WO2022206873A1 - 纳米晶组合物及其制备方法和应用 - Google Patents
纳米晶组合物及其制备方法和应用 Download PDFInfo
- Publication number
- WO2022206873A1 WO2022206873A1 PCT/CN2022/084259 CN2022084259W WO2022206873A1 WO 2022206873 A1 WO2022206873 A1 WO 2022206873A1 CN 2022084259 W CN2022084259 W CN 2022084259W WO 2022206873 A1 WO2022206873 A1 WO 2022206873A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal salt
- nanocrystalline
- equal
- nanocrystal
- nanocrystals
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 106
- 238000002360 preparation method Methods 0.000 title claims abstract description 29
- 239000002159 nanocrystal Substances 0.000 claims abstract description 202
- 229910052751 metal Inorganic materials 0.000 claims abstract description 157
- 239000002184 metal Substances 0.000 claims abstract description 157
- 150000003839 salts Chemical class 0.000 claims abstract description 108
- 239000004831 Hot glue Substances 0.000 claims abstract description 69
- 239000006185 dispersion Substances 0.000 claims abstract description 63
- 239000007787 solid Substances 0.000 claims abstract description 30
- 238000002844 melting Methods 0.000 claims abstract description 21
- 230000008018 melting Effects 0.000 claims abstract description 21
- 238000006862 quantum yield reaction Methods 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 3
- 239000003446 ligand Substances 0.000 claims description 14
- 239000004034 viscosity adjusting agent Substances 0.000 claims description 13
- 150000007942 carboxylates Chemical class 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N squalane Chemical compound CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims description 12
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 9
- 229920000642 polymer Polymers 0.000 claims description 7
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 claims description 6
- 229940032094 squalane Drugs 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 5
- 150000002148 esters Chemical class 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 3
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 239000001301 oxygen Substances 0.000 abstract description 24
- 229910052760 oxygen Inorganic materials 0.000 abstract description 24
- 239000000126 substance Substances 0.000 abstract description 10
- 238000006303 photolysis reaction Methods 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 69
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 23
- 150000001875 compounds Chemical class 0.000 description 22
- 239000011258 core-shell material Substances 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000012788 optical film Substances 0.000 description 14
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 238000002835 absorbance Methods 0.000 description 11
- 239000003960 organic solvent Substances 0.000 description 11
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 9
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 8
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 8
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 8
- 239000005642 Oleic acid Substances 0.000 description 8
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 8
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 8
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 8
- 229940069446 magnesium acetate Drugs 0.000 description 8
- 235000011285 magnesium acetate Nutrition 0.000 description 8
- 239000011654 magnesium acetate Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 7
- 230000001070 adhesive effect Effects 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 7
- 238000000576 coating method Methods 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000007539 photo-oxidation reaction Methods 0.000 description 7
- 239000003292 glue Substances 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 6
- AXLHVTKGDPVANO-UHFFFAOYSA-N methyl 2-amino-3-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate Chemical compound COC(=O)C(N)CNC(=O)OC(C)(C)C AXLHVTKGDPVANO-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- -1 aliphatic amines Chemical class 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 235000015110 jellies Nutrition 0.000 description 3
- 239000008274 jelly Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- MAQCMFOLVVSLLK-UHFFFAOYSA-N methyl 4-(bromomethyl)pyridine-2-carboxylate Chemical compound COC(=O)C1=CC(CBr)=CC=N1 MAQCMFOLVVSLLK-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002707 nanocrystalline material Substances 0.000 description 2
- 229960002446 octanoic acid Drugs 0.000 description 2
- 229940049964 oleate Drugs 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 description 1
- WIBJWDHQQRFQQO-KVVVOXFISA-N (z)-octadec-9-enoic acid;octanoic acid Chemical compound CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O WIBJWDHQQRFQQO-KVVVOXFISA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910017115 AlSb Inorganic materials 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910005542 GaSb Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910004262 HgTe Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 241000764773 Inna Species 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910005642 SnTe Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910007709 ZnTe Inorganic materials 0.000 description 1
- HIWLEZRZSNLZDH-FIFQZATGSA-A [Zr+4].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O Chemical compound [Zr+4].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O HIWLEZRZSNLZDH-FIFQZATGSA-A 0.000 description 1
- HDYRYUINDGQKMC-UHFFFAOYSA-M acetyloxyaluminum;dihydrate Chemical compound O.O.CC(=O)O[Al] HDYRYUINDGQKMC-UHFFFAOYSA-M 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229940009827 aluminum acetate Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- SVMUEEINWGBIPD-UHFFFAOYSA-N dodecylphosphonic acid Chemical compound CCCCCCCCCCCCP(O)(O)=O SVMUEEINWGBIPD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- HPBJPFJVNDHMEG-UHFFFAOYSA-L magnesium;octanoate Chemical compound [Mg+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O HPBJPFJVNDHMEG-UHFFFAOYSA-L 0.000 description 1
- ZZXQGJPGDLCZEN-UHFFFAOYSA-N magnesium;octanoic acid Chemical compound [Mg].CCCCCCCC(O)=O ZZXQGJPGDLCZEN-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- WWZKQHOCKIZLMA-UHFFFAOYSA-M octanoate Chemical compound CCCCCCCC([O-])=O WWZKQHOCKIZLMA-UHFFFAOYSA-M 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/70—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Definitions
- the present disclosure relates to the technical field of nanocrystalline materials, and in particular, relates to a nanocrystalline composition and a preparation method and application thereof.
- nanocrystal synthesis chemistry has mainly focused on the monodisperse control of the size and morphology and how to improve the fluorescence quantum yield. It is more important to reduce the influence of the environment, especially water and oxygen, on the optical and electrical properties of nanocrystals as much as possible, which is of great value for the application research of nanocrystals.
- nanocrystals are often affected by light, which are called photooxidation and photohydrolysis of nanocrystals, respectively, resulting in a decrease in the fluorescence quantum yield of nanocrystals, a broadening of the fluorescence half-peak width, etc., which greatly hinders the development of nanocrystals.
- Applications of Nanocrystalline Materials In order to avoid photohydrolysis and photooxidation, the obtained nanocrystals are usually stored in an organic solvent to form a nanocrystal solution.
- core-shell nanocrystals Compared with single-component core nanocrystals, core-shell nanocrystals have higher optical and chemical stability, such as coating a thicker CdS shell on CdSe nanocrystals to obtain nanocrystals with higher fluorescence quantum yields. crystal.
- Other means to improve the stability of nanocrystals include the preparation of alloy-structured nanocrystals and the doping of metal atoms (such as Al) in the nanocrystals. The above measures improved the stability of the nanocrystalline solution to a certain extent, but under the condition of light, the water and oxygen resistance of the nanocrystalline solution was still insufficient.
- the best method at present is to coat oxides on the surface of nanocrystals.
- the oxides coated on the surface of nanocrystals are mainly SiO 2 and TiO 2 , but these oxides are difficult to eliminate the surface defects of nanocrystals, and there are many lattice defects. The crystal form mismatch between them will also lead to the deterioration of the size distribution of the nanocrystals and reduce the optical and chemical stability.
- nanocrystals are often dispersed in polymer adhesives, which prevents water and oxygen from directly contacting nanocrystals to a certain extent.
- this method only slows the rate of water and oxygen reaching the surface of the nanocrystals. Once the water and oxygen enter the polymer adhesive, it is still possible to quench the fluorescence of the nanocrystals under light conditions.
- the main purpose of the present disclosure is to provide a nanocrystal composition, a preparation method and application thereof, so as to solve the problem of weak water and oxygen resistance of nanocrystals in the prior art.
- a preparation method of a nanocrystalline composition comprising: step S1, preparing a hot-melt adhesive containing a metal salt, and the hot-melt adhesive is a metal
- the salt, or the hot-melt adhesive includes a metal salt and an organic dispersion; in step S2, at the melting temperature of the hot-melt adhesive, a plurality of nanocrystals are mixed with the hot-melt adhesive to form a metal salt-nanocrystal dispersion system; and step S3, cooling the metal salt-nanocrystal dispersion system to obtain a solid nanocrystal composition.
- the weight ratio of the metal salt to the organic dispersion is 6:1-1:2, or the mass percentage of the metal salt in the hot-melt adhesive is 40%-90%.
- the above-mentioned metal salt is any one or more of metal carboxylates and metal phosphonates.
- the above-mentioned organic dispersion is selected from any one of C9 - C22 alkanes, C9 - C22 alkenes, C8 - C22 alcohols, C8 - C22 esters, and squalane or more.
- the melting temperature is lower than the decomposition temperature of the metal salt, or the melting temperature is 150-250°C.
- the viscosity of the solid nanocrystalline composition at 15-50° C. is 300-3000 cps.
- the above-mentioned hot melt adhesive further includes a viscosity modifier, and the viscosity modifier is selected from any one or more of trialkylphosphine and C 4 -C 22 aliphatic amines.
- the weight ratio of the metal salt to the nanocrystal is 1:1 to 1000:1.
- the nanocrystals are added in the form of a nanocrystal solution.
- the nanocrystals used in the above step S2 and the nanocrystals in the solid nanocrystal composition obtained in the step S3 have a change rate of 0-2% in the fluorescence peak position and the half-peak width.
- the above-mentioned metal salt-nanocrystal dispersion system is a homogeneous system.
- a nanocrystalline composition is provided, the nanocrystalline composition is solid, the nanocrystalline composition comprises a plurality of nanocrystals and a metal salt, the plurality of nanocrystals are dispersed in the metal salt, at least a part of Metal salts are surface ligands of nanocrystals.
- the weight ratio of the metal salt to the nanocrystal is 1:1 to 1000:1.
- the nanocrystalline composition does not include high molecular weight polymers or polymerizable monomers.
- the viscosity of the nanocrystalline composition at 15-50° C. is 300-3000 cps.
- the above-mentioned metal salt is any one or more of metal carboxylates and metal phosphonates.
- the above-mentioned nanocrystalline composition further includes an organic dispersion.
- the weight ratio of the metal salt to the organic dispersion is 6:1-1:2, or the mass percentage of the metal salt in the nanocrystal composition is 40%-90%.
- the above-mentioned organic dispersion is selected from any one of C9 - C22 alkanes, C9 - C22 alkenes, C8 - C22 alcohols, C8 - C22 esters, and squalane or more.
- the above-mentioned nanocrystalline composition further includes a viscosity modifier, and the viscosity modifier is selected from any one or more of trialkylphosphine and C 4 -C 22 aliphatic amines.
- a light conversion device comprising any of the nanocrystalline compositions described above.
- the fluorescence quantum yield of the above-mentioned light conversion device does not decrease by more than 5% after undergoing the condition A, and the condition A is: the initial light absorption rate of the light conversion device is 30%, and the blue light with a light intensity below 0.5W/cm 2 .
- the time for irradiating the light conversion device is not less than 500 hours.
- a light-emitting device comprising the nanocrystalline composition of any one of the above.
- a large amount of metal salts are wrapped on the surface of nanocrystals by the above preparation method, at least part of the metal salts can be combined with the surface of nanocrystals in the form of chemical bonds, and the presence of hot melt adhesive makes the nanocrystal composition in the nanocrystal composition. It exists in a solid state at room temperature, which effectively avoids the shedding of metal salts bound to the surface of the nanocrystals, greatly improves the resistance to water and oxygen of the nanocrystals, and maintains a high fluorescence quantum yield.
- the nanocrystals are wrapped by a hot-melt adhesive to isolate water and oxygen, photooxidation and photohydrolysis are effectively avoided, and the performance stability during application is ensured.
- nanocrystals are preserved by placing ligands on the surface of nanocrystals and then formulating a nanocrystal solution.
- the ligands will fall off in the nanocrystal solution, and the ligand shedding will cause defects on the surface of the nanocrystals, which will lead to photooxidation of the nanocrystals and Occurrence of photohydrolysis.
- the temperature of the nanocrystal solution or the optical film containing nanocrystals will increase, which will further cause the ligands on the surface of the nanocrystals to fall off and form defects, which will lead to more prone to nanocrystals. It can be seen from photohydrolysis and photooxidation that the existing method of disposing ligands on the surface of nanocrystals still cannot improve the anti-water and oxygen effect of nanocrystals when used under light because the ligands are easy to fall off.
- the present disclosure provides a nanocrystalline composition, its preparation method and application.
- a method for preparing a nanocrystalline composition includes: step S1, preparing a hot-melt adhesive containing a metal salt, and the hot-melt adhesive is a metal salt , or the hot-melt adhesive includes a metal salt and an organic dispersion; in step S2, at the melting temperature of the hot-melt adhesive, a plurality of nanocrystals are mixed with the hot-melt adhesive to form a metal salt-nanocrystal dispersion system and step S3, cooling the metal salt-nanocrystal dispersion system to obtain a solid nanocrystal composition.
- a large amount of metal salts are encapsulated on the surface of nanocrystals by the above preparation method, at least part of the metal salts (metal cations) can be combined with the surface of nanocrystals in the form of chemical bonds (as ligands of nanocrystals), and due to the hot melt adhesive
- metal cations metal cations
- the presence of the agent enables the nanocrystal composition to exist in a solid state at room temperature, thereby effectively avoiding the shedding of the metal salt bound on the surface of the nanocrystal, greatly improving the water and oxygen resistance of the nanocrystal, while maintaining a high fluorescence quantum yield.
- the nanocrystals are wrapped by a hot-melt adhesive to isolate water and oxygen, photooxidation and photohydrolysis are effectively avoided, and the performance stability during application is ensured.
- the above-mentioned organic dispersion disperses the metal salt, and can also disperse the nanocrystals at the same time.
- the organic dispersion is liquid at normal temperature.
- the nanocrystal described in the present disclosure is a semiconductor luminescent nanocrystal, which exhibits specific optical and electrical properties in a specific size. Typical sizes range from 1 to 100 nm.
- the nanocrystals used in the above-mentioned step S2 and the nanocrystals in the solid nanocrystal composition obtained in the step S3 have a fluorescence peak position and a change rate of half-peak width of 0-2%, and the quantum yield is increased by 0-10%.
- the change rate of the fluorescence peak position refers to the relative change value between the fluorescence peak position of the nanocrystal composition obtained after the preparation method of the present disclosure and the fluorescence peak position of the nanocrystal before treatment.
- the ratio of the fluorescence peak positions of the nanocrystals before treatment are examples of the ratio of the fluorescence peak positions of the nanocrystals before treatment.
- solid state includes not only a solid without any fluidity, but also a viscous jelly with a certain viscosity or fluidity.
- the viscosity of the solid nanocrystalline composition at 15-50° C. is 300-3000 cps based on the hot-melt adhesive used.
- the viscosity of the nanocrystalline composition at 15-50°C is greater than or equal to 300cps, or greater than or equal to 350cps, or greater than or equal to 400cps, or greater than or equal to 450cps, or greater than or equal to 500cps, or greater than or equal to 550cps, or greater than or equal to 600cps , or greater than or equal to 650cps, or greater than or equal to 700cps, or greater than or equal to 750cps, or greater than or equal to 800cps, or greater than or equal to 850cps, or greater than or equal to 900cps, or greater than or equal to 950cps, or greater than or equal to 1000cps, or greater than or equal to 1500cps, or greater than or equal to 2000cps , or greater than or equal to 2500cps and less than or equal to 3000cps; or
- the viscosity at 15 ⁇ 50°C is less than or equal to 600cps, or less than or equal to 650cps, or less than or equal to 700cps, or less than or equal to 750cps, or less than or equal to 800cps, or less than or equal to 850cps, or less than or equal to 900cps, or less than or equal to 950cps, or less than or equal to 1000cps , or less than or equal to 1500cps, or less than or equal to 2000cps, or less than or equal to 2500cps, or less than or equal to 3000cps, and greater than or equal to 300cps, or greater than or equal to 400cps, or greater than or equal to 500cps.
- temperature at which the hot-melt adhesive is melted refers to a temperature at which the hot-melt adhesive can be kept in a liquid state.
- the hot-melt adhesive of the present disclosure is a substance that can be melted at a certain temperature to form a jelly with a certain viscosity.
- the hot-melt adhesive also includes an organic dispersion, a suitable organic dispersion needs to be selected. , so as to ensure that the whole can maintain the state of jelly at a certain temperature.
- the viscosity of the hot-melt adhesive at the melting temperature is less than the viscosity of the above-mentioned solid nanocrystalline composition at 15 to 50 ° C, and the viscosity of the hot-melt adhesive at the melting temperature can be measured by the following method: using NDJ- 1F digital viscometer (rotational viscometer), measuring viscosity at high temperature, the temperature range can be 10 ⁇ 250 °C.
- the above-mentioned step S1 includes: heating and melting a metal salt to form a hot-melt adhesive, wherein the metal salt that is solid at room temperature and melted after heating is selected, A hot melt adhesive formed from molten metal salts can encapsulate the nanocrystals.
- the above step S1 includes mixing and heating the metal salt (solid or liquid at normal temperature) with the organic dispersion to form a hot melt adhesive.
- the hot-melt adhesive uses the mixed form of the metal salt and the organic dispersion to be further mixed to form a colloid after heating, and the colloid is used to encapsulate the nanocrystals.
- the above two kinds of hot-melt adhesives return to solid or viscous state after cooling down.
- the aforementioned metal salt-nanocrystal dispersion system can be recovered by heating the aforementioned solid nanocrystal composition to the aforementioned melting temperature.
- those skilled in the art can adjust the viscosity of the formed nanocrystalline composition by adjusting the amount ratio of the metal salt and the organic dispersion.
- the weight ratio of the above-mentioned metal salt and the organic dispersion is 6:1 ⁇ 1:2, or the mass percentage of metal salt in the hot melt adhesive is 40% to 90%.
- the amount of the metal salt is higher, the viscosity of the nanocrystalline composition increases, and even after cooling down, a solid without fluidity may be formed.
- the weight ratio of metal salt to organic dispersion is 5.9:1 to 5:1, or 4.9:1 to 4:1, or 3.9:1 to 3:1, or 2.9:1 to 2:1 , or 1.9:1 to 1:1, or 0.9:1 to 1:2.1.
- the mass percentage of the metal salt in the hot melt adhesive is 80% to 89%, or 70% to 79%, or 60% to 69%, or 50% to 59%, or 40% to 49%. %.
- the metal salts used in the present disclosure may be selected to be structurally stable and meltable at relatively low temperatures.
- the metal salt is an organometallic salt.
- the metal salt is any one or more of metal carboxylates and metal phosphonates; in some embodiments, the carbon number of the carboxylate of the metal carboxylates is between 8 and 22.
- the metal phosphonate is selected from metal phosphonates having a hydrocarbon group with a carbon number of 4-22; in some embodiments, the metal ion of the metal salt is selected from sodium, magnesium, aluminum, potassium, calcium, cesium, zirconium, Any one or more of manganese, zinc and cadmium, preferably a combination of multiple metal salts.
- oleate, myristate, caprylate, butyrate, mixed acid salt such as oleic acid-octanoate
- the metal salt is selected from any one or more of metal carboxylates and metal phosphonates with a melting point of 150-250°C.
- the above-mentioned organic dispersion is an organic solvent dispersion, and examples may be C 9 -C 22 alkanes, C 9 -C 22 alkenes, C 8 -C 22 alcohols, C 8 -C 22 esters , any one or more of squalane, each of the above organic dispersions has good dispersion performance for metal salts.
- the boiling point of the organic solvent dispersion needs to be greater than the melting point of the metal salt.
- the organic solvent dispersion is selected from a single organic solvent or a mixed organic solvent with a boiling point greater than 200°C.
- the metal salt is heated and melted.
- the above-mentioned melting temperature is greater than or equal to the melting temperature of the metal salt (ie, the melting point of the metal salt) and less than the decomposition temperature of metal salts.
- the metal salt and the organic dispersion are mixed and heated, and in order to avoid the negative influence on the nanocrystals caused by the excessive heating temperature, the above-mentioned melting temperature is preferably 150-250°C.
- the above-mentioned hot-melt adhesive includes a viscosity modifier, and the viscosity modifier can be selected from trialkylphosphine, C 4 - Any one or more of C 22 fatty amines.
- the number of carbon atoms in the alkyl group of the above trialkylphosphine is 4-22.
- the weight ratio of viscosity modifier to metal salt is 1:3 to 5:1.
- the hot melt adhesive described above does not include curable high molecular polymers or polymerizable monomers or prepolymers.
- the method based on the present disclosure is mainly based on the physical coating of nanocrystals by metal salts, at least part of the metal salts (metal cations therein) can be combined with the surface of nanocrystals in the form of chemical bonds (as surface ligands of nanocrystals), Therefore, on the basis of meeting the requirement of realizing the coating usage, the amount of metal salt should be as much as possible in order to further improve the stability of the coating.
- the weight ratio of the metal salt to the nanocrystal is 1:1 to 1000:1, preferably 10:1 to 1000:1.
- the weight ratio of the metal salt to the nanocrystal is greater than or equal to 5:1, or greater than or equal to 10:1, or greater than or equal to 15:1, or greater than or equal to 20:1, or greater than or equal to 25:1, or Greater than or equal to 30:1, or greater than or equal to 35:1, or greater than or equal to 40:1, or greater than or equal to 45:1, or greater than or equal to 50:1, or greater than or equal to 55:1, or greater than or equal to 60:1, or greater than equal to 65:1, or greater than or equal to 70:1, or greater than or equal to 75:1, or greater than or equal to 80:1, or greater than or equal to 85:1, or greater than or equal to 90:1, or greater than or equal to 95:1, or greater than or equal to 100:1, or greater than or equal to 125:1, or greater than or equal to 150:1, or greater than or equal to 175:1, or greater than or equal to 200:1, or greater than or equal to 300:1, or greater than or equal to 400:1, or greater than or equal to
- the nanocrystal can be a self-synthesized pure nanocrystal, an existing commodity or a nanocrystal stored in a solution.
- Step S2 also includes a process of removing the solvent in the nanocrystal solution.
- the removal process can be heating or vacuuming to make the solvent volatilize, or the removal of the solvent in the nanocrystal solution can be realized by other means of removing the solvent in the prior art, and the above-mentioned removal is not a complete removal of the solvent, even if the solvent is partially removed.
- Residues also do not affect the performance of the preparation methods of the present disclosure.
- the above-mentioned solvent selects a solvent with a boiling point lower than the melting temperature and capable of dissolving or dispersing nanocrystals, such as toluene, hexane, octane and the like.
- the metal salt-nanocrystal dispersion system formed in the above step S2 is a homogeneous system, which is conducive to the combination of the metal salt and the nanocrystal surface in the form of chemical bonds, and better improves the water and oxygen resistance of the nanocrystal.
- the metal salt-nanocrystal dispersion system is a homogeneous liquid before cooling, and the nanocrystal composition formed after cooling is a homogeneous solid.
- a nanocrystalline composition in another typical embodiment of the present disclosure, is provided, the nanocrystalline composition is solid (solid state), and the nanocrystalline composition includes a plurality of nanocrystals and a metal salt, a plurality of nanocrystals Disperse in the metal salt, and at least a part of the metal salt is the surface ligand of the nanocrystal.
- the metal salt in the nanocrystal composition of the present disclosure basically has no effect on the fluorescence peak position and half-peak width of the nanocrystal, and the change rate of the fluorescence peak position and half-peak width before and after being modified by the metal salt is within 0-2%.
- the protective effect of the metal salt due to the protective effect of the metal salt, the resistance to water and oxygen of the nanocrystals is effectively improved, thereby improving the stability and lifespan of the nanocrystals during storage and use.
- the fluorescence quantum yield of the nanocrystal composition will not decrease, but can be increased by 0-10%.
- the main principle of the nanocrystal composition of the present disclosure is to use metal salts to physically coat the nanocrystals, at least part of the metal salts can be combined with the surface of the nanocrystals in the form of chemical bonds.
- the weight ratio of the metal salt to the nanocrystals is 1 : 1 to 1000:1, preferably 10:1 to 1000:1.
- the weight ratio of metal salt to nanocrystal is greater than or equal to 5:1, or greater than or equal to 10:1, or greater than or equal to 15:1, or greater than or equal to 20:1, or greater than or equal to 25:1, or greater than or equal to equal to 30:1, or greater than or equal to 35:1, or greater than or equal to 40:1, or greater than or equal to 45:1, or greater than or equal to 50:1, or greater than or equal to 55:1, or greater than or equal to 60:1, or greater than or equal to 65:1, or greater than or equal to 70:1, or greater than or equal to 75:1, or greater than or equal to 80:1, or greater than or equal to 85:1, or greater than or equal to 90:1, or greater than or equal to 95:1, or greater than or equal to 100 :1, or greater than or equal to 125:1, or greater than or equal to 150:1, or greater than or equal to 175:1, or greater than or equal to 200:1, or greater than or equal to 300:1, or greater than or equal to 400:1,
- the above-mentioned nanocrystalline composition does not include high molecular polymers or polymerizable monomers or prepolymers.
- solid state includes not only a solid without any fluidity, but also a viscous colloid with a certain viscosity or fluidity. Based on the properties of the metal salt used, the viscosity of the nanocrystalline composition at 15 to 50°C is 300. ⁇ 3000cps.
- the viscosity of the nanocrystalline composition at 15-50°C is greater than or equal to 300cps, or greater than or equal to 350cps, or greater than or equal to 400cps, or greater than or equal to 450cps, or greater than or equal to 500cps, or greater than or equal to 550cps, or greater than or equal to 600cps , or greater than or equal to 650cps, or greater than or equal to 700cps, or greater than or equal to 750cps, or greater than or equal to 800cps, or greater than or equal to 850cps, or greater than or equal to 900cps, or greater than or equal to 950cps, or greater than or equal to 1000cps, or greater than or equal to 1500cps, or greater than or equal to 2000cps , or greater than or equal to 2500cps and less than or equal to 3000cps; or
- the viscosity at 15 ⁇ 50°C is less than or equal to 600cps, or less than or equal to 650cps, or less than or equal to 700cps, or less than or equal to 750cps, or less than or equal to 800cps, or less than or equal to 850cps, or less than or equal to 900cps, or less than or equal to 950cps, or less than or equal to 1000cps , or less than or equal to 1500cps, or less than or equal to 2000cps, or less than or equal to 2500cps, or less than or equal to 3000cps, and greater than or equal to 300cps, or greater than or equal to 400cps, or greater than or equal to 500cps.
- the metal salts used in the present disclosure may be selected to be structurally stable and meltable at relatively low temperatures.
- the aforementioned metal salts are organometallic salts.
- the metal salt is any one or more of metal carboxylate and metal phosphonate, preferably a combination of multiple; in some embodiments, the carbon atom of the carboxylate of the metal carboxylate The number is between 8 and 22, and the metal phosphonate is selected from metal phosphonates having a hydrocarbon group with a carbon number of 4 to 22; in some embodiments, the metal ion of the metal salt is selected from sodium, magnesium, aluminum, potassium , any one or more of calcium, cesium, zirconium, manganese, zinc, and cadmium. In some embodiments, the metal salt is selected from any one or more of metal carboxylates and metal phosphonates with a melting point of 150-250°C.
- the above-mentioned nanocrystal composition further includes an organic dispersion.
- the weight ratio of the organic dispersion is 6:1-1:2, or the mass percentage of the metal salt in the nanocrystalline composition is 40%-90%.
- the weight ratio of metal salt to organic dispersion is 5.9:1 to 5:1, or 4.9:1 to 4:1, or 3.9:1 to 3:1, or 2.9:1 to 2:1 , or 1.9:1 to 1:1, or 0.9:1 to 1:2.1.
- the mass percentage of the metal salt in the hot melt adhesive is 80% to 89%, or 70% to 79%, or 60% to 69%, or 50% to 59%, or 40% to 49%. %.
- the above-mentioned organic dispersion is an organic solvent dispersion, and examples may be C 9 -C 22 alkanes, C 9 -C 22 alkenes, C 8 -C 22 alcohols, C 8 -C 22 esters , any one or more of squalane.
- the weight ratio of metal salt to organic dispersion is 6:1 to 1:2. When the amount of the metal salt is higher, the viscosity of the nanocrystalline composition increases, and even after cooling down, a solid without fluidity may be formed.
- the boiling point of the organic solvent dispersion needs to be greater than the melting point of the metal salt.
- the organic solvent dispersion is selected from a single organic solvent or a mixed organic solvent with a boiling point greater than 200°C.
- the above-mentioned nanocrystal composition further includes a viscosity modifier, and the viscosity modifier can be selected from trialkylphosphine, C 4 - Any one or more of C 22 fatty amines.
- the number of carbon atoms in the alkyl group of the above trialkylphosphine is 4-22.
- the weight ratio of viscosity modifier to metal salt is 1:3 to 5:1.
- the nanocrystalline compositions described above are homogeneous systems.
- the metal salt in the nanocrystal composition of the present disclosure is mainly achieved by encapsulating the nanocrystals to improve its water and oxygen resistance, there is no special selection for the type of nanocrystals, for example, the above nanocrystals are II-VI compounds, IV-VI compounds Group compounds, Group I-III-VI compounds, Group I-II-IV-VI compounds, Group III-V compounds, or combinations thereof, especially cadmium-free each of the above nanocrystals. It should be noted that the above-mentioned nanocrystals are semiconductor nanocrystals.
- the above-mentioned Group II-VI compounds may further include a Group III metal.
- the above group III-V compound may further include a group II metal (eg, InZnP).
- the above-mentioned II-VI group compounds can be: the following binary compounds: ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, MgSe, MgS, or a combination thereof; the following ternary compounds: ZnSeS, ZnSeTe, ZnSTe, HgSeS , HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe, MgZnSe, MgZnS, or a combination thereof; or a quaternary compound as follows: HgZnTeS, ZnTeSeS, HgZnSeS, HgZnSeTe, HgZnSTe, or a combination
- IV-VI compounds can be: the following binary compounds: SnS, SnSe, SnTe, PbS, PbSe, PbTe, or a combination thereof; the following ternary compounds: SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS , SnPbSe, SnPbTe, or a combination thereof; or a quaternary compound of: SnPbSSe, SnPbSeTe, SnPbSTe, or a combination thereof.
- Examples of the above-mentioned group I-III-VI compound may include CuInSe 2 , CuInS 2 , CuInGaSe, and CuInGaS, but are not limited thereto.
- Examples of the above group I-II-IV-VI compounds may include CuZnSnSe and CuZnSnS, but are not limited thereto.
- III-V compounds can be: the following binary compounds: GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, or combinations thereof; the following ternary compounds: GaNP , GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, or combinations thereof; or the following quaternary compounds: GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb, or a combination thereof.
- the above-mentioned nanocrystals are core-shell nanocrystals or alloy nanocrystals or nanocrystals with doping elements.
- the above-mentioned nanocrystals do not include perovskite, carbon dots, and silicon dots type nanocrystals.
- a second nanocrystalline composition comprising a first nanocrystalline composition
- the first nanocrystalline composition is any one of the above-mentioned nanocrystalline compositions. Since the first nanocrystalline composition of the present disclosure has good water and oxygen resistance, and has relatively stable structure and performance during storage and use, it can be applied to a variety of second nanocrystalline compositions and provides better luminescence efficiency.
- the second nanocrystalline composition described above includes a polymer.
- the second nanocrystalline composition can be directly used as the material of the quantum dot layer in the quantum dot light-emitting device.
- a light conversion device comprising any one of the above-mentioned nanocrystalline compositions.
- the light conversion device using the nanocrystalline composition of the present disclosure has high luminous efficiency and can maintain relative stability during storage and use.
- the above-mentioned light conversion device may be a nanocrystalline diffuser plate, a nanocrystalline lens or the like.
- a light-emitting device comprising any one of the above-mentioned nanocrystalline compositions.
- a light emitting device includes a cathode, an anode, and an emissive layer disposed between the cathode and the anode, the emissive layer including any of the nanocrystalline compositions described above.
- the above-mentioned light-emitting device has the nanocrystalline composition of the present disclosure, so that the light-emitting device can have high light-emitting efficiency and can be kept stable, thereby ensuring the light-emitting performance of the light-emitting device.
- condition A is: the initial light absorption rate of the light-emitting device is 30%, and the blue light with the light intensity below 0.5W/cm 2 emits light.
- the time of the device is not less than 500 hours.
- the wavelength of the above-mentioned blue light may be 430 to 480 nm.
- Comparative Example 1 Prepare a CdSe/CdZnS core-shell nanocrystal-ODE solution to obtain a nanocrystal composition.
- Comparative Example 2 Prepare an InP/ZnSe/ZnS core-shell nanocrystal-ODE solution to obtain a nanocrystal composition.
- a PET film was prepared, the water vapor transmission rate was about 2 g/m 2 ⁇ 24h, and the oxygen transmission rate was about 20 cm 3 /m 2 ⁇ 24h ⁇ 0.1 MPa.
- a nanocrystalline glue is arranged on the above-mentioned PET film, and then the above-mentioned PET film is oppositely arranged on the nanocrystalline glue, and then the nanocrystalline glue is cured to obtain a nanocrystalline optical film.
- Various nanocrystalline glues respectively include the nanocrystalline compositions of the above-mentioned respective embodiments or comparative examples and UV glues based on acrylic polymers, wherein the mass percentage of the nanocrystalline composition is 2%, the mass percentage of acrylic monomers is 20%, and the mass percentage of acrylic acid is 20%. The mass percentage of polymer is 70%, and the mass percentage of other additives is 8%.
- the initial light absorption of each nanocrystalline optical film was 30%.
- nanocrystalline optical films were respectively tested for light stability, and the nanocrystalline optical films were placed in the following test conditions: the equipment used was a blast drying oven, the relative humidity was ⁇ 5%, the constant temperature was 70°C, the wavelength was 460nm, and the light intensity was 0.5W/ cm2 blue light irradiation for 500 hours.
- An integrating sphere tester was used to measure the fluorescence spectrum of the nanocrystalline optical film, and the fluorescence peak position and half-peak width were recorded in Table 1.
- the quantum yield detection method is as follows: using a 450nm blue LED as the backlight source, using an integrating sphere to test the blue backlight spectrum and the spectrum passing through the nanocrystalline optical film respectively, and using the integral area of the spectrum to calculate the quantum yield.
- Quantum yield nanocrystalline emission peak area in nanocrystalline optical film/(blue backlight peak area-blue peak area not absorbed through nanocrystalline optical film)*100%.
- Viscosity detection method of nanocrystalline composition Brookfield viscometer viscometer (model DV-II+Pro) was used to measure the viscosity, and the temperature was controlled at 25°C. The measured viscosities of the nanocrystalline compositions of Examples 1, 3, 5, and 7 are reported in Table 2.
- a large amount of metal salts are encapsulated on the surface of nanocrystals by the above preparation method, at least part of the metal salts can be combined with the surface of nanocrystals in the form of chemical bonds, and due to the existence of the hot melt adhesive, the nanocrystal composition is in a solid form at room temperature Therefore, the shedding of the metal salt bound on the surface of the nanocrystal is effectively avoided, the water and oxygen resistance of the nanocrystal is greatly improved, and the high fluorescence quantum yield is maintained at the same time.
- the nanocrystals are wrapped by a hot-melt adhesive to isolate water and oxygen, photooxidation and photohydrolysis are effectively avoided, and the performance stability during application is ensured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Luminescent Compositions (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
本公开提供了一种纳米晶组合物及其制备方法和应用。该制备方法包括:步骤S1,准备包含金属盐的热熔胶黏剂,热熔胶黏剂为金属盐,或者热熔胶黏剂包括金属盐和有机分散体;步骤S2,在热熔胶黏剂熔融的温度下,将多个纳米晶与热熔胶黏剂混合,形成金属盐-纳米晶分散体系;以及步骤S3,将金属盐-纳米晶分散体系冷却,得到固态的纳米晶组合物。通过上述制备方法在纳米晶表面包裹大量的金属盐,至少部分金属盐可以与纳米晶表面以化学键形式结合,而且由于热熔胶黏剂的存在使得纳米晶组合物在常温下以固态形式存在,从而有效避免了结合在纳米晶表面的金属盐的脱落,使纳米晶的抗水氧和抗光解性能大大提高,同时保持高荧光量子产率。
Description
本公开涉及纳米晶材料技术领域,具体而言,涉及一种纳米晶组合物及其制备方法和应用。
在过去的二十多年里,纳米晶合成化学的研究主要集中在尺寸形貌的单分散控制以及如何提高荧光量子产率,但是仅仅实现尺寸形貌的单分散以及提高荧光量子产率是不够的,更重要的是要尽可能地降低环境,尤其水和氧气,对于纳米晶的光学、电学等性质的影响,这对于纳米晶的应用研究具有极大的价值。
氧气和水对纳米晶的影响往往受到光照的影响,分别称为对纳米晶的光氧化以及光水解过程,导致纳米晶的荧光量子产率降低,荧光半峰宽变宽等等,大大阻碍了纳米晶材料的应用。为了避免光水解和光氧化的发生,通常将得到的纳米晶保存在有机溶剂当中,以形成纳米晶溶液。相比于单一组分的核纳米晶,核壳结构纳米晶具有更高的光学和化学稳定性,如在CdSe纳米晶上包覆较厚的CdS壳层,得到荧光量子产率更高的纳米晶。另外一些提高纳米晶稳定性的手段还有制备合金结构纳米晶,以及在纳米晶内掺杂金属原子(如Al)。上述这些手段在一定程度上将纳米晶溶液的稳定性提高了,但是在光照条件下,纳米晶溶液的抗水氧性能依然不足。要使纳米晶具有良好的抗水氧性能,目前最好的手段是在纳米晶表面包覆氧化物。文献报道中,在纳米晶的表面包覆的氧化物主要有SiO
2以及TiO
2,但是这些氧化物很难消除纳米晶的表面缺陷,而且晶格缺陷也较多,另外这些氧化物与纳米晶之间的晶型不匹配,也会导致纳米晶的尺寸分布变差,降低光学与化学稳定性。
在纳米晶的应用中(尤其是在显示产品中),纳米晶往往分散于高分子胶黏剂中,这样在一定程度上阻碍了水和氧气直接接触到纳米晶。但是,这种手段只是缓解了水氧到达纳米晶表面的速率,一旦水氧进入高分子胶黏剂,最终依然有可能在光照条件下使得纳米晶发生荧光淬灭。
发明内容
本公开的主要目的在于提供一种纳米晶组合物及其制备方法和应用,以解决现有技术中的纳米晶抗水氧能力弱的问题。
为了实现上述目的,根据本公开的一个方面,提供了一种纳米晶组合物的制备方法,该制备方法包括:步骤S1,准备包含金属盐的热熔胶黏剂,热熔胶黏剂为金属盐,或者热熔胶黏剂包括金属盐和有机分散体;步骤S2,在热熔胶黏剂熔融的温度下,将多个纳米晶与热熔胶 黏剂混合,形成金属盐-纳米晶分散体系;以及步骤S3,将金属盐-纳米晶分散体系冷却,得到固态的纳米晶组合物。
可选地,上述金属盐与有机分散体的重量比为6:1~1:2,或者金属盐在热熔胶黏剂的质量百分数为40%~90%。
可选地,上述金属盐为金属羧酸盐、金属膦酸盐中的任意一种或多种。
可选地,上述有机分散体选自C
9~C
22的烷烃、C
9~C
22的烯烃、C
8~C
22的醇、C
8~C
22的酯、角鲨烷中的任意一种或多种。
可选地,上述熔融的温度小于金属盐的分解温度,或者熔融的温度为150~250℃。
可选地,上述固态的纳米晶组合物在15~50℃的粘度为300~3000cps。
可选地,上述热熔胶黏剂还包括粘度调节剂,粘度调节剂选自三烷基膦、C
4~C
22的脂肪胺中的任意一种或多种。
可选地,上述金属盐与纳米晶的重量比为1:1~1000:1。
可选地,上述步骤S2中,纳米晶以纳米晶溶液的形式加入。
可选地,上述步骤S2使用的纳米晶和步骤S3得到的固态的纳米晶组合物中的纳米晶的荧光峰位、半峰宽的变化率为0~2%。
可选地,上述金属盐-纳米晶分散体系为均相体系。
根据本公开的另一方面,提供了一种纳米晶组合物,该纳米晶组合物为固体,纳米晶组合物包括多个纳米晶和金属盐,多个纳米晶分散在金属盐中,至少一部分金属盐为纳米晶的表面配体。
可选地,上述金属盐与纳米晶的重量比为1:1~1000:1。
可选地,纳米晶组合物不包括高分子聚合物或可聚合的单体。
可选地,上述纳米晶组合物在15~50℃的粘度为300~3000cps。
可选地,上述金属盐为金属羧酸盐、金属膦酸盐中的任意一种或多种。
可选地,上述纳米晶组合物还包括有机分散体。
可选地,金属盐与有机分散体的重量比为6:1~1:2,或者金属盐在纳米晶组合物的质量百分数为40%~90%。
可选地,上述有机分散体选自C
9~C
22的烷烃、C
9~C
22的烯烃、C
8~C
22的醇、C
8~C
22的酯、角鲨烷中的任意一种或多种。
可选地,上述纳米晶组合物还包括粘度调节剂,粘度调节剂选自三烷基膦、C
4~C
22的脂肪胺中的任意一种或多种。
根据本公开的另一方面,提供了一种光转换器件,该光转换器件包括上述任一种的纳米晶组合物。
可选地,上述光转换器件在经历条件A后荧光量子产率的降低不超过5%,条件A为:光转换器件的初始光吸收率为30%,0.5W/cm
2以下光强的蓝光照射光转换器件的时间不低于500小时。
根据本公开的又一方面,提供了一种发光装置,该发光装置包括上述任意一项的纳米晶组合物。
应用本公开的技术方案,通过上述制备方法在纳米晶表面包裹大量的金属盐,至少部分金属盐可以与纳米晶表面以化学键形式结合,而且由于热熔胶黏剂的存在使得纳米晶组合物在常温下以固态形式存在,从而有效避免了结合在纳米晶表面的金属盐的脱落,使纳米晶的抗水氧性能大大提高,同时保持高荧光量子产率。上述纳米晶组合物在储存和应用过程中,由于纳米晶被热熔胶黏剂包裹以隔绝水和氧气,因此有效避免了光氧化和光水解,保证了其应用时的性能稳定性。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本公开。
本文中使用的术语仅用于描述具体实施方式的目的且不意图为限制性的。如本文中使用的,单数形式“一个(种)(a,an)”和“所述(该)(the)”也意图包括复数形式,除非上下文清楚地另外指明。
术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
如本文中使用的“约”或“大约”包括所陈述的值且意味着在如由本领域普通技术人员考虑到所讨论的测量和与具体量的测量有关的误差(即,测量系统的限制)而确定的对于具体值的可接受的偏差范围内。例如,“约”可意味着相对于所陈述的值的偏差在一种或多种标准偏差范围内,或者在±10%、±5%范围内。
如本公开背景技术所分析的,现有纳米晶隔绝水氧的技术并不能有效地保持纳米晶在光照条件下的抗水氧效果。目前,通过在纳米晶表面设置配体,然后配制成纳米晶溶液来保存纳米晶。但是,由于纳米晶表面的配体在纳米晶溶液中具有溶解度,从而在纳米晶溶液中配体会发生脱落,配体脱落等使纳米晶表面会出现缺陷,这些缺陷会导致纳米晶的光氧化以及光水解 现象的发生。其次在光照条件下,尤其是强光照射下,纳米晶溶液或者含有纳米晶的光学膜中的温度会升高,进一步使得纳米晶表面的配体脱落形成缺陷,从而导致更容易发生纳米晶的光水解以及光氧化,可见,由于配体易脱落,现有在纳米晶表面设置配体的方法仍然不能提高纳米晶在光照下使用的抗水氧效果。此外,即使纳米晶表面的配体已经隔绝了水和氧气,在强光照射下,由于温度升高导致纳米晶表面原子移动和配体脱落,纳米晶的荧光量子产率会大大降低。为了解决上述问题,本公开提供了一种纳米晶组合物、其制备方法和应用。
在本公开一种典型的实施方式中,提供了一种纳米晶组合物的制备方法,该制备方法包括:步骤S1,准备包含金属盐的热熔胶黏剂,热熔胶黏剂为金属盐,或者热熔胶黏剂包括金属盐和有机分散体;步骤S2,在热熔胶黏剂熔融的温度下,将多个纳米晶与热熔胶黏剂混合,形成金属盐-纳米晶分散体系;以及步骤S3,将金属盐-纳米晶分散体系冷却,得到固态的纳米晶组合物。
本公开通过上述制备方法在纳米晶表面包裹大量的金属盐,至少部分金属盐(其中的金属阳离子)可以与纳米晶表面以化学键形式结合(作为纳米晶的配体),而且由于热熔胶黏剂的存在使得纳米晶组合物在常温下以固态形式存在,从而有效避免了结合在纳米晶表面的金属盐的脱落,使纳米晶的抗水氧性能大大提高,同时保持高荧光量子产率。上述纳米晶组合物在储存和应用过程中,由于纳米晶被热熔胶黏剂包裹以隔绝水和氧气,因此有效避免了光氧化和光水解,保证了其应用时的性能稳定性。
上述有机分散体分散金属盐,还可以同时分散纳米晶。优选有机分散体在常温下为液体。
本公开所述的纳米晶是一种半导体发光纳米晶体,在特定尺寸展现出特定的光学、电学性质。典型尺寸范围为1~100nm。
上述步骤S2使用的纳米晶和步骤S3得到的固态的纳米晶组合物中的纳米晶的荧光峰位、半峰宽的变化率为0~2%,量子产率提高0~10%。以荧光峰位的变化率为例,上述变化率是指采用本公开的制备方法制作后所得到的纳米晶组合物的荧光峰位和处理前的纳米晶的荧光峰位之间的变化值相对于处理前的纳米晶的荧光峰位的比例。
上述“固态”不仅包含没有任何流动性的固体,也包含具有一定粘度或流动性的粘稠胶状物。基于所使用的热熔胶黏剂,上述固态的纳米晶组合物在15~50℃的粘度为300~3000cps。在一些实施例中,纳米晶组合物在15~50℃的粘度大于等于300cps,或者大于等于350cps,或者大于等于400cps,或者大于等于450cps,或者大于等于500cps,或者大于等于550cps,或者大于等于600cps,或者大于等于650cps,或者大于等于700cps,或者大于等于750cps,或者大于等于800cps,或者大于等于850cps,或者大于等于900cps,或者大于等于950cps,或者大于等于1000cps,或者大于等于1500cps,或者大于等于2000cps,或者大于等于2500cps,且小于等于3000cps;或者
在15~50℃的粘度小于等于600cps,或者小于等于650cps,或者小于等于700cps,或者小于等于750cps,或者小于等于800cps,或者小于等于850cps,或者小于等于900cps, 或者小于等于950cps,或者小于等于1000cps,或者小于等于1500cps,或者小于等于2000cps,或者小于等于2500cps,或者小于等于3000cps,且大于等于300cps,或者大于等于400cps,或者大于等于500cps。
上述“热熔胶黏剂熔融的温度”是指能够使热熔胶黏剂保持液态的温度。此外,本公开的热熔胶黏剂是可以在一定温度下熔融形成具有一定粘性的胶状物的物质,当热热熔胶黏剂还包括有机分散体的时候,需要选择合适的有机分散体的量,从而保证整体在一定温度下能保持胶状物的状态。熔融的温度下的热熔胶黏剂的粘度小于上述固态的纳米晶组合物在15~50℃的粘度,熔融的温度下的热熔胶黏剂的粘度可以通过以下方法测得:采用NDJ-1F数字式粘度计(旋转式粘度计),测量高温下的粘度,测温范围可在10~250℃。
形成上述热熔胶黏剂的方式有多种,在一些实施例中,上述步骤S1包括:将金属盐加热熔融形成热熔胶黏剂,其中,选择常温为固体、加热后熔融的金属盐,熔融的金属盐形成的热熔胶黏剂即可对纳米晶进行包裹。或者上述步骤S1包括将金属盐(常温为固体或液体)与有机分散体混合加热,形成热熔胶黏剂。该热熔胶黏剂是利用混合形式的金属盐和有机分散体加热后二者进一步混合形成胶状物形式,利用该胶状物对纳米晶进行包裹。上述两种热熔胶黏剂在降温后,即恢复为固体或粘稠状。
在一些实施例中,将上述固态的纳米晶组合物加热至上述熔融的温度,可以重新得到上述金属盐-纳米晶分散体系。
另外,本领域技术人员可以通过调节金属盐和有机分散体的用量比例来调整所形成的纳米晶组合物的粘度,在一些实施例中,上述金属盐与有机分散体的重量比为6:1~1:2,或者金属盐在热熔胶黏剂的质量百分数为40%~90%。当金属盐的用量越高纳米晶组合物的粘度越大,甚至在降温后可以形成不具有流动性的固体。在一些实施例中,金属盐与有机分散体的重量比为5.9:1~5:1,或4.9:1~4:1,或3.9:1~3:1,或2.9:1~2:1,或1.9:1~1:1,或0.9:1~1:2.1。在一些实施例中,金属盐在热熔胶黏剂的质量百分数为80%~89%,或70%~79%,或60%~69%,或50%~59%,或40%~49%。
用于本公开的金属盐可以选择结构稳定,在相对较低的温度下即可熔融的金属盐。在一些实施例中,金属盐为有机金属盐。在一些实施例中,金属盐为金属羧酸盐、金属膦酸盐中的任意一种或多种;在一些实施例中,金属羧酸盐的羧酸根的碳原子数在8~22之间,金属膦酸盐选自具有碳原子数为4~22的烃基的金属膦酸盐;在一些实施例中,金属盐的金属离子选自钠、镁、铝、钾、钙、铯、锆、锰、锌、镉中的任意一种或多种,优选为多种金属盐的组合。比如油酸盐、十四酸盐、辛酸盐、丁酸盐、混合酸盐(比如油酸-辛酸盐),更具体地比如其中的蜡状或块状的油酸镁等。在一些实施例中,金属盐选自熔点为150~250℃的金属羧酸盐、金属膦酸盐中的任意一种或多种。
在一些实施例中,上述有机分散体为有机溶剂分散体,实例可以为C
9~C
22的烷烃、C
9~C
22的烯烃、C
8~C
22的醇、C
8~C
22的酯、角鲨烷中的任意一种或多种,上述各有机分散体对金属盐 形成良好的分散性能。有机溶剂分散体的沸点需要大于金属盐的熔点。在一些实施例中,有机溶剂分散体选自沸点大于200℃的单一有机溶剂或混合有机溶剂。
在形成流动态的热熔胶黏剂时,在一些实施例中,对金属盐加热熔融,为了避免金属盐变性,上述熔融的温度大于或等于金属盐的熔融温度(即金属盐的熔点)且小于金属盐的分解温度。在另一些实施例中,对金属盐和有机分散体进行混合加热,为了避免加热温度过高对纳米晶产生负面影响,优选上述熔融的温度为150~250℃。
此外,为了进一步提高热熔胶黏剂对纳米晶包覆的均匀性,在一些实施例中,上述热熔胶黏剂包括粘度调节剂,粘度调节剂可以选自三烷基膦、C
4~C
22的脂肪胺中的任意一种或多种。在一些实施例中,上述三烷基膦的烷基的碳原子数为4~22。在一些实施例中,粘度调节剂与金属盐的重量比为1:3~5:1。
在一些实施例中,上述热熔胶黏剂不包括可固化的高分子聚合物或可聚合的单体或预聚物。
由于本公开的方法基于的原理主要是利用金属盐对纳米晶的物理包覆,至少部分金属盐(其中的金属阳离子)可以与纳米晶表面以化学键形式结合(作为纳米晶的表面配体),因此,金属盐的用量在满足实现包覆使用量需求的基础上,为了进一步提高包覆的稳定性,其用量越多越好;同时为了保证单位质量的纳米晶的发光效率,在一些实施例中,上述金属盐与纳米晶的重量比为1:1~1000:1,优选为10:1~1000:1。
在一些实施例中,上述金属盐与纳米晶的重量比大于等于5:1,或者大于等于10:1,或者大于等于15:1,或者大于等于20:1,或者大于等于25:1,或者大于等于30:1,或者大于等于35:1,或者大于等于40:1,或者大于等于45:1,或者大于等于50:1,或者大于等于55:1,或者大于等于60:1,或者大于等于65:1,或者大于等于70:1,或者大于等于75:1,或者大于等于80:1,或者大于等于85:1,或者大于等于90:1,或者大于等于95:1,或者大于等于100:1,或者大于等于125:1,或者大于等于150:1,或者大于等于175:1,或者大于等于200:1,或者大于等于300:1,或者大于等于400:1,或者大于等于500:1,或者大于等于600:1,或者大于等于700:1,或者大于等于800:1,或者大于等于900:1,且小于等于1000:1;或者
小于等于30:1,或者小于等于35:1,或者小于等于40:1,或者小于等于45:1,或者小于等于50:1,或者小于等于55:1,或者小于等于60:1,或者小于等于65:1,或者小于等于70:1,或者小于等于75:1,或者小于等于80:1,或者小于等于85:1,或者小于等于90:1,或者小于等于95:1,或者小于等于100:1,或者小于等于125:1,或者小于等于150:1,或者小于等于175:1,或者小于等于200:1,或者小于等于300:1,或者小于等于400:1,或者小于等于500:1,或者小于等于600:1,或者小于等于700:1,或者小于等于800:1,或者小于等于900:1,且大于等于5:1,或大于等于10:1,或大于等于15:1。
上述步骤S2在实施时,纳米晶可以为自行合成的纯纳米晶,也可以是现有商品或者保存在溶液中的纳米晶,当上述步骤S2中,纳米晶以纳米晶溶液的形式加入时,步骤S2还包括 去除纳米晶溶液中溶剂的过程。去除过程可以为加热或抽真空使溶剂挥发,也可以通过现有技术中的其它去除溶剂的手段实现纳米晶溶液中的溶剂的去除,且上述去除并不是彻底完全地去除溶剂,即使溶剂有部分残留也不影响本公开制备方法的实施。上述溶剂选择沸点低于熔融的温度、且能够溶解或分散纳米晶的溶剂,例如:甲苯、己烷、辛烷等。
在一些实施例中,上述步骤S2中形成的金属盐-纳米晶分散体系为均相体系,有利于金属盐与纳米晶表面以化学键形式结合,更好地提高纳米晶的抗水氧性能。金属盐-纳米晶分散体系在冷却前为均相的液体,冷却后形成的纳米晶组合物为均相的固体。
在本公开另一种典型的实施方式中,提供了一种纳米晶组合物,该纳米晶组合物为固体(固态),该纳米晶组合物包括多个纳米晶和金属盐,多个纳米晶分散在金属盐中,且至少一部分金属盐为纳米晶的表面配体。
本公开的纳米晶组合物中的金属盐对纳米晶的荧光峰位和半峰宽基本不产生影响,其被金属盐修饰前后荧光峰位和半峰宽的变化率在0~2%内。但是,由于金属盐的保护作用,有效提高了纳米晶的抗水氧性能,因此使得纳米晶在保存和使用过程中的稳定性和寿命得到提升。并且,相比于初始的纳米晶,纳米晶组合物的荧光量子产率不会降低,反而可以提高0~10%。
由于本公开的纳米晶组合物基于的主要原理是利用金属盐对纳米晶的物理包覆,至少部分金属盐可以与纳米晶表面以化学键形式结合,因此,金属盐的用量在满足实现包覆使用量需求的基础上,为了进一步提高包覆的稳定性,其用量越多越好;同时为了保证单位质量的纳米晶的发光效率,在一些实施例中,金属盐与纳米晶的重量比为1:1~1000:1,优选为10:1~1000:1。
在一些实施例中,金属盐与纳米晶的重量比大于等于5:1,或者大于等于10:1,或者大于等于15:1,或者大于等于20:1,或者大于等于25:1,或者大于等于30:1,或者大于等于35:1,或者大于等于40:1,或者大于等于45:1,或者大于等于50:1,或者大于等于55:1,或者大于等于60:1,或者大于等于65:1,或者大于等于70:1,或者大于等于75:1,或者大于等于80:1,或者大于等于85:1,或者大于等于90:1,或者大于等于95:1,或者大于等于100:1,或者大于等于125:1,或者大于等于150:1,或者大于等于175:1,或者大于等于200:1,或者大于等于300:1,或者大于等于400:1,或者大于等于500:1,或者大于等于600:1,或者大于等于700:1,或者大于等于800:1,或者大于等于900:1,且小于等于1000:1;或者
小于等于30:1,或者小于等于35:1,或者小于等于40:1,或者小于等于45:1,或者小于等于50:1,或者小于等于55:1,或者小于等于60:1,或者小于等于65:1,或者小于等于70:1,或者小于等于75:1,或者小于等于80:1,或者小于等于85:1,或者小于等于90:1,或者小于等于95:1,或者小于等于100:1,或者小于等于125:1,或者小于等于150:1,或者小于等于175:1,或者小于等于200:1,或者小于等于300:1,或者小于等于400:1,或者小于等于500:1,或者小于等于600:1,或者小于等于700:1,或者小于等于800:1,或者小于等于900:1,且大于等于5:1,或大于等于10:1,或大于等于15:1。
且优选上述纳米晶组合物不包括高分子聚合物或可聚合的单体或预聚物。
上述“固态”不仅包含没有任何流动性的固体,也包含具有一定粘度或流动性的粘稠胶状物,基于所使用的金属盐的性能,纳米晶组合物在15~50℃的粘度为300~3000cps。
在一些实施例中,纳米晶组合物在15~50℃的粘度大于等于300cps,或者大于等于350cps,或者大于等于400cps,或者大于等于450cps,或者大于等于500cps,或者大于等于550cps,或者大于等于600cps,或者大于等于650cps,或者大于等于700cps,或者大于等于750cps,或者大于等于800cps,或者大于等于850cps,或者大于等于900cps,或者大于等于950cps,或者大于等于1000cps,或者大于等于1500cps,或者大于等于2000cps,或者大于等于2500cps,且小于等于3000cps;或者
在15~50℃的粘度小于等于600cps,或者小于等于650cps,或者小于等于700cps,或者小于等于750cps,或者小于等于800cps,或者小于等于850cps,或者小于等于900cps,或者小于等于950cps,或者小于等于1000cps,或者小于等于1500cps,或者小于等于2000cps,或者小于等于2500cps,或者小于等于3000cps,且大于等于300cps,或者大于等于400cps,或者大于等于500cps。
用于本公开的金属盐可以选择结构稳定,在相对较低的温度下即可熔融的金属盐。在一些实施例中,前述金属盐为有机金属盐。在一些实施例中,金属盐为金属羧酸盐、金属膦酸盐中的任意一种或多种,优选为多种的组合;在一些实施例中,金属羧酸盐的羧酸根的碳原子数在8~22之间,金属膦酸盐选自具有碳原子数为4~22的烃基的金属膦酸盐;在一些实施例中,金属盐的金属离子选自钠、镁、铝、钾、钙、铯、锆、锰、锌、镉中的任意一种或多种。在一些实施例中,金属盐选自熔点为150~250℃的金属羧酸盐、金属膦酸盐中的任意一种或多种。
在本公开一些实施例中,为了提高金属盐对纳米晶包裹的均匀性,上述纳米晶组合物还包括有机分散体。本领域技术人员可以通过调节金属盐和有机分散体的用量比例来调整所形成的纳米晶组合物的粘度,为了保持形成的纳米晶组合物符合固态或者流动性相对差的要求,优选金属盐与有机分散体的重量比为6:1~1:2,或者金属盐在所述纳米晶组合物的质量百分数为40%~90%。在一些实施例中,金属盐与有机分散体的重量比为5.9:1~5:1,或4.9:1~4:1,或3.9:1~3:1,或2.9:1~2:1,或1.9:1~1:1,或0.9:1~1:2.1。在一些实施例中,金属盐在热熔胶黏剂的质量百分数为80%~89%,或70%~79%,或60%~69%,或50%~59%,或40%~49%。
在一些实施例中,上述有机分散体为有机溶剂分散体,实例可以为C
9~C
22的烷烃、C
9~C
22的烯烃、C
8~C
22的醇、C
8~C
22的酯、角鲨烷中的任意一种或多种。在一些实施例中,金属盐与有机分散体的重量比为6:1~1:2。当金属盐的用量越高纳米晶组合物的粘度越大,甚至在降温后可以形成不具有流动性的固体。有机溶剂分散体的沸点需要大于金属盐的熔点。在一些实施例中,有机溶剂分散体选自沸点大于200℃的单一有机溶剂或混合有机溶剂。
此外,为了进一步提高热熔胶黏剂对纳米晶包覆的均匀性,在一些实施例中,上述纳米晶组合物还包括粘度调节剂,粘度调节剂可以选自三烷基膦、C
4~C
22的脂肪胺中的任意一种或多 种。在一些实施例中,上述三烷基膦的烷基的碳原子数为4~22。在一些实施例中,粘度调节剂与金属盐的重量比为1:3~5:1。
在一些实施例中,上述纳米晶组合物为均相体系。
由于本公开的纳米晶组合物中金属盐主要是通过包裹纳米晶实现提高其抗水氧性能,因此,对纳米晶的类型没有特别选择,比如上述纳米晶为II-VI族化合物、IV-VI族化合物、I-III-VI族化合物、I-II-IV-VI族化合物、III-V族化合物、或其组合,尤其是无镉的上述各纳米晶。需要说明的是,上述纳米晶为半导体纳米晶。
上述II-VI族化合物可进一步包括III族金属。上述III-V族化合物可进一步包括II族金属(例如,InZnP)。上述II-VI族化合物可为:如下的二元化合物:ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、MgSe、MgS、或其组合;如下的三元化合物:ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgZnSe、HgZnTe、MgZnSe、MgZnS、或其组合;或如下的四元化合物:HgZnTeS、ZnTeSeS、HgZnSeS、HgZnSeTe、HgZnSTe、或其组合。
上述IV-VI族化合物可为:如下的二元化合物:SnS、SnSe、SnTe、PbS、PbSe、PbTe、或其组合;如下的三元化合物:SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、或其组合;或如下的四元化合物:SnPbSSe、SnPbSeTe、SnPbSTe、或其组合。
上述I-III-VI族化合物的实例可包括CuInSe
2、CuInS
2、CuInGaSe、和CuInGaS,但不限于此。
上述I-II-IV-VI族化合物的实例可包括CuZnSnSe和CuZnSnS,但不限于此。
上述III-V族化合物可为:如下的二元化合物:GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、或其组合;如下的三元化合物:GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、或其组合;或如下的四元化合物:GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb、或其组合。
在一些实施例中,上述纳米晶为核壳纳米晶或者合金纳米晶或者具有掺杂元素的纳米晶。
在一些实施例中,上述纳米晶不包括钙钛矿、碳点、硅点类型的纳米晶。
在本公开另一种典型的实施方式中,提供了一种第二纳米晶组合物,包括第一纳米晶组合物,第一纳米晶组合物为上述任一种的纳米晶组合物。由于本公开的第一纳米晶组合物的抗水氧性能较好,在保存和使用过程中结构和性能较为稳定,因此可以适用于多种第二纳米晶组合物中,并提供较好的发光效率。
在一些实施例中,上述第二纳米晶组合物包括聚合物。第二纳米晶组合物可以直接作为量子点发光器件中量子点层的材料。
在本公开又一种典型的实施方式中,还提供了一种光转换器件,包括上述任一种的纳米晶组合物。应用了本公开的纳米晶组合物的光转换器件的发光效率较高,且可以在保存和使用过程中维持相对稳定。上述光转换器件可以为纳米晶扩散板、纳米晶透镜等器件。
在本公开再一种典型的实施方式中,还提供了一种发光装置,包括上述任一种的纳米晶组合物。在一些实施例中,发光装置包括阴极、阳极和设置在阴极和阳极之间的发射层,发射层包括上述任一种的纳米晶组合物。
上述发光装置中具有本公开的纳米晶组合物,因此使得发光装置可以具有较高的发光效率且能保持稳定,进而保证了发光装置的发光性能。
经过试验研究,上述发光装置在经历条件A后荧光量子产率的降低不超过5%,条件A为:发光装置的初始光吸收率为30%,0.5W/cm
2以下光强的蓝光照射发光装置的时间不低于500小时。上述蓝光的波长可以为430~480nm。
以下将结合实施例和对比例,进一步说明本公开有益效果。
实施例1
取5mmol醋酸镁、10mmol油酸、2mL ODE(1.58g)放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸镁(2.94g)的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400,其中CdSe/CdZnS核壳纳米晶质量为0.086g),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例2
取5mmol醋酸镁、10mmol油酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸镁的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯后,注入1mL TOP调节粘度,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例3
取5mmol醋酸镁、10mmol辛酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至150℃,用氮气排气30min形成包含辛酸镁(1.55g)的热熔胶黏剂;保持温度150℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至100℃以下,得到纳米晶组合物。
实施例4
取5mmol醋酸铝、15mmol油酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸铝(4.355g)的热熔胶黏剂;保持温度200℃,向 热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例5
取5mmol醋酸镁、5mmol油酸、5mmol辛酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含辛酸-油酸镁(2.24g)的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,注入1mL TOP溶液,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例6
取10mmol醋酸镁、20mmol油酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸镁的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例7
取5mmol油酸铝、1mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,形成热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例8
取5mmol醋酸镁、10mmol十二烷基膦酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含十二烷基膦酸镁(2.61g)的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例9
取5mmol醋酸锆、10mmol油酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸锆(3.27g)的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=400),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例10
取5mmol醋酸镁、10mmol油酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸镁的热熔胶黏剂;保持温度200℃,向热熔胶黏剂 中注入CdSe/CdZnS核壳纳米晶甲苯液(450nm吸收度OD=40),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
实施例11
取5mmol醋酸镁、10mmol油酸、2mL ODE放置于100mL三颈烧瓶中,升高温度至200℃,用氮气排气30min形成包含油酸镁的热熔胶黏剂;保持温度200℃,向热熔胶黏剂中注入InP/ZnSe/ZnS核壳纳米晶甲苯液(450nm吸收度OD=400,InP/ZnSe/ZnS核壳纳米晶质量为0.077g),通氮气排出甲苯,形成金属盐-纳米晶分散体系;降温至150℃以下,得到纳米晶组合物。
对比例1:准备CdSe/CdZnS核壳纳米晶-ODE溶液,即得到纳米晶组合物。
对比例2:准备InP/ZnSe/ZnS核壳纳米晶-ODE溶液,即得到纳米晶组合物。
各个纳米晶光学膜采用不同的纳米晶胶水。纳米晶光学膜的制备方法:
准备PET膜,水蒸汽透过率约为2g/m
2·24h,氧气透过率约为20cm
3/m
2·24h·0.1MPa。在上述PET膜上设置纳米晶胶水,然后在纳米晶胶水上再相对设置一上述PET膜,然后固化纳米晶胶水,得到纳米晶光学膜。各种纳米晶胶水分别包括上述各个实施例或对比例的纳米晶组合物和基于丙烯酸聚合物的UV胶水,其中纳米晶组合物的质量百分数为2%,丙烯酸单体质量百分数为20%,丙烯酸聚合物质量百分数为70%,其他助剂质量百分数为8%。各个纳米晶光学膜的初始光吸收率为30%。
对上述纳米晶光学膜分别进行光照稳定性测试,将纳米晶光学膜放置在下述测试条件中:使用的设备为鼓风干燥箱,相对湿度≤5%,恒温在70℃,波长460nm、光强0.5W/cm
2的蓝光照射500小时。并采用积分球测试仪对纳米晶光学膜进行荧光光谱的测量,将荧光峰位和半峰宽记录于表1。
量子产率的检测方法是:以450nm蓝色LED作为背光源,利用积分球分别测试蓝色背光光谱和透过纳米晶光学膜的光谱,利用谱图的积分面积计算量子产率。量子产率=纳米晶光学膜中的纳米晶发射峰面积/(蓝色背光峰面积-透过纳米晶光学膜未被吸收的蓝色峰面积)*100%。
初始光吸收率的测试方法如下:将纳米晶光学膜作为测试对象,利用450nm蓝色LED作为背光光源,利用积分球分别测试蓝色背光光谱和透过纳米晶光学膜的光谱,利用谱图的积分面积计算光吸收率,初始光吸收率=(蓝色背光峰面积-透过纳米晶光学膜未被吸收的蓝色峰面积)/蓝色背光峰面积*100%。
纳米晶组合物的粘度检测方法:采用Brookfield viscometer粘度计(型号DV-Ⅱ+Pro)测量粘度,温度控制在25℃。测量得到实施例1、3、5、7的纳米晶组合物的粘度记录于表2。
表1
表2
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
本公开通过上述制备方法在纳米晶表面包裹大量的金属盐,至少部分金属盐可以与纳米晶表面以化学键形式结合,而且由于热熔胶黏剂的存在使得纳米晶组合物在常温下以固态形 式存在,从而有效避免了结合在纳米晶表面的金属盐的脱落,使纳米晶的抗水氧性能大大提高,同时保持高荧光量子产率。上述纳米晶组合物在储存和应用过程中,由于纳米晶被热熔胶黏剂包裹以隔绝水和氧气,因此有效避免了光氧化和光水解,保证了其应用时的性能稳定性。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (23)
- 一种纳米晶组合物的制备方法,其特征在于,所述制备方法包括:步骤S1,准备包含金属盐的热熔胶黏剂,所述热熔胶黏剂为金属盐,或者所述热熔胶黏剂包括金属盐和有机分散体;步骤S2,在所述热熔胶黏剂熔融的温度下,将多个纳米晶与所述热熔胶黏剂混合,形成金属盐-纳米晶分散体系;以及步骤S3,将所述金属盐-纳米晶分散体系冷却,得到固态的纳米晶组合物。
- 根据权利要求1所述的制备方法,其特征在于,所述金属盐与所述有机分散体的重量比为6:1~1:2,或者所述金属盐在所述热熔胶黏剂的质量百分数为40%~90%。
- 根据权利要求1所述的制备方法,其特征在于,所述金属盐为金属羧酸盐、金属膦酸盐中的任意一种或多种。
- 根据权利要求1所述的制备方法,其特征在于,所述有机分散体选自C 9~C 22的烷烃、C 9~C 22的烯烃、C 8~C 22的醇、C 8~C 22的酯、角鲨烷中的任意一种或多种。
- 根据权利要求1所述的制备方法,其特征在于,所述熔融的温度小于所述金属盐的分解温度,或者所述熔融的温度为150~250℃。
- 根据权利要求1所述的制备方法,其特征在于,所述固态的纳米晶组合物在15~50℃的粘度为300~3000cps。
- 根据权利要求1所述的制备方法,其特征在于,所述热熔胶黏剂还包括粘度调节剂,所述粘度调节剂选自三烷基膦、C 4~C 22的脂肪胺中的任意一种或多种。
- 根据权利要求1所述的制备方法,其特征在于,所述金属盐与所述纳米晶的重量比为1:1~1000:1。
- 根据权利要求1所述的制备方法,其特征在于,所述步骤S2中,所述纳米晶以纳米晶溶液的形式加入。
- 根据权利要求1所述的制备方法,其特征在于,所述步骤S2使用的所述纳米晶和所述步骤S3得到的所述固态的纳米晶组合物中的纳米晶的荧光峰位、半峰宽的变化率为0~2%。
- 根据权利要求1所述的制备方法,其特征在于,所述金属盐-纳米晶分散体系为均相体系。
- 一种纳米晶组合物,其特征在于,所述纳米晶组合物为固体,所述纳米晶组合物包括多个纳米晶和金属盐,所述多个纳米晶分散在所述金属盐中,至少一部分所述金属盐为所述纳米晶的表面配体。
- 根据权利要求12所述的纳米晶组合物,其特征在于,所述金属盐与所述纳米晶的重量比为1:1~1000:1。
- 根据权利要求12所述的纳米晶组合物,其特征在于,所述纳米晶组合物不包括高分子聚合物或可聚合的单体。
- 根据权利要求12所述的纳米晶组合物,其特征在于,所述纳米晶组合物在15~50℃的粘度为300~3000cps。
- 根据权利要求12所述的纳米晶组合物,其特征在于,所述金属盐为金属羧酸盐、金属膦酸盐中的任意一种或多种。
- 根据权利要求12所述的纳米晶组合物,其特征在于,所述纳米晶组合物还包括有机分散体。
- 根据权利要求17所述的纳米晶组合物,其特征在于,所述金属盐与所述有机分散体的重量比为6:1~1:2,或者所述金属盐在所述纳米晶组合物的质量百分数为40%~90%。
- 根据权利要求17所述的纳米晶组合物,其特征在于,所述有机分散体选自C 9~C 22的烷烃、C 9~C 22的烯烃、C 8~C 22的醇、C 8~C 22的酯、角鲨烷中的任意一种或多种。
- 根据权利要求12所述的纳米晶组合物,其特征在于,所述纳米晶组合物还包括粘度调节剂,所述粘度调节剂选自三烷基膦、C 4~C 22的脂肪胺中的任意一种或多种。
- 一种光转换器件,其特征在于,包括权利要求12至20中任意一项所述的纳米晶组合物。
- 根据权利要求21所述的光转换器件,其特征在于,所述光转换器件在经历条件A后荧光量子产率的降低不超过5%,所述条件A为:所述光转换器件的初始光吸收率为30%,0.5W/cm 2以下光强的蓝光照射所述光转换器件的时间不低于500小时。
- 一种发光装置,其特征在于,包括权利要求12至20中任意一项所述的纳米晶组合物。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110365120.1 | 2021-04-02 | ||
CN202110365120.1A CN115181561A (zh) | 2021-04-02 | 2021-04-02 | 纳米晶组合物及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022206873A1 true WO2022206873A1 (zh) | 2022-10-06 |
Family
ID=83458033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/084259 WO2022206873A1 (zh) | 2021-04-02 | 2022-03-31 | 纳米晶组合物及其制备方法和应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115181561A (zh) |
WO (1) | WO2022206873A1 (zh) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150299567A1 (en) * | 2014-04-18 | 2015-10-22 | Los Alamos National Security, Llc | Synthesis of quantum dots |
CN105670631A (zh) * | 2014-12-05 | 2016-06-15 | 上海交通大学 | 一种自钝化量子点及其制备方法 |
CN105940081A (zh) * | 2014-02-04 | 2016-09-14 | 皇家飞利浦有限公司 | 用于量子点的基于配位氧和配位羟的复合无机配体 |
WO2017034228A1 (ko) * | 2015-08-21 | 2017-03-02 | 주식회사 두하누리 | 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점 |
CN107236536A (zh) * | 2017-02-22 | 2017-10-10 | 浙江新诺科安全设备有限公司 | 形成金属氧化膜外壳的连续的结晶成长结构的量子点制备方法以及由此制备的量子点 |
CN107686725A (zh) * | 2016-08-05 | 2018-02-13 | 聚和国际股份有限公司 | 外保护无机量子点及其制备方法 |
CN108203582A (zh) * | 2018-03-02 | 2018-06-26 | 孙旭阳 | 制备纳米量子点的方法、纳米量子点材料、应用及量子点制品 |
JP2018154666A (ja) * | 2017-03-15 | 2018-10-04 | 株式会社アルバック | コアシェル型量子ドット及びコアシェル型量子ドット分散液の製造方法 |
US20180318784A1 (en) * | 2015-11-06 | 2018-11-08 | The University Of Chicago | Colloids of inorganic nanocrystals in molten media and related methods |
CN108807608A (zh) * | 2017-05-02 | 2018-11-13 | Tcl集团股份有限公司 | 一种氧化物包覆量子点led的制备方法 |
CN108893103A (zh) * | 2018-07-11 | 2018-11-27 | 苏州星烁纳米科技有限公司 | 包覆量子点的方法及其制备的产品 |
CN108913142A (zh) * | 2018-06-29 | 2018-11-30 | 纳晶科技股份有限公司 | 包覆金属氧化物的量子点、其制备方法和应用 |
CN109233801A (zh) * | 2017-07-11 | 2019-01-18 | Tcl集团股份有限公司 | 表面修饰的量子点及其制备方法、应用与qled器件 |
CN109337689A (zh) * | 2018-09-27 | 2019-02-15 | 纳晶科技股份有限公司 | 掺杂量子点及其制备方法 |
CN109468134A (zh) * | 2018-10-18 | 2019-03-15 | 浙江大学 | 量子点、制作方法、单光子源和qled |
CN110003884A (zh) * | 2019-03-14 | 2019-07-12 | 纳晶科技股份有限公司 | 掺杂量子点及其制备方法、量子点光电器件 |
CN110846025A (zh) * | 2019-11-29 | 2020-02-28 | 中国人民解放军国防科技大学 | 一种提高ⅱ-ⅵ族量子点荧光量子产率的方法 |
CN113801654A (zh) * | 2021-10-26 | 2021-12-17 | 合肥福纳科技有限公司 | 一种量子点的清洗方法及制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101480511B1 (ko) * | 2008-12-19 | 2015-01-08 | 삼성전자 주식회사 | 금속-계면활성제층으로 코팅된 나노 결정의 제조 방법 |
KR20200099930A (ko) * | 2019-02-15 | 2020-08-25 | 삼성전자주식회사 | 전계 발광 소자와 이를 포함한 표시 장치 |
CN110240905B (zh) * | 2019-06-13 | 2022-05-17 | 纳晶科技股份有限公司 | 合金量子点、其制备方法和应用 |
CN110993808B (zh) * | 2019-11-29 | 2022-09-13 | 纳晶科技股份有限公司 | 纳米晶、纳米晶组合物、发光装置及纳米晶的制备方法 |
-
2021
- 2021-04-02 CN CN202110365120.1A patent/CN115181561A/zh active Pending
-
2022
- 2022-03-31 WO PCT/CN2022/084259 patent/WO2022206873A1/zh active Application Filing
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105940081A (zh) * | 2014-02-04 | 2016-09-14 | 皇家飞利浦有限公司 | 用于量子点的基于配位氧和配位羟的复合无机配体 |
US20150299567A1 (en) * | 2014-04-18 | 2015-10-22 | Los Alamos National Security, Llc | Synthesis of quantum dots |
CN105670631A (zh) * | 2014-12-05 | 2016-06-15 | 上海交通大学 | 一种自钝化量子点及其制备方法 |
WO2017034228A1 (ko) * | 2015-08-21 | 2017-03-02 | 주식회사 두하누리 | 양자점의 내화학성 부여 표면처리 방법 및 이에 의해 제조되는 양자점 |
US20180318784A1 (en) * | 2015-11-06 | 2018-11-08 | The University Of Chicago | Colloids of inorganic nanocrystals in molten media and related methods |
CN107686725A (zh) * | 2016-08-05 | 2018-02-13 | 聚和国际股份有限公司 | 外保护无机量子点及其制备方法 |
CN107236536A (zh) * | 2017-02-22 | 2017-10-10 | 浙江新诺科安全设备有限公司 | 形成金属氧化膜外壳的连续的结晶成长结构的量子点制备方法以及由此制备的量子点 |
JP2018154666A (ja) * | 2017-03-15 | 2018-10-04 | 株式会社アルバック | コアシェル型量子ドット及びコアシェル型量子ドット分散液の製造方法 |
CN108807608A (zh) * | 2017-05-02 | 2018-11-13 | Tcl集团股份有限公司 | 一种氧化物包覆量子点led的制备方法 |
CN109233801A (zh) * | 2017-07-11 | 2019-01-18 | Tcl集团股份有限公司 | 表面修饰的量子点及其制备方法、应用与qled器件 |
CN108203582A (zh) * | 2018-03-02 | 2018-06-26 | 孙旭阳 | 制备纳米量子点的方法、纳米量子点材料、应用及量子点制品 |
CN108913142A (zh) * | 2018-06-29 | 2018-11-30 | 纳晶科技股份有限公司 | 包覆金属氧化物的量子点、其制备方法和应用 |
CN108893103A (zh) * | 2018-07-11 | 2018-11-27 | 苏州星烁纳米科技有限公司 | 包覆量子点的方法及其制备的产品 |
CN109337689A (zh) * | 2018-09-27 | 2019-02-15 | 纳晶科技股份有限公司 | 掺杂量子点及其制备方法 |
CN109468134A (zh) * | 2018-10-18 | 2019-03-15 | 浙江大学 | 量子点、制作方法、单光子源和qled |
CN110003884A (zh) * | 2019-03-14 | 2019-07-12 | 纳晶科技股份有限公司 | 掺杂量子点及其制备方法、量子点光电器件 |
CN110846025A (zh) * | 2019-11-29 | 2020-02-28 | 中国人民解放军国防科技大学 | 一种提高ⅱ-ⅵ族量子点荧光量子产率的方法 |
CN113801654A (zh) * | 2021-10-26 | 2021-12-17 | 合肥福纳科技有限公司 | 一种量子点的清洗方法及制备方法 |
Non-Patent Citations (1)
Title |
---|
KARATUM ONURALP, JALALI HOUMAN BAHMANI, SADEGHI SADRA, MELIKOV RUSTAMZHON, SRIVASTAVA SHASHI BHUSHAN, NIZAMOGLU SEDAT: "Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots", ACS PHOTONICS, vol. 6, no. 4, 17 April 2019 (2019-04-17), pages 939 - 946, XP055972102, ISSN: 2330-4022, DOI: 10.1021/acsphotonics.8b01618 * |
Also Published As
Publication number | Publication date |
---|---|
CN115181561A (zh) | 2022-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6824203B2 (ja) | シリコーン内の量子ドット用pdms系リガンド | |
JP6325556B2 (ja) | シリコーン中の量子ドットのためのpdms系配位子 | |
KR101739576B1 (ko) | 반도체 나노결정-고분자 미분 복합체, 이의 제조방법 및 이를 포함하는 광전자 소자 | |
KR101509648B1 (ko) | 나노결정 도핑된 매트릭스 | |
JP6609618B2 (ja) | 赤色照明のカラーコンバータを得るための、シリコーンホスト中で量子ドットを分散させるために使用されるシロキサン配位子 | |
KR101686572B1 (ko) | 발광 소자 | |
CN103059393A (zh) | 复合物、制备其的组合物和方法、包括其的复合膜和器件 | |
US9070838B2 (en) | Optoelectronic device and stacking structure | |
JP2015516467A (ja) | 新規材料並びに高量子収率及び高安定性を有するナノ粒子のマトリックス中への分散方法 | |
TWI737694B (zh) | 包括半導體奈米結晶之複合物及其製備方法 | |
WO2020103333A1 (zh) | 荧光纳米材料-聚合物复合体、波长转换元件的制备方法及发光装置 | |
KR20150018693A (ko) | 반도체 나노결정 폴리머 복합체 입자 분쇄 방법 | |
KR20220078308A (ko) | 양자점, 상기 양자점을 포함하는 양자점 분산액, 광변환 잉크 조성물, 양자점 발광다이오드, 양자점 필름, 상기 조성물을 이용하여 형성되는 경화막 및 상기 경화막을 포함하는 화상표시장치 | |
WO2022206873A1 (zh) | 纳米晶组合物及其制备方法和应用 | |
KR20220089068A (ko) | 양자점, 양자점 분산체, 광변환 경화성 조성물, 컬러필터, 광변환 적층기재 및 화상표시장치 | |
KR20210154588A (ko) | 양자점, 양자점 분산체, 광변환 경화성 조성물, 양자점 발광다이오드, 양자점 필름, 광 변환 잉크 조성물, 상기 광 변환 잉크 조성물을 이용하여 형성되는 경화막 및 상기 경화막을 포함하는 화상표시장치 | |
JP2022508726A (ja) | ナノ粒子 | |
CN113061428B (zh) | 纳米晶、其制备方法及应用 | |
JP2021507022A (ja) | 半電導性発光ナノ粒子 | |
EP3898884A1 (en) | Surface modified semiconducting light emitting nanoparticles and process for preparing such | |
JP2013161861A (ja) | Led装置、及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779055 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779055 Country of ref document: EP Kind code of ref document: A1 |