WO2022170999A1 - 吡啶[4,3-d]嘧啶类化合物 - Google Patents

吡啶[4,3-d]嘧啶类化合物 Download PDF

Info

Publication number
WO2022170999A1
WO2022170999A1 PCT/CN2022/074426 CN2022074426W WO2022170999A1 WO 2022170999 A1 WO2022170999 A1 WO 2022170999A1 CN 2022074426 W CN2022074426 W CN 2022074426W WO 2022170999 A1 WO2022170999 A1 WO 2022170999A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
och
alkyl
crude product
Prior art date
Application number
PCT/CN2022/074426
Other languages
English (en)
French (fr)
Inventor
张杨
伍文韬
李志祥
付志飞
俞晨曦
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CN202280013660.6A priority Critical patent/CN116848112A/zh
Publication of WO2022170999A1 publication Critical patent/WO2022170999A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • the present invention relates to a class of pyridine[4,3-d]pyrimidine compounds, in particular to a compound represented by formula (II) or a pharmaceutically acceptable salt thereof.
  • RAS Ranosine diphosphate family proteins
  • GDP guanosine diphosphate
  • GTP guanosine triphosphate
  • RAS protein regulates multiple downstream pathways including RAF-MEK-ERK, PI3K/Akt/mTOR by switching between the two expressions, thereby affecting cell growth and differentiation, as well as tumor occurrence and development .
  • KRAS G12D-mutated tumors Due to the high affinity of mutant KRAS for guanosine triphosphate (GTP), and the difficult-to-target factors such as small catalytic site and smooth protein surface, the development of small molecule inhibitors has been challenged, resulting in KRAS The "Unducible” legend. With Mirati's breakthrough in KRAS G12D non-covalent inhibitors, KRAS G12D-mutated tumors have gradually entered the field of precision medicine.
  • GTP guanosine triphosphate
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof
  • Ring A is selected from said optionally substituted with 1, 2 or 3 Ra ;
  • T 1 is selected from CH, CH 2 , N and NR 5 ;
  • T 2 , T 3 and T 4 are each independently selected from CH, CH 2 , N and NH;
  • n, p and x are each independently selected from 0, 1 or 2;
  • r, v and w are each independently selected from 1 or 2;
  • s and u are independently selected from 1, 2 or 3;
  • q is selected from 1 or 3;
  • R 1 is selected from phenyl, benzothienyl and naphthyl optionally substituted with 1, 2, 3, 4 or 5 R b ;
  • R 2 is selected from H, F, Cl, CN, NH 2 , CH 3 , OCH 3 and CF 3 ;
  • R is selected from F, and R is selected from H;
  • R3 is selected from H
  • R4 is selected from
  • R 5 is selected from H, -C(O)-(OCH(CH 3 )OC(O)) t -C 1-4 alkyl, -C(O)-(OCH(CH 3 )OC(O)) t -C 9-13 alkyl, -C(O)-(OCH(CH 3 )OC(O)) t -C 1-4 alkylamino and -C(O)-(OCH(CH 3 )OC(O) ) t -C 1-3 alkyl-COOM, the C 1-4 alkyl is optionally substituted by 1 NH 2 ;
  • each R a is independently selected from F, Cl, Br, I and CH 3 ;
  • Each R b is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl, C 2-4 alkyne base, cyclopropyl and -O-cyclopropyl, the C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, cyclopropyl and -O - cyclopropyl is optionally substituted with 1, 2 or 3 R, the OH is optionally substituted with 1 R';
  • each R is independently selected from F, Cl, Br, I;
  • the C 1-4 alkyl is optionally substituted with 1 NH 2 ;
  • M is independently selected from Na and K
  • y is 0 or 1
  • z is 0 or 1;
  • t 0 or 1.
  • the R 5 is selected from H, -C(O)-CH 2 NH 2 , -C(O)-OCH(CH 3 )OC(O)-CH 2 CH 3 and -C (O)-OCH( CH3 )OC(O)-CH( CH3 ) 2 , other variables are as defined in the present invention.
  • the ring A is selected from said Optionally substituted with 1, 2 or 3 Ra , other variables are as defined herein.
  • the ring A is selected from Other variables are as defined in the present invention.
  • the R' is selected from -(CH2O) y- ( CH2CH2O ) z - C(O) -CH3 , - (CH2O ) y- ( CH2 CH 2 O) z -C(O)-CH(CH 3 ) 2 , -(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-C(CH 3 ) 3 , -(CH 2 2 O) y -(CH 2 CH 2 O) z -C(O)-CH(NH 2 )CH(CH 3 ) 2 , -(CH 2 O) y -(CH 2 CH 2 O) z -C( O)-(CH 2 ) 10 CH 3 , -(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-N(CH 3 ) 2 , -(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-N
  • other variables are as defined in the present invention.
  • each R b is independently selected from F, Cl, OH, NH 2 , CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , OCH 3 , OCH 2 F, OCHF 2 , OCF 3 , -C ⁇ CH, cyclopropyl, -O-cyclopropyl, -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH(CH 3 ) 2 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-C(CH 3 ) 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-C(CH 3 ) 3 , -O-(CH 2 O) y -(CH 2 CH 2 O
  • the R 1 is selected from Other variables are as defined in the present invention.
  • the R 1 is selected from Other variables are as defined in the present invention.
  • the R 1 is selected from
  • said R 2 is selected from F, and other variables are as defined herein.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof
  • Ring A is selected from said optionally substituted with 1, 2 or 3 Ra ;
  • T 1 is selected from CH, CH 2 , N and NR 5 ;
  • T 2 , T 3 and T 4 are each independently selected from CH, CH 2 , N and NH;
  • n, p and x are each independently selected from 0, 1 or 2;
  • r, v and w are each independently selected from 1 or 2;
  • s and u are independently selected from 1, 2 or 3;
  • q is selected from 1 or 3;
  • R 1 is selected from phenyl, benzothienyl and naphthyl optionally substituted with 1, 2, 3, 4 or 5 R b ;
  • R 2 is selected from H, F, Cl, CN, NH 2 , CH 3 , OCH 3 and CF 3 ;
  • R is selected from F, and R is selected from H;
  • R3 is selected from H
  • R4 is selected from
  • R 5 is selected from H, -C(O)-(OCH(CH 3 )OC(O)) t -C 1-4 alkyl, -C(O)-(OCH(CH 3 )OC(O)) t -C 9-13 alkyl, -C(O)-(OCH(CH 3 )OC(O)) t -C 1-4 alkylamino and -C(O)-(OCH(CH 3 )OC(O) ) t -C 1-3 alkyl-COOM, the C 1-4 alkyl is optionally substituted by 1 NH 2 ;
  • each R a is independently selected from F, Cl, Br, I and CH 3 ;
  • Each R b is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl, C 2-4 alkyne base, cyclopropyl and -O-cyclopropyl, the C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, cyclopropyl and -O - cyclopropyl is optionally substituted with 1, 2, 3, 4 or 5 R, said OH is optionally substituted with 1 R';
  • each R is independently selected from F, Cl, Br, I, cyclopropyl and CF3 ;
  • the C 1-4 alkyl is optionally substituted with 1 NH 2 ;
  • M is independently selected from Na and K
  • y is 0 or 1
  • z is 0 or 1;
  • t 0 or 1.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof
  • Ring A is selected from said optionally substituted with 1, 2 or 3 Ra ;
  • T 1 is selected from CH, CH 2 , N and NR 5 ;
  • T 2 , T 3 and T 4 are each independently selected from CH, CH 2 , N and NH;
  • n, p and x are each independently selected from 0, 1 or 2;
  • r, v and w are each independently selected from 1 or 2;
  • s and u are independently selected from 1, 2 or 3;
  • q is selected from 1 or 3;
  • R 1 is selected from phenyl and naphthyl optionally substituted with 1, 2, 3, 4 or 5 R b ;
  • R 2 is selected from H, F, Cl, CN, NH 2 , CH 3 , OCH 3 and CF 3 ;
  • R is selected from F, and R is selected from H;
  • R3 is selected from H
  • R4 is selected from
  • R 5 is selected from H, -C(O)-(OCH(CH 3 )OC(O)) t -C 1-4 alkyl, -C(O)-(OCH(CH 3 )OC(O)) t -C 9-13 alkyl, -C(O)-(OCH(CH 3 )OC(O)) t -C 1-4 alkylamino and -C(O)-(OCH(CH 3 )OC(O) ) t -C 1-3 alkyl-COOM, the C 1-4 alkyl is optionally substituted by 1 NH 2 ;
  • each R a is independently selected from F, Cl, Br, I and CH 3 ;
  • Each R b is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl and C 2-4 alkyne base, the C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl and C 2-4 alkynyl groups are optionally substituted with 1, 2 or 3 R, and the OH is optionally substituted with 1 R'substitution;
  • each R is independently selected from F, Cl, Br, I;
  • the C 1-4 alkyl is optionally substituted with 1 NH 2 ;
  • M is independently selected from Na and K
  • y is 0 or 1
  • z is 0 or 1;
  • t 0 or 1.
  • the R 5 is selected from H, -C(O)-CH 2 NH 2 , -C(O)-OCH(CH 3 )OC(O)-CH 2 CH 3 , other variables as defined in the present invention.
  • the ring A is selected from said Optionally substituted with 1, 2 or 3 Ra , other variables are as defined herein.
  • the ring A is selected from Other variables are as defined in the present invention.
  • the R' is selected from -(CH2O) y- ( CH2CH2O ) z - C(O) -CH3 , - (CH2O ) y- ( CH2 CH 2 O) z -C(O)-CH(CH 3 ) 2 , -(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-C(CH 3 ) 3 , -(CH 2 2 O) y -(CH 2 CH 2 O) z -C(O)-CH(NH 2 )CH(CH 3 ) 2 , -(CH 2 O) y -(CH 2 CH 2 O) z -C( O)-(CH 2 ) 10 CH 3 , -(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-N(CH 3 ) 2 , -(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-N
  • each R b is independently selected from F, Cl, OH, NH 2 , CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , OCH 3 , OCH 2 F, OCHF 2 , OCF 3 , -C ⁇ CH, cyclopropyl, -O-cyclopropyl, -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O) -CH(CH 3 ) 2 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-C(CH 3 ) 3 , -O-(CH 2 O) y -( CH 2 O) z -C(O)-C(CH 3 ) 3 , -O-(CH 2 O) y -( CH 2 O) z
  • each R b is independently selected from F, OH, NH 2 , CH 3 , CF 3 , CH 2 CH 3 , -C ⁇ CH, -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH(CH 3 ) 2 , - O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-C(CH 3 ) 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C (O)-CH(NH 2 )CH(CH 3 ) 2 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-(CH 2 ) 10 CH 3 , -O -(CH 2 O) y -(CH 2 -(CH 2
  • the R 1 is selected from Other variables are as defined in the present invention.
  • the R 1 is selected from Other variables are as defined in the present invention.
  • the R 1 is selected from
  • said R 2 is selected from F, and other variables are as defined herein.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof
  • Ring A is selected from said optionally substituted with 1, 2 or 3 Ra ;
  • T 1 , T 2 , T 3 and T 4 are each independently selected from CH, CH 2 , N and NH;
  • n, p and x are each independently selected from 0, 1 or 2;
  • r, v and w are each independently selected from 1 or 2;
  • s and u are independently selected from 1, 2 or 3;
  • q is selected from 1 or 3;
  • R 1 is selected from phenyl and naphthyl optionally substituted with 1, 2, 3, 4 or 5 R b ;
  • R 2 is selected from H, F, Cl, CN, NH 2 , CH 3 , OCH 3 and CF 3 ;
  • R is selected from F, and R is selected from H;
  • R3 is selected from H
  • R4 is selected from
  • each R a is independently selected from F, Cl, Br, I and CH 3 ;
  • Each R b is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl and C 2-4 alkyne base, the C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl and C 2-4 alkynyl are optionally substituted with 1, 2 or 3 R;
  • Each R is independently selected from F, Cl, Br, I.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof
  • Ring A is selected from said optionally substituted with 1, 2 or 3 Ra ;
  • T 1 , T 2 , T 3 and T 4 are each independently selected from CH, CH 2 , N and NH;
  • n, p and x are each independently selected from 0, 1 or 2;
  • r, v and w are each independently selected from 1 or 2;
  • s and u are independently selected from 1, 2 or 3;
  • q is selected from 1 or 3;
  • R 1 is selected from phenyl and naphthyl optionally substituted with 1, 2, 3, 4 or 5 R b ;
  • R 2 is selected from H, F, Cl, CN, NH 2 , CH 3 , OCH 3 and CF 3 ;
  • R is selected from F, and R is selected from H;
  • R3 is selected from H
  • R4 is selected from
  • each R a is independently selected from F, Cl, Br, I and CH 3 ;
  • Each R b is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl and C 2-4 alkyne base, the C 1-3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl and C 2-4 alkynyl are optionally substituted with 1, 2 or 3 R;
  • Each R is independently selected from F, Cl, Br, I.
  • the ring A is selected from said Optionally substituted with 1, 2 or 3 Ra , other variables are as defined herein.
  • the ring A is selected from Other variables are as defined in the present invention.
  • the ring A is selected from Other variables are as defined in the present invention.
  • each R b is independently selected from F, OH, NH 2 , CH 3 , CF 3 , CH 2 CH 3 and -C ⁇ CH, and other variables are as defined herein.
  • the R 1 is selected from Other variables are as defined in the present invention.
  • the R 1 is selected from Other variables are as defined in the present invention.
  • said R 2 is selected from F, and other variables are as defined herein.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof
  • Ring A is selected from said optionally substituted with 1, 2 or 3 Ra ;
  • T 1 , T 2 , T 3 and T 4 are each independently selected from CH and N;
  • n, p and x are each independently selected from 0, 1 or 2;
  • r, v and w are each independently selected from 1 or 2;
  • q, s and u are each independently selected from 1, 2 or 3;
  • R 1 is selected from phenyl and naphthyl optionally substituted with 1, 2, 3, 4 or 5 R b ;
  • R 2 is selected from H, F, Cl, CN, NH 2 , CH 3 , OCH 3 and CF 3 ;
  • each R a is independently selected from F, Cl, Br, I and CH 3 ;
  • Each R b is independently selected from F, Cl, Br, I, OH, NH2 , CN, CH3 , CF3 , and OCH3 .
  • the ring A is selected from said Optionally substituted with 1, 2 or 3 Ra , other variables are as defined herein.
  • the ring A is selected from Other variables are as defined in the present invention.
  • the R 1 is selected from Other variables are as defined in the present invention.
  • said R 2 is selected from F, and other variables are as defined herein.
  • the compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 1 , R 2 , R 3 , R 4 and R 5 are as defined in the present invention.
  • the compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 1 , R 2 and R 5 are as defined in the present invention.
  • the compound or a pharmaceutically acceptable salt thereof is selected from,
  • R b1 , R b2 , R b3 , R b4 , R b5 , R b6 , R b7 , R b8 and R b9 is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1- 3 alkyl, C 1-3 alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, cyclopropyl and -O-cyclopropyl, the C 1-3 alkyl, C 1-3 Alkoxy, C 2-4 alkenyl, C 2-4 alkynyl, cyclopropyl and -O-cyclopropyl are optionally substituted with 1, 2, 3, 4 or 5 R, the OH is optionally substituted with 1 R'substitution;
  • Each R is independently selected from F, Cl , Br, I, cyclopropyl and CF3 ; R2, R5 and R' are as defined herein.
  • each of said R b1 , R b2 , R b3 , R b4 , R b5 , R b6 , R b7 and R b8 is independently selected from F, Cl, OH, NH 2 , CH 3 , CH 2 F, CHF 2 , CF 3 , CH 2 CH 3 , OCH 3 , OCH 2 F, OCHF 2 , OCF 3 , -C ⁇ CH, cyclopropyl, -O-cyclopropyl, -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O)-CH 3 , -O-(CH 2 O) y -(CH 2 CH 2 O) z -C(O) -CH(CH 3 ) 2 , -O-(CH 2 O) y -(CH 2 CH
  • the present invention also provides a compound represented by the following formula or a pharmaceutically acceptable salt thereof, wherein the compound is selected from the group consisting of
  • the compound, or a pharmaceutically acceptable salt thereof is selected from
  • the present invention also provides the use of the compound or a pharmaceutically acceptable salt thereof in the preparation of a compound for treating solid tumors with KRAS G12D mutation.
  • the present invention also provides following synthetic method:
  • the compound of the present invention has a good binding effect with KRAS G12D protein, and can significantly inhibit KRAS G12D enzyme and GP2D p-ERK.
  • the compound of the present invention has good cell proliferation inhibitory activity on KRAS G12D mutant cells, and has excellent tumor suppressing effect.
  • the compounds of the present invention have better pharmacokinetic characteristics.
  • the term "pharmaceutically acceptable” refers to those compounds, materials, compositions and/or dosage forms which, within the scope of sound medical judgment, are suitable for use in contact with human and animal tissue , without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • salts refers to salts of the compounds of the present invention, prepared from compounds with specific substituents discovered by the present invention and relatively non-toxic acids or bases.
  • base addition salts can be obtained by contacting such compounds with a sufficient amount of base in neat solution or in a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salts or similar salts.
  • acid addition salts can be obtained by contacting such compounds with a sufficient amount of acid in neat solution or in a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, bicarbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts including, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric, lactic, mandelic, phthalic, benzenesulfonic, p-toluenesulfonic, citric, tartaric, and methanesulfonic acids; also include salts of amino acids such as arginine, etc. , and salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain both basic and acidic functional groups and thus can be converted into either base or
  • the pharmaceutically acceptable salts of the present invention can be synthesized from the acid or base containing parent compound by conventional chemical methods. Generally, such salts are prepared by reacting the free acid or base form of these compounds with a stoichiometric amount of the appropriate base or acid in water or an organic solvent or a mixture of the two.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers isomers, (D)-isomers, (L)-isomers, and racemic mixtures thereof and other mixtures, such as enantiomerically or diastereomerically enriched mixtures, all of which belong to this within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl. All such isomers, as well as mixtures thereof, are included within the scope of the present invention.
  • the compounds of the present invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I) or C-14 ( 14 C).
  • deuterated drugs can be formed by replacing hydrogen with deuterium, and the bonds formed by deuterium and carbon are stronger than those formed by ordinary hydrogen and carbon. Compared with non-deuterated drugs, deuterated drugs can reduce toxic side effects and increase drug stability. , enhance the efficacy, prolong the biological half-life of drugs and other advantages. All transformations of the isotopic composition of the compounds of the present invention, whether radioactive or not, are included within the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specified atom are replaced by a substituent, which may include deuterium and hydrogen variants, as long as the valence of the specified atom is normal and the substituted compound is stable.
  • oxygen it means that two hydrogen atoms are substituted. Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it may or may not be substituted, and unless otherwise specified, the type and number of substituents may be arbitrary on a chemically achievable basis.
  • any variable eg, R
  • its definition in each case is independent.
  • the group may optionally be substituted with up to two Rs, with independent options for R in each case.
  • combinations of substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the direction of attachment is arbitrary, for example,
  • the linking group L in the middle is -MW-, at this time -MW- can connect ring A and ring B in the same direction as the reading order from left to right. It is also possible to connect ring A and ring B in the opposite direction to the reading order from left to right.
  • Combinations of the linking groups, substituents and/or variants thereof are permissible only if such combinations result in stable compounds.
  • any one or more sites in the group can be linked to other groups by chemical bonds.
  • connection method of the chemical bond is not located, and there is an H atom at the linkable site, when the chemical bond is connected, the number of H atoms at the site will be correspondingly reduced with the number of chemical bonds connected to the corresponding valence. the group.
  • the chemical bond connecting the site to other groups can be represented by straight solid line bonds straight dotted key or wavy lines express.
  • a straight solid bond in -OCH 3 indicates that it is connected to other groups through the oxygen atom in this group;
  • the straight dashed bond in the group indicates that it is connected to other groups through the two ends of the nitrogen atom in the group;
  • the wavy line in the phenyl group indicates that it is connected to other groups through the 1 and 2 carbon atoms in the phenyl group;
  • C9-13 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 9 to 13 carbon atoms.
  • the C 9-13 alkyl group includes C 9-12 , C 9-11 , C 9-10 , C 9 , C 10 , C 11 , C 12 and C 13 alkyl, etc.; group), divalent (eg methylene), or polyvalent (eg methine).
  • Examples of C9-13 alkyl groups include, but are not limited to, -( CH2 ) 9- , -( CH2 ) 10- , and the like.
  • C 1-4 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 4 carbon atoms.
  • the C 1-4 alkyl includes C 1-2 , C 1-3 and C 2-3 alkyl, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or polyvalent (such as methine).
  • Examples of C 1-4 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl , s-butyl and t-butyl) and so on.
  • C 1-3 alkyl is used to denote a straight or branched chain saturated hydrocarbon group consisting of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (eg methyl), divalent (eg methylene) or multivalent (eg methine) .
  • Examples of C1-3 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-4 alkylamino refers to those alkyl groups containing 1 to 4 carbon atoms attached to the remainder of the molecule through an amino group.
  • the C 1-4 alkylamino includes C 1-3 , C 1-2 , C 2-4 , C 4 , C 3 and C 2 alkylamino and the like.
  • C 1-4 alkylamino examples include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -N(CH 2 CH 3 )( CH2CH3 ) , -NHCH2CH2CH3 , -NHCH2 ( CH3 ) 2 , -NHCH2CH2CH2CH3 , etc.
  • C1-3alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms attached to the remainder of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy and the like.
  • Examples of C 1-3 alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 2-4 alkenyl is used to denote a straight or branched chain hydrocarbon group consisting of 2 to 4 carbon atoms containing at least one carbon-carbon double bond, a carbon-carbon double bond can be located anywhere in the group.
  • the C 2-4 alkenyl group includes C 2-3 , C 4 , C 3 and C 2 alkenyl groups, etc.; the C 2-4 alkenyl group may be monovalent, divalent or multivalent.
  • Examples of C 2-4 alkenyl groups include, but are not limited to, vinyl, propenyl, butenyl, butadienyl, and the like.
  • C 2-4 alkynyl is used to denote a straight or branched chain hydrocarbon group consisting of 2 to 4 carbon atoms containing at least one carbon-carbon triple bond, a carbon-carbon triple bond can be located anywhere in the group.
  • the C 2-4 alkynyl groups include C 2-3 , C 4 , C 3 and C 2 alkynyl groups and the like. It can be monovalent, bivalent or multivalent. Examples of C2-4alkynyl groups include, but are not limited to, ethynyl, propynyl, butynyl, and the like.
  • Cn-n+m or Cn - Cn+m includes any particular instance of n to n+ m carbons, eg C1-12 includes C1 , C2 , C3, C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , also including any range from n to n+ m , eg C 1-12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12 , etc.; in the same way, n yuan to n +m-membered means that the number of atoms in the ring is from n to n+m, for example, 3-12-membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membere
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, embodiments formed by their combination with other chemical synthesis methods, and those well known to those skilled in the art Equivalent to alternatives, preferred embodiments include, but are not limited to, the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art. For example, single crystal X-ray diffraction method (SXRD), the cultured single crystal is collected by Bruker D8 venture diffractometer, the light source is CuK ⁇ radiation, and the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • SXRD single crystal X-ray diffraction method
  • the cultured single crystal is collected by Bruker D8 venture diffractometer
  • the light source is CuK ⁇ radiation
  • the scanning mode is: After scanning and collecting relevant data, the crystal structure was further analyzed by the direct method (Shelxs97), and the absolute configuration could be confirmed.
  • the solvent used in the present invention is commercially available.
  • DIEA stands for N,N-diisopropylethylamine
  • Tf 2 O stands for trifluoromethanesulfonic anhydride
  • Xantphos stands for 4,5-bisdiphenylphosphine-9,9-dimethylene xanthene
  • Cs 2 CO 3 represents cesium carbonate
  • Pd 2 (dba) 3 represents tris(dibenzylideneacetone)dipalladium
  • Pd(dppf)Cl 2 represents [1,1′-bis(diphenylphosphine) ) ferrocene] palladium dichloride
  • K 3 PO 4 represents potassium phosphate
  • CsF represents cesium fluoride
  • NaNO 2 represents sodium nitrite
  • KI represents potassium iodide
  • Pd(dppf)Cl 2 .CH 2 Cl 2 represents [1, 1'-bis(diphenylphosphino)ferrocen
  • the molecular docking process was performed by using Maestro ( Glide SP [1] and default options in version 2017-2).
  • the crystal structure PDB: 6UT0 of KRAS_G12C in the PDB database was selected, and Cys12 was simulated and mutated to Asp12. After energy optimization, it was used as the docking template.
  • To prepare the protein hydrogen atoms were added using the Protein Preparation Wizard module of Maestro [2] and the OPLS3 force field was used.
  • the three-dimensional structure of the molecule was generated using LigPrep and energy minimization was performed [3] , and the small molecule conformation was sampled using the confgen module.
  • the side length is The cube docking grid. Place reference compounds during molecular docking. Analyze the interaction type of protein receptor and ligand, analyze the interaction type of protein receptor and ligand, and then select and save a reasonable docking conformation according to the calculated docking scrore and binding mode, as shown in Figure 1 and Figure 2 .
  • the compound of the present invention has good binding with KRAS G12D.
  • compound 1-3 180 mg, 326.66 ⁇ mol
  • compound 1-3A 200.91 mg, 392.00 ⁇ mol
  • 1,4-dioxane 10 mL
  • water 1.5 mL
  • carbonic acid was added.
  • Sodium 86.56 mg, 816.66 ⁇ mol
  • Pd(dppf)Cl 2 .CH 2 Cl 2 26.68 mg, 32.67 ⁇ mol
  • the reaction solution was warmed to 100° C. and stirred for 15 hours. Cooled, filtered, added 20 mL of water, extracted with ethyl acetate (30 mL*2), the combined organic phases were washed with saturated brine, filtered, and the organic solvent was removed under reduced pressure.
  • the organic phase is dried over anhydrous sodium sulfate, filtered, and spin-dried to obtain the crude product.
  • the organic phase was about 20 mL and the organic phase was washed 3 times with 20 mL of saturated brine. , the organic phase was concentrated under reduced pressure to obtain crude product.
  • the starting material 11-1 (500 mg, 1.93 mmol) and 1-chloromethyl-4-fluoro-1,4-diazabicyclo[2.2.2]octane bis(tetrafluoroborate) salt (3.42 g, 9.65 mmol) were combined ) was dissolved in acetonitrile (20 mL), raised to 80°C and reacted for 16 hours. The reaction solution was concentrated to dryness. The crude product was diluted and dissolved with DCM (100 mL), the insoluble material was filtered off, and the mother liquor was concentrated to obtain intermediate 11-2.
  • control compound stock solution 1 mM
  • concentration of the test compound stock solution 10 mM.
  • the compounds of the present invention have a significant inhibitory effect on KRAS G12D enzyme.
  • GP2D cells were seeded in a transparent 96-well cell culture plate, 80 ⁇ L of cell suspension per well, each well containing 8000 cells, the cell plate was placed in a carbon dioxide incubator, and incubated at 37 degrees overnight;
  • the compounds of the present invention have a significant GP2D p-ERK inhibitory effect.
  • the purpose of this experiment is to verify the proliferation inhibitory effect of the compounds of the present invention on KRAS G12D mutant GP2D human pancreatic cancer cells.
  • Cell line GP2D, DMEM medium, penicillin/streptomycin antibiotics were purchased from Vicente, and fetal bovine serum was purchased from Biosera.
  • CellTiter- 3D Cell Viability Assay (3D Cell Viability Chemiluminescence Detection Reagent) reagent was purchased from Promega.
  • GP2D cells were seeded in a 96-well U-bottom cell culture plate, 80 ⁇ L of cell suspension per well, which contained 2000 GP2D cells. Cell plates were incubated overnight in a carbon dioxide incubator. The compounds to be tested were diluted 5-fold to the 8th concentration, that is, from 200 ⁇ M to 2.56 nM, and a double-well experiment was set up. Add 78 ⁇ L of medium to the middle plate, and then transfer 2 ⁇ L of each well of the compound to the middle plate according to the corresponding position. After mixing, transfer 20 ⁇ L of each well to the cell plate. The concentration of compounds transferred to the cell plate ranged from 1 ⁇ M to 0.0128 nM. The cell plates were placed in a carbon dioxide incubator for 5 days.
  • the IC 50 value can be obtained by curve fitting with four parameters ("log(inhibitor) vs. response--Variable slope" mode).
  • the compounds of the present invention have significant anti-proliferative activity in GP2D cells.
  • the purpose of this experiment is to investigate the pharmacokinetic characteristics of the compounds of the present invention under oral and intravenous injection in SD mice.
  • test compound was mixed with 10% dimethyl sulfoxide/60% polyethylene glycol 400/30% aqueous solution, vortexed and sonicated to prepare a 1 mg/mL clear solution, which was filtered through a microporous membrane for use.
  • Male SD mice aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously at a dose of 3 mg/kg.
  • Candidate compound solutions were administered orally at a dose of 30 mg/kg.
  • Whole blood was collected for a certain period of time, and plasma was prepared. The drug concentration was analyzed by LC-MS/MS method, and the pharmacokinetic parameters were calculated by Phoenix WinNonlin software (Pharsight, USA).
  • the compounds of the present invention have good pharmacokinetic characteristics in mice.
  • Cell culture Human colorectal cancer GP2D cells were cultured in vitro in a monolayer, and the culture conditions were DMEM/F12 medium with 20% fetal bovine serum, 1% double antibody, and a 37°C 5% carbon dioxide incubator. Conventional digestion with trypsin-EDTA was performed twice a week for passage. When the cell saturation is 80%-90% and the number reaches the requirement, collect the cells, count them, resuspend in an appropriate amount of PBS, and add Matrigel 1:1 to obtain a cell suspension with a cell density of 25 x 10 6 cells/mL .
  • Tumor diameters were measured with vernier calipers twice a week.
  • Relative tumor proliferation rate T/C (%) TRTV/CRTV ⁇ 100% (TRTV: RTV of treatment group; CRTV: RTV of negative control group).
  • TGI (%) reflecting tumor growth inhibition rate.
  • TGI(%) [(1-(average tumor volume at the end of administration of a certain treatment group-average tumor volume at the beginning of administration of this treatment group))/(average tumor volume at the end of treatment in the solvent control group-the start of treatment in the solvent control group time average tumor volume)] ⁇ 100%.
  • the formate salt of compound 8 showed good efficacy in the mouse GP2D mouse in vivo pharmacodynamic model, wherein the TGI was 85% under the oral dose of 100 mg/kg twice a day.
  • the compounds of the present invention have excellent tumor suppressive effects.

Abstract

一类式(II)所示的KRAS抑制剂化合物或其药学上可接受的盐。

Description

吡啶[4,3-d]嘧啶类化合物
本发明主张如下优先权:
CN202110179648.X,申请日:2021年02月09日;
CN202110247910.X,申请日:2021年03月06日;
CN202110395038.3,申请日:2021年04月13日;
CN202110485807.9,申请日:2021年04月30日;
CN202110982415.3,申请日:2021年08月25日;
CN202111658642.7,申请日:2021年12月30日。
技术领域
本发明涉及一类吡啶[4,3-d]嘧啶类化合物,具体涉及式(II)所示化合物或其药学上可接受的盐。
背景技术
RAS家族中的NRAS,HRAS和KRAS突变引起的癌症占所有人类癌症的近四分之一,使其成为与癌症相关的最常见基因突变之一。几乎覆盖了所有的癌症类型,每年在全球造成100万人死亡。其中,KRAS是最常见的致癌基因(所有RAS突变的85%),存在于90%的胰腺癌中,30-40%的结肠癌中,15-20%的肺癌中(大多为非小细胞肺癌)。根据存在的特定突变,G12C、G12D和G12R是病友们最常见的KRAS突变。除此之外,还有G12A、G12S、G12V等。
RAS(Rat Sarcoma)家族蛋白广泛表达于各类真核生物,有两种表现形式:非激活状态下GDP(二磷酸鸟苷)结合形式和激活状态下的GTP(三磷酸鸟苷)结合形式。RAS蛋白正是通过两种表现形式之间的切换,来调控包括RAF-MEK-ERK、PI3K/Akt/mTOR在内的多个下游通路,从而影响细胞的生长和分化,以及肿瘤的发生和发展。
由于突变型KRAS对三磷酸鸟苷(GTP)具有较高的亲和力,又存在催化位点小、蛋白表面光滑等难以靶向的因素,使小分子抑制剂的开发一直备受挑战,造就了KRAS的“不可成药”传奇。随着Mirati公司在KRAS G12D非共价抑制剂上的突破,KRAS G12D突变的肿瘤开始逐渐迈入精准医疗领域。
发明内容
本发明提供了式(II)所示化合物或其药学上可接受的盐
Figure PCTCN2022074426-appb-000001
其中,
环A选自
Figure PCTCN2022074426-appb-000002
所述
Figure PCTCN2022074426-appb-000003
任选被1、2或3个R a取代;
T 1选自CH、CH 2、N和NR 5
T 2、T 3和T 4分别独立地选自CH、CH 2、N和NH;
m、n、p和x分别独立地选自0、1或2;
r、v和w分别独立地选自1或2;
s和u分别独立地选自1、2或3;
q选自1或3;
R 1选自苯基、苯并噻吩基和萘基,所述苯基、苯并噻吩基和萘基任选被1、2、3、4或5个R b取代;
R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
R 3选自F,R 4选自H;
或者R 3选自H,R 4选自
Figure PCTCN2022074426-appb-000004
R 5选自H、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 9-13烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷氨基和-C(O)-(OCH(CH 3)O-C(O)) t-C 1-3烷基-COOM,所述C 1-4烷基任选被1个NH 2取代;
各R a分别独立地选自F、Cl、Br、I和CH 3
各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基任选被1、2或3个R取代,所述OH任选被1个R’取代;
各R分别独立地选自F、Cl、Br、I;
R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 9-13烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷氨基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-3烷基-COOM、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OH)(OM)、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OM) 2
Figure PCTCN2022074426-appb-000005
所述C 1-4烷基任选被1个NH 2取代;
M分别独立地选自Na和K;
y为0或1;
z为0或1;
t为0或1。
在本发明的一些方案中,所述R 5选自H、-C(O)-CH 2NH 2、-C(O)-OCH(CH 3)O-C(O)-CH 2CH 3和-C(O)-OCH(CH 3)O-C(O)-CH(CH 3) 2,其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000006
Figure PCTCN2022074426-appb-000007
所述
Figure PCTCN2022074426-appb-000008
Figure PCTCN2022074426-appb-000009
任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000010
Figure PCTCN2022074426-appb-000011
其他变量如本发明所定义。
在本发明的一些方案中,所述R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
Figure PCTCN2022074426-appb-000012
其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基任选被1、2或3个R取代,所述OH任选被1个R’取代,其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、Cl、OH、NH 2、CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3、OCH 3、OCH 2F、OCHF 2、OCF 3、-C≡CH、环丙基、-O-环丙基、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-O-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
Figure PCTCN2022074426-appb-000013
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000014
Figure PCTCN2022074426-appb-000015
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000016
Figure PCTCN2022074426-appb-000017
Figure PCTCN2022074426-appb-000018
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000019
Figure PCTCN2022074426-appb-000020
Figure PCTCN2022074426-appb-000021
在本发明的一些方案中,所述R 2选自F,其他变量如本发明所定义。
本发明提供了式(II)所示化合物或其药学上可接受的盐
Figure PCTCN2022074426-appb-000022
其中,
环A选自
Figure PCTCN2022074426-appb-000023
所述
Figure PCTCN2022074426-appb-000024
任选被1、2或3个R a取代;
T 1选自CH、CH 2、N和NR 5
T 2、T 3和T 4分别独立地选自CH、CH 2、N和NH;
m、n、p和x分别独立地选自0、1或2;
r、v和w分别独立地选自1或2;
s和u分别独立地选自1、2或3;
q选自1或3;
R 1选自苯基、苯并噻吩基和萘基,所述苯基、苯并噻吩基和萘基任选被1、2、3、4或5个R b取代;
R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
R 3选自F,R 4选自H;
或者R 3选自H,R 4选自
Figure PCTCN2022074426-appb-000025
R 5选自H、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 9-13烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷氨基和-C(O)-(OCH(CH 3)O-C(O)) t-C 1-3烷基-COOM,所述C 1-4烷基任选被1个NH 2取代;
各R a分别独立地选自F、Cl、Br、I和CH 3
各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基任选被1、2、3、4或5个R取代,所述OH任选被1个R’取代;
各R分别独立地选自F、Cl、Br、I、环丙基和CF 3
R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 9-13烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷氨基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-3烷基-COOM、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OH)(OM)、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OM) 2
Figure PCTCN2022074426-appb-000026
所述C 1-4烷基任选被1个NH 2取代;
M分别独立地选自Na和K;
y为0或1;
z为0或1;
t为0或1。
本发明提供了式(II)所示化合物或其药学上可接受的盐
Figure PCTCN2022074426-appb-000027
其中,
环A选自
Figure PCTCN2022074426-appb-000028
所述
Figure PCTCN2022074426-appb-000029
任选被1、2或3个R a取代;
T 1选自CH、CH 2、N和NR 5
T 2、T 3和T 4分别独立地选自CH、CH 2、N和NH;
m、n、p和x分别独立地选自0、1或2;
r、v和w分别独立地选自1或2;
s和u分别独立地选自1、2或3;
q选自1或3;
R 1选自苯基和萘基,所述苯基和萘基任选被1、2、3、4或5个R b取代;
R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
R 3选自F,R 4选自H;
或者R 3选自H,R 4选自
Figure PCTCN2022074426-appb-000030
R 5选自H、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 9-13烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷氨基和-C(O)-(OCH(CH 3)O-C(O)) t-C 1-3烷基-COOM,所述C 1-4烷基任选被1个NH 2取代;
各R a分别独立地选自F、Cl、Br、I和CH 3
各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基和C 2-4炔基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基和C 2-4炔基任选被1、2或3个R取代,所述OH任选被1个R’取代;
各R分别独立地选自F、Cl、Br、I;
R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 9-13烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷氨基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-3烷基-COOM、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OH)(OM)、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OM) 2
Figure PCTCN2022074426-appb-000031
所述C 1-4烷基任选被1个NH 2取代;
M分别独立地选自Na和K;
y为0或1;
z为0或1;
t为0或1。
在本发明的一些方案中,所述R 5选自H、-C(O)-CH 2NH 2、-C(O)-OCH(CH 3)O-C(O)-CH 2CH 3,其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000032
Figure PCTCN2022074426-appb-000033
所述
Figure PCTCN2022074426-appb-000034
任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000035
其他变量如本发明所定义。
在本发明的一些方案中,所述R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
Figure PCTCN2022074426-appb-000036
其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基任选被1、2、3、4或5个R取代,所述OH任选被1个R’取代,其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH任选被1、2或3个R取代,所述OH任选被1个R’取代,其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、Cl、OH、NH 2、CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3、OCH 3、OCH 2F、OCHF 2、OCF 3、-C≡CH、环丙基、-O-环丙基、
Figure PCTCN2022074426-appb-000037
Figure PCTCN2022074426-appb-000038
-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-O-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
Figure PCTCN2022074426-appb-000039
其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、OH、NH 2、CH 3、CF 3、CH 2CH 3、-C≡CH、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-O-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
Figure PCTCN2022074426-appb-000040
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000041
Figure PCTCN2022074426-appb-000042
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000043
Figure PCTCN2022074426-appb-000044
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000045
Figure PCTCN2022074426-appb-000046
Figure PCTCN2022074426-appb-000047
在本发明的一些方案中,所述R 2选自F,其他变量如本发明所定义。
本发明提供了式(II)所示化合物或其药学上可接受的盐
Figure PCTCN2022074426-appb-000048
其中,
环A选自
Figure PCTCN2022074426-appb-000049
所述
Figure PCTCN2022074426-appb-000050
任选被1、2或3个R a取代;
T 1、T 2、T 3和T 4分别独立地选自CH、CH 2、N和NH;
m、n、p和x分别独立地选自0、1或2;
r、v和w分别独立地选自1或2;
s和u分别独立地选自1、2或3;
q选自1或3;
R 1选自苯基和萘基,所述苯基和萘基任选被1、2、3、4或5个R b取代;
R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
R 3选自F,R 4选自H;
或者R 3选自H,R 4选自
Figure PCTCN2022074426-appb-000051
各R a分别独立地选自F、Cl、Br、I和CH 3
各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基和C 2-4炔基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基和C 2-4炔基任选被1、2或3个R取代;
各R分别独立地选自F、Cl、Br、I。
本发明提供了式(II)所示化合物或其药学上可接受的盐
Figure PCTCN2022074426-appb-000052
其中,
环A选自
Figure PCTCN2022074426-appb-000053
所述
Figure PCTCN2022074426-appb-000054
Figure PCTCN2022074426-appb-000055
任选被1、2或3个R a取代;
T 1、T 2、T 3和T 4分别独立地选自CH、CH 2、N和NH;
m、n、p和x分别独立地选自0、1或2;
r、v和w分别独立地选自1或2;
s和u分别独立地选自1、2或3;
q选自1或3;
R 1选自苯基和萘基,所述苯基和萘基任选被1、2、3、4或5个R b取代;
R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
R 3选自F,R 4选自H;
或者R 3选自H,R 4选自
Figure PCTCN2022074426-appb-000056
各R a分别独立地选自F、Cl、Br、I和CH 3
各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基和C 2-4炔基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基和C 2-4炔基任选被1、2或3个R取代;
各R分别独立地选自F、Cl、Br、I。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000057
Figure PCTCN2022074426-appb-000058
所述
Figure PCTCN2022074426-appb-000059
任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000060
其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000061
其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,所述各R b分别独立地选自F、OH、NH 2、CH 3、CF 3、CH 2CH 3和-C≡CH,其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000062
Figure PCTCN2022074426-appb-000063
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000064
Figure PCTCN2022074426-appb-000065
其他变量如本发明所定义。
在本发明的一些方案中,所述R 2选自F,其他变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐
Figure PCTCN2022074426-appb-000066
其中,
环A选自
Figure PCTCN2022074426-appb-000067
所述
Figure PCTCN2022074426-appb-000068
Figure PCTCN2022074426-appb-000069
任选被1、2或3个R a取代;
T 1、T 2、T 3和T 4分别独立地选自CH和N;
m、n、p和x分别独立地选自0、1或2;
r、v和w分别独立地选自1或2;
q、s和u分别独立地选自1、2或3;
R 1选自苯基和萘基,所述苯基和萘基任选被1、2、3、4或5个R b取代;
R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
各R a分别独立地选自F、Cl、Br、I和CH 3
各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CF 3和OCH 3
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000070
Figure PCTCN2022074426-appb-000071
所述
Figure PCTCN2022074426-appb-000072
Figure PCTCN2022074426-appb-000073
任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,所述环A选自
Figure PCTCN2022074426-appb-000074
其他变量如本发明所定义。
在本发明的一些方案中,所述R 1选自
Figure PCTCN2022074426-appb-000075
其他变量如本发明所定义。
在本发明的一些方案中,所述R 2选自F,其他变量如本发明所定义。
在本发明的一些方案中,所述化合物或其药学上可接受的盐,其化合物选自,
Figure PCTCN2022074426-appb-000076
其中,R 1、R 2、R 3、R 4和R 5如本发明所定义。
在本发明的一些方案中,所述化合物或其药学上可接受的盐,其化合物选自,
Figure PCTCN2022074426-appb-000077
其中,R 1、R 2和R 5如本发明所定义。
在本发明的一些方案中,所述化合物或其药学上可接受的盐,其化合物选自,
Figure PCTCN2022074426-appb-000078
其中,
各R b1、R b2、R b3、R b4、R b5、R b6、R b7、R b8和R b9分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基任选被1、2、3、4或5个R取代,所述OH任选被1个R’取代;
各R分别独立地选自F、Cl、Br、I、环丙基和CF 3;R 2、R 5和R’如本发明所定义。
在本发明的一些方案中,所述各R b1、R b2、R b3、R b4、R b5、R b6、R b7和R b8分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基任选被1、2、3、4或5个R取代,所述OH任选被1个R’取代,其他变量如本发明所定义。
在本发明的一些方案中,所述各R b1、R b2、R b3、R b4、R b5、R b6、R b7和R b8分别独立地选自F、Cl、OH、NH 2、CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3、OCH 3、OCH 2F、OCHF 2、OCF 3、-C≡CH、环丙基、-O-环丙基、
Figure PCTCN2022074426-appb-000079
-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z- C(O)-CH 2CH 2-COONa、-O-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
Figure PCTCN2022074426-appb-000080
其他变量如本发明所定义。
本发明还有一些方案是由上述变量任意组合而来。
本发明还提供了下式所示化合物或其药学上可接受的盐,其化合物选自
Figure PCTCN2022074426-appb-000081
Figure PCTCN2022074426-appb-000082
在本发明的一些方案中,所述化合物或其药学上可接受的盐,其化合物选自
Figure PCTCN2022074426-appb-000083
Figure PCTCN2022074426-appb-000084
Figure PCTCN2022074426-appb-000085
Figure PCTCN2022074426-appb-000086
本发明还提供了所述化合物或其药学上可接受的盐,在制备治疗KRAS G12D突变的实体瘤化合物中的应用。
本发明还提供了下列合成方法:
方法1:
Figure PCTCN2022074426-appb-000087
方法2:
Figure PCTCN2022074426-appb-000088
技术效果
本发明化合物与KRAS G12D蛋白有较好的结合作用,可显著抑制KRAS G12D酶、GP2D p-ERK,本发明化合物对KRAS G12D突变的细胞具有良好的细胞增殖抑制活性,具有优异的肿瘤抑制效果。此外,本发明化合物具有较好的药代动力学特征。
相关定义
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、 丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2022074426-appb-000089
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2022074426-appb-000090
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2022074426-appb-000091
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2022074426-appb-000092
直形虚线键
Figure PCTCN2022074426-appb-000093
或波浪线
Figure PCTCN2022074426-appb-000094
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2022074426-appb-000095
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2022074426-appb-000096
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2022074426-appb-000097
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2022074426-appb-000098
Figure PCTCN2022074426-appb-000099
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2022074426-appb-000100
仍包括
Figure PCTCN2022074426-appb-000101
这种连接方式的基团,只是在连接1个化学键时,该位点的H会对应减少1个变成相应的一价哌啶基。
除非另有说明,用楔形实线键
Figure PCTCN2022074426-appb-000102
和楔形虚线键
Figure PCTCN2022074426-appb-000103
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2022074426-appb-000104
和直形虚线键
Figure PCTCN2022074426-appb-000105
表示立体中心的相对构型,用波浪线
Figure PCTCN2022074426-appb-000106
表示楔形实线键
Figure PCTCN2022074426-appb-000107
或楔形虚线键
Figure PCTCN2022074426-appb-000108
或用波浪线
Figure PCTCN2022074426-appb-000109
表示直形实线键
Figure PCTCN2022074426-appb-000110
或直形虚线键
Figure PCTCN2022074426-appb-000111
除非另有规定,术语“C 9-13烷基”用于表示直链或支链的由9至13个碳原子组成的饱和碳氢基团。所述C 9-13烷基包括C 9-12、C 9-11、C 9-10、C 9、C 10、C 11、C 12和C 13烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 9-13烷基的实例包括但不限于-(CH 2) 9-、-(CH 2) 10-等。
除非另有规定,术语“C 1-4烷基”用于表示直链或支链的由1至4个碳原子组成的饱和碳氢基团。所述C 1-4烷基包括C 1-2、C 1-3和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-4烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1- 3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-4烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至4个碳原子的烷基基团。所述C 1-4烷氨基包括C 1-3、C 1-2、C 2-4、C 4、C 3和C 2烷氨基等。C 1-4烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-N(CH 2CH 3)(CH 2CH 3)、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2、-NHCH 2CH 2CH 2CH 3等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,“C 2-4烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至4个碳原子组成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C 2-4烯基包括C 2-3、C 4、C 3和C 2烯基等;所述C 2-4烯基可以是一价、二价或者多价。C 2-4烯基的实例包括但不限于乙烯基、丙烯基、丁烯基、丁间二烯基等。
除非另有规定,“C 2-4炔基”用于表示直链或支链的包含至少一个碳-碳三键的由2至4个碳原子组成的碳氢基团,碳-碳三键可以位于该基团的任何位置上。所述C 2-4炔基包括C 2-3、C 4、C 3和C 2炔基等。其可以是一价、二价或者多价。C 2-4炔基的实例包括但不限于乙炔基、丙炔基、丁炔基等。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1-12包括C 1- 3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2022074426-appb-000112
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:DIEA代表N,N-二异丙基乙胺;Tf 2O代表三氟甲磺酸酐;Xantphos代表4,5-双二苯基膦-9,9-二甲基氧杂蒽;Cs 2CO 3代表碳酸铯;Pd 2(dba) 3代表三(二亚苄基丙酮)二钯;Pd(dppf)Cl 2代表[1,1′-双(二苯基膦)二茂铁]二氯化钯;K 3PO 4代表磷酸钾;CsF代表氟化铯;NaNO 2代表亚硝酸钠;KI代表碘化钾;Pd(dppf)Cl 2.CH 2Cl 2代表[1,1′-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物;RuPhosPdG2代表氯(2-二环己基膦基-2′,6′-二-异丙氧基-1,1′-联苯基)(2-氨基-1,1′-联苯-2-基)钯(II)。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2022074426-appb-000113
软件命名,市售化合物采用供应商目录名称。
附图说明
图1.化合物A与和KRAS G12D蛋白的结合模式图;
图2.化合物B与和KRAS G12D蛋白的结合模式图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
计算例1:
Figure PCTCN2022074426-appb-000114
分子对接过程是通过使用Maestro(
Figure PCTCN2022074426-appb-000115
版本2017-2)中的Glide SP [1]和默认选项进行的。选取PDB数据库中KRAS_G12C的晶体结构PDB:6UT0,将Cys12模拟突变为Asp12,经过能量优化后,作为对接模板。为了准备蛋白质,使用Maestro [2]的蛋白质准备向导模块添加氢原子,并使用OPLS3力场。对于配体的准备,使用LigPrep生成了分子的三维结构,并进行了能量最小化 [3],使用confgen模块对小分子构象进行采样。以6UT0的配体作为质心生成了边长为
Figure PCTCN2022074426-appb-000116
的正方体对接网格。在分子对接过程中放置参考化合物。分析蛋白质受体与配体的相互作用类型,分析蛋白质受体与配体的相互作用类型,然后根据计算得到的docking scrore以及结合模式选择并保存了合理对接构象,如图1和图2所示。
[1]Glide,
Figure PCTCN2022074426-appb-000117
LLC,New York,NY,2017.
[2]Maestro,
Figure PCTCN2022074426-appb-000118
LLC,New York,NY,2017.
[3]LigPrep,
Figure PCTCN2022074426-appb-000119
LLC,New York,NY,2017.
结论:本发明化合物与KRAS G12D有较好的结合。
实施例1
Figure PCTCN2022074426-appb-000120
步骤1:中间体1-2的制备
-40℃下,将化合物1-1(350mg,1.39mmol)溶于无水二氯甲烷(3mL)中,加入二异丙基乙胺(537.52mg,4.16mmol,724.42μL),反应液在该温度下搅拌0.5小时,加入化合物1-1A(294.31mg,1.39mmol),反应液缓慢升温至20℃,继续搅拌0.5小时。减压除去有机溶剂,所得粗产物经硅胶柱层析(洗脱剂:石油醚∶乙酸乙酯=10∶1~4∶1)分离纯化,得到化合物1-2。MS m/z=427.8[M+1] +.
步骤2:中间体1-3的制备
将化合物1-2(270mg,630.42μmol)和化合物1-2A(150.54mg,945.63μmol)溶于乙腈(5mL)中,加入二异丙基乙胺(244.43mg,1.89mmol,329.41μL),反应液升温至80℃继续搅拌16小时。减压除去有机溶剂,所得粗产物经硅胶柱层析(洗脱剂:石油醚∶乙酸乙酯=1∶1至二氯甲烷∶甲醇=20∶1)分离纯化,得到化合物1-3。MS m/z=551.0[M+1] +.
步骤3:中间体1-4的制备
氮气保护下,将化合物1-3(180mg,326.66μmol)和化合物1-3A(200.91mg,392.00μmol)溶于1,4-二氧六环(10mL)和水(1.5mL)中,加入碳酸钠(86.56mg,816.66μmol)和Pd(dppf)Cl 2.CH 2Cl 2(26.68mg,32.67μmol),反应液升温至100℃继续搅拌15小时。冷却,过滤,加入20mL水,乙酸乙酯(30mL*2)萃取,合并后的有机相用饱和食盐水洗涤,过滤,减压除去有机溶剂,所得粗产物经硅胶柱层析(洗脱剂:石油醚∶乙酸乙酯=4∶1~1∶4)分离纯化,得到化合物1-4。MS m/z=901.3[M+1] +.
步骤4:中间体1-5的制备
将化合物1-4(260mg,288.52μmol)溶于无水四氢呋喃(5mL)中,加入四丁基氟化胺(80.62mg,865.57μmol),反应液升温至60℃继续搅拌19小时。减压除去有机溶剂,所得粗产物经硅胶柱层析(洗脱 剂:二氯甲烷∶甲醇=20∶1)分离纯化,得到化合物1-5。MS m/z=745.1[M+1] +.
步骤5:化合物1的制备
将化合物1-5(50mg,67.13μmol)溶于乙腈(3mL)中,加入氯化氢的1,4-二氧六环溶液(4M,671.32μL),反应液在20℃继续搅拌0.5小时。过滤,所得粗产物经3mL乙腈洗涤,得到化合物1的盐酸盐。 1H NMR(400MHz,CD 3OD):δ9.25(s,1H),7.94-7.90(m,1H),7.45-7.35(m,2H),7.28(d,J=2.4Hz,1H),5.68-5.54(m,1H),5.47-5.43(m,2H),4.10-3.89(m,3H),3.80-3.76(m,2H),3.56-3.48(m,4H),2.78-2.57(m,3H),2.53-2.21(m,9H).MS m/z=601.3[M+1] +.
实施例2
Figure PCTCN2022074426-appb-000121
Figure PCTCN2022074426-appb-000122
步骤1:中间体1-1B-2的制备
将中间体1-1B-1(120g,709mmol)溶于叔丁醇(1200mL)和水(1200mL)中,随后依次加入二水合锇酸钾(10.4g,28.3mmol)和N-甲基吗啉氧化物(249g,2.13mol)。将反应液在45℃下搅拌16小时。减压浓缩,除去多余的溶剂,乙酸乙酯(500mL*2)萃取,饱和亚硫酸溶液(1000mL)洗。合并的有机层用饱和食盐水(500mL*3)洗涤,经无水硫酸钠干燥,过滤并减压浓缩得到粗品产物。粗品通过柱色谱法(石油醚/乙酸乙酯=1/0至0/1,石油醚/乙酸乙酯=0∶1)纯化,得到1-1B-2。 1H NMR(400MHz,CDCl 3)δ4.23(t,J=3.6Hz,2H),3.55-3.58(m,2H),3.35-3.32(m,2H),2.87-2.83(m,2H),1.45(s,9H)。
步骤2:中间体1-1B-3的制备
将中间体1-1B-2(107g,526mmol)溶于二氯甲烷(1700mL)中,冷却至0℃,随后加入二醋酸碘苯(254g,789mmol)。将反应体系转移至25℃并搅拌3小时。加入饱和碳酸氢钠溶液(500mL)淬灭反应体系,并加入二氯甲烷(100mL)搅拌0.5小时,随后有机相用无水硫酸钠干燥,过滤并减压浓缩以得到粗品产物。25℃下加入甲基叔丁基醚(200mL),并搅拌10分钟,过滤并减压下浓缩以得到粗品中间体1-1B-3。
步骤3:中间体1-1B-4的制备
将中间体1-1B-3(200g)溶于四氢呋喃(600mL)中,冷却至-78℃,随后向反应体系中加入乙基溴化镁(1M,1.79L)。随即将反应体系升至25℃并搅拌16小时。10℃下加入饱和氯化铵溶液(1000mL)淬灭反应体系,并用乙酸乙酯(500mL)萃取。有机相用饱和食盐水(500mL*3)洗涤,无水硫酸钠干燥,过滤并减压浓缩得到粗品产物。粗品通过柱色谱法(石油醚/乙酸乙酯=1/0至0/1,石油醚∶乙酸乙酯=2∶1)纯化,得到中间体1-1B-4。 1H NMR(400MHz,CDCl 3)δ5.82-5.89(m,2H),5.32(t,J=11.6Hz,2H),5.16-5.19 (m,2H),4.45(s,2H),3.60-3.70(m,1H),3.37(s,2H),3.25(s,1H),2.95(d,J=8.8Hz,1H),1.48(s,9H)。
步骤4:中间体1-1B-5的制备
将中间体1-1B-4(80.0g,310mmol)溶于二氯甲烷(1000mL)中,随后将反应体系转移至0℃并加入DBU(23.6g,155mmol)和2,2,2-三氯乙腈(269g,1.87mol),将反应体系转移至25℃并搅拌16小时。减压浓缩,残余物用乙酸乙酯(500mL*2)萃取,水洗(100mL*2),饱和食盐水(100mL*3)洗,无水硫酸钠干燥,过滤并减压浓缩得到粗品产物。粗品产物通过柱色谱法(石油醚/乙酸乙酯=1/0至0/1,石油醚∶乙酸乙酯=5∶1)纯化,得到中间体1-1B-5。 1H NMR(400MHz,CDCl 3)δ8.37(s,2H),5.81-5.87(m,2H),5.45(s,2H),5.39-5.43(m,2H),5.25-5.30(m,2H),3.61-3.81(m,4H),1.48(s,9H)。
步骤5:中间体1-1B-6的制备
将中间体1-1B-5A(32.1g,238mmol)溶于DCE(850mL)中,随后加入1,5-环辛二烯氯化铱二聚体(12.3g,18.3mmol)。将反应体系冷却至0℃,随后将中间体1-1B-5(100g,183.1mmol溶于DCE(1.00L)中并转移至上述反应体系,将反应升至25℃继续搅拌16小时。减压浓缩除去多余的溶剂,得到粗品产物。粗品通过柱色谱法(石油醚/乙酸乙酯=1/0至0/1,石油醚/乙酸乙酯=10∶1)纯化,得到中间体1-1B-6。 1H NMR(400MHz,CDCl 3)δ7.52-7.55(m,2H),7.30(t,J=7.2Hz,2H),7.22(t,J=7.2Hz,1H),5.94-6.03(m,2H),5.10(t,J=19.2Hz,2H),4.99(d,J=10.4Hz,2H),3.51-3.61(m,4H),3.33(t,J=13.6Hz,2H),1.48(s,15H)。
步骤6:中间体1-1B-7的制备
将1-1B-6(36.0g,50.4mmol)溶于甲苯(900mL)中,随后加入二代Grubbs催化剂(2.14g,2.52mmol)。反应体系升温至125℃并搅拌16小时。过滤,弃去滤饼,滤液减压浓缩得到粗品产物。粗品通过柱色谱法(石油醚/乙酸乙酯=1/0至0/1,石油醚/乙酸乙酯=10∶1)纯化,得到中间体1-1B-7。MS:m/z=329.2,[M+1] +1H NMR(400MHz,CDCl 3)δ7.60(t,J=1.2Hz,2H),7.31(t,J=7.2Hz,2H),7.22(s,1H),5.96(t,J=9.2Hz,2H),3.60-3.65(m,2H),3.46-3.53(m,2H),3.09-3.14(m,2H),1.42(s,9H),1.25(d,J=6.0Hz,6H)。
步骤7:中间体1-1B-8的制备
将中间体1-1B-7(26.8g,81.6mmol)溶于甲醇(201mL)中,随后加入HCl/MeOH(4M,67.3mL)。将反应体系升至35℃搅拌16小时。将反应混合物的pH值调节至12,并用乙酸乙酯(30.0mL)萃取,经无水硫酸钠干燥,过滤并减压浓缩得到1-1B-8。MS:m/z=229.2,[M+1] +1H NMR(400MHz,CDCl 3)δ7.62(t,J=7.2Hz,2H),7.31(t,J=7.6Hz,2H),7.21(s,1H),6.01(s,2H),3.42(s,2H),2.89-2.93(m,2H),2.30-2.34(m,2H),1.23(s,6H)。
步骤8:中间体1-1B-9的制备
将中间体1-1B-8(18.6g,79.4mmol)溶于THF(190mL)中,随后加入氯甲酸-9-芴基甲酯(20.5g,79.4mmol)、碳酸钠(25.2g,238.2mmol)。将混合物在0℃下搅拌1小时。乙酸乙酯(50.0mL*2)萃取和水洗(200.0mL)。合并有机相,用饱和食盐水洗(150.0mL),无水硫酸钠干燥,过滤并减压浓缩得到中间体1-1B-9。 MS:m/z=451.3,[M+1] +1H NMR(400MHz,CDCl 3)δ7.76(d,J=13.6Hz,2H),7.54-7.61(m,4H),7.24-7.40(m,7H),5.93-6.01(m,2H),4.34-4.40(m,2H),4.21(s,1H),3.70(t,J=2Hz,2H),3.55-3.59(m,2H),3.15-3.23(m,2H),1.27(d,J=2.4Hz,6H)。
步骤9:中间体1-1B-10的制备
将中间体1-1B-9(9.52g,21.1mmol)溶于三氟醋酸(192mL),加热至75℃搅拌16小时。加入水(20.0mL),并调节pH至9,再加入二氯甲烷(20.0mL)萃取,无水硫酸钠干燥,过滤并减压浓缩得到粗品产物。粗品在25℃下用正庚烷(6mL)打浆2小时得到1-1B-10的三氟醋酸盐。MS:m/z=333.1,[M+1] +1H NMR(400MHz,CDCl 3)δ7.77(d,J=7.6Hz,2H),7.56(d,J=7.2Hz,2H),7.41(t,J=7.6Hz,2H),7.33(t,J=6Hz,2H),6.18-6.27(m,2H),4.38-4.42(m,2H),4.23(s,1H),3.88(d,J=2.0Hz,2H),3.82(d,J=2.4Hz,1H),3.72(d,J=2.0Hz,1H),3.21-3.60(m,2H)。
步骤10:中间体1-1B-11的制备
将中间体1-1B-10的三氟醋酸盐(1.00g,2.92mmol)溶于四氢呋喃(10.0mL)中,随后依次加入二碳酸二叔丁酯(764mg,3.50mmol)、三乙胺(885mg,8.75mmol)并在25℃下搅拌1小时。加入乙酸乙酯(10.0mL*2)和水(10.0mL)萃取。合并有机相,并用饱和食盐水(15.0mL)洗,无水硫酸钠干燥,过滤并减压浓缩得到粗品产物。粗品通过柱色谱法(石油醚/乙酸乙酯=1/0至0/1,石油醚∶乙酸乙酯=3∶1)纯化,得到中间体1-1B-11。MS:m/z=433.2,[M+1] +
步骤11:中间体1-1B的制备
将中间体1-1B-11(5.69g,12.59mmol)溶于乙醇(60.0mL)中,随后加入二甲胺(34.4g,251.8mmol)。将反应体系在25℃下搅拌3小时。直接减压浓缩,残余物用乙酸乙酯(40.0mL)和10%柠檬酸(40.0mL)萃取,将水相的pH值调至9,过滤并用乙酸乙酯(40.0mL*2)萃取,合并有机相,无水硫酸钠干燥,过滤并减压浓缩得到中间体1-1B。MS:m/z=211.2,[M+1] +1H NMR(400MHz,CDCl 3)δ6.22(d,J=10Hz,2H),4.40(d,J=38.8Hz,2H),2.89-3.01(m,2H),2.40(d,J=13.2Hz,2H),1.49(s,9H)。
步骤12:中间体2-1的制备
将中间体1-1(900mg,3.56mmol)溶于二氯甲烷(10mL)中,冷却至0℃,随后依次加入N,N-二异丙基乙胺(1.38g,10.69mmol)和1-1B(749.60mg,3.56mmol),0℃下反应1小时。直接减压浓缩得粗品2-1。MS:m/z=426.0,[M+1] +
步骤13:中间体2-2的制备
将中间体2-1(220mg,516.10μmol)和1-2A溶于乙腈(10mL)中,随后加入N,N-二异丙基乙胺(200.10mg,1.55mmol),将反应体系升至80℃并搅拌16小时。将反应液减压浓缩除去大部分溶剂,接着加入乙酸乙酯(10mL)和水洗(5mL)萃取,无水硫酸钠干燥,浓缩。粗品经硅胶柱层析(PE/EA=1/1到DCM/MeOH=20/1)分离得中间体2-2。MS:m/z=549.1,[M+1] +
步骤14:中间体2-3的制备
将中间体2-2(120mg,218.57μmol)和2-2A(70.85mg,262.29μmol)溶于二氧六环(5mL)和水(0.6mL)的混合溶液中,随后加入碳酸钠(69.50mg,655.72μmol)和Pd(dppf)Cl 2.CH 2Cl 2(17.85mg,21.86μmol,0.1ea),用氮气置换三次,体系在100℃下反应5小时。过滤除去固体杂质,然后将滤液减压浓缩得粗品产物。粗品经柱色谱法(DCM/MeOH=20/1)分离得到中间体2-3。MS:m/z=657.1,[M+1] +
步骤15:化合物2的制备
将中间体2-3溶于二氯甲烷(5mL)中,随后加入三氟醋酸(2mL),反应体系在20℃下搅拌0.5小时。减压浓缩除去三氟醋酸,得粗品产物,经prep-HPLC分离(HPLC:色谱柱:Xtimate C18 150*40mm*5μm;流动相:[H 2O(0.05%HCl)-ACN];ACN%:1%-30%,10min),得化合物2的盐酸盐(45mg,80.85μmol)。MS:m/z=557.1[M+H +]。 1H NMR(400MHz,CD 3OD)δppm 9.38(s,1H),7.85-7.83(m,1H),7.60-7.58(m,1H),7.51(t,J=7.53Hz,1H),7.31-7.45(m,3H),6.44(s,2H),5.53-5.72(m,1H),5.06-5.02(m,2H),4.82(s,2H),4.77-4.74(m,2H),4.26(br d,J=13.80Hz,2H),3.85-4.11(m,3H),3.42-3.55(m,2H),2.58-2.84(m,2H),2.18-2.55(m,4H)。
实施例3
Figure PCTCN2022074426-appb-000123
步骤1:中间体3-1的制备
将中间体2-2(500mg,0.91mmol)和2-2B(308mg,0.91mmol)溶于二氧六环(15mL)和水(1.2mL)的混合溶液中,随后加入碳酸钠(286mg,2.7mmol),氮气保护下加入[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷(73mg,0.09mmol),再用氮气置换三次,体系在85℃下反应5小时。过滤,然后将滤液减压浓缩得粗品产物。粗品经柱色谱法(DCM/MeOH=20/1)分离得到中间体3-1。MS:m/z=724.3,[M+1] +
步骤15:化合物3的制备
将中间体3-1(487mg,0.67mmol)溶于二氯甲烷(10mL)中,随后加入三氟醋酸(3mL),反应体系在20℃下搅拌1小时。减压浓缩除去三氟醋酸,得粗品产物,经制备HPLC分离(色谱柱:Xtimate C18 150*40mm*5μm;流动相:[水(0.05%盐酸)-乙腈];乙腈%:1%-30%,10min),得化合物3的盐酸盐(212mg,0.366mmol)。 1H NMR(400MHz,CD 3OD)δ9.16(s,1H),6.94(s,1H),6.74(s,1H),6.31(s,2H),5.58(d,J=51.9Hz, 1H),4.66-4.59(m,3H),4.11-4.07(m,2H),3.94-3.80(m,3H),3.38-3.35(m,2H),2.68-1.96(m,11H),1.76-1.71(m,2H)。MS:m/z=580.2,[M+1] +
实施例4
Figure PCTCN2022074426-appb-000124
步骤1:中间体4-1的合成
在预先干燥的反应瓶中加入1-1(3g,11.88mmol),二氯甲烷(30mL),反应液冷却至-40℃,将1-1B-8(1.90g,8.32mmol)和N,N-二异丙基乙胺(7.68g,59.42mmol)依次加入反应液中,反应液在-40℃搅拌0.5小时,反应完毕,反应液中加入二氯甲烷50毫升和水50毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过柱层析纯化(流动相:石油醚∶乙酸乙酯=100∶1~0∶1)得到4-1。MSm/z:444.1[M+1] +.
步骤2:中间体4-2的合成
在预先干燥的反应瓶中4-1(2.2g,4.95mmol),1-2A(1.58g,9.90mmol),N,N-二异丙基乙胺(1.92g,14.85mmol,2.59mL),1,4二氧六环(20mL),反应液在95℃搅拌12小时。反应完毕,反应液直接旋干得到粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=100∶1~0∶1)纯化得到4-2。MS m/z:567.3[M+1] +.
步骤3:中间体4-3的合成
在预先干燥的反应瓶中加入4-2A(1.48g,4.23mmol),4-2(2g,3.53mmol),碳酸铯(2.87g,8.82mmol),1,4-二氧六环(20mL),水(2mL),氮气保护下反应液中加入[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷(288.02mg,352.69μmol),反应液在80℃搅拌3小时。反应完毕,反应液中加入乙酸乙酯30毫升和水30毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=100∶1~0∶1)纯化得到4-3。MS m/z:755.3[M+1] +.
步骤4:中间体4-4的合成
在预先干燥的反应瓶中加入4-3(2g,2.65mmol),三氟醋酸(12.08g,105.99mmol),反应液在65℃搅拌0.5小时。反应液冷却至室温,加入水50毫升和乙酸乙酯100毫升,加入固体碳酸钠调节pH至7,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过高效液相色谱分离(色谱柱:Waters Xbridge BEH C18 100*30mm*10μm;流动相:A(乙腈)和B(水,含10mM碳酸氢铵);梯度:B%:30%-60%,8min)分离纯化得到化合物4-4。MS m/z:593.2[M+1] +.
步骤5:中间体4-5的合成
在预先干燥的反应瓶中加入4-4(1g,1.69mmol),二氯甲烷(20mL),N,N-二异丙基乙胺(654.30mg,5.06mmol),碳酸酐二叔丁酯(405.13mg,1.86mmol),反应液在20℃搅拌3小时。TLC(DCM∶MeOH=15∶1)显示原料消耗完毕,有新点生成。反应液中加入二氯甲烷20毫升和水20毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过柱层析(流动相:二氯甲烷∶甲醇=100∶1~0∶1)。分离得到产物4-5。MS m/z:693.4[M+1] +.
步骤6:中间体4-6的合成
在预先干燥的反应瓶中加入4-5(0.2g,288.72μmol),二氯甲烷(5mL),N,N-二异丙基乙胺(149.26mg,1.15mmol),反应液在0℃加入三氟甲磺酸酐(122.19mg,433.09μmol),反应液在0℃搅拌1hr。反应完毕,向反应液中加入二氯甲烷10毫升和冰水10克,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品中间体4-6,粗品直接用于下一步。MS m/z:825.2[M+1] +..
步骤7:中间体4-7的合成
在预先干燥的反应瓶中加入4-6(0.22g,266.74μmol),二苯基亚胺(96.69mg,533.49μmol),甲苯(5mL),碳酸铯(260.73mg,800.23μmol),4,5-双二苯基膦-99-二甲基氧杂氧杂蒽(30.87mg,53.35μmol),氮气保护下加入三(二亚苄基丙酮)二钯(24.43mg,26.67μmol),反应液在100℃搅拌12小时。反应液直接旋干得到粗品.粗品通过柱层析纯化(流动相:石油醚∶乙酸乙酯=100∶1~0∶1).得到4-7。MSm/z:856.2[M+1] +.
步骤8:化合物4的合成
在预先干燥的反应瓶中加入4-7(0.2g,233.67μmol),乙酸乙酯(1mL),氯化氢/乙酸乙酯(4M,20.00mL),反应液在20℃搅拌0.5小时。反应液直接旋干得到粗品。粗品通过高效液相色谱分离(色谱柱:Waters Xbridge BEH C18 100*30mm*10μm;流动相:A(乙腈)和B(水,含10mM碳酸氢铵);梯度:B%:30%- 50%,8min)纯化得到化合物4。 1H NMR(400MHz,CD 3OD)δ=9.10(s,1H),7.75-7.55(m,1H),7.53-7.47(m,1H),7.38-7.25(m,1H),7.20-7.14(m,2H),6.33(s,2H),5.45-5.38(m,1H),5.32-5.18(m,1H),4.58-4.47(m,1H),4.35-4.20(m,2H),4.15-4.00(m,2H),3.98-3.78(m,2H),3.27-3.22(m,1H),3.12-3.01(m,1H),2.43-2.13(m,3H),1.91-1.73(m,3H),2.09-1.89(m,3H).MS m/z:592.3[M+1] +.
实施例5
Figure PCTCN2022074426-appb-000125
步骤1:中间体5-1的合成
在预先干燥的反应瓶中加入2-2(0.3g,546.44μmol),甲醇(5mL),氯化氢/甲醇(4M,1.37mL),反应液在0℃搅拌1小时。反应完毕,反应液直接旋干得到粗品。粗品中加入水10毫升和乙酸乙酯10毫升,加入碳酸氢钠固体调节pH至8,萃取,分液,收集有机相,旋干得到5-1。MS m/z:449.2[M+1] +.
步骤2:中间体5-2的合成
在预先干燥的反应瓶中加入5-1(0.21g,467.81μmol),二氯甲烷(10mL),三乙胺(142.01mg,1.40mmol),反应液中加入1-(((4-硝基苯氧基)羰基)氧基)异丁酸乙酯(166.88mg,561.38μmol)的二氯甲烷(3mL)溶液,反应液在20℃搅拌12小时。反应液中加入二氯甲烷20毫升和水20毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=100∶1~0∶1)分离得到化合物5-2。MS m/z:607.2[M+1] +.
步骤3:中间体5-3的合成
在预先干燥的反应瓶中加入4-2A(89.99mg,256.98μmol),5-2(0.13g,214.15μmol),磷酸钾(90.91mg,428.30μmol),四氢呋喃(1mL),水(0.25mL),氮气保护下反应液中加入[(二(1-金刚烷基)-N-丁基膦)-2-(2- 氨基联苯)氯化钯(II)(14.32mg,21.42μmol),反应液在80℃搅拌3小时。反应完毕,反应液中加入乙酸乙酯5毫升和水5毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=100∶1~0∶1)分离得到5-3。MS m/z:795.3[M+1] +.
步骤4:化合物5的合成
在预先干燥的反应瓶中加入化合物5-3(0.07g,88.07μmol),氯化氢/乙酸乙酯(4M,21.00mL),反应液在0℃搅拌1小时。反应液中加入冰水3克,将固体碳酸氢钠加入反应液中,调节pH至8,加入乙酸乙酯5毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过高效液相色谱分离(色谱柱:Phenomenex C18 75*30mm*3μm;流动相:A(乙腈)和B(水,含10mM碳酸氢铵);梯度:B%:30%-60%,8min)纯化得到化合物5。 1H NMR(400MHz,CDCl 3)δ=9.14(s,1H),7.79-7.73(m,1H),7.64-7.54(m,1H),7.43-7.39(m,1H),7.27-7.23(m,1H),6.81-6.75(m,1H),6.36-6.25(m,2H),5.37-5.20(m,1H),4.85-4.70(m,2H),4.63-4.43(m,2H),4.16-4.00(m,2H),3.90-3.60(m,2H),3.16-3.00(m,3H),2.88-2.75(m,1H),2.20-1.97(m,3H),1.91-1.73(m,3H),1.57-1.45(m,3H),1.16-1.05(m,6H).MS m/z:751.3[M+1] +.
实施例6,7
Figure PCTCN2022074426-appb-000126
步骤1:中间体7-1的合成
在预先干燥的反应瓶中加入2-2C(0.23g,418.93μmol),2-2(279.13mg,544.62μmol),1,4-二氧六环(4mL)/水(0.5mL),碳酸钠(111.01mg,1.05mmol),氮气保护下加入[1,1-双(二苯基膦)二茂铁]二氯化钯二氯甲烷(34.21mg,41.89μmol),反应液在100℃搅拌3小时。反应液中加入乙酸乙酯10毫升和水5毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品.粗品通过柱层析(流动相:石油醚∶乙酸乙 酯=100∶1~0∶1),得到7-1。MS m/z:899.4[M+1] +.
步骤2:中间体7-2的合成
在预先干燥的反应瓶中加入7-1(0.23g,255.80μmol),四氢呋喃(5mL),氟化四甲基铵(71.48mg,767.41μmol),反应液在60℃搅拌15小时。反应液直接旋干得到粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=100∶1~0∶1),得到7-2。MS m/z:743.5[M+1] +.
步骤3:化合物6的合成
在预先干燥的反应瓶中加入7-2(40mg,53.85μmol),乙酸乙酯(1mL),氯化氢/乙酸乙酯(4M,2mL),反应液在20℃搅拌1小时。反应液直接旋干得到粗品,粗品通过高效液相色谱分离(色谱柱:Phenomenex Luna C18 75*30mm*3μm;流动相:A(乙腈)和B(水,含10mM甲酸);梯度:B%:1%-40%,8min)纯化得到化合物6的甲酸盐。 1H NMR(400MHz,CD 3OD)δ=9.11(s,1H),8.47(s,1H),7.92-7.87(m,1H),7.41-7.32(m,2H),7.23-7.21(m,1H),6.41-6.32(m,2H),5.56-5.38(m,1H),4.70-4.58(m,2H),4.56-4.43(m,2H),4.25-4.17(m,2H),3.98-3.86(m,2H),3.80-3.55(m,3H),3.40-3.35(m,1H),2.63-2.37(m,2H),2.35-2.28(m,1H),2.27-2.15(m,2H),2.13-2.00(m,1H).MS m/z:599.9[M+1] +.
步骤4:中间体7-4的合成
在预先干燥的反应瓶中加入1-(((4-硝基苯氧基)羰基)氧基)异丁酸乙酯(32.77mg,110.25μmol),二氯甲烷(1mL),化合物6(33mg,55.13μmol),N,N-二异丙基乙胺(21.37mg,165.38μmol),反应液在20℃搅拌12小时。反应液中加入水10毫升和二氯甲烷10毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过高效液相色谱分离(色谱柱:Waters Xbridge BEH C18100*30mm*10μm;流动相:A(乙腈)和B(水,含10mM碳酸氢铵);梯度:B%:55%-85%,8min)纯化得到7-4。MS m/z:915.4[M+1] +.
步骤5:化合物7的合成
在预先干燥的反应瓶中加入7-4(30mg,32.79μmol),乙腈(1mL),氨水(32.83mg,327.90μmol),反应液在20℃搅拌2小时。反应液中加入二氯甲烷5毫升和水5毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过高效液相色谱分离(色谱柱:Phenomenex C18 75*30mm*3μm;流动相:A(乙腈)和B(水,含10mM碳酸氢铵);梯度:B%:40%-70%,8min)得到化合物7。 1H NMR(400MHz,CD 3OD)δ=9.04(s,1H),7.93-7.84(m,1H),7.39-7.30(m,2H),7.22-7.19(m,1H),6.93-6.85(m,2H),6.40-6.26(m,2H),5.40-5.25(m,1H),4.87-4.78(m,2H),4.73-4.53(m,2H),4.35-4.20(m,2H),3.96-3.75(m,2H),3.40-3.35(m,1H),3.29-3.18(m,3H),3.09-2.99(m,1H),2.73-2.50(m,1H),2.40-2.10(m,3H),2.05-1.85(m,3H),1.61-1.51(m,3H),1.27-1.11(m,6H).MS m/z:757.2[M+1] +.
实施例8
Figure PCTCN2022074426-appb-000127
步骤1:中间体8-1的合成
将中间体2-2D(2.3g,7.15mmol),2-2(1.96g,3.58mmol),[1,1′-双(二苯基膦)二茂铁]二氯化钯二氯甲烷络合物(292.08mg,357.66μmol),碳酸铯(3.50g,10.73mmol)溶于1,4-二氧六环(15mL)和水(2mL)的混合溶剂中,氮气换气三次,85℃下反应12小时。反应完毕,反应液中加入乙酸乙酯50毫升和水10毫升,萃取,分液,有机相使用无水硫酸钠干燥过滤旋干得到粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=100∶1~0∶1),得8-1。MS m/z:708.2[M+1] +
步骤2:化合物8的合成
将中间体8-1(1.3g,1.84mmol)溶于二氯甲烷(10mL)中,随后加入三氟乙酸(4.62g,40.52mmol),25℃下反应1小时。反应完毕,减压浓缩除去有机溶剂,制备HPLC分离(色谱柱:Xtimate C18 150*40mm*10μm;流动相:[水(甲酸)-乙腈];B(乙腈)%:5%-35%,7min),得化合物8的甲酸盐。 1H NMR(400MHz,CD 3OD)δ9.09(s,1H),8.40(s,1H),6.94(d,J=2.3Hz,1H),6.52(d,J=2.3Hz,1H),6.36(s,2H),5.58(d,J=51.9Hz,1H),4.88-4.75(m,3H),4.66(s,2H),4.55(s,2H),4.16-3.78(m,6H),3.45(td,J=10.5,5.7Hz,1H),2.78-2.51(m,2H),2.48-2.39(m,1H),2.38-2.28(m,2H),2.27-2.14(m,1H).MS m/z:608.1[M+1] +.
实施例9
Figure PCTCN2022074426-appb-000128
步骤1:中间体9-2的合成
将原料9-1(2g,5.58mmol)溶于DCM(40mL)中,冰浴下0-10℃下加入DIEA(4.33g,33.47mmol),接着滴加Tf 2O(6.30g,22.31mmol),继续反应1.5小时。往反应液中加入水(20mL)充分搅拌,分去水相,有机相用无水硫酸钠干燥,浓缩。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=10∶1~2∶1)分离得中间体9-2。
步骤2:中间体9-3的合成
将中间体9-2(3g,4.82mmol),9-2A(1.75g,9.64mmol),Xantphos(557.57mg,963.63umol),Cs 2CO 3(4.71g,14.45mmol)溶于甲苯(60mL)中,接着加入Pd 2(dba) 3(441.21mg,481.82μmol),氮气保护下在100℃下反应2小时。将反应液冷却至25℃,滤去不溶物,浓缩去大部分甲苯,乙酸乙酯(30mL)稀释,水洗(20mL),无水硫酸钠干燥,浓缩。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=10∶1~1∶1)分离得中间体9-3。
步骤3:中间体9-4的合成
将中间体9-3(3.1g,4.74mmol),联硼酸频那醇酯(2.41g,9.48mmol),Pd(dppf)Cl 2(693.88mg,948.30μmol),KOAc(1.40g,14.22mmol)溶于甲苯(60mL)中,氮气保护下在110℃下反应18小时。将反应液冷却至25℃,滤去不溶物,乙酸乙酯(50mL)萃取,水洗(50mL),无水硫酸钠干燥,浓缩。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=10∶1~2∶1)分离得中间体9-4。MS(ESI)m/z:468.2[M+1-Ph 2NH] +
步骤4:中间体9-5的合成
将中间体9-4(2g,3.17mmol)溶于乙酸乙酯(20mL)中,在25℃下加入氯化氢的乙酸乙酯溶液(2M,20mL),继续搅拌0.5小时。将反应液用乙酸乙酯(20mL)稀释,饱和碳酸氢钠溶液洗(3 x 30mL),无水硫酸钠干燥,浓缩。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=10∶1~1∶1)分离得中间体9-5。MS(ESI)m/z:468.2[M+1] +
步骤5:中间体9-6的合成
将中间体9-5(0.65g,1.18mmol),中间体2-2(830.24mg,1.78mmol),RuPhosPdG2;正丁基二(1-金刚烷基)膦(79.16mg,118.39μmol),K 3PO 4(753.95mg,3.55mmol)溶于二氧六环(13mL)和H 2O(3mL)中,氮气保护下在85℃反应3小时。将反应液冷却至25℃,滤去不溶物,乙酸乙酯(50mL)淋洗,水洗(50mL),无水硫酸钠干燥,浓缩。粗品通过柱层析(流动相:二氯甲烷∶甲醇=100∶1~50∶1)分离得中间体9-6。MS(ESI)m/z:854.4[M+1] +
步骤6:中间体9-7的合成
将中间体9-6(50mg,58.54μmol)溶于二氯甲烷(1mL)中,在25℃下加入三氟乙酸(385.00mg,3.38mmol),继续反应1小时,将反应液浓缩干得中间体9-7。MS(ESI)m/z:754.3[M+1] +
步骤7:化合物9的合成
将中间体9-7(44mg,58.36μmol)溶于DMF(1mL)中,在25℃加入K 2CO 3(80.65mg,583.58μmol)和CsF(44.32mg,291.79μmol),升至60℃继续反应3小时。将反应液冷却至25℃,乙酸乙酯(20mL)稀释,水相用乙酸乙酯(20mL)反萃,合并有机相,水洗(2x20mL),无水硫酸钠干燥,浓缩。粗品经制备HPLC分离(色谱柱:Phenomenex C18 80*40mm*3μm;流动相:[水(0.05%NH 3H 2O)-乙腈];乙腈%:39%-69%,8min)分离得化合物9。MS(ESI)m/z:598.2[M+1] +1H NMR(400MHz,CD 3OD)δ9.02(s,1H),7.74(dd,J=5.82,9.07Hz,1H),7.24(t,J=8.94Hz,1H),7.19(d,J=2.25Hz,1H),7.12(d,J=2.13Hz,1H),6.27-6.37(m,2H),5.22-5.42(m,1H),4.47-4.63(m,2H),4.16-4.33(m,2H),4.05(br s,2H),3.77-3.93(m,2H),3.36(br s,1H),3.29(br d,J=7.88Hz,2H),3.23(br d,J=5.88Hz,1H),3.00-3.07(m,1H),2.10-2.40(m,3H),1.83-2.07(m,3H)。
实施例10
Figure PCTCN2022074426-appb-000129
步骤1:中间体10-2的合成
将中间体10-1(310g,1.23mol)置于乙酸(3000mL)中,冷却至0℃,随后加入浓硫酸(1.21kg,12.33mol),再逐滴加入NaNO 2(127.59g,1.85mol)的水(500mL)溶液,0℃搅拌30min,再逐滴加入KI(306.96g,1.85mol)的水(500mL)溶液,25℃下反应30min。加入1000mL水,然后过滤,滤饼用水洗(1500mL*3),饱和硫代硫酸钠溶液洗(1500mL*3),再水洗(1500mL*3),烘干得中间体10-2。
步骤2:中间体10-3的合成
将中间体10-2(10g,27.60mmol)、碘化亚铜(15.77g,82.79mmol)置于N,N-二甲基甲酰胺(100mL)中,随后加入氟磺酰二氟乙酸甲酯(21.21g,110.39mmol),氮气换气三次,然后在90℃下搅拌反应16小时。反应液冷却至室温后过滤,滤液加入100mL饱和食盐水后用100mL乙酸乙酯萃取水相三次,收集有机相旋去大部分有机相,有机相大约20mL再用20mL饱和食盐水洗涤有机相3次,有机相减压浓缩得粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=20∶1~10∶1)纯化得到中间体10-3。
步骤3:中间体10-4的合成
将中间体10-3(13g,44.29mmol),铁(9.89g,177.14mmol)加入到乙醇(100mL)和水(100mL)中,然后加入氯化铵(9.48g,177.14mmol)的水(100mL)溶液,在90℃下搅拌反应3小时。反应液冷却至室温后过滤,滤液旋去乙醇后加入2M氢氧化钠溶液50mL搅拌10min,再用25mL乙酸乙酯萃取水相三次,收集有机相用25mL饱和食盐水洗涤,再用25mL清水洗涤后用无水硫酸钠干燥,减压浓缩得粗产物。通过柱层析(流动相:石油醚∶乙酸乙酯=15∶1~10∶1)纯化得中间体10-4。MS(ESI)m/z:274.3(M+1) +
步骤4:中间体10-5的合成
将中间体10-4(7.5g,27.33mmol),环丙基三氟硼酸钾(4.85g,32.79mmol),正丁基-二(1-金刚烷基)膦(1.47g,4.10mmol),碳酸铯(26.71g,81.98mmol),醋酸钯(613.49mg,2.73mmol)加入到甲苯(180mL)和水(18mL)的混合溶剂中,然后在氮气保护80℃条件下搅拌反应16小时。反应液冷却至室温,然后加入20mL水,直接分液,水相再用20mL乙酸乙酯萃取2次,收集有机相旋干得粗产物。通过柱层析(流动相:石油醚∶乙酸乙酯=15∶1~10∶1)纯化得到中间体10-5。MS(ESI)m/z:236.0(M+1) +
步骤5:中间体10-6的合成
将中间体10-5(4.5g,19.10mmol),双联频那醇硼酸酯(7.27g,28.65mmol),醋酸钯(428.75mg,1.91mmol),2-二环己基亚膦基-2,6-二甲氧基联苯(1.57g,3.82mmol,0.2eq)醋酸钾(5.62g,57.29mmol,3eq)溶于甲苯(40mL)中,在氮气保护下于95℃反应16小时。反应液冷却至室温直接旋干为粗品。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=15∶1~10∶1)纯化得到中间体10-6。MS(ESI)m/z:327.8(M+1) +
步骤6:中间体10-7的合成
将中间体10-6(419.54mg,764.18μmol),化合物2-2(0.5g,1.53mmol),[(二(1-金刚烷基)丁基膦基)-2-(2’-氨基-1,1’-联苯基)]钯(II)甲磺酸酯(55.65mg,76.42μmol),磷酸钾(486.63mg,2.29mmol)溶于水(4mL)和四氢呋喃(20mL)中,氮气保护下在80℃反应16小时。反应液加入5mL水,接着用5mL乙酸乙酯萃取水相三次,收集有机相旋干为粗产物。通过柱层析(流动相:二氯甲烷∶甲醇=100∶1~50∶1)纯化后得到中间体10-7。MS(ESI)m/z:714.3(M+1) +
步骤7:化合物10的合成
将中间体10-7(0.3g,420.32μmol)加入到二氯甲烷(3mL)中,然后加入三氟乙酸(924.00mg,8.10mmol,0.6mL),在25℃下搅拌反应0.5小时。用饱和碳酸氢钠水溶液调节pH为11左右,然后用5mL二氯甲烷萃取水相三次,收集有机相用无水硫酸钠干燥后旋干得粗品。粗品经制备HPLC(色谱柱:Boston Green ODS 150*30mm*5μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:10%-40%,6min)纯化。得到化合物10。MS(ESI)m/z:614.3(M+1) +1H NMR(400MHz,CD 3OD)δppm 9.05(s,1H)8.46(br s,1H)6.54(s,1H)6.38(d,J=2.01Hz,1H)6.32(s,2H)5.36-5.59(m,1H)4.65(br s,2H)4.52(q,J=11.80Hz,2H)4.27(br s,2H)3.93(br s,2 H)3.60-3.87(m,3H)3.32-3.40(m,1H)2.03-2.67(m,8H)0.99(br d,J=8.53Hz,2H)0.79(br s,2H)。
实施例11
Figure PCTCN2022074426-appb-000130
步骤1:中间体11-2的合成
将原料11-1(500mg,1.93mmol)和1-氯甲基-4-氟-1,4-二氮杂双环[2.2.2]辛烷二(四氟硼酸)盐(3.42g,9.65mmol)溶于乙腈(20mL)中,升至80℃反应16小时。将反应液浓缩干。粗品经DCM(100mL)稀释溶解,滤去不溶物,母液浓缩得到中间体11-2。
步骤2:中间体11-3的合成
将中间体11-2(520mg,1.88mmol),双联频那醇硼酸酯(714.96mg,2.82mmol),Pd(dppf)Cl 2.CH 2Cl 2(153.28mg,187.70μmol)和KOAc(552.63mg,5.63mmol)溶于二氧六环(20mL)中,氮气保护下在80℃反应7小时。将反应液冷却至25℃,过滤除去不溶物,乙酸乙酯(50mL)淋洗,浓缩。粗品通过柱层析(流动相:石油醚∶乙酸乙酯=20∶1~10∶1)分离得中间体11-3。MS(ESI)m/z:367.1[M+1] +
步骤3:中间体11-4的合成
将中间体11-3(390mg,710.37μmol),中间体2-2(390.14mg,1.07mmol),Pd(dppf)Cl 2.CH 2Cl 2(58.01mg,71.04μmol)和K 3PO 4(452.37mg,2.13mmol)溶于1,4-二氧六环(10mL)和H 2O(2mL)中,氮气保护下在70℃反应19小时。将反应液冷却至25℃,过滤除去不溶物。粗品经硅胶柱层析分离后再经SFC分离(色谱柱:DAICELCHIRALCEL OD(250mm*30mm,10μm);流动相:[0.1%氨水,甲醇];甲醇%:45%-45%,70min),得中间体11-4。MS(ESI)m/z:711.3[M+1] +
步骤4:化合物11的合成
将中间体11-4(18mg,25.33μmol)溶于二氯甲烷(4mL),在25℃下加入三氟乙酸(1.54g,13.51mmol), 继续反应0.5小时。将反应液浓缩干,加入甲基叔丁基醚(3 x 1mL)超声形成悬浊液,离心去除上清液,固体浓缩干,得化合物11。MS(ESI)m/z:611.3[M+1] +1H NMR(400MHz,CD 3OD)δ9.14(s,1H),7.90(br dd,J=4.14,9.16Hz,1H),7.46-7.64(m,1H),7.39(d,J=7.78Hz,1H),6.37(s,2H),5.48-5.69(m,1H),4.92-4.99(m,2H),4.61-4.70(m,3H),3.85-4.18(m,5H),3.41-3.54(m,1H),2.54-2.81(m,2H),2.30-2.49(m,3H),2.07-2.28(m,2H)。
实施例12
Figure PCTCN2022074426-appb-000131
步骤1:中间体12-2的合成
将中间体12-1(10.6g,45.68mmol)溶解于N,N-二甲基甲酰胺(100mL)中,然后氮气保护下向其中加入叔丁醇钾(5.38g,47.97mmol),所得反应液20℃搅拌反应30分钟,然后向其中滴加乙氧羰基异硫氰酸酯(6.29g,47.97mmol),滴毕,搅拌反应1小时,然后于100℃搅拌反应1小时。将反应液倒入500mL水中搅拌10分钟,过滤收集固体,45℃真空干燥2小时得到中间体12-2。 1H-NMR(400MHz,CDCl 3)δ:8.11(brs,1H),7.55-7.51(m,1H),6.96-6.89(m,1H),4.40(q,J=6.8Hz,2H),1.41(t,J=7.2Hz,3H)。
步骤2:中间体12-3的合成
将中间体12-2(10.4g,30.31mmol)加入到二甲基亚砜(43.6mL)中,然后加入氢氧化钠(5M,33.34mL),所得反应液置于130℃搅拌反应4小时。将反应液缓慢倒入500mL水中搅拌30分钟,静置过夜。过滤收集固体,并用100mL水淋洗,收集固体,45℃真空干燥4小时得到中间体12-3。 1H-NMR(400MHz,CDCl 3)δ:7.46-7.43(m,1H),6.81(t,J=8.8Hz,1H),5.38(br s,2H)。
步骤3:中间体12-4的合成
将中间体12-3(6.0g,22.13mmol)加入到无水乙醇(100mL)中,然后加入叔丁氧羰基二酸酐(14.49g,66.39mmol),所得反应液置于95℃油浴中搅拌反应15小时。将反应液减压浓缩得到粗品,粗品用混合溶 剂(石油醚/叔丁基甲基醚=20∶1,20mL)打浆分散10分钟,过滤收集固体,45℃真空干燥0.5小时得到中间体12-4。 1H-NMR(400MHz,CDCl 3)δ:7.54-7.51(m,1H),6.92(t,J=8.8Hz,1H),1.60(s,9H)。
步骤4:中间体12-5的合成
将中间体12-4(3.2g,8.62mmol)和双联频哪醇硼酸酯(2.63g,10.34mmol)加入到二氧六环(20mL)中,然后加入乙酸钾(2.54g,25.86mmol)和Pd(dppf)Cl 2(630.74mg,862.01μmol),所得反应液氮气充分置换,然后在氮气保护下置于105℃油浴中搅拌反应15小时。将反应液旋干得到粗品,粗品柱层析纯化得到后,用制备HPLC分离(色谱柱YMC Triart C18 250*50mm*7μm;流动相:[水(10mM碳酸氢铵)-乙腈];乙腈%:40%-90%,20min)得到中间体12-5。 1H-NMR(400MHz,CDCl 3)δ:7.91(br,s,1H),7.83-7.79(m,1H),7.03-6.99(m,1H),1.59(s,9H),1.43(s,12H)。
步骤5:中间体12-6的合成
将中间体12-5(38.09mg,91.07μmol),化合物2-2(50mg,91.07μmol)溶于二氧六环(2mL)和水(0.5mL)的混合溶剂中,随后氮气换气,再加入K 3PO 4(57.99mg,273.22μmol)和甲磺酸[正丁基二(1-金刚烷基)膦](2-氨基-1,1′-联苯-2-基)钯(II)(6.63mg,9.11μmol),再氮气换气,随后60℃下反应10小时。过滤除去不溶物,水洗(5mL*2),乙酸乙酯萃取(20mL*2),饱和食盐水(10mL)洗,无水硫酸钠干燥,减压浓缩除去有机溶剂,柱层析得中间体12-6。MS(ESI)m/z:805.5[M+1] +
步骤6:化合物12的合成
在预先干燥的反应瓶中加入中间体12-6(10mg,12.42μmol),溶于二氯甲烷(1mL)中,随后加入三氟乙酸(1.42mg,12.42μmol),反应液在20℃,搅拌12hr。减压浓缩除去有机溶剂,粗品通过制备HPLC(色谱柱:Phenomenex Luna C18 150*30mm*5μm;流动相:[水(0.075%三氟乙酸)-乙腈];乙腈%:5%-35%,8min)分离得化合物12。MS(ESI)m/z:605.0[M+1] +. 1H NMR(400MHz,CD 3OD)δ=9.16(s,1H),7.45(dd,J=5.1,8.4Hz,1H),7.10(t,J=8.9Hz,1H),6.37(s,2H),5.69-5.51(m,1H),4.76-4.64(m,4H),4.17-3.89(m,5H),3.55-3.45(m,1H),2.82-2.55(m,3H),2.53-2.29(m,4H),2.26-2.14(m,1H)。
实验例1.KRAS G12D抑制活性测试
1.实验目的:
通过TR-FRET的方法,筛选出能有效抑制KRAS G12D与GTP结合的化合物。
2.耗材和仪器:
表1耗材和仪器
Figure PCTCN2022074426-appb-000132
Figure PCTCN2022074426-appb-000133
3.试剂准备:
a.储存试剂:
1)KRAS核苷酸交换缓冲液
取20mL 1000mM HEPES,20mL 500mM EDTA,10mL 5M氯化钠,100%0.1mL吐温20,949.9mL水,配制成1L溶液,用过滤法消毒,4℃条件下储存。
2)KRAS实验缓冲液
取20mL 1000mM HEPES,10mL 1000mM氯化镁,30mL 5M氯化钠,100%0.05mL吐温20,939.95mL水,配制成1L溶液,用过滤法消毒,4℃条件下储存。
3)KRAS/Bodipy GDP/Tb-SA混合液
取9.5μL 95μM KRAS G12D蛋白,440.5μL KRAS核苷酸交换缓冲液混合,室温下孵育1小时后,与8.4μL 17.9μM Tb-SA,1.8μL 5mM Bodipy GDP,9539.8μL KRAS实验缓冲液,配制成1L溶液,混合后室温下静置6小时,储存至-80℃条件下。
b.实验试剂:
1)KRAS酶溶液
取73.3μL KRAS/Bodipy GDP/Tb-SA混合液,2126.7μL KRAS实验缓冲液,配制成2200μL溶液。
2)SOS/GTP混合液
取1.59μL 166μM SOS蛋白,198μL 100mM GTP,2000.41μL KRAS实验缓冲液,配制成2200μL溶液。
4.实验流程:
1)对照化合物母液浓度为1mM,待测化合物母液浓度为10mM。转移9μL对照化合物和待测化合物至384-LDV板内;
2)使用Bravo将LDV板上的化合物进行10点3倍稀释;
3)使用ECHO将LDV板上的化合物转移9nL至实验板;
4)使用Dragonfly自动加样仪依次向实验板每孔中加入3μL 3nM Kras/0.5nM TB-SA/30nM BodipyGDP混合液和3μL Ras buffer,以1000rpm/min,将实验板离心1分钟;
5)实验板在室温中孵育1小时;
6)使用Dragonfly自动加样仪在实验板每孔加入3μL 120nM SOS/9mM GTP混合液,以1000rpm/min,将实验板离心1分钟;
7)实验板在室温中孵育1小时;
8)使用Envision读板并记录数据;
9)使用Excel和Xlfit进行数据分析,计算待测化合物IC50。
5.实验结果:
结果见表2。
表2化合物对KRAS G12D酶抑制的IC 50
化合物编号 KRAS G12DIC 50(nM)
化合物1的盐酸盐 1.8
化合物2的盐酸盐 3.7
化合物6的甲酸盐 0.1
6.实验结论:
本发明化合物具有显著的KRAS G12D酶抑制作用。
实验例2.GP2D细胞p-ERK抑制测试
1.实验目的:
通过HTRF的方法,筛选出能有效抑制GP2D细胞p-ERK的化合物。
2.实验流程:
1).GP2D细胞种于透明96孔细胞培养板中,80μL细胞悬液每孔,每孔包含8000个细胞,细胞板放入二氧化碳培养箱,37度过夜孵育;
2).取2μL化合物加入78μL细胞培养基,混匀后,取20μL化合物溶液加入到对应细胞板孔中,细胞板放回二氧化碳培养箱继续孵育1小时;
3).结束孵育后,弃掉细胞上清加入50μL 1X细胞裂解液每孔,室温摇晃孵育30分钟;
4).使用detection buffer将Phospho-ERK1/2 Eu Cryptate antibody和Phospho-ERK1/2 d2 antibody稀释20倍;
5).取16μL细胞裂解物上清每孔到新的384白色微孔板中,再加入2μL Phospho-ERK1/2 Eu Cryptate antibody稀释液和2μL Phospho-ERK1/2 d2 antibody稀释液,常温孵育至少4小时;
6).孵育结束后使用多标记分析仪读取HTRF excitation:320nm,emission:615nm,665nm;
7).计算待测化合物IC 50
3.实验结果:
结果见表3。
表3化合物对GP2D细胞p-ERK抑制的IC 50
化合物编号 GP2D p-ERK IC 50(nM)
化合物3的盐酸盐 8.84
化合物4 2.50
化合物8的甲酸盐 1.19
化合物9 0.43
4.实验结论:
本发明化合物具有显著的GP2D p-ERK抑制作用。
实验例3.GP2D 3D CTG实验
1.实验目的:
本实验旨在验证本发明化合物对KRAS G12D突变的GP2D人胰腺癌细胞的增殖抑制效果。
2.实验材料:
细胞株GP2D、DMEM培养基,盘尼西林/链霉素抗生素购自维森特,胎牛血清购自Biosera。CellTiter-
Figure PCTCN2022074426-appb-000134
3D Cell Viability Assay(3D细胞活率化学发光检测试剂)试剂购自Promega。
3.实验方法:
将GP2D细胞种于96孔U底细胞培养板中,80μL细胞悬液每孔,其中包含2000个GP2D细胞。细胞板置于二氧化碳培养箱中过夜培养。将待测化合物用排枪进5倍稀释至第8个浓度,即从200μM稀释至2.56nM,设置双复孔实验。向中间板中加入78μL培养基,再按照对应位置,转移2μL每孔的梯度稀释化合物至中间板,混匀后转移20μL每孔到细胞板中。转移到细胞板中的化合物浓度范围是1μM至0.0128 nM。细胞板置于二氧化碳培养箱中培养5天。加入化合物的细胞板结束孵育后,向细胞板中加入每孔100μL的细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。
4.数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中″log(inhibitor)vs.response--Variable slope″模式得出)。
5.实验结果:
结果见表4。
表4化合物对GP2D细胞抗增殖的IC50值
化合物编号 GP2D IC 50(nM)
化合物8的甲酸盐 2.62
6.实验结论:
本发明化合物具有显著的GP2D细胞抗增殖活性。
实验例4.体内药代动力学实验
1.实验目的:
本实验旨在考察本发明化合物在SD小鼠口服及静脉注射下的药代动力学特征。
2.实验方法:
受试化合物与10%二甲基亚砜/60%聚乙二醇400/30%水溶液混合,涡旋并超声,制备得到1mg/mL澄清溶液,微孔滤膜过滤后备用。选取7至10周龄的雄性SD小鼠,静脉注射给予候选化合物溶液,剂量为3mg/kg。口服给予候选化合物溶液,剂量为30mg/kg。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
3.实验结果:
结果见表5。
表5化合物在SD小鼠体内的PK性质
Figure PCTCN2022074426-appb-000135
4.实验结论:
本发明化合物在小鼠体内具有较好的药代动力学特征。
实验例5.体内药效学实验
1.实验目的:
人结直肠癌GP2D细胞裸小鼠皮下移植肿瘤Balb/c Nude小鼠模型的体内药效学研究
2.实验方法:
细胞培养:人结直肠癌GP2D细胞体外单层培养,培养条件为DMEM/F12培养基中加20%胎牛血清,1%双抗,37℃5%二氧化碳孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,重悬于适量PBS中,1∶1加入基质胶,获取细胞密度为25 x 10 6cells/mL的细胞悬液。
细胞接种:将0.2mL(5×10 6cells/mouse个)Mia PaCa-2细胞(加基质胶,体积比为1∶1)皮下接种于每只小鼠的右后背。
实验操作:肿瘤平均体积达到190mm 3时,根据肿瘤体积进行随机分组,每组6只,空白组给药剂量为0,测试组给药剂量分别为30mg/kg、100mg/kg,给药体积10μL/g,口服给药,给药22天,每天两次。
3.肿瘤测量和实验指标:
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%(TRTV:治疗组RTV;CRTV:阴性对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=V t/V 0,其中V 0是分组给药时(即D 0)测量所得平均肿瘤体积,V t为某一次测量时的平均肿瘤体积,TRTV与CRTV取同一天数据。
TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
4.实验结果:
表6.化合物8的甲酸盐在小鼠GP2D体内药效模型中的药效结果给药
剂量 100mpk,p.o.,BID
给药天数 22d
TGI 85%
化合物8的甲酸盐在小鼠GP2D小鼠体内药效模型中展现出较好的药效,其中口服100mg/kg,每天两次的剂量下,TGI为85%。
5.实验结论:
本发明化合物具有优异的肿瘤抑制效果。

Claims (15)

  1. 式(II)所示化合物或其药学上可接受的盐
    Figure PCTCN2022074426-appb-100001
    其中,
    环A选自
    Figure PCTCN2022074426-appb-100002
    所述
    Figure PCTCN2022074426-appb-100003
    任选被1、2或3个R a取代;
    T 1选自CH、CH 2、N和NR 5
    T 2、T 3和T 4分别独立地选自CH、CH 2、N和NH;
    m、n、p和x分别独立地选自0、1或2;
    r、v和w分别独立地选自1或2;
    s和u分别独立地选自1、2或3;
    q选自1或3;
    R 1选自苯基、苯并噻吩基和萘基,所述苯基、苯并噻吩基和萘基任选被1、2、3、4或5个R b取代;
    R 2选自H、F、Cl、CN、NH 2、CH 3、OCH 3和CF 3
    R 3选自F,R 4选自H;
    或者R 3选自H,R 4选自
    Figure PCTCN2022074426-appb-100004
    R 5选自H、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 9-13烷基、-C(O)-(OCH(CH 3)O-C(O)) t-C 1-4烷氨基和-C(O)-(OCH(CH 3)O-C(O)) t-C 1-3烷基-COOM,所述C 1-4烷基任选被1个NH 2取代;
    各R a分别独立地选自F、Cl、Br、I和CH 3
    各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基,所述C 1-3烷基、C 1-3烷氧基、C 2-4烯基、C 2-4炔基、环丙基和-O-环丙基任选被1、2或3个R取代,所述OH任选被1个R’取代;
    各R分别独立地选自F、Cl、Br、I;
    R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 9-13烷基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-4烷氨基、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C 1-3烷基-COOM、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OH)(OM)、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(OM) 2
    Figure PCTCN2022074426-appb-100005
    所述C 1-4烷基任选被1个NH 2取代;
    M分别独立地选自Na和K;
    y为0或1;
    z为0或1;
    t为0或1。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 5选自H、-C(O)-CH 2NH 2、-C(O)-OCH(CH 3)O-C(O)-CH 2CH 3和-C(O)-OCH(CH 3)O-C(O)-CH(CH 3) 2
  3. 根据权利要求1或2所述化合物或其药学上可接受的盐,其中,环A选自
    Figure PCTCN2022074426-appb-100006
    Figure PCTCN2022074426-appb-100007
    所述
    Figure PCTCN2022074426-appb-100008
    Figure PCTCN2022074426-appb-100009
    任选被1、2或3个R a取代。
  4. 根据权利要求3所述化合物或其药学上可接受的盐,其中,环A选自
    Figure PCTCN2022074426-appb-100010
    Figure PCTCN2022074426-appb-100011
  5. 根据权利要求1所述化合物或其药学上可接受的盐,其中R’选自-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
    Figure PCTCN2022074426-appb-100012
  6. 根据权利要求1或5所述化合物或其药学上可接受的盐,其中各R b分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2、-C≡CH、环丙基和-O-环丙基任选被1、2或3个R取代,所述OH任选被1个R’取代。
  7. 根据权利要求6所述化合物或其药学上可接受的盐,其中各R b分别独立地选自F、Cl、OH、NH 2、CH 3、CH 2F、CHF 2、CF 3、CH 2CH 3、OCH 3、OCH 2F、OCHF 2、OCF 3、-C≡CH、环丙基、-O-环丙基、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-C(CH 3) 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH(NH 2)CH(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-(CH 2) 10CH 3、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-N(CH 3) 2、-O-(CH 2O) y-(CH 2CH 2O) z-C(O)-CH 2CH 2-COONa、-O-(CH 2O) y-(CH 2CH 2O) z-P(=O)(ONa) 2
    Figure PCTCN2022074426-appb-100013
  8. 根据权利要求1或7所述化合物或其药学上可接受的盐,其中,R 1选自
    Figure PCTCN2022074426-appb-100014
    Figure PCTCN2022074426-appb-100015
  9. 根据权利要求8所述化合物或其药学上可接受的盐,其中,R 1选自
    Figure PCTCN2022074426-appb-100016
    Figure PCTCN2022074426-appb-100017
  10. 根据权利要求9所述化合物或其药学上可接受的盐,其中,R 1选自
    Figure PCTCN2022074426-appb-100018
    Figure PCTCN2022074426-appb-100019
    Figure PCTCN2022074426-appb-100020
    Figure PCTCN2022074426-appb-100021
  11. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 2选自F。
  12. 根据权利要求1~11任意一项所述化合物或其药学上可接受的盐,其化合物选自,
    Figure PCTCN2022074426-appb-100022
    其中,R 1、R 2、R 3、R 4和R 5如权利要求1~11任意一项所定义。
  13. 下式所示化合物或其药学上可接受的盐,其化合物选自
    Figure PCTCN2022074426-appb-100023
    Figure PCTCN2022074426-appb-100024
    Figure PCTCN2022074426-appb-100025
  14. 下式所示化合物或其药学上可接受的盐,其化合物选自
    Figure PCTCN2022074426-appb-100026
    Figure PCTCN2022074426-appb-100027
    Figure PCTCN2022074426-appb-100028
  15. 根据权利要求1-14任意一项所述化合物或其药学上可接受的盐,其在制备治疗KRAS G12D突变的实体瘤化合物中的应用。
PCT/CN2022/074426 2021-02-09 2022-01-27 吡啶[4,3-d]嘧啶类化合物 WO2022170999A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280013660.6A CN116848112A (zh) 2021-02-09 2022-01-27 吡啶[4,3-d]嘧啶类化合物

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202110179648 2021-02-09
CN202110179648.X 2021-02-09
CN202110247910.X 2021-03-06
CN202110247910 2021-03-06
CN202110395038.3 2021-04-13
CN202110395038 2021-04-13
CN202110485807 2021-04-30
CN202110485807.9 2021-04-30
CN202110982415 2021-08-25
CN202110982415.3 2021-08-25
CN202111658642 2021-12-30
CN202111658642.7 2021-12-30

Publications (1)

Publication Number Publication Date
WO2022170999A1 true WO2022170999A1 (zh) 2022-08-18

Family

ID=82838254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074426 WO2022170999A1 (zh) 2021-02-09 2022-01-27 吡啶[4,3-d]嘧啶类化合物

Country Status (2)

Country Link
CN (1) CN116848112A (zh)
WO (1) WO2022170999A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284881A1 (en) * 2021-07-16 2023-01-19 Silexon Ai Technology Co., Ltd. Heterocyclic compounds useful as kras g12d inhibitors
WO2023056951A1 (zh) * 2021-10-08 2023-04-13 杭州德睿智药科技有限公司 芳基取代并杂环化合物
WO2023103523A1 (zh) * 2021-12-09 2023-06-15 苏州浦合医药科技有限公司 取代的双环杂芳基化合物作为kras g12d抑制剂
WO2023134465A1 (zh) * 2022-01-11 2023-07-20 上海艾力斯医药科技股份有限公司 一种含氮杂环化合物、其制备方法、中间体及应用
WO2023138583A1 (zh) * 2022-01-21 2023-07-27 上海湃隆生物科技有限公司 杂环类化合物、药物组合物及其应用
WO2024012456A1 (zh) * 2022-07-12 2024-01-18 南京明德新药研发有限公司 哌嗪桥取代的杂环并嘧啶类化合物
US11912723B2 (en) 2022-02-09 2024-02-27 Quanta Therapeutics, Inc. KRAS modulators and uses thereof
WO2024041589A1 (zh) * 2022-08-25 2024-02-29 上海艾力斯医药科技股份有限公司 含氮杂环化合物、其制备方法、其中间体及其应用
WO2024054926A1 (en) * 2022-09-07 2024-03-14 Bristol-Myers Squibb Company Kras g12d inhibitors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200331911A1 (en) * 2019-01-10 2020-10-22 Mirati Therapeutics, Inc. Kras g12c inhibitors
CN112047948A (zh) * 2019-06-06 2020-12-08 山东轩竹医药科技有限公司 Kras突变体抑制剂
WO2021041671A1 (en) * 2019-08-29 2021-03-04 Mirati Therapeutics, Inc. Kras g12d inhibitors
WO2021106231A1 (en) * 2019-11-29 2021-06-03 Taiho Pharmaceutical Co., Ltd. A compound having inhibitory activity against kras g12d mutation
WO2022015375A1 (en) * 2020-07-16 2022-01-20 Mirati Therapeutics, Inc. Kras g12d inhibitors
WO2022042630A1 (en) * 2020-08-26 2022-03-03 InventisBio Co., Ltd. Heteroaryl compounds, preparation methods and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200331911A1 (en) * 2019-01-10 2020-10-22 Mirati Therapeutics, Inc. Kras g12c inhibitors
CN112047948A (zh) * 2019-06-06 2020-12-08 山东轩竹医药科技有限公司 Kras突变体抑制剂
WO2021041671A1 (en) * 2019-08-29 2021-03-04 Mirati Therapeutics, Inc. Kras g12d inhibitors
WO2021106231A1 (en) * 2019-11-29 2021-06-03 Taiho Pharmaceutical Co., Ltd. A compound having inhibitory activity against kras g12d mutation
WO2022015375A1 (en) * 2020-07-16 2022-01-20 Mirati Therapeutics, Inc. Kras g12d inhibitors
WO2022042630A1 (en) * 2020-08-26 2022-03-03 InventisBio Co., Ltd. Heteroaryl compounds, preparation methods and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG XIAOLUN, ALLEN SHELLEY, BLAKE JAMES F., BOWCUT VICKIE, BRIERE DAVID M., CALINISAN ANDREW, DAHLKE JOSHUA R., FELL JAY B., FISC: "Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS G12D Inhibitor", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 65, no. 4, 24 February 2022 (2022-02-24), US , pages 3123 - 3133, XP055952002, ISSN: 0022-2623, DOI: 10.1021/acs.jmedchem.1c01688 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023284881A1 (en) * 2021-07-16 2023-01-19 Silexon Ai Technology Co., Ltd. Heterocyclic compounds useful as kras g12d inhibitors
WO2023056951A1 (zh) * 2021-10-08 2023-04-13 杭州德睿智药科技有限公司 芳基取代并杂环化合物
WO2023103523A1 (zh) * 2021-12-09 2023-06-15 苏州浦合医药科技有限公司 取代的双环杂芳基化合物作为kras g12d抑制剂
WO2023134465A1 (zh) * 2022-01-11 2023-07-20 上海艾力斯医药科技股份有限公司 一种含氮杂环化合物、其制备方法、中间体及应用
WO2023138583A1 (zh) * 2022-01-21 2023-07-27 上海湃隆生物科技有限公司 杂环类化合物、药物组合物及其应用
US11912723B2 (en) 2022-02-09 2024-02-27 Quanta Therapeutics, Inc. KRAS modulators and uses thereof
WO2024012456A1 (zh) * 2022-07-12 2024-01-18 南京明德新药研发有限公司 哌嗪桥取代的杂环并嘧啶类化合物
WO2024041589A1 (zh) * 2022-08-25 2024-02-29 上海艾力斯医药科技股份有限公司 含氮杂环化合物、其制备方法、其中间体及其应用
WO2024054926A1 (en) * 2022-09-07 2024-03-14 Bristol-Myers Squibb Company Kras g12d inhibitors

Also Published As

Publication number Publication date
CN116848112A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2022170999A1 (zh) 吡啶[4,3-d]嘧啶类化合物
WO2021259331A1 (zh) 八元含n杂环类化合物
WO2022171147A1 (zh) 嘧啶并芳香环类化合物
WO2021203768A1 (zh) 嘧啶并二环类衍生物、其制备方法及其在医药上的应用
CN113801114B (zh) 稠合二环杂芳基类衍生物、其制备方法及其在医药上的应用
WO2020200316A1 (zh) 作为ret抑制剂的吡唑并吡啶类化合物及其应用
JP2023519815A (ja) スピロ環含有キナゾリン化合物
WO2022199587A1 (zh) 嘧啶并杂环类化合物及其应用
WO2019157879A1 (zh) 作为trk抑制剂的杂环化合物
KR20240029772A (ko) 질소 함유 헤테로고리 화합물, 이의 제조 방법, 중간체 및 용도
WO2022161443A1 (zh) 嘧啶并吡喃类化合物
WO2022247757A1 (zh) 氟取代的嘧啶并吡啶类化合物及其应用
CN113825755B (zh) 作为irak4抑制剂的咪唑并吡啶类化合物
WO2022171143A1 (zh) 5,6,7,8-四氢吡啶[3,4-d]嘧啶化合物
WO2022063297A1 (zh) 喹唑啉衍生物及其制备方法和用途
WO2021204111A1 (zh) 作为dna-pk抑制剂的氨基嘧啶化合物及其衍生物
WO2023138662A1 (zh) 苯并嘧啶类化合物及其应用
TW202110848A (zh) 取代的稠合雙環類衍生物、其製備方法及其在醫藥上的應用
CN114096245B (zh) 作为ccr2/ccr5拮抗剂的杂环烷基类化合物
EP3978501A1 (en) Tetracyclic compounds as cdc7 inhibitors
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
CN105164138A (zh) 新吗啉基蒽环类抗生素衍生物
KR102574950B1 (ko) 벤조술탐 함유 화합물
CN114072401B (zh) 作为irak4和btk多靶点抑制剂的噁唑类化合物
WO2024012456A1 (zh) 哌嗪桥取代的杂环并嘧啶类化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013660.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE