂环戊基螺氮杂环戊基、氮杂环戊基螺氮杂环已基、氮杂环已基螺氮杂环已基、环丁基螺氧杂环丁基、环丁基螺氧杂环戊基、环丁基螺氧杂环已基、环戊基螺氧杂环丁基、环戊基螺氧杂环戊基、环戊基螺氧杂环已基、环已基螺氧杂环丁基、环已基螺氧杂环戊基、环已基螺氧杂环已基、氧杂环丁基螺氧杂环丁基、氧杂环丁基螺氧杂环戊基、氧杂环丁基螺氧杂环已基、氧杂环戊基螺氧杂环戊基、氧杂环戊基螺氧杂环已基、氧杂环已基螺氧杂环已基、氧杂环丁基螺氮杂环丁基、氧杂环丁基螺氮杂环戊基、氧杂环丁基螺氮杂环已基、氧杂环戊基螺氮杂环戊基、氧杂环戊基螺氮杂环已基、氧杂环已基螺氮杂环已基等。
除非另有规定,术语“7-11元螺杂环烷基”表示由7至11个环原子组成的饱和螺环基团,其1、2、3或 4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,碳、氮和硫杂原子可任选被氧化(即C(=O)、NO和S(=O) p,p是1或2)。此外,就该“7-11元螺杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述7-11元杂环烷基包括7元、8元、9元、10元和11元螺杂环烷基等。7-11元螺杂环烷基的实例包括但不限于环丁基螺氮杂环丁基、环丁基螺氮杂环戊基、环丁基螺氮杂环已基、环戊基螺氮杂环丁基、环戊基螺氮杂环戊基、环戊基螺氮杂环已基、环已基螺氮杂环丁基、环已基螺氮杂环戊基、环已基螺氮杂环已基、氮杂环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环戊基、氮杂环丁基螺氮杂环已基、氮杂环戊基螺氮杂环戊基、氮杂环戊基螺氮杂环已基、氮杂环已基螺氮杂环已基、环丁基螺氧杂环丁基、环丁基螺氧杂环戊基、环丁基螺氧杂环已基、环戊基螺氧杂环丁基、环戊基螺氧杂环戊基、环戊基螺氧杂环已基、环已基螺氧杂环丁基、环已基螺氧杂环戊基、环已基螺氧杂环已基、氧杂环丁基螺氧杂环丁基、氧杂环丁基螺氧杂环戊基、氧杂环丁基螺氧杂环已基、氧杂环戊基螺氧杂环戊基、氧杂环戊基螺氧杂环已基、氧杂环已基螺氧杂环已基、氧杂环丁基螺氮杂环丁基、氧杂环丁基螺氮杂环戊基、氧杂环丁基螺氮杂环已基、氧杂环戊基螺氮杂环戊基、氧杂环戊基螺氮杂环已基、氧杂环已基螺氮杂环已基等。术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022084627-appb-000096
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的容积可经市售获得。
本发明采用下述缩略词:Alloc代表烯丙氧羰基;SEM代表三甲基硅烷基乙氧甲基;OTs代表4-甲苯磺酰基;Boc代表叔丁氧羰基;DCM代表二氯甲烷;DIEA代表N,N-二异丙基乙胺;MeI代表碘甲烷;PE代表石油醚;EA代表乙酸乙酯;THF代表四氢呋喃;EtOH代表乙醇;MeOH代表甲醇;Boc 2O代表二碳 酸二叔丁酯;NH 4Cl代表氯化铵;T 3P代表1-丙基磷酸三环酸酐;Pd/C代表钯/碳催化剂;TMSN 3代表叠氮基三甲基硅烷;NCS代表N-氯代丁二酰亚胺;HBr代表氢溴酸;AcOH代表醋酸;HATU代表O-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸盐;DBU代表1,8-二氮杂二环十一碳-7-烯;FA代表甲酸;ACN代表乙腈;TLC代表薄层色谱;HPLC代表高压液相色谱;LCMS代表液质联用色谱。DMSO代表二甲亚砜;DMSO-d 6代表氘代二甲亚砜;CD 3OD代表氘代甲醇;CDCl 3代表氘代氯仿;D 2O代表氘水;NMP代表N-甲基吡咯烷酮;PEG代表聚乙二醇。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022084627-appb-000097
软件命名,市售化合物采用供应商目录名称。
附图说明
图1为本发明化合物在TMD-8裸鼠移植瘤模型的体内药效实验结果图。
图2为本发明化合物在依鲁替尼诱导耐药LY-24-0041模型的体内药效实验结果图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体A
合成路线:
Figure PCTCN2022084627-appb-000098
将化合物A-1(0.75g,3.67mmol),化合物A-2(678.52mg,3.86mmol),碳酸钾(1.52g,11.01mmol)和1,1-双(二苯基膦基)二茂铁(407.10mg,734.33μmol)溶解在四氢呋喃(15mL)中,置换氮气3次,加入醋酸钯(82.43mg,367.17μmol)后再次置换氮气3次,反应液在氮气保护下升温至68℃搅拌16小时。向反应液加入水(150mL),用乙酸乙酯(30mL×3)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯/三乙胺,1/1/1,V/V)分离得到中间体A。MS-ESI计算值[M+H] +344,实测值344。
中间体B
合成路线:
Figure PCTCN2022084627-appb-000099
第一步
将化合物B-1(3g,10.86mmol)和化合物B-2(1.50g,13.03mmol)溶解在1-甲基-2-吡咯烷酮(18mL)和N,N-二异丙基乙胺(1.40g,10.86mmol)中,反应液加热至90℃并搅拌16小时。向反应液加入乙酸乙酯(200mL),有机相依次用水(360mL×3)和饱和食盐水(100mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物B-3。MS-ESI计算值[M+H] +372,实测值372。
第二步
将化合物B-3(2.35g,6.33mmol)和戴斯-马丁氧化剂(3.22g,7.59mmol)溶解在二氯甲烷(20mL)中,反应液加热至15℃搅拌1小时。向反应液加入饱和碳酸氢钠溶液(200mL)搅拌0.5小时。过滤,滤液用二氯甲烷(100mL×2)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,30/1,V/V)分离得到中间体B。MS-ESI计算值[M+H] +370,实测值370。
中间体C
合成路线:
Figure PCTCN2022084627-appb-000100
第一步
将化合物B-1(2g,7.24mmol)溶解在1-甲基-2-吡咯烷酮(20mL),向反应液中加入二异丙基乙胺(2.81g,21.72mmol)化合物C-1(732.36mg,7.24mmol),反应液加热至80℃搅拌12小时。向反应液中加入水(300mL),过滤,用乙酸乙酯(300mL×3)萃取,有机相经饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物C-2。MS-ESI计算值[M+H] +358,实测值358。
第二步
将化合物C-2(1g,2.80mmol)溶解于二氯甲烷(20mL)中,向反应液中加入戴斯-马丁氧化剂(1.42g,3.36mmol)反应液加热至15℃搅拌1小时。向反应液中加入饱和碳酸氢钠水溶液(200mL)调节至中性,搅拌30分钟,经硅藻土过滤,滤液用二氯甲烷(100mL×2)萃取,合并有机相,无水硫酸钠干燥,过滤,减压浓缩,得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,10/1~1/2,V/V)分离得到中间体C。MS-ESI计算值[M+H] +356,实测值356。
中间体D
合成路线:
Figure PCTCN2022084627-appb-000101
第一步
将化合物B-1(2g,7.24mmol)溶解在1-甲基-2-吡咯烷酮(20mL),向反应液中加入二异丙基乙胺(2.81g,21.72mmol)和化合物D-1(935.48mg,7.24mmol),反应液加热至80℃搅拌12小时。向反应液中加入水(300mL),过滤,用乙酸乙酯(300mL×3)萃取,有机相经饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到化合物D-2。MS-ESI计算值[M+H] +386,实测值386。
第二步
将化合物D-2(2.7g,7.01mmol)溶解于二氯甲烷(20mL)中,向反应液中加入戴斯-马丁氧化剂(3.57g,8.41mmol)反应液加热至15℃搅拌1小时。向反应液中加入饱和碳酸氢钠水溶液(200mL)调节至中性,搅拌30分钟,经硅藻土过滤,滤液用二氯甲烷(100mL×2)萃取,合并有机相,无水硫酸钠干燥,过滤,减压浓缩得到中间体D。MS-ESI计算值[M+H] +384,实测值384。
中间体E
合成路线:
Figure PCTCN2022084627-appb-000102
第一步
将化合物E-1(4.8g,26.79mmol)溶解在二甲基亚砜(30mL),向反应液中加入二异丙基乙胺(10.39g,80.38mmol)和化合物B-2(4.63g,40.19mmol),反应液加热至110℃搅拌12小时。向反应液中加入水(50mL),过滤,用乙酸乙酯(30mL×2)萃取,有机相经饱和食盐水(30mL×2)洗涤,无水亚硫酸钠干燥,过滤,减压浓缩得到化合物E-2。MS-ESI计算值[M+H] +275,实测值275。
第二步
将化合物E-2(3g,10.94mmol),次亚磷酸钠一水合物(15.09g,109.40mmol),雷尼镍(1.3g,15.21mmol),水(10mL),吡啶(20mL),醋酸(10mL)混合。置换氮气3次,反应液在氮气保护下加热至70℃搅拌16小时。反应液冷却至室温,向反应液中加入水(50mL),用乙酸乙酯(30mL×2)萃取,有机相经 饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,减压浓缩得到粗产品。粗产物经过制备液相色谱法(色谱柱:Phenomenex luna C18(250*70mm,10μm;流动相:0.1%的三氟乙酸水溶液-乙腈;梯度:乙腈25%-55%,21min)分离得到化合物E-3。MS-ESI计算值[M+H] +278,实测值278。
第三步
将化合物E-3(650mg,2.34mmol)溶于二氯甲烷(10mL)中,加入N,N-二异丙基乙胺(605.87mg,4.69μmol),化合物E-4的盐酸盐(462.94mg,2.81mmol)和醋酸(1.41g,23.44mmol)后于35℃搅拌4小时。向混合液中加入醋酸硼氢化钠(1.49g,7.03mmol),反应液25℃下搅拌16小时。反应液加水(10mL)淬灭,用饱和碳酸氢钠水溶液调节pH为8,用二氯甲烷/甲醇(10/1,100mL×6)萃取,无水硫酸钠干燥,过滤,减压浓缩得到粗产品。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,1/1,V/V;二氯甲烷/甲醇,30/1,V/V)分离得到化合物E-5。MS-ESI计算值[M+H] +358,实测值358。
第四步
将化合物E-5(50mg,139.90μmol)溶解于二氯甲烷(2mL)中,向反应液中加入戴斯-马丁氧化剂(71.20mg,167.88μmol)反应液加热至20℃搅拌1小时。向反应液中加入饱和碳酸氢钠水溶液(10mL)调节至中性,搅拌30分钟,经硅藻土过滤,滤液用二氯甲烷(10mL×2)萃取,合并有机相,无水硫酸钠干燥,过滤,减压浓缩得到化合物E。MS-ESI计算值[M+H] +356,实测值356。
中间体F
Figure PCTCN2022084627-appb-000103
合成路线:
Figure PCTCN2022084627-appb-000104
Figure PCTCN2022084627-appb-000105
第一步
将化合物F-1(10g,49.26mmol),F-2(11.28g,44.34mmol)溶解在乙腈(100mL)中,向反应液中加入碳酸钾(20.43g,147.79mmol),反应液在80℃的氮气氛下搅拌15小时。将反应液过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,10/1~2/1,V/V)分离得到化合物F-3。MS-ESI计算值[M+H] +377,实测值377。
第二步
将化合物F-3(7g,18.59mmol)溶于乙酸乙酯(70mL)中,在氮气保护下向反应液中加入湿钯碳(0.70g,10%),将反应体系进行氢气置换三次,并维持氢气(15psi)下25℃搅拌12小时。将反应液过滤、减压浓缩得到化合物F-4。MS-ESI计算值[M+H] +347,实测值347。
第三步
将化合物F-4(11.45g,33.05mmol),化合物F-5(8.82g,33.05mmol),碳酸铯(21.54g,66.10mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(1.91g,3.30mmol)和三(二亚苄基丙酮)二钯(3.03g,3.30mmol)溶解在1,4-二氧六环(50mL)中,氮气置换三次,反应液在氮气保护下100℃搅拌12小时。将反应液过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,5/1~0/1,V/V)分离得到化合物F-6。
MS-ESI计算值[M+H] +532和534,实测值532和534 1H NMR(400MHz,DMSO-d 6)δ=8.63-8.57(m,2H),8.00-7.99(m,1H),7.50(m,1H),7.45-7.42(m,1H),7.30-7.28(m,1H),3.56(s,3H),3.14-3.11(m,4H),2.59-2.57(m,2H),1.64-1.61(m,4H),1.45(m,15H)。
第四步
将化合物F-6(12.2g,22.91mmol),双联嚬哪醇硼酸酯(14.55g,57.28mmol),醋酸钾(4.50g,45.82mmol)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(2.18g,4.58mmol)和三(二亚苄基丙酮)二钯(2.10g,2.29mmol)溶解在1,4-二氧六环(100mL)中,置换氮气3次,反应液在氮气保护下加热至70℃搅拌2小时。向反应液加入水(200mL),用乙酸乙酯(200mL×2)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物F-7。MS-ESI计算值[M+H] +580,实测值580。
第五步
将化合物F-7(13.2g,22.78mmol),中间体A(3.92g,11.39mmol),磷酸钾(7.25g,34.17mmol)和[1,1-双(二苯基膦基)二茂铁]二氯化钯(930.02mg,1.14mmol)溶解在四氢呋喃(50mL)和水(10mL)中,置换氮气3次,反应液在氮气保护下加热至50℃搅拌15小时。将反应液过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯-石油醚/乙酸乙酯/二氯甲烷,5/1-1/2/1,V/V)分离得到化 合物F-8。MS-ESI计算值[M+H] +761,实测值761。
第六步
将化合物F-8(5.94g,6.45mol)溶于甲醇(50mL)中,向反应液中加入硼氢化钠(1.15g,30.40mmol),反应液25℃搅拌2小时。向反应液加入饱和氯化铵水溶液(100mL),用乙酸乙酯(100mL×3)萃取,有机相经饱和食盐水(100mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物F-9。MS-ESI计算值[M+H] +763,实测值763。
第七步
将化合物F-9(5.43g,7.12mmol)溶于乙酸乙酯(30mL),再加入氯化氢/乙酸乙酯溶液(4mol/L,7.12mL)后于25℃下搅拌12小时。将反应液减压浓缩得到粗产品,向粗产品中加入乙酸乙酯(20mL)后在25℃下搅拌2小时。将反应液过滤,滤饼减压浓缩得到中间体F的盐酸盐。MS-ESI计算值[M+H-18] +645,实测值645。
中间体G
Figure PCTCN2022084627-appb-000106
合成路线:
Figure PCTCN2022084627-appb-000107
第一步
将化合物F-1(10g,49.26mmol)溶解在1,4-二氧六环(100mL)中,向反应液中加入化合物G-1(9.77g,49.26mmol),碳酸铯(32.10g,98.83mmol)和2,2-双(二苯膦基)-1,1-联萘(1.53g,2.46mmol)置换氮气3次后加入三(二亚苄基丙酮)二钯(2.26g,2.46mmol),反应液在氮气保护下加热至100℃搅拌15小时。将反应液过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,10/1~1/1,V/V)分离得到化合物G-2。MS-ESI计算值[M+H] +321,实测值321。
第二步
将化合物G-2(2.8g,8.74mmol)溶于乙酸乙酯(50mL)中,在氮气保护下向反应液中加入湿钯碳(0.20g,10%),将反应体系进行氢气置换并维持氢气(15psi)保护下25℃搅拌12小时。将反应液过滤、减压浓缩得到化合物G-3。MS-ESI计算值[M+H] +291,实测值291。
第三步
将化合物G-3(5.25g,18.08mmol),化合物F-5(4.83g,18.08mmol),碳酸铯(11.78g,36.16mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(1.05g,1.81mmol)和三(二亚苄基丙酮)二钯(1.66g,1.81mmol)溶解在1,4-二氧六环(50mL)中,氮气置换3次,在氮气保护下100℃搅拌12小时。将反应液过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(石油醚/乙酸乙酯-石油醚/乙酸乙酯/二氯甲烷,5/1-1/1/1,V/V)分离得到化合物G-4。MS-ESI计算值[M+H] +476和478,实测值476和478。 1H NMR(400MHz,CD 3OD)δ=8.50-8.45(m,1H),7.55-7.54(m,1H),7.43-7.42(m,1H),7.23-7.21(m,1H),6.94-6.88(m,1H),4.07-3.98(m,4H),3.93-3.88(m,4H),3.50(s,3H),1.39(s,9H)。
第四步
将化合物G-4(5.77g,11.62mmol),双联嚬哪醇硼酸酯(7.37g,29.04mmol),醋酸钾(2.28g,23.23mmol)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(1.11g,2.32mmol)和三(二亚苄基丙酮)二钯(1.06g,1.16mmol)溶解在1,4-二氧六环(50mL),置换氮气3次,反应液在氮气保护下加热至70℃搅拌2小时。向反应液加入水(200mL),用乙酸乙酯(200mL×2)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物G-5。MS-ESI计算值[M+H] +524,实测值524。
第五步
将化合物G-5(6.1g,11.65mmol),中间体A(2.00g,5.83mmol),磷酸钾(3.71g,17.48mmol)和[1,1-双(二苯基膦基)二茂铁]二氯化钯(475.85mg,582.69μmol)溶解在四氢呋喃(25mL)和水(5mL)中,置换氮气3次,反应液在氮气保护下加热至50℃搅拌15小时。将反应液过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(石油醚/乙酸乙酯-石油醚/二氯甲烷/乙酸乙酯,15/1-1/1/2,V/V)分离得到化合物G-6。MS-ESI计算值[M+H] +705,实测值705。
第六步
将化合物G-6(2.8g,3.43mmol)溶于甲醇(20mL)中,向反应液中加入硼氢化钠(485mg,12.82mmol),反应液25℃搅拌2小时。向反应液加入饱和氯化铵水溶液(30mL),用乙酸乙酯(30mL×3)萃取,有机相经饱和食盐水(30mL×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(二氯甲烷/甲醇-二氯甲烷/甲醇,50/1-40/1,V/V)分离得到化合物G-7。MS-ESI计算值[M+H] +707,实测值707。
第七步
将化合物G-7(2g,2.75mmol)和2,6-二甲基吡啶(4.42g,41.23mmol)溶于二氯甲烷(20mL)中,再加入三甲硅基三氟甲磺酸酯(6.11g,27.49mmol)后于40℃下搅拌12小时。将反应液减压浓缩得到粗产品,粗品经制备高效液相色谱法(色谱柱:Phenomenex luna C18(250*70mm,10μm);流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈10%-40%,21min)分离得中间体G的甲酸盐。MS-ESI计算值[M+H] +607,实测值607。
中间体H
Figure PCTCN2022084627-appb-000108
合成路线:
Figure PCTCN2022084627-appb-000109
第一步
将化合物H-1(20.0g,120mmol)溶解在甲苯(4mL)中,后加入化合物H-2(26.3g,364mmol)。将反应混合物在110℃下搅拌12小时。将反应混合物过滤,滤饼用乙酸乙酯(10mL×2)洗涤,滤饼真空干燥得到化合物H-3。 1H NMR(400MHz,CD 3OD)δ=7.48-7.40(m,1H),7.29(d,J=1.8Hz,1H),6.89(d,J=8.4Hz,1H),3.92(s,3H),3.47(t,J=6.6Hz,2H),2.65(t,J=6.6Hz,2H)。MS-ESI计算值[M+H] +240,实测值240。
第二步
将化合物H-3(25.0g,105mmol),化合物H-4(15.7g,261mmol)溶解在冰醋酸(75mL)中。将反应混合物在120℃下搅拌12小时。将反应混合物用盐酸(1mol/L)调节到pH=1,过滤,滤饼真空干燥得到化合物H-5。MS-ESI计算值[M+H] +265,实测值265。 1H NMR(400MHz,DMSO-d 6)δ=13.00-12.58(m,1H),10.35(s,1H),7.94-7.88(m,1H),7.82(d,J=2.2Hz,1H),7.21(d,J=8.8Hz,1H),3.88(s,3H),3.60(t,J=6.6Hz,2H),2.76-2.61(m,2H)。
第三步
将化合物H-5(4.00g,15.1mmol),化合物F-2(4.04g,15.9mmol)和三乙胺(4.60g,45.4mmol)溶解在二氯甲烷(40mL)中,后在0℃下加入1-丙基磷酸酐(14.5g,22.7mmol)。将反应混合物在25℃下搅拌12小时。先将反应混合物减压浓缩,得到的粗品用乙酸乙酯(40mL)溶解,合并的有机相用饱和碳酸氢钠水溶液(20mL×4)洗涤,用无水硫酸钠干燥,过滤,减压浓缩得到化合物H-6。MS-ESI计算值[M+H] +445, 实测值445。 1HNMR(400MHz,CDCl 3)δ=7.48-7.40(m,2H),7.38(s,1H),7.01(d,J=8.4Hz,1H),3.91(s,3H),3.78-3.46(m,6H),3.44-3.37(m,4H),2.83(t,J=6.4Hz,2H),1.57-1.47(m,8H),1.46(s,9H)。
第四步
将化合物H-6(6.56g,13.1mmol)溶解在乙酸乙酯(50mL)中,后加入氯化氢/乙酸乙酯溶液(4mol/L,40mL)。将反应混合物在25℃下搅拌3小时。直接将反应混合物过滤,滤饼真空干燥得到中间体H的盐酸盐。MS-ESI计算值[M+H] +401,实测值401。 1H NMR(400MHz,CD 3OD)δ=7.51-7.39(m,2H),7.21(d,J=8.4Hz,1H),3.93(s,3H),3.74(br d,J=6.1Hz,3H),3.58-3.51(m,1H),3.35(s,2H),3.20(br s,4H),2.81(t,J=6.7Hz,2H),1.80(br t,J=5.1Hz,4H),1.71-1.53(m,4H)。
中间体I
Figure PCTCN2022084627-appb-000110
合成路线:
Figure PCTCN2022084627-appb-000111
第一步
将化合物I-1(5.00g,33.1mmol)溶解在甲苯(20mL)中,后加入化合物H-2(9.53g,132mmol)。将反应混合物用氮气置换气体三次,在100℃氮气保护下搅拌12小时。将反应混合物过滤,滤饼真空干燥得到化合物I-2。MS-ESI计算值[M+H] +224,实测值224。
第二步
将化合物I-2(7.00g,31.4mmol)溶解在冰醋酸(30mL)中,向反应液中加入化合物H-4(4.71g,38.4mmol),将反应混合物在120℃下搅拌12小时。将反应混合物用盐酸(1mol/L)调节到pH=1,过滤,滤饼真空干燥得到化合物I-3。MS-ESI计算值[M+H] +249,实测值249。
第三步
将化合物F-2(410mg,1.61mmol)溶解在四氢呋喃(40mL)中,向反应液中加入2-(7-氮杂苯并三氮唑-1-基)-1,1,3,3-四甲基脲六氟磷酸酯(858mg,2.26mmol)和三乙胺(489mg,4.83mmoL),反应混合物在15℃下搅拌0.5小时。在0℃下将化合物I-3(0.400g,1.61mmol)溶解在四氢呋喃(5mL)后加入到反应液中,反应混合物在15℃下搅拌2.5小时。反应混合物减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物I-4。MS-ESI计算值[M+Na] +507,实测值507。
第四步
将化合物I-4(1.00g,2.06mmol)溶解在乙酸乙酯(5mL)中,后加入氯化氢/乙酸乙酯溶液(4mol/L,10mL)。将反应混合物在25℃下搅拌1小时。将反应混合物过滤,滤饼真空干燥得到中间体I的盐酸盐。MS-ESI计算值[M+H] +385,实测值385。 1H NMR(400MHz,CD 3OD)δ=7.46-7.40(m,1H),7.38-7.30(m,2H),3.92-3.82(m,1H),3.80-3.62(m,3H),3.49(d,J=3.3Hz,2H),3.24-3.17(m,4H),2.95-2.87(m,1H),2.85-2.76(m,1H),2.32(s,3H),1.79(s,4H),1.68(d,J=1.8Hz,2H),1.56(s,2H)。
实施例1
合成路线:
Figure PCTCN2022084627-appb-000112
第一步
将化合物1-1(10g,49.26mmol)溶解在1,4-二氧六环(60mL)中,向反应液中加入化合物1-2(9.87g,49.26mmol),碳酸铯(32.10g,8.53mmol)和2,2-双(二苯膦基)-1,1-联萘(3.07g,4.93mmol),置换氮气3 次后加入三(二亚苄基丙酮)二钯(4.51g,4.93mmol),反应液在氮气保护下加热至100℃搅拌12小时。向反应液中加入水(400mL),过滤,滤液用乙酸乙酯(200mL×2)萃取,合并的有机相经饱和食盐水(100mL)洗涤,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,10/1~2/1,V/V)分离得到化合物1-3。MS-ESI计算值[M+H] +323,实测值323。
第二步
将化合物1-3(3g,9.31mmol)溶于乙酸乙酯(45mL)中,在氮气保护下向反应液中加入湿钯碳(0.85g,10%纯度),将反应体系进行氢气置换并在氢气(15psi)保护下20℃搅拌12小时。将反应液过滤,滤液减压浓缩得到化合物1-4。MS-ESI计算值[M+H] +293,实测值293。
第三步
将化合物1-4(2.1g,7.18mmol),化合物1-5(1.92g,7.18mmol),碳酸铯(9.40g,14.37mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(415.59mg,718.25μmol)和三(二亚苄基丙酮)二钯(657.72mg,718.25μmol)溶解在1,4-二氧六环(40mL)中,反应液在氮气保护下100℃搅拌4小时。向反应液中加入水(300mL),过滤,用乙酸乙酯(200mL×2)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,10/1~1/1,V/V)分离得到化合物1-6。MS-ESI计算值[M+H] +478,480,实测值478,480。
第四步
将化合物1-6(2g,4.18mmol),双联嚬哪醇硼酸酯(2.65g,10.45mmol),醋酸钾(1.23g,12.54mmol)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(398.61mg,836.15μmol)和三(二亚苄基丙酮)二钯(382.84mg,418.08μmol)溶解在1,4-二氧六环(20mL)中,置换氮气3次,反应液在氮气保护下加热至70℃搅拌2小时。向反应液加入水(20mL),用乙酸乙酯(50mL×1)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物1-7。MS-ESI计算值[M+H] +526,实测值526。
第五步
将化合物1-7(580mg,1.69mmol),中间体A(1.77g,3.37mmol),磷酸钾(1.07g,5.06mmol)和[1,1-双(二苯基膦基)二茂铁]二氯化钯(137.77mg,168.70μmol)溶解在四氢呋喃(16mL)和水(4mL)中,置换氮气3次,反应液在氮气保护下加热至50℃搅拌15小时。向反应液加入水(100mL),用乙酸乙酯(30mL×3)萃取,有机相经饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,0/1,V/V)分离得到化合物1-8。MS-ESI计算值[M+H] +707,实测值707。
第六步
将化合物1-8(950mg,1.34mmol)溶于甲醇(10mL)中,向反应液中加入硼氢化钠(290mg,7.67mmol),反应液25℃搅拌2小时。向反应液加入饱和氯化铵水溶液(100mL),用乙酸乙酯(30mL×3)萃取,有机相经饱和食盐水(50mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物1-9。MS-ESI计算值[M+H] +709,实测值709。
第七步
将化合物1-9(940mg,1.33mmol)溶于乙酸乙酯(20mL)中,再加入氯化氢的乙酸乙酯溶液(4mol/L,2.65mL)后于25℃下搅拌0.5小时。将反应液减压浓缩得到粗产品,向粗产品中加入乙酸乙酯(15mL),在25℃下搅拌2小时。将反应液减压浓缩得到化合物1-10的盐酸盐。MS-ESI计算值[M+H] +609,实测值609。
第八步
将化合物1-10的盐酸盐(200mg,309.98μmol)溶于二氯甲烷(10mL)中,加入三乙胺(31.37mg,309.98μmol)后于20℃下搅拌10分钟。再依次加入醋酸(18.62mg,309.98μmol)和中间体B(114.50mg,309.98μmol)后在20℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(114.50mg,309.98μmol)后于25℃下搅拌12小时。将反应液减压浓缩,粗品经制备高效液相色谱法(色谱柱:3_Phenomenex Luna C18 75×30mm×3μm;流动相:0.05%盐酸水溶液-乙腈;梯度:乙腈24%-44%,6.5min)分离得粗产品。向粗产品中加入二氯甲烷(50mL),依次用饱和碳酸氢钠水溶液(20mL×2)和饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,15/1,V/V)分离得到化合物1。
MS-ESI计算值[M+H] +962,实测值962。 1H NMR(400MHz,CD 3OD)δ=8.63(d,J=2.0Hz,1H),8.51(d,J=4.8Hz,1H),7.95(d,J=2.8Hz,1H),7.66(d,J=8.4Hz,1H),7.52-7.41(m,3H),7.34(d,J=2.0Hz,1H),7.24-7.16(m,1H),7.04(d,J=9.2Hz,1H),6.73(s,1H),5.12-5.01(m,1H),4.74-4.51(m,2H),4.43-4.21(m,3H),4.11-3.92(m,3H),3.72(s,3H),3.60-3.52(m,1H),3.16-2.96(m,4H),2.87-2.59(m,7H),2.49(s,2H),2.11(s,4H),2.00-1.87(m,3H),1.42-1.29(m,3H),1.26(s,6H),1.02-0.97(m,3H)。
实施例2
合成路线:
Figure PCTCN2022084627-appb-000113
Figure PCTCN2022084627-appb-000114
第一步
将化合物2-1(5.6g,27.59mmol),化合物2-2(8.53g,27.59mmol)溶解在1,4-二氧六环(60mL)和水(15mL)中,向反应液中加入碳酸钾(11.44g,82.76mmol),置换氮气3次后加入[1,1-双(二苯基膦基)二茂铁]二氯化钯(387.27mg,551.74μmol),反应液在氮气保护下加热至90℃搅拌3小时。反应液减压浓缩后加入水(200mL),用乙酸乙酯(100mL×2)萃取,有机相经饱和食盐水(100mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产物。向粗产物中加入混合溶剂100mL(甲基叔丁基醚/正庚烷,1/4,V/V),后于25℃搅拌0.5小时。减压浓缩得到化合物2-3。MS-ESI计算值[M+H] +306,实测值306。
第二步
将化合物2-3(8g,25.61mmol)溶于乙醇(80mL)和乙酸乙酯(80mL)中,在氮气保护下向反应液中加入钯碳(1g,10%纯度),抽真空置换几次氢气,反应液在氢气(50psi)保护下60℃搅拌12小时。将反应液过滤,减压浓缩得到化合物2-4。MS-ESI计算值[M+H] +276,实测值276。
第三步
将化合物2-4(8.2g,29.78mmol)溶于乙醇(80mL)和乙酸乙酯(80mL)中,在氮气保护下向反应液中加入钯碳(1g,10%纯度),抽真空置换几次氢气,反应液在氢气(50psi)保护下60℃搅拌12小时。将反应液过滤,减压浓缩后加入水(200mL),用乙酸乙酯(100mL×3)萃取,有机相经饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物2-5。MS-ESI计算值[M+H] +278,实测值278。
第四步
将化合物2-5(4g,14.42mmol)和化合物2-6(4.6g,17.31mmol)溶解在1,4-二氧六环(40mL)中,加入三(二亚苄基丙酮)二钯(660.31mg,721.08μmol),45-双二苯基膦-99-二甲基氧杂氧杂蒽杂蒽(834.46mg,1.44mmol)和碳酸铯(9.40g,28.84mmol),反应液在氮气保护下100℃搅拌4小时。反应液减压浓缩后经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,50/1~30/1,V/V)分离得到化合物2-7。MS-ESI计算值[M+H] +463和465,实测值463和465。
第五步
将化合物2-7(1g,2.16mmol),双联嚬哪醇硼酸酯(1.37g,5.40mmol),醋酸钾(635.41mg,6.47mmol)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(205.76mg,431.62μmol)和三(二亚苄基丙酮)二钯(197.62mg,215.81μmol)溶解在1,4-二氧六环(10mL)中,置换氮气3次,反应液在氮气保护下加热至80℃搅拌 2小时。向反应液加入水(100mL),用二氯甲烷(40mL×2)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物2-8。MS-ESI计算值[M+H] +511,实测值511。
第六步
将化合物2-8(2.08g,4.07mmol),中间体A(0.7g,2.04mmol),磷酸钾(1.30g,6.11mmol),[1,1-双(二苯基膦基)二茂铁]二氯化钯(166.27mg,203.60μmol)溶解在四氢呋喃(12mL)和水(3mL)中,置换氮气3次,反应液在氮气保护下加热至50℃搅拌15小时。向反应液加入水(100mL),用乙酸乙酯(50mL×3)萃取,有机相经饱和食盐水(100mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,40/1,V/V)分离得到化合物2-9。MS-ESI计算值[M+H] +692,实测值692。
第七步
将化合物2-9(1.3g,1.88mmol)溶于乙酸乙酯(15mL)中,再加入氯化氢/乙酸乙酯溶液(4mol/L,1.88mL)后于25℃下搅拌1小时。将反应液减压浓缩得到粗产品,向粗产品中加入乙酸乙酯(15mL)后在25℃下搅拌2小时。减压浓缩得到化合物2-10的盐酸盐。MS-ESI计算值[M+H] +592,实测值592。
第八步
将化合物2-10的盐酸盐(1.1g,1.75mmol)溶于甲醇(20mL)中,向反应液中加入三乙胺(354.40mg,7.67mmol),反应液25℃搅拌10分钟。后加入硼氢化钠(350mg,9.25mmol),反应液25℃搅拌1小时。向反应液加入饱和氯化铵溶液(100mL)搅拌1小时,用乙酸乙酯(50mL×3)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物2-11。MS-ESI计算值[M+H] +594,实测值594。
第九步
将化合物2-11的盐酸盐(200mg,317.37μmol)溶于二氯甲烷(10mL)中,加入三乙胺(32.11mg,317.37μmol),后于20℃下搅拌10分钟。再依次加入醋酸(19.06mg,317.37μmol)和中间体B(117.23mg,317.37μmol)后于20℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(134.53mg,634.74μmol)后于25℃下搅拌12小时。将反应液减压浓缩得到粗产品,粗产物经过薄层色谱法(展开剂:二氯甲烷/甲醇,15/1,V/V)分离得到化合物2。
MS-ESI计算值[M+H] +947,实测值947。 1H NMR(400MHz,CD 3OD)δ=8.73(d,J=2.0Hz,1H),8.51(d,J=4.8Hz,1H),8.12(d,J=2.0Hz,1H),7.66(d,J=8.4Hz,1H),7.59-7.51(m,2H),7.47(d,J=5.2Hz,1H),7.35(d,J=2.4Hz,1H),7.26-7.20(m,1H),7.05-6.99(m,1H),6.76-6.69(m,1H),5.11-5.00(m,1H),4.74-4.65(m,1H),4.62-4.51(m,1H),4.43-4.23(m,3H),4.13-3.90(m,3H),3.72(s,3H),3.25-3.16(m,2H),3.09-2.57(m,9H),2.43-2.26(m,2H),2.19-2.08(m,1H),2.04-1.72(m,8H),1.47-1.21(m,10H)。
实施例3
Figure PCTCN2022084627-appb-000115
合成路线:
Figure PCTCN2022084627-appb-000116
将化合物1-10的盐酸盐(10mg,15.50μmol)溶于二氯甲烷(2mL)中,加入中间体C(10.46mg,23.25μmol),三乙胺(1.88mg,18.60μmol),醋酸(1.86mg,31.00μmol)后于25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(9.85mg,46.50μmol)后于25℃下搅拌12小时。将反应液减压浓缩,经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75×30mm×3μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈18%-48%,7分钟)分离得到化合物3的甲酸盐。
MS-ESI计算值[M+H] +948,实测值948。 1H NMR(400MHz,CDCl 3)δ=8.66(d,J=2.4Hz,1H),8.50(d,J=2.6Hz,1H),7.97(s,1H),7.83(s,2H),7.67(d,J=8.4Hz,1H),7.38(d,J=5.0Hz,1H),6.97(s,1H),6.88-6.78(m,2H),6.70(d,J=6.4Hz,1H),5.13-4.90(m,2H),4.63(s,1H),4.56-4.44(m,1H),4.41-4.29(m,1H),4.21-4.13(m,2H),3.94-3.82(m,1H),3.74-3.67(m,6H),3.62-3.36(m,4H),3.29-3.20(m,1H),3.09(s,2H),2.94-2.79(m,2H),2.71-2.38(m,10H),2.24-2.07(m,1H),1.25-1.23(m,6H),1.01(d,J=6.4Hz,3H)。
实施例4
合成路线:
Figure PCTCN2022084627-appb-000117
将化合物1-10的盐酸盐(10mg,15.50μmol)溶于二氯甲烷(2mL)中,加入中间体D(10.39mg,23.25μmol),三乙胺(1.88mg,18.6μmol),醋酸(1.86mg,31.00μmol)后于25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(9.85mg,46.50μmol)后于25℃下搅拌12小时。将反应液减压浓缩,经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75×30mm×3μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈18%-48%,7分钟)分离得到化合物4。
MS-ESI计算值[M+H] +976,实测值976。 1H NMR(400MHz,CDCl 3)δ=8.66(d,J=2.0Hz,1H),8.50(d,J=5.0Hz,1H),7.99(d,J=2.6Hz,1H),7.89-7.81(m,2H),7.68(d,J=8.4Hz,1H),7.40-7.31(m,2H),7.09-7.01(m,1H),6.86-6.77(m,2H),5.15-4.89(m,2H),4.73-4.58(m,1H),4.58-4.47(m,1H),4.39-4.25(m,1H),4.22-4.12(m,2H),4.01-3.83(m,3H),3.72(s,3H),3.56-3.42(m,1H),3.26-3.12(m,1H),3.11-2.91(m,4H),2.90-2.65(m,6H),2.64-2.46(m,6H),2.45-2.34(m,1H),2.20-2.10(m,1H),1.88-1.81(m,4H),1.29- 1.25(m,8H),1.00-0.90(m,4H)。
实施例5
Figure PCTCN2022084627-appb-000118
合成路线:
Figure PCTCN2022084627-appb-000119
第一步
将化合物1-10的盐酸盐(10mg,309.98μmol)溶于二氯甲烷(4mL)中,加入中间体E(20.66mg,23.25μmol),三乙胺(1.88mg,18.6μmol),醋酸(1.86mg,31.00μmol)后于25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(9.85mg,46.50μmol)后于25℃下搅拌12小时。将反应液减压浓缩,经制备高效液相色谱法(色谱柱:Phenomenex Gemini-NX C18 75×30mm×3μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈18%-48%,7分钟)分离得到化合物5的甲酸盐。
MS-ESI计算值[M+H] +948,实测值948。 1H NMR(400MHz,CD 3OD)δ=8.66(d,J=2.2Hz,1H),8.51(d,J=5.2Hz,1H),7.98(d,J=2.8Hz,1H),7.51-7.42(m,4H),7.37-7.29(m,2H),7.05(d,J=9.0Hz,1H),6.73(s,1H),6.77-6.69(m,1H),5.42-5.30(m,2H),4.45-4.34(m,2H),4.31-4.19(m,1H),4.03-3.87(m,1H),3.72(s,2H),3.87-3.68(m,1H),3.60-3.42(m,2H),3.21-3.06(m,2H),2.95-2.73(m,6H),2.65-2.42(m,7H),2.26-2.12(m,2H),1.98-1.90(m,1H),1.89-1.80(m,1H),2.10-1.79(m,1H),1.68-1.55(m,1H),1.43-1.37(m,3H),1.26(s,6H),1.00(d,J=6.2Hz,3H),0.94-0.78(m,2H)。
实施例6
合成路线:
Figure PCTCN2022084627-appb-000120
第一步
将化合物1-10(500mg,821μmol)和化合物6-1(281mg,1.64mmol)溶于1,2-二氯乙烷(20mL)中,然后加入醋酸(493mg,8.21mmol)和无水硫酸钠(583mg,4.11mmol)。反应液在65℃下搅拌12小时。反应液冷却至25℃,向混合液中加入三乙酰氧基硼氢化钠(522mg,2.46mmol)后,25℃下搅拌2小时。向向反应液加入饱和碳酸氢钠水溶液(50mL),然后二氯甲烷萃取(30mL×3),有机相用饱和食盐水(40mL×1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)纯化分离得到化合物6-2。MS-ESI计算值[M+H] +764,实测值764。
第二步
将化合物6-2(380mg,497μmol)溶于二氯甲烷(4mL)中,然后加入三氟乙酸(0.5mL),反应液在25℃下搅拌3小时。反应液减压浓缩,然后加入甲基叔丁基醚(10mL),25℃下搅拌12小时,过滤,干燥得到化合物6-3的三氟乙酸盐。MS-ESI计算值[M+H] +664,实测值664。
第三步
将化合物6-3的三氟乙酸盐(100mg,129μmol)和化合物B-1(35.5mg,129μmol)溶解在N-甲基吡咯烷酮(2mL)中,向反应液中加入N,N-二异丙基乙胺(83.1mg,643μmol),反应液在100℃下搅拌5小时,向反应液中加入水(50mL),用乙酸乙酯萃取(30mL×3),有机相用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)纯化分离得到化合物6。MS-ESI计算值[M+H] +920,实测值920。
1H NMR(400MHz,CD 3OD)δ=8.65(d,J=2.2Hz,1H),8.50(d,J=5.1Hz,1H),7.99-7.95(m,1H),7.65(d,J=8.2Hz,1H),7.53-7.43(m,3H),7.08-7.01(m,1H),6.86(d,J=2.1Hz,1H),6.77-6.58(m,2H),5.10-5.02(m,2H),4.40-4.14(m,5H),4.00-3.87(m,3H),3.72(s,3H),3.16-3.07(m,2H),2.86-2.58(m,9H),2.52-2.44(m,2H),2.41-2.29(m,1H),2.16-2.06(m,1H),1.35-1.18(m,8H),1.02-0.97(m,3H)。
实施例7
合成路线:
Figure PCTCN2022084627-appb-000121
将化合物6-3(180mg,185μmol)和中间体B(102mg,277μmol)溶于二氯甲烷(10mL)中,加入三乙胺(37.5mg,370μmol)后。再加入醋酸(22.2mg,370μmol)后在25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(118mg,555μmol)后于25℃下搅拌12小时。将反应液减压浓缩,粗品经制备高效液相色谱法(色谱柱:Waters Xbridge 150*25mm*5μm;流动相:10mmol/L碳酸氢胺水溶液-乙腈;梯度:乙腈33%-63%,9min)分离浓缩冻干,继续以薄层色谱法(展开剂:二氯甲烷/甲醇,10/1,V/V)分离得到化合物7。MS-ESI计算值[M+H] +1017,实测值1017。
1H NMR(400MHz,CDCl 3)δ=8.60-8.57(m,1H),8.42-8.41(m,1H),8.29-8.26(m,1H),7.92-7.87(m,1H),7.78-7.74(m,2H),7.61-7.59(m,1H),7.32-7.28(m,1H),7.23-7.21(m,1H),6.97-6.95(m,1H),6.77-6.73(m,2H),4.98-4.84(m,2H),4.59-4.26(m,3H),4.09-4.07(m,2H),3.91-3.78(m,4H),3.64(s,3H),3.31-3.15(m,4H),2.96-2.62(m,10H),2.54-2.38(m,8H),2.10-2.04(m,2H),1.86-1.81(m,2H),1.31-1.25(m,2H),1.28(s,6H),0.88-0.87(m,3H)。
实施例8
Figure PCTCN2022084627-appb-000122
合成路线:
Figure PCTCN2022084627-appb-000123
将中间体F的盐酸盐(200mg,215μmol)和化合物B-1(65.3mg,236μmol)溶解在二甲基亚砜(5mL)中,向反应液中加入N,N-二异丙基乙胺(167mg,1.29mmol),反应液在90℃下搅拌12小时,向反应液中 加入水(10mL),用二氯甲烷/甲醇萃取(10/1,V/V,20mL×3),有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经制备高效液相色谱法(色谱柱:Phenomenex C18 75*30mm*3μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈35%-65%,7min)分离得到化合物8的甲酸盐。
MS-ESI计算值[M+H] +919,实测值919。 1H NMR(400MHz,CDCl 3)δ=8.62-8.61(m,1H),8.48-8.47(m,1H),8.12-8.07(m,1H),7.95-7.94(m,1H),7.80-7.78(m,2H),7.70-7.67(m,1H),7.36-7.35(m,1H),7.29-7.27(m,2H),7.06-7.05(m,1H),6.84-6.61(m,2H),5.05-4.91(m,2H),4.66-4.33(m,3H),4.16-4.14(m,2H),3.90-3.82(m,1H),3.71(s,3H),3.47-3.44(m,4H),3.12-3.09(m,4H),2.91-2.71(m,3H),2.57-2.56(m,2H),2.53-2.50(m,2H),2.15-2.11(m,1H),1.76-1.74(m,7H),1.27(s,6H)。
实施例9
Figure PCTCN2022084627-appb-000124
合成路线:
Figure PCTCN2022084627-appb-000125
第一步
将化合物9-1(1.00g,5.02mmol)溶解在乙酸乙酯(10mL)中,向反应液中加入氯化氢乙酸乙酯(4mol/L,5.02mL),反应液在25℃下搅拌1小时,反应液减压浓缩得到化合物9-2的盐酸盐。
第二步
将化合物9-2的盐酸盐(680mg,5.02mmol),中间体B-1(1.39g,5.02mmol)溶解在二甲基亚砜(5mL)中,向反液中加入三乙胺(2.03g,20.1mmol),反应液在120℃搅拌12小时,向反应液中加入水(20mL),用二氯甲烷/甲醇=10/1(20mL x 3)萃取,有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,100/1~20/1,V/V)分离得到化合物9-3。MS-ESI计算值[M+H] +356,实测值356。
第三步
将化合物9-3(150mg,193μmol)和化合物6-3(77.0mg,193μmol)溶解在四氢呋喃(5mL)中,向反应液中加入硫酸镁(116mg,964μmol),N,N-二异丙基乙胺(97.6mg,964μmol),反应液在35℃下搅拌0.5小 时,向反应液中加入三乙酰氧基硼氢化钠(81.7mg,386μmol),反应液在35℃下搅拌1小时,向反应液加入饱和碳酸氢钠(5mL),过滤,滤液减压浓缩,粗品经制备高效液相色谱法(色谱柱:Unisil 3-100 C18 Ultra 150*50mm*3μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈12%-42%,10min)分离得到化合物9的甲酸盐。
MS-ESI计算值[M+H] +1003,实测值1003。 1H NMR(400MHz,CD 3OD)δ=8.67-8.64(m,1H),8.52-8.50(m,1H),8.47-8.45(m,1H),7.98-7.95(m,1H),7.72-7.64(m,1H),7.50-7.36(m,3H),7.41-7.37(m,1H),7.27-7.25(m,1H),7.06-7.04(m,1H),6.73(s,1H),5.10-5.07(m,1H),4.40-4.33(m,1H),4.27-4.25(m,2H),4.12-4.09(m,2H),3.96-3.95(m,3H),3.72(s,3H),3.65-3.50(m,4H),3.20-3.17(m,1H),3.10-2.94(m,6H),2.86-2.82(m,1H),2.77-2.71(m,2H),2.63-2.56(m,4H),2.52-2.49(s,3H),2.34-2.29(m,1H),2.14-2.03(m,3H),1.45-1.39(m,2H),1.27(s,6H),1.01-0.99(m,3H)。
实施例10
Figure PCTCN2022084627-appb-000126
合成路线:
Figure PCTCN2022084627-appb-000127
将中间体G的甲酸盐(100mg,153μmol),化合物B-1(46.6mg,169μmol)溶解在1-甲基-2-吡咯烷酮(5mL),向反应液中加入N,N-二异丙基乙胺(99.0mg,766μmol),反应液在90℃下搅拌12小时,向反应液中加入水(10mL),用二氯甲烷/甲醇(10/1,V/V,20mL x 3)萃取,有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经制备高效液相色谱法(色谱柱:Phenomenex C18 75*30mm*3μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈35%-65%,7min)分离浓缩冻干,继续以薄层色谱法(展开剂:二氯甲烷/甲醇,10/1,V/V)分离得到化合物10的甲酸盐。
MS-ESI计算值[M+H] +863,实测值863。 1H NMR(400MHz,CD 3OD)δ=8.57-8.56(m,1H),8.48-8.47(m,1H),7.77-7.75(m,2H),7.67-7.65(m,1H),7.58-7.57(m,1H),7.35-7.34(m,1H),6.87-6.79(m,4H),6.56-6.52(m,1H),5.05-5.02(m,1H),4.95-4.91(m,1H),4.67-4.33(m,3H),4.21(s,3H),4.15-4.14(m,2H),4.07-4.03(m,2H),3.86-3.84(m,2H),3.71(s,3H),2.95-2.71(m,2H),2.57-2.56(m,2H),2.53-2.50(m,2H),2.17-2.10(m,1H),1.27-1.25(m,9H)。
实施例11
Figure PCTCN2022084627-appb-000128
合成路线:
Figure PCTCN2022084627-appb-000129
将中间体F的盐酸盐(200mg,214.82μmol)和中间体B(162.39mg,429.64μmol)溶于二氯甲烷(10mL)中,加入三乙胺(26.09mg,257.78μmol)后和冰醋酸(25.80mg,429.64μmol),反应液在20℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(136.59mg,644.46μmol)后于25℃下搅拌12小时。将反应液减压浓缩,粗品经制备高效液相色谱法(色谱柱:Phenomenex luna C18 250*50mm*15μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈19%-49%,10min)分离得到11的甲酸盐。
MS-ESI计算值[M+H] +1016,实测值1016。 1H NMR(400MHz,CD 3OD)δ=8.57-8.56(m,1H),8.49-8.48(m,1H),7.94-7.93(m,1H),7.70-7.63(m,1H),7.46-7.45(m,2H),7.43-7.40(m,1H),7.35-7.34(m,1H),7.24-7.21(m,1H),7.02-7.00(m,1H),6.71(s,1H),5.08-5.03(m,1H),4.36-4.23(m,3H),4.08-4.05(m,2H),3.97-3.93(m,1H),3.70(s,3H),3.12-2.99(m,11H),2.90-2.81(m,3H),2.76-2.63(m,2H),2.60-2.59(m,2H),2.47(s,2H),2.16-2.08(m,2H),1.92-1.89(m,2H),1.78-1.73(s,8H),1.42-1.30(m,3H),1.25(s,6H)。
实施例12
Figure PCTCN2022084627-appb-000130
合成路线:
Figure PCTCN2022084627-appb-000131
第一步
将中间体G的甲酸盐(200mg,306.40μmol)和中间体B(231.62mg,612.80μmol)溶于二氯甲烷(5mL)中,加入三乙胺(37.21mg,367.68μmol)后。再加入醋酸(36.80mg,612.80μmol)后在25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(194.82mg,919.20μmol)后于25℃下搅拌12小时。将反应液减压浓缩,粗品经制备高效液相色谱法(色谱柱:Phenomenex Luna C18 150*25mm*10μm;流动相:0.225%甲酸水溶液-乙腈;梯度:乙腈16%-46%,10min)分离得到化合物12的甲酸盐。
MS-ESI计算值[M+H] +960,实测值960。 1H NMR(400MHz,CD 3OD)δ=8.53-8.50(m,2H),8.46-8.43(m,1H),7.70-7.68(m,1H),7.57-7.56(m,1H),7.48-7.46(m,2H),7.36(m,1H),7.25-7.23(m,1H),7.03-6.97(m,2H),6.75(s,1H),5.11-5.06(m,1H),4.37-4.27(m,8H),4.10-3.99(m,7H),3.72(s,3H),3.07-2.99(m,4H),2.94-2.88(m,1H),2.78-2.66(m,2H),2.63-2.62(m,2H),2.50(s,2H),2.14-2.11(m,1H),1.93-1.84(m,3H),1.43-1.35(m,2H),1.28(s,7H)。
实施例13
Figure PCTCN2022084627-appb-000132
合成路线:
Figure PCTCN2022084627-appb-000133
第一步
将化合物1-10(130mg,201μμmol),化合物13-1(47.3mg,222μμmol),三乙胺(20.4mg,201μmol),冰醋酸(12.1mg,201μmol)溶于二氯甲烷(3mL)中,反应混合物在25℃搅拌0.5小时。然后向反应混合物中加入醋酸硼氢化钠(85.4mg,403μmol),反应混合物在25℃搅拌1小时。向反应液中加入水(15mL),用二氯甲烷(15mL×2)萃取,结合的有机相用无水硫酸钠干燥,过滤,减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物13-2。MS-ESI计算值[M+H] +806,实测值806。
第二步
将化合物13-2(137mg,161μmol)溶于乙酸乙酯(2mL)中,向反应液中加入氯化氢/乙酸乙酯溶液(4mol/L,4mL),反应混合物在20℃氮气保护下搅拌1小时。将反应液减压浓缩得到化合物13-3的盐酸盐。MS-ESI计算值[M+H] +706,实测值706。
第三步
将化合物13-3(80.0mg,83.2μmol),化合物13-1(21.3mg,99.9μmol),三乙胺(59.0mg,583μmol),冰醋酸(5.00mg,83.2μmol)溶于二氯甲烷(3mL)中,反应混合物在25℃搅拌0.5小时。然后向反应混合物中加入醋酸硼氢化钠(35.3mg,166μmol),反应混合物在25℃搅拌0.5小时。向反应液中加入水(15mL),用二氯甲烷(15mL×2)萃取,结合的有机相用无水硫酸钠干燥,过滤,减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物13-4。MS-ESI计算值[M+H] +903,实测值903。
第四步
将化合物13-4(80.0mg,85.1μmol)溶于乙酸乙酯(1.5mL)中,向反应液中加入氯化氢/乙酸乙酯溶液(4mol/L,3mL),反应混合物在25℃氮气保护下搅拌0.5小时。将反应液减压浓缩得到粗品化合物13-5的盐酸盐。MS-ESI计算值[M+H] +803,实测值803。
第五步
将化合物13-5(30.0mg,27.40μmol),化合物D-3(8.16mg,32.9μmol)和2-(7-氮杂苯并三氮唑-1-基)-1,1,3,3-四甲基脲六氟磷酸酯(15.6mg,41.1μmol)溶于二氯甲烷(2mL)中,然后向反应混合物中加入三乙胺(41.96μL,301μmol),反应混合物在25℃搅拌12小时。向反应液中加入水(15mL),用二氯甲烷(15mL×2)萃取,结合的有机相用无水硫酸钠干燥,过滤,减压浓缩,粗品经制备型高效液相色谱(色谱柱:Phenomenex Luna C18 150×25mm×10μm;流动相:0.05%的盐酸水溶液-乙腈;梯度:乙腈12%-42%,10min)分离得到化合物13的盐酸盐。
1H NMR(400MHz,CD 3OD)δ=8.64(d,J=5.5Hz,1H),8.24-8.05(m,3H),8.03-7.83(m,1H),7.69(d,J=5.4Hz,1H),7.45-7.30(m,4H),6.76(s,1H),4.63(s,2H),4.33-4.27(m,2H),4.22(br s,2H),3.92-3.82(m,2H),3.77(s,4H),3.74-3.66(m,4H),3.66-3.57(m,4H),3.22(br s,2H),3.15-3.04(m,4H),3.01-2.76(m,4H),2.62(s,2H),2.49(s,2H),2.33(s,3H),2.28-2.14(m,3H),2.02-1.66(m,5H),1.27(s,6H),1.18(t,J=7.0Hz,4H),1.05(br d,J=6.0Hz,2H)。MS-ESI计算值[M+H] +1033,实测值1033。
实施例14
合成路线:
Figure PCTCN2022084627-appb-000134
第一步
将化合物1-10(190mg,294μmol),化合物14-2(36.8mg,353μmol),三乙胺(29.8mg,294μmol),冰醋酸(17.7mg,294μmol)溶于二氯甲烷(3mL)中,反应混合物在25℃搅拌0.5小时。然后向反应混合物中加入醋酸硼氢化钠(125mg,589μmol),反应混合物在25℃搅拌0.5小时。向反应液中加入水(15mL),用二氯甲烷(15mL×2)萃取,结合的有机相用无水硫酸钠干燥,过滤,减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)分离得到化合物14-3。MS-ESI计算值[M+H] +697,实测值697。
第二步
将化合物14-3(70.0mg,98.4μmol)溶于水(2mL)中,向反应混合物中滴加浓盐酸(12mol/L,2mL),反应混合物在55℃搅拌5小时。向反应液中加入1mol/L的氢氧化钠水溶液调节pH=9,水相用二氯甲烷(8mL×2)萃取,结合的有机相用无水硫酸钠干燥,过滤,减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,10/1,V/V)分离得到中间体14-4。 1H NMR(400MHz,CDCl 3)δ=8.82-8.40(m,2H),7.92(s,2H),7.56-7.31(m,1H),7.01(s,2H),6.85(s,2H),5.09(s,1H),4.64(s,1H),4.54(s,1H),4.31(s,1H),4.17(d,J=4.4Hz,2H),3.91(s,2H),3.73(d,J=1.8Hz,3H),3.50(s,4H),3.36-2.96(m,4H),2.58(br s,2H),2.52(s,2H),1.28(s,6H),1.00-0.89(m,3H)。MS-ESI计算值[M+H] +651,实测值651。
第三步
将化合物14-4(20.0mg,26.0μmol),中间体H(12.5mg,28.6μmol),三乙胺(2.89mg,28.6μmol),冰醋酸(1.56mg,26.0μmol)溶于二氯甲烷(2mL)中,反应混合物在25℃搅拌0.5小时。然后向反应混合物中加入醋酸硼氢化钠(11.0mg,51.9μmol),反应混合物在25℃搅拌12小时。反应液减压浓缩,粗品经高效液相色谱(色谱柱:Phenomenex Gemini-NX C18 75×30mm×3μm;流动相:0.05%的氨水溶液-乙腈;梯度:乙腈32%-62%,7min)分离得到化合物14。
1H NMR(400MHz,CDCl 3)δ=9.57(s,1H),8.23(d,J=4.9Hz,1H),8.13-7.77(m,1H),7.63-7.48(m,2H),7.15-7.04(m,4H),6.74(d,J=8.5Hz,1H),6.50-6.42(m,1H),4.21(s,2H),3.93(s,2H),3.61(s,3H),3.47(s,3H),3.43(s,3H),3.40(s,1H),3.27(s,11H),2.48(t,J=6.5Hz,3H),2.23-2.08(m,3H),1.89-1.53(m,7H),1.49-1.14(m,6H),0.97(d,J=7.8Hz,9H),0.90(d,J=5.1Hz,2H),0.59(s,2H)。MS-ESI计算值[M/2+H] + 518,实测值518。
实施例15
合成路线:
Figure PCTCN2022084627-appb-000135
将化合物14-4(20.0mg,26.0μmol),中间体I(12.0mg,28.6μmol),三乙胺(2.89mg,28.6μmol),冰醋酸(1.56mg,26.0μmol)溶于二氯甲烷(2mL)中,反应混合物在25℃搅拌0.5小时。然后向反应混合物中加入醋酸硼氢化钠(11.0mg,51.9μmol),反应混合物在25℃搅拌12小时。反应液减压浓缩,粗品经高效液相色谱(色谱柱:Waters Xbridge 150×25mm×5μm;流动相:10mmol/L的碳酸氢铵水溶液-乙腈;梯度:乙腈39%-69%,10min)分离得到化合物15。
1H NMR(400MHz,DMSO-d 6)δ10.37(s,1H),8.61(d,J=2.14Hz,1H),8.48(d,J=5.00Hz,1H),8.41(s,1H),7.80(d,J=2.50Hz,1H),7.46(d,J=2.14Hz,1H),7.32-7.37(m,3H),7.30(s,1H),7.20-7.26(m,2H),6.56(s,1H),4.96(s,1H),4.38-4.50(m,2H),4.20(t,J=8.58Hz,3H),3.74-3.92(m,2H),3.59(s,3H),3.48-3.56(m,3H),3.41-3.47(m,5H),2.89(t,J=8.50Hz,1H),2.65-2.81(m,4H),2.57(d,J=8.76Hz,3H),2.33(s,2H),2.21(s,3H),2.07(s,3H),1.32-1.53(m,7H),1.17-1.28(m,9H),1.05(t,J=6.94Hz,2H),0.83-0.93(m,4H)。MS-ESI计算值[M+H] +1019,实测值1019。
实施例16
合成路线:
Figure PCTCN2022084627-appb-000136
Figure PCTCN2022084627-appb-000137
第一步
将化合物1-1(2.00g,9.85mmol)溶解在1,4-二氧六环(20mL)中,向反应液中加入化合物16-1(1.99g,9.36mmol),叔丁醇钠(1.42g,14.8mmol)置换氮气10分钟后加入醋酸钯(110mg,493μmol)和2-双环己基膦-2,6-二异丙氧基-1,1-联苯(460mg,986μmol),反应液在氮气保护下加热至100℃搅拌24小时。将反应液过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯-油醚/乙酸乙酯/二氯甲烷,15/1~2/2/1,V/V)分离得到化合物16-2。MS-ESI计算值[M+H] +335,实测值335。
第二步
将化合物16-2(740mg,2.21mmol)溶于乙酸乙酯(5mL)中,在氮气保护下向反应液中加入湿钯碳(0.074g,10%),将反应体系用氢气置换三次并维持氢气(15psi)保护下25℃搅拌5小时。将反应液过滤、减压浓缩得到化合物16-3。MS-ESI计算值[M+H] +305,实测值305。
第三步
将化合物16-3(700mg,2.30mmol),化合物1-5(614mg,2.30mmol),碳酸铯(1.50g,4.60mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(134mg,230μmol)和三(二亚苄基丙酮)二钯(211mg,230μmol)溶解在1,4-二氧六环(10mL)中,氮气置换三次,在氮气保护下100℃搅拌12小时。将反应液过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(石油醚/乙酸乙酯-石油醚/乙酸乙酯/二氯甲烷,15/1-1/2/2,V/V)分离得到化合物16-4。MS-ESI计算值[M+H] +490和492,实测值490和492。 1H NMR(400MHz,CD 3OD)δ=8.59-8.53(m,2H),7.92(m,1H),7.45(m,1H),7.38-7.35(m,1H),7.26-7.24(m,1H),3.59-3.56(m,2H),3.51(s,3H),3.07-3.04(m,2H),2.92(s,2H),1.42(s,9H),0.95-0.93(m,2H),0.85-0.82(m,2H)。
第四步
将化合物16-4(621mg,1.27mmol),双联嚬哪醇硼酸酯(804mg,3.17mmol),醋酸钾(373mg,3.80mmol)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(121mg,254μmol)和三(二亚苄基丙酮)二钯(116mg,127μmol)溶解在1,4-二氧六环(10mL),置换氮气三次,反应液在氮气保护下加热至70℃搅拌2小时。向反应液加入水(20mL),用乙酸乙酯(30mL×2)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物16-5。MS-ESI计算值[M+H] +538,实测值538。
第五步
将化合物16-5(1.45g,2.70mmol),中间体A(464mg,1.35mmol,),磷酸钾(1.72g,8.09mmol)和[1,1-双(二苯基膦基)二茂铁]二氯化钯(220mg,270μmol)溶解在四氢呋喃(10mL)和水(2mL)中,置换氮气三次,反应液在氮气保护下加热至50℃搅拌15小时。将反应液过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(石油醚/乙酸乙酯-二氯甲烷/乙酸乙酯,15/1-1/1,V/V)分离得到化合物16-6。MS-ESI计算值[M+H] +719,实测值719。
第六步
将化合物16-6(461mg,641μmol)溶于甲醇(10mL)中,向反应液中加入硼氢化钠(158mg,4.18mmol),反应液25℃下搅拌2小时。向反应液加入饱和氯化铵水溶液(3mL),过滤,滤液减压浓缩,粗产物经过薄层色谱法(二氯甲烷/甲醇20/1,V/V)分离得到化合物16-7。MS-ESI计算值[M+H] +721,实测值721。
第七步
将化合物16-7(365mg,506μmol)溶于乙酸乙酯(5mL),再加入氯化氢/乙酸乙酯溶液(4mol/L,506μL)后于25℃下搅拌2小时。将反应液减压浓缩得到化合物16-8的盐酸盐。MS-ESI计算值[M-18] +603,实测值603。
第八步
将化合物16-8的盐酸盐(150mg,205μmol)和中间体B(152mg,411μmol)溶于二氯甲烷(5mL)中,加入三乙胺(25.0mg,247μmol)后。再加入醋酸(24.7mg,411μmol)在25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(131mg,616μmol)后于25℃下搅拌12小时。向反应液中加入饱和碳酸氢钠(2mL),将反应液过滤,滤液减压浓缩。粗品以薄层色谱法(展开剂:二氯甲烷/甲醇,10/1,V/V)分离后,继续经制备高效液相色谱法(色谱柱:Waters Xbridge 150*25mm*5μm;流动相:10mmol/L碳酸氢胺水溶液-乙腈;梯度:乙腈45%-75%,9min)分离得到化合物16。
MS-ESI计算值[M+H] +974,实测值974。 1H NMR(400MHz,CDCl 3)δ=8.64-8.63(m,1H),8.49-8.48(m,1H),8.09-8.06(m,1H),7.96-7.92(m,1H),7.83-7.80(m,2H),7.68-7.66(m,1H),7.37-7.36(m,1H),7.29-7.26(m,2H),7.06-7.03(m,1H),6.84-6.80(m,2H),5.05–5.04(m,1H),4.96-4.91(m,1H),4.65-4.31(m,3H),4.16-4.14(m,2H),3.97-3.94(m,2H),3.88-3.83(m,1H),3.71(s,3H),3.56-3.51(m,1H),3.08-3.05(m,2H),3.02-2.95(m,2H),2.87-2.73(m,3H),2.63-2.56(m,3H),2.51(s,3H),2.41–2.37(m,1H),2.26–2.23(m,2H),2.17-2.11(m,1H),1.94-1.90(m,2H),1.83-1.81(m,1H),1.33-1.30(m,2H),1.27(s,6H),1.00-0.98(m,4H)。
实施例17
合成路线:
Figure PCTCN2022084627-appb-000138
Figure PCTCN2022084627-appb-000139
第一步
将化合物1-1(1.26g,6.21mmol)溶解在1,4-二氧六环(25mL)中,向反应液中加入化合物17-1(1.45g,6.83mmol),叔丁醇钠(895mg,9.31mmol)置换氮气10分钟后加入三(二亚苄基丙酮)二钯(569mg,621μmol)和2-双环己基膦-2,6-二异丙氧基-1,1-联苯(580mg,1.24mmol),反应液在氮气保护下加热至100℃搅拌24小时。将反应液过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,1/1,V/V)分离得到化合物17-2。 1H NMR(400MHz,CDCl 3)δ=8.25(d,J=2.5Hz,1H),8.13(d,J=9.3Hz,1H),7.37(d,J=7.8Hz,1H),3.82-3.69(m,2H),3.60-3.30(m,4H),1.43(s,9H),1.11-1.02(m,2H),0.98-0.85(m,2H).MS-ESI计算值[M+H] +335,实测值335。
第二步
将化合物17-2(1.30g,3.89mmol)溶于乙酸乙酯(10mL)中,在氮气保护下向反应液中加入湿钯碳(0.18g,10%),将反应体系用氢气置换三次并维持氢气(15psi)保护下25℃搅拌12小时。将反应液过滤、减压浓缩得到化合物17-3。 1H NMR(400MHz,CDCl 3)δ=7.82(d,J=2.8Hz,1H),7.17(d,J=8.8Hz,1H),6.48(d,J=8.8Hz,1H),3.50-3.43(m,2H),3.38(s,4H),1.44(m,9H),0.88-0.77(m,2H),0.76-0.70(m,2H).MS-ESI计算值[M+H] +305,实测值305。
第三步
将化合物17-3(720mg,2.37mmol),化合物1-5(632mg,2.37mmol),碳酸铯(1.54g,4.73mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(110mg,189μmol)和三(二亚苄基丙酮)二钯(173mg,189μmol)溶解在1,4-二氧六环(20mL)中,氮气置换三次,在氮气保护下100℃搅拌12小时。将反应液过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(石油醚/乙酸乙酯,0/1,V/V)分离得到化合物17-4。 1H NMR(400MHz,CDCl 3) δ=8.55(d,J=2.3Hz,1H),8.12(d,J=2.8Hz,1H),7.76-7.69(m,1H),6.94(d,J=2.5Hz,1H),6.74(d,J=8.8Hz,1H),3.60(s,3H),3.59-3.54(m,2H),3.46-3.36(m,4H),1.47(s,9H),0.94-0.88(m,2H),0.86-0.77(br s,2H)。MS-ESI计算值[M+H] +490和492,实测值490和492。
第四步
将化合物17-4(520mg,1.06mmol),双联嚬哪醇硼酸酯(674mg,2.65mmol),醋酸钾(312mg,3.18mmol)和4,5-双二苯基膦-9,9-二甲基氧杂蒽(101mg,212μmol)和三(二亚苄基丙酮)二钯(97.1mg,106μmol)溶解在1,4-二氧六环(10mL),置换氮气三次,反应液在氮气保护下加热至70℃搅拌2小时。向反应液加入水(20mL),用乙酸乙酯(30mL×2)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗品化合物17-5。MS-ESI计算值[M+H] +538,实测值538。
第五步
将化合物17-5(950mg,1.77mmol),中间体A(304mg,884μmol),磷酸钾(1.13g,5.30mmol)和[1,1-双(二苯基膦基)二茂铁]二氯化钯(144mg,177μmol)溶解在四氢呋喃(10mL)和水(2mL)中,置换氮气三次,反应液在氮气保护下加热至50℃搅拌15小时。将反应液过滤,滤液减压浓缩得到粗产物。粗产物经过薄层色谱法(石油醚/乙酸乙酯,0/1,V/V)分离得到化合物17-6。MS-ESI计算值[M+H] +719,实测值719。 1H NMR(400MHz,CD 3OD)δ=9.98-9.97(m,0.6H),8.65-8.51(m,2H),8.09-8.04(m,1H),7.54-7.50(m,2H),7.45-7.41(m,0.5H),7.04-6.99(m,1H),6.74–6.71(m,1H),5.51(s,1H),4.60(s,2H),4.36-4.34(m,2H),4.28–4.26(m,2H),4.00-3.96(m,1H),3.73-3.72(m,3H),3.62–3.61(m,2H),3.48-3.45(m,1H),3.41-3.40(m,1H),2.63-2.62(m,2H),2.51–2.50(m,1H),1.48-1.45(m,9H),1.28(s,6H),0.94-0.92(m,2H),0.81-0.76(m,2H)。
第六步
将化合物17-6(367mg,511μmol)溶于甲醇(10mL)中,向反应液中加入硼氢化钠(120mg,3.17mmol),反应液25℃搅拌2小时。向反应液加入饱和氯化铵水溶液(2mL),过滤,滤液减压浓缩,粗产物经过薄层色谱法(二氯甲烷/甲醇20/1,V/V)分离得到化合物17-7。MS-ESI计算值[M+H] +721,实测值721。
第七步
将化合物17-7(256mg,355μmol)溶于乙酸乙酯(5mL),0℃下加入氯化氢/乙酸乙酯溶液(4mol/L,355μL),25℃下搅拌4小时。将反应液减压浓缩得到化合物17-8的盐酸盐。MS-ESI计算值[M-18] +603,实测值603。
第八步
将化合物17-8的盐酸盐(150mg,205μmol)和中间体B(152mg,411μmol)溶于二氯甲烷(5mL)中,加入三乙胺(25.0mg,247μmol)后。再加入醋酸(24.7mg,411μmol)在25℃下搅拌2小时。向混合液中加入醋酸硼氢化钠(130mg,616μmol)后于25℃下搅拌12小时。向反应液中加入饱和碳酸氢钠(2mL),将反应液过滤,滤液减压浓缩。粗品以薄层色谱法(展开剂:二氯甲烷/甲醇,10/1,V/V)分离后,继续以制备高效液相色谱法(色谱柱:Waters Xbridge 150*25mm*5μm;流动相:10mmol/L碳酸氢胺水溶液-乙腈;梯度:乙腈50%-80%,8min)分离得到化合物17。
MS-ESI计算值[M+H] +974,实测值974。 1H NMR(400MHz,CDCl 3)δ=8.62-8.57(m,1H),8.49-8.48(m,1H),8.32-8.30(m,1H),8.03-8.02(m,1H),7.77-7.74(m,2H),7.67-7.65(m,1H),7.36-7.35(m,1H),7.25-7.24(m,1H),7.04-7.01(m,1H),6.8-6.79(m,2H),5.05–5.01(m,1H),4.93-4.90(m,1H),4.62-4.33(m,3H),4.16 -4.14(m,2H),3.94-3.91(m,2H),3.86-3.84(m,1H),3.70(s,3H),3.65–3.63(m,1H),3.45-3.40(m,2H),2.99-2.90(m,3H),2.86-2.83(m,1H),2.80-2.71(m,2H),2.57-2.56(m,2H),2.50(s,2H),2.13–2.09(m,1H),1.91-1.90(m,2H),1.70(s,6H),1.28-1.26(m,8H),0.93-0.86(m,4H)。
实施例18
合成路线:
Figure PCTCN2022084627-appb-000140
第一步
将化合物18-1(3.9g,15.3mmol)和三乙胺(4.65g,46.0mmol)溶解在二氯甲烷(100mL)中,向反应 液中加入氯甲酸苄酯(5.23g,30.7mmol),反应液在25℃下搅拌16小时。向反应中加饱和碳酸氢钠水溶液(150mL),搅拌30min,收集有机相,水相再用二氯甲烷萃取(50mL x 2),合并有机相用饱和食盐水(100mL x 1)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,5/1,V/V,添加0.5%三乙胺)分离得到化合物18-2。 1H NMR(400MHz,CDCl 3)δ=7.46-7.30(m,5H),5.13(s,2H),3.76-3.02(m,9H),1.60-1.52(m,2H),1.48-1.30(m,15H)。
第二步
将化合物18-2(800mg,2.06mmol)溶于1,4-二氧六环(8mL)中,再加入氯化氢/乙酸乙酯溶液(4mol/L,2.06mL),在25℃下搅拌12小时。将反应液减压浓缩得到粗产品,向粗产品中加入甲基叔丁基醚(10mL),25℃下搅拌30分钟,过滤,干燥滤饼得到化合物18-3的盐酸盐。MS-ESI计算值[M+H] +289,实测值289。 1H NMR(400MHz,CDCl 3)δ=7.47-7.27(m,5H),5.12(br s,2H),3.62-2.89(m,8H),2.16-1.54(m,8H).
第三步
将化合物18-3的盐酸盐(320mg,985μmol),溶解在四氢呋喃(50mL)中,然后加入碳酸钾(408mg,2.96mmol)和化合物1-1(140mg,985μmol),反应液在50℃下搅拌12小时。向反应液中加入水(50mL),用乙酸乙酯萃取(30mL x 3),有机相用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物18-4。 1H NMR(400MHz,CDCl 3)δ=8.23-7.91(m,2H),7.48-7.31(m,4H),7.27-6.95(m,2H),5.15(s,2H),3.72-3.14(m,8H),1.61-1.45(m,8H).MS-ESI计算值[M+H] +411,实测值411。
第四步
将化合物18-4(260mg,633μmol)溶解在乙醇(4mL)和水(1mL)的混合溶液中,然后加入还原铁粉(106mg,1.90μmol)和氯化铵(102mg,1.90mmol)。反应液80℃下搅拌12小时。反应液通过硅藻土过滤,滤饼用甲醇洗涤(10mL x 3)。滤液减压浓缩,加入水(30mL),用乙酸乙酯萃取(20mL x 3),有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩得到化合物18-5。MS-ESI计算值[M+H] +381,实测值381。 1H NMR(400MHz,CDCl 3)δ=7.81-7.60(m,1H),7.43-7.27(m,5H),7.24-7.07(m,1H),6.57-6.38(m,1H),5.13(s,2H),4.76-3.74(m,2H),3.58-2.52(m,10H),1.52-1.15(m,6H)。
第五步
将化合物18-5(2.00g,5.26mmol),化合物1-5(1.40g,5.26mmol),碳酸铯(3.43g,10.5mmol),4,5-双二苯基膦-9,9-二甲基氧杂蒽(304mg,526μmol)和三(二亚苄基丙酮)二钯(240.67mg,262.82μmol)溶解在1,4-二氧六环(20mL)中,氮气置换三次,反应液在氮气保护下100℃搅拌12小时。将反应液减压浓缩,加入水(200mL)稀释,用乙酸乙酯萃取(150mL x 3),有机相用无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:石油醚/乙酸乙酯,1/1,V/V,添加1%三乙胺)分离得到化合物18-6。MS-ESI计算值[M+H] +566和568,实测值566和568。 1H NMR(400MHz,CDCl 3)δ=8.73-8.50(m,1H),8.05(br s,1H),7.45-7.30(m,5H),7.04-6.84(m,1H),6.74(br d,J=8.3Hz,1H),5.14(s,2H),3.60(s,3H),3.55-2.70(m,9H),1.65-1.37(m,8H)。
第六步
将化合物18-6(2.1g,3.71mmol),双联嚬哪醇硼酸酯(2.35g,9.27mmol),醋酸钾(1.09g,11.1mmol)和2-二环己基膦-2,4,6-三异丙基联苯(353mg,741μmol)和三(二亚苄基丙酮)二钯(339mg,371μmol)溶解在1,4-二氧六环(40mL)中,置换氮气三次,反应液在氮气保护下加热至70℃搅拌2小时。向反应液加 入水(150mL)稀释,用乙酸乙酯(50mL×3)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到化合物18-7,粗品直接用于下一步反应。MS-ESI计算值[M+H] +614,实测值614。
第七步
将化合物18-7(2.00g,3.26mmol),中间体A(560mg,1.63mmol),磷酸钾(1.04g,4.89mmol)和[1,1-双(二苯基膦基)二茂铁]二氯化钯二氯甲烷(133mg,163μmol)溶解在四氢呋喃(20mL)和水(4mL)中,置换氮气三次,反应液在氮气保护下加热至50℃搅拌15小时。向反应液加入水(30mL)稀释,用乙酸乙酯(10mL×3)萃取,有机相经无水硫酸钠干燥,过滤,滤液减压浓缩,得到粗产物。粗产物经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,20/1-15/1,V/V)分离得到化合物18-8。MS-ESI计算值[M+H] +795,实测值795。 1H NMR(400MHz,CD 3OD)δ=10.15-9.84(m,1H),8.71-8.42(m,2H),8.00-7.69(m,1H),7.56-7.16(m,8H),7.02-6.87(m,1H),6.75-6.58(m,1H),5.10(br s,2H),4.38-4.15(m,4H),3.71(s,3H),3.52-3.43(m,2H),3.40-3.34(m,2H),3.19-3.10(m,1H),3.11-2.94(m,2H),2.86-2.72(m,1H),2.63-2.53(m,2H),2.50-2.43(m,2H),1.65-1.44(m,8H),1.25(s,6H)。
第八步
将化合物18-8(700mg,881μmol)溶于甲醇(20mL)中,在氮气保护下向反应液中加入湿钯碳(200mg,含量10%),将反应体系进行分别用氮气和氢气置换数次,并维持氢气(15psi)下25℃搅拌14小时。将反应液通过硅藻土过滤,滤饼用甲醇洗涤(20mL x 3),滤液减压浓缩得到化合物18-9。MS-ESI计算值[M+H] +661,实测值661。
第九步
将化合物18-9(510mg,772μmol)溶于甲醇(10mL)中,向反应液中加入硼氢化钠(146mg,3.86mmol),反应液25℃搅拌2小时。反应液减压浓缩得到粗品,粗产物经过硅胶柱层析法(洗脱剂:二氯甲烷/甲醇,15/1-二氯甲烷/甲醇10/1(添加0.1%三乙胺),V/V)分离得到化合物18-10。MS-ESI计算值[M+H] +663,实测值663。
第十步
将化合物18-10(100mg,151μmol)和化合物B-1(41.7mg,151μmol)溶解在N-甲基吡咯烷酮(1mL)中,向反应液中加入N,N-二异丙基乙胺(39.0mg,302μmol),反应液在100℃下搅拌4小时,向反应液中加入乙酸乙酯(50mL),用水洗涤(30mL x 3),有机相用饱和食盐水(40mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗品经薄层层析法(二氯甲烷/甲醇,15/1,V/V)纯化分离得到化合物18。
MS-ESI计算值[M+H] +919,实测值919。 1H NMR(400MHz,CD 3OD)δ=8.60-8.57(m,1H),8.50(d,J=5.1Hz,1H),7.99-7.91(m,1H),7.68-7.62(m,1H),7.50-7.46(m,2H),7.44-7.40(m,1H),7.38-7.30(m,1H),7.24-7.18(m,1H),7.04-6.98(m,1H),6.72(s,1H),5.49(s,2H),5.08-5.05(m,1H),4.66-4.55(m,4H),4.35-4.22(m,2H),3.71(s,3H),3.51-3.45(m,2H),3.42-3.38(m,2H),3.18-3.08(m,4H),2.86-2.75(m,2H),2.66-2.56(m,2H),2.48(s,2H),1.79-1.63(m,8H),1.26(s,6H)。
实施例19
合成路线:
Figure PCTCN2022084627-appb-000141
第一步
将化合物1-10(900mg,1.09mmol),化合物19-1(435mg,2.18mmol)溶于二氯乙烷(12mL)中,向反应液中加入钛酸四乙酯(373mg,1.64mmol),反应混合物在30℃搅拌1小时。向反应混合物中添加三乙酰氧基硼氢化钠(694mg,3.27mmol),升温至40℃搅拌12小时。向反应液中添加水(40mL),用乙酸乙酯(25mL×2)萃取,合并有机相,并用无水硫酸钠干燥,过滤,滤液减压浓缩得到粗产物。粗产物经高效液相色谱(色谱柱:Welch Xtimate C18 150*40mm*10μm;流动相:10mmol/L碳酸氢铵水溶液-乙腈;梯度:乙腈50%-80%,10min)分离得到化合物19-2。MS-ESI计算值[M+H] +792,实测值792。
第二步
将化合物19-2(250mg,310μmol)溶于乙酸乙酯(4mL)中,向反应液中添加氯化氢/乙酸乙酯溶液(4M,4mL),在25℃搅拌1小时。将反应液减压浓缩得到化合物19-3的盐酸盐。MS-ESI计算值[M+H] +692,实测值692。
第三步
将化合物19-3的盐酸盐(200mg,250μmol),化合物B-1(69.0mg,250μmol)溶于N-甲基吡咯烷酮(4mL)中,向反应混合物中添加DIEA(194mg,1.50mmol),在90℃搅拌12小时。向反应液中加水(30mL),用乙酸乙酯(20mL×2)萃取,合并有机相,并用无水硫酸钠干燥,过滤,减压浓缩得到粗产品。粗产品经高效液相色谱(色谱柱:Waters Xbridge C18 150*50mm*10μm;流动相:10mmol/L碳酸氢铵水溶液-乙腈;梯度:乙腈39%-69%,10min)分离得到化合物19。
MS-ESI计算值[M+H] +948,实测值948。 1H NMR(400MHz,CD 3OD)δ=8.66-8.63(m,1H),8.51(d,J=5.0Hz,1H),7.96(t,J=3.2Hz,1H),7.67(d,J=8.6Hz,1H),7.50(d,J=2.2Hz,1H),7.49-7.44(m,2H),7.34(t,J=2.2Hz,1H),7.24-7.19(m,1H),7.05(d,J=8.8Hz,1H),6.73(s,1H),5.12-5.03(m,1H),4.75-4.60(m,3H),4.40-4.30(m,1H),4.29-4.22(m,2H),4.19-4.09(m,1H),4.01-3.92(m,2H),3.72(s,3H),3.49-3.43(m,1H),3.10-3.00(m,4H),2.87-2.74(m,5H),2.73-2.63(m,2H),2.62-2.56(m,3H),2.49(s,2H),2.15-2.07(m,2H),1.67-1.59(m,2H),1.30-1.22(m,6H),0.99-0.95(m,3H)。
实施例20
Figure PCTCN2022084627-appb-000142
合成路线:
Figure PCTCN2022084627-appb-000143
第一步
将化合物1-10(1.00g,1.39mmol),化合物20-1(555mg,2.79mmol)溶于二氯乙烷(15mL)中,加入三乙胺(141mg,1.39mmol),冰醋酸(836mg,13.9mmol)和硫酸钠(989mg,6.96mmol),在65℃搅拌12小时。再向反应液中添加三乙酰氧基硼氢化钠(885mg,4.18mmol),在25℃搅拌12小时。向反应液中加水(40mL),用乙酸乙酯(30mL×2)萃取,合并有机相,用无水硫酸钠干燥,过滤,减压浓缩得到粗产品。粗产品经高效液相色谱(色谱柱:Waters Xbridge BEH C18 250*50mm*10μm;流动相:10mmol/L碳酸氢铵水溶液-乙腈;梯度:乙腈50%-80%,20min)分离得到化合物20-2。MS-ESI计算值[M+H] +792,实测值792。
第二步
将化合物20-2(490mg,544μmol)溶于乙酸乙酯(5mL)中,加入氯化氢/乙酸乙酯溶液(4M,5mL),在25℃搅拌1小时。将反应液减压浓缩得到化合物20-3的盐酸盐。MS-ESI计算值[M+H] +692,实测值692。
第三步
将化合物20-3的盐酸盐(400mg,499μmol),化合物B-1(138mg,499μmol)溶于DMSO(10mL)中,向反应混合物中添加DIEA(387mg,3.00mmol),在90℃搅拌12小时。向反应液中加水(30mL),用乙酸乙酯(20mL×2)萃取,合并有机相,用无水硫酸钠干燥,过滤,减压浓缩得到粗产品。粗产品经高效液相色谱(色谱柱:Phenomenex C18 75*30mm*3μm;流动相:甲酸水溶液-乙腈;梯度:乙腈18%-48%,7min)分离得到化合物10的甲酸盐。
MS-ESI计算值[M+H] +948,实测值948。 1H NMR(400MHz,CD 3OD)δ=8.70(d,J=2.2Hz,1H),8.51(d,J=5.2Hz,1H),8.00(d,J=2.2Hz,1H),7.69(d,J=8.6Hz,1H),7.54-7.45(m,3H),7.39(d,J=1.8Hz,1H),7.29-7.23(m,1H),7.05(d,J=8.8Hz,1H),6.72(s,1H),5.10-5.05(m,1H),4.72-4.66(m,1H),4.59(d,J=8.8Hz,2H),4.39-4.32(m,1H),4.29-4.22(m,2H),4.15(d,J=13.2Hz,2H),3.99-3.92(m,1H),3.72(s,3H),3.46 -3.38(m,1H),3.14-3.01(m,6H),2.94-2.81(m,3H),2.78-2.69(m,2H),2.66-2.59(m,3H),2.49(s,2H),2.14-2.10(m,2H),1.78-1.63(m,2H),1.26(s,6H),0.97(d,J=6.4Hz,3H)。
生物测试实验
实验例1:化合物小鼠药代动力学评价
实验目的:测试化合物在CD-1小鼠体内药代动力学
实验材料:
CD-1小鼠(雄性,20-40g,6~10周龄,上海必凯)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液或混悬液,分别给予两只小鼠单次静脉注射及口服给药。静注溶媒为5:95的DMSO和10%羟丙基β环糊精水溶液,口服溶媒为0.5%w/v的甲基纤维素和0.2%w/v吐温80水溶液。收集48小时内的全血样品至商品化EDTA2K抗凝管中,3200g离心10分钟,分离上清得血浆样品,加入20倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药代参数,如表观分布容积,清除率,半衰期,药时曲线下面积等。
实验结果:如表1所示。
表1药代动力学测试结果
Figure PCTCN2022084627-appb-000144
实验结论:本发明化合物在CD-1小鼠药代动力学中表现出较好的生物利用度,较高的药时曲线下面积和较低的清除率和组织分布。
实验例2:化合物大鼠药代动力学评价
实验目的:测试化合物在SD大鼠体内药代动力学
实验材料:
SD大鼠(雄性,200-300g,6~10周龄,北京维通利华)
实验操作:
以标准方案测试化合物静脉注射及口服给药后的啮齿类动物药代特征,实验中候选化合物配成澄清溶液或混悬液,分别给予两只大鼠单次静脉注射及口服给药。静注溶媒为5:95的DMSO和10%羟丙基β环糊精水溶液,口服溶媒为0.5%w/v的甲基纤维素和0.2%w/v吐温80水溶液。收集48小时内的全血样品至商品化EDTA2K抗凝管中,3200g离心10分钟,分离上清得血浆样品,加入20倍体积含内标的乙腈溶液沉淀蛋白,离心取上清液加入等倍体积的水再离心取上清进样,以LC-MS/MS分析方法定量分析血药浓度,并计算药 代参数,如表观分布容积、清除率、半衰期、药时曲线下面积等。
实验结果如表2。
表2药代动力学测试结果
Figure PCTCN2022084627-appb-000145
实验结论:本发明化合物在SD大鼠药代动力学中表现出较好的生物利用度,较高的药时曲线下面积和较低的清除率和组织分布。
实验例3:化合物对Ramos细胞BTK蛋白降解活性的评价
实验材料:
RAMOS细胞购自上海信裕;1640培养基购自Biological Industries;胎牛血清购自Gibco;THUNDER TMTotal BTK TR-FRET CELL SIGNALING ASSAY KITS购自BioAuxilim。
KIT成分表如表3所示。
表3 KIT成分表
成分名称
Eu-总BTK
Acc-总BTK
10X磷酸酶抑制剂混合液
5X裂解缓冲液
10X检测缓冲液
实验方法:
1.RAMOS细胞种于96孔U底细胞培养板中,80μL细胞悬液每孔,每孔包含50000个RAMOS细胞,细胞板放入二氧化碳培养箱,37度过夜孵育;
2.将待测化合物用100%DMSO稀释到0.2mM作为第一个浓度,然后再用移液器进行3倍稀释至第8个浓度,即从0.2mM稀释至0.091μM。取2μL化合物加入78μL细胞饥饿培养基,混匀后,取20μL化合物溶液加入到对应细胞板孔中,细胞板放回二氧化碳培养箱继续孵24小时,此时化合物浓度为1μM至0.46nM,DMSO浓度为0.5%;
3.结束孵育后,弃掉60μL细胞上清,加入10μL细胞裂解液原液每孔,室温摇晃孵育60分钟;
4.使用1X Detection buffer将Eu-Total BTK稀释52倍和Acc-Total BTK稀释13倍;
5.取15μL细胞裂解物上清每孔到新的384白色微孔板中,再加入2.5μL Eu-Total BTK稀释液和2.5μL Acc-Total BTK稀释液,常温孵育4小时;
6.孵育结束后使用多标记分析仪读取HTRF excitation:320nm,emission:615nm,665nm。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成降解率,DC50的值即可通过四参数进行曲 线拟合得出(GraphPad Prism中log(inhibitor)vs.response--Variable slope模式得出)。本发明的化合物对总BTK的降解作用效果如表4所示。
Max孔:阳性对照孔读值为1X裂解液
Min孔:阴性对照孔读值为0.5%DMSO细胞孔细胞裂解液
表4本发明化合物对Ramos细胞总BTK的降解作用
化合物 DC 50(nM)
化合物1 1.103
化合物3的甲酸盐 2.276
化合物4的甲酸盐 1.127
化合物5的甲酸盐 3.069
化合物6 0.785
化合物7 0.512
化合物8的甲酸盐 1.292
化合物9的甲酸盐 0.612
化合物10的甲酸盐 1.805
化合物11的甲酸盐 0.743
化合物12的甲酸盐 0.978
实验结论:本发明化合物对Ramos细胞BTK蛋白有较强的降解活性。
实验例4:化合物在TMD-8裸鼠移植瘤模型的体内药效评价
细胞培养:
在5%CO 2 37℃培养条件下,TMD-8细胞(人弥漫性大B淋巴瘤细胞,购自钰博生物)在含10%胎牛血清RPMI-1640培养液中进行常规细胞培养;根据细胞生长情况传代,传代比例约为1:4。
实验动物:
雌性BALB/c裸小鼠(周龄:6-7周),购自北京维通利华实验动物技术有限公司。
模型制备:
收取对数生长期TMD-8细胞,细胞计数后重悬于含50%无血清RPMI-1640培养液及50%的Matrigel中,调整细胞浓度至4.0×10 7细胞/mL;将细胞置于冰盒中,用1mL注射器吸取细胞悬液,注射到裸鼠前右肢腋窝皮下,每只动物接种200μL(0.8×10 7细胞/只),建立TMD-8移植瘤模型。
给药方案:见表5。
表5实验动物分组及给药方案
Figure PCTCN2022084627-appb-000146
肿瘤测量和实验指标:
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:TV=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用相对肿瘤体积(RTV)评价。相对肿瘤体积的计算公式为:RTV=TV t/TV initial,其中,TV initial为分组给药时测量到的肿瘤体积;TV t为给药期间每一次测量时的肿瘤体积。实验结果见图1。
实验结论:本发明的化合物在TMD-8裸鼠移植瘤模型中展现出优异的抑瘤效果。
实验例5:化合物在依鲁替尼诱导耐药LY-24-0041模型的体内药效评价
实验动物:
雌性CB-17 SCID小鼠(周龄:6-8周,体重18-22克),购自北京维通利华实验动物技术有限公司。
模型制备和给药方案:
人Ibrutinib-R-LY-24-0041的建立最初来源于人淋巴瘤LY-24-0041。传代命名规则为初代依鲁替尼耐药肿瘤为P0代,继续传代为P1代,以此类推,复苏的标本命名为FP。本次实验中使用的肿瘤组织是FP7代。将20~30mm 3的肿瘤组织块皮下接种于Ibrutinib-R-LY-24-0041FP7的每只小鼠的右后背等待肿瘤生长,肿瘤平均体积达到约150-200mm 3时开始进行随机分组给药。实验动物分组及给药方案如表6所示。
表6实验动物分组及给药方案
Figure PCTCN2022084627-appb-000147
肿瘤测量和实验指标:
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:TV=0.5a×b 2,a和b分别表示肿瘤的长径和短径。化合物的抑瘤疗效用肿瘤体积(TV)评价。实验结果见图2。
实验结论:本发明化合物在依鲁替尼诱导耐药LY-24-0041模型中展现出优异的抑瘤效果。

Claims (23)

  1. 式(Ⅳ)化合物或其药学上可接受的盐,
    Figure PCTCN2022084627-appb-100001
    其中,
    L 1选自单键、-C(=O)-、-CH 2-、-CH 2-O-和-CH 2-NH-;
    L选自-Ak1-Cy1-*和-Ak2-Cy2-Ak3-Cy3-*,其中*表示与L 1的连接点;
    Ak1、Ak2和Ak3分别独立地选自单键、-O-、-C 1-3烷基-和-O-C 1-3烷基-;
    Cy1、Cy2和Cy3分别独立地选自C 3-12环烷基和3-12元杂环烷基;
    W选自
    Figure PCTCN2022084627-appb-100002
    其中#表示与L的连接点;
    环A不存在,或者选自
    Figure PCTCN2022084627-appb-100003
    其中#表示N原子与L的连接点;
    T、T 1、T 2和T 3分别独立地选自N和CH;
    K选自
    Figure PCTCN2022084627-appb-100004
    D选自-C(=O)-和-C(R 5) 2-;
    各R 3分别独立地选自H、F、Cl、Br、-OH、-NH 2、-CN、C 1-3烷基和C 1-3烷氧基,其中所述C 1-3烷基和C 1- 3烷氧基分别独立地任选被1、2或3个R a取代;
    或者,两个R 3与其所连接的碳原子一起使结构单元
    Figure PCTCN2022084627-appb-100005
    选自
    Figure PCTCN2022084627-appb-100006
    Figure PCTCN2022084627-appb-100007
    其中#表示N原子与L的连接点;
    各R 4分别独立地选自H、F、Cl、Br、-OH、-NH 2、C 1-3烷基和C 1-3烷氧基;
    各R 5分别独立地选自H和C 1-3烷基;
    各R a分别独立地选自F、Cl、Br、I、-OH、-NH 2和-CN;
    t选自1、2和3;
    u和v分别独立地选自0、1、2、3和4;
    所述3-12元杂环烷基包含1、2、3或4个独立选自-O-、-NH-、-S-和-N-的杂原子或杂原子团。
  2. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,各R 3分别独立地选自H、F、Cl、Br和-CH 3,其中所述-CH 3任选被1、2或3个R a取代。
  3. 根据权利要求2所述的化合物或其药学上可接受的盐,其中,各R 3分别独立地选自H、-CH 3和-CH 2CN。
  4. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,各R 4分别独立地选自H、F、Cl、Br、-CH 3和-OCH 3
  5. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,各R 5分别独立地选自H。
  6. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,L 1选自单键、-CH 2-和-C(=O)-。
  7. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,Ak1、Ak2和Ak3分别独立地选自单键、-O-、-CH 2-、-CH 2-CH 2-、-CH 2-CH 2-CH 2-、-O-CH 2-、-O-CH 2-CH 2-和-O-CH 2-CH 2-CH 2-。
  8. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,Cy1、Cy2和Cy3分别独立地选自4-6元杂环烷基和7-11元螺杂环烷基。
  9. 根据权利要求8所述的化合物或其药学上可接受的盐,其中,Cy1、Cy2和Cy3分别独立地选自氮杂环丁基、氮杂环戊基、氮杂环已基、环丁基螺氮杂环丁基、氮杂环丁基螺氮杂环丁基和氮杂环已基螺氮杂环已基。
  10. 根据权利要求9所述的化合物或其药学上可接受的盐,其中,Cy1、Cy2和Cy3分别独立地选自
    Figure PCTCN2022084627-appb-100008
  11. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,L选自
    Figure PCTCN2022084627-appb-100009
    Figure PCTCN2022084627-appb-100010
    Figure PCTCN2022084627-appb-100011
    Figure PCTCN2022084627-appb-100012
    其中*表示N原子与L 1的连接点。
  12. 根据权利要求6或11所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022084627-appb-100013
    选自
    Figure PCTCN2022084627-appb-100014
    Figure PCTCN2022084627-appb-100015
  13. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022084627-appb-100016
    选自
    Figure PCTCN2022084627-appb-100017
  14. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022084627-appb-100018
    选自
    Figure PCTCN2022084627-appb-100019
    Figure PCTCN2022084627-appb-100020
    其中#表示N原子与L的连接点。
  15. 根据权利要求14所述的化合物或其药学上可接受的盐,其中,结构单元
    Figure PCTCN2022084627-appb-100021
    选自
    Figure PCTCN2022084627-appb-100022
    Figure PCTCN2022084627-appb-100023
    其中#表示N原子与L的连接点。
  16. 根据权利要求1所述的化合物或其药学上可接受的盐,其中,K选自
    Figure PCTCN2022084627-appb-100024
    Figure PCTCN2022084627-appb-100025
  17. 根据权利要求16所述的化合物或其药学上可接受的盐,其中,K选自
    Figure PCTCN2022084627-appb-100026
    Figure PCTCN2022084627-appb-100027
  18. 根据权利要求1所述的化合物或其药学上可接受的盐,其所述化合物具有式(Ⅳ-1)或(Ⅳ-2)所示结构:
    Figure PCTCN2022084627-appb-100028
    其中,T、T 1、T 2、T 3、R 3、L、L 1、u和K如权利要求1所定义。
  19. 根据权利要求18所述的化合物或其药学上可接受的盐,其所述化合物具有式(Ⅳ-3)、(Ⅳ-4)或(Ⅳ-5)所示结构:
    Figure PCTCN2022084627-appb-100029
    其中,T、T 1、T 2、T 3、R 3、R 4、D、L、L 1、u和v如权利要求18所定义。
  20. 根据权利要求19所述的化合物或其药学上可接受的盐,其所述化合物具有式(Ⅳ-3A)、(Ⅳ-4A)或(Ⅳ-5A)所示结构:
    Figure PCTCN2022084627-appb-100030
    Figure PCTCN2022084627-appb-100031
    其中,T、R 3、R 4、D、L、L 1和v如权利要求19所定义。
  21. 根据权利要求20所述的化合物或其药学上可接受的盐,其所述化合物具有式(Ⅱ-1)或(Ⅱ-2)所示结构:
    Figure PCTCN2022084627-appb-100032
    其中,R 4、D、L、L 1和v如权利要求20所定义。
  22. 下式化合物或其药学上可接受的盐,其化合物选自:
    Figure PCTCN2022084627-appb-100033
    Figure PCTCN2022084627-appb-100034
    Figure PCTCN2022084627-appb-100035
    Figure PCTCN2022084627-appb-100036
    Figure PCTCN2022084627-appb-100037
    Figure PCTCN2022084627-appb-100038
  23. 根据权利要求22所述的化合物或其药学上可接受的盐,其化合物选自:
    Figure PCTCN2022084627-appb-100039
    Figure PCTCN2022084627-appb-100040
    Figure PCTCN2022084627-appb-100041
    Figure PCTCN2022084627-appb-100042
PCT/CN2022/084627 2021-04-02 2022-03-31 含氮三并环双功能化合物及其制备方法和应用 WO2022206924A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202110361654.7 2021-04-02
CN202110361654 2021-04-02
CN202110680694.8 2021-06-18
CN202110680694 2021-06-18
CN202110994758 2021-08-27
CN202110994758.1 2021-08-27
CN202111165966 2021-09-30
CN202111165966.7 2021-09-30
CN202111387832.X 2021-11-22
CN202111387832 2021-11-22

Publications (1)

Publication Number Publication Date
WO2022206924A1 true WO2022206924A1 (zh) 2022-10-06

Family

ID=83458065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084627 WO2022206924A1 (zh) 2021-04-02 2022-03-31 含氮三并环双功能化合物及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2022206924A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619696A (zh) * 2012-09-13 2015-05-13 弗·哈夫曼-拉罗切有限公司 布鲁顿氏酪氨酸激酶抑制剂
CN105358545A (zh) * 2013-07-03 2016-02-24 豪夫迈·罗氏有限公司 杂芳基吡啶酮和氮杂-吡啶酮酰胺化合物
CN105793251A (zh) * 2013-12-05 2016-07-20 豪夫迈·罗氏有限公司 具有亲电子官能性的杂芳基吡啶酮和氮杂-吡啶酮化合物
CN110446710A (zh) * 2016-12-15 2019-11-12 豪夫迈·罗氏有限公司 制备btk抑制剂的方法
WO2021091575A1 (en) * 2019-11-08 2021-05-14 Nurix Therapeutics, Inc. Bifunctional compounds for degrading btk via ubiquitin proteosome pathway

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104619696A (zh) * 2012-09-13 2015-05-13 弗·哈夫曼-拉罗切有限公司 布鲁顿氏酪氨酸激酶抑制剂
CN105358545A (zh) * 2013-07-03 2016-02-24 豪夫迈·罗氏有限公司 杂芳基吡啶酮和氮杂-吡啶酮酰胺化合物
CN105793251A (zh) * 2013-12-05 2016-07-20 豪夫迈·罗氏有限公司 具有亲电子官能性的杂芳基吡啶酮和氮杂-吡啶酮化合物
CN110446710A (zh) * 2016-12-15 2019-11-12 豪夫迈·罗氏有限公司 制备btk抑制剂的方法
WO2021091575A1 (en) * 2019-11-08 2021-05-14 Nurix Therapeutics, Inc. Bifunctional compounds for degrading btk via ubiquitin proteosome pathway

Similar Documents

Publication Publication Date Title
CN113651814B (zh) Kras突变蛋白抑制剂
JP2023523640A (ja) ベンゾチアゾリルビアリール系化合物、その調製方法及び使用
WO2022170999A1 (zh) 吡啶[4,3-d]嘧啶类化合物
WO2022171147A1 (zh) 嘧啶并芳香环类化合物
WO2021259331A1 (zh) 八元含n杂环类化合物
CN113801114A (zh) 稠合二环杂芳基类衍生物、其制备方法及其在医药上的应用
WO2020011246A1 (zh) 含苯环的化合物、其制备方法及应用
CN109867676B (zh) 一种吡咯并嘧啶衍生的化合物、药物组合物以及其用途
BR112021011147A2 (pt) Benzamidas de derivados de pirazolil-amino-pirimidinila e composições e métodos das mesmas
WO2022166890A1 (zh) 取代的哒嗪苯酚类衍生物
WO2022063308A1 (zh) 一类1,7-萘啶类化合物及其应用
WO2023138524A1 (zh) Kras g12d降解剂及其在医药上的应用
CN113227051B (zh) 用于视网膜疾病的化合物
CN113754654A (zh) 咪唑并吡啶类化合物及其用途
WO2022253101A1 (zh) 作为parp7抑制剂的哒嗪酮类化合物
WO2022247757A1 (zh) 氟取代的嘧啶并吡啶类化合物及其应用
WO2022199670A1 (zh) 6-氨基甲酸酯取代的杂芳环衍生物
WO2022206924A1 (zh) 含氮三并环双功能化合物及其制备方法和应用
WO2023280317A1 (zh) 苄氨基三并环类化合物及其应用
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
KR102574950B1 (ko) 벤조술탐 함유 화합물
WO2022166721A1 (zh) 含1,4-氧杂氮杂环庚烷的并环类衍生物
WO2023001069A1 (zh) 大环酰胺类化合物及其应用
WO2023016527A1 (zh) 一类苯并噁嗪螺环类化合物及其制备方法
WO2022199599A1 (zh) 丙烯酰基取代的化合物、包含其的药物组合物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE