WO2022206071A1 - 一种无钴的镍锰正极材料及其制备方法和应用 - Google Patents

一种无钴的镍锰正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022206071A1
WO2022206071A1 PCT/CN2021/142817 CN2021142817W WO2022206071A1 WO 2022206071 A1 WO2022206071 A1 WO 2022206071A1 CN 2021142817 W CN2021142817 W CN 2021142817W WO 2022206071 A1 WO2022206071 A1 WO 2022206071A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
positive electrode
nickel
manganese
electrode material
Prior art date
Application number
PCT/CN2021/142817
Other languages
English (en)
French (fr)
Inventor
黄东
李长东
汪乾
刘婧婧
阮丁山
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112021005685.9T priority Critical patent/DE112021005685T5/de
Priority to ES202390081A priority patent/ES2956478A2/es
Priority to HU2200275A priority patent/HUP2200275A1/hu
Priority to GB2310086.0A priority patent/GB2618689A/en
Publication of WO2022206071A1 publication Critical patent/WO2022206071A1/zh
Priority to US18/230,727 priority patent/US20230373815A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery materials, and particularly relates to a cobalt-free nickel-manganese positive electrode material and a preparation method and application thereof.
  • the cathode material with high energy density on the market is the nickel-cobalt-manganese ternary cathode material.
  • the nickel-cobalt-manganese ternary cathode material contains cobalt, and cobalt is a scarce resource, the price of cobalt shows an increasing trend, which makes the cathode
  • the price of materials fluctuates greatly with the cobalt content, so the development of cobalt-free cathode materials will become a trend in the future, which can reduce the problem of high cost of cathode materials due to the price of cobalt.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a cobalt-free nickel-manganese positive electrode material and a preparation method and application thereof.
  • the nickel content of the positive electrode material is relatively low, and the valence state of some elements in the positive electrode material is changed by doping high-valence metal elements. , can stabilize the crystal structure of the ternary cathode material, allow lithium ions to be extracted and embedded, lower the energy barrier, make more electron vacancies in the cathode material, and improve the capacity of the cathode material.
  • the present invention adopts the following technical solutions:
  • a cobalt-free layered nickel-manganese positive electrode material the chemical formula of the cobalt-free layered nickel-manganese positive electrode material is Li a Ni x M y Me z O 2 @M b , and the Me is Zr, Al, W, At least one of Sr, Ti or Mg; the M is Al 2 O 3 , CeO 2 , TiO 2 , Yb 2 O 3 , Nb 2 O 5 , La 2 O 3 , WO 3 , titanium sol, aluminum sol, At least one of titanium aluminum sol, aluminum isopropoxide, butyl titanate, dialuminum hydrogen phosphate or lithium tungstate, wherein 0.9 ⁇ a ⁇ 1.10, 0.50 ⁇ x ⁇ 0.70, 0.50 ⁇ y ⁇ 0.30, 0.001 ⁇ z ⁇ 0.009, 0.001 ⁇ b ⁇ 0.005.
  • the specific surface area of the cobalt-free layered nickel-manganese positive electrode material is 0.4-0.9 m 2 /g, and the particle size D50 is 3.0-5.0 ⁇ m.
  • a preparation method of a cobalt-free layered nickel-manganese positive electrode material comprising the following steps:
  • nickel salt and manganese salt are configured into A solution, then dropwise the mixed solution of sodium hydroxide and ammoniacal liquor, stirring reaction, washing, drying, promptly obtains nickel manganese hydroxide precursor Ni x M y (OH) 2 ;
  • Ni x Mn y (OH) 2 (2) Mixing the nickel-manganese hydroxide precursor Ni x Mn y (OH) 2 with a lithium source and a dopant, sintering for the first time, and pulverizing to obtain a cobalt-free nickel-manganese positive electrode material Li a Ni x Mn y Me z O 2 ;
  • the nickel salt is at least one of NiSO 4 , Ni(CH 3 COO) 2 , Ni(NO 3 ) 2 , C 2 O 4 ⁇ Ni or NiCl 2 .
  • the manganese salt is at least one of MnSO 4 , Mn(NO 3 ) 2 , MnC 2 O 4 or MnCl 2 .
  • the concentration of the A solution is calculated according to the nickel-manganese ion mixed solution, and the configuration concentration is required to be 2.0mol/L-3.2mol/L.
  • the temperature of the reaction is 55 ⁇ 5°C, and the reaction time is 2-10 h.
  • the lithium source is at least one of LiOH ⁇ H 2 O, Li 2 CO 3 or CH 3 COOLi.
  • the dopant is at least one of ZrO 2 , Al 2 O 3 , Al(OH) 3 , WO 3 , SrO, TiO 2 , Mg(OH) 2 or MgO 2 .
  • the temperature of the first sintering is 450°C-980°C; the time of the first sintering is 5h-27h.
  • the coating agent A is at least one of Al 2 O 3 , CeO 2 , TiO 2 , Yb 2 O 3 , Nb 2 O 5 , La 2 O 3 or WO 3 .
  • the temperature of the second sintering is 250°C-600°C; the time of the second sintering is 5h-12h.
  • the coating agent B is at least one of titanium sol, aluminum sol, titanium aluminum sol, aluminum isopropoxide, butyl titanate, dialuminum hydrogen phosphate or lithium tungstate.
  • the double-coated cobalt-free layered nickel-manganese positive electrode material is a cobalt-free layered nickel-manganese positive electrode material coated with surface film and metal oxide.
  • the temperature of the vacuum drying is 130°C-180°C.
  • a battery comprising the cobalt-free layered nickel-manganese positive electrode material.
  • the present invention achieves shallow coating by high-temperature sintering after metal oxide coating, and the shallow coating of the material is beneficial to prevent the micro-crack expansion caused by the material structure change and internal stress change during the charging and discharging process of the material during the cycle process; Shallow coating on the surface of the material can effectively prevent micro-cracks from expanding to the surface of the material, improve the service life of the material under high voltage, and improve the cycle performance of the material.
  • the capacity retention rate of the material after 100 cycles reaches 96.5%.
  • the coating agent is densely coated on the surface of the material by wet spraying to form a dense film-like coating that is different from the point-contact coating obtained by dry coating, which is more conducive to preventing the direct contact of the material.
  • Contact with the electrolyte can inhibit the dissolution of cations in the material, improve the structural stability of the material, and improve the cycle performance of the material.
  • the preparation cost is reduced by 20-30%.
  • the nickel content of the material is relatively low, the low-cost manganese stabilizes the material structure, and the valence state of some elements in the material is changed by doping high-valence metal elements, which can stabilize the crystal structure of the material and allow lithium ions to be extracted and inserted.
  • the barrier is lowered, so that there are more electron vacancies in the material and the capacity of the material is improved.
  • the first charge capacity of the positive electrode material reaches 208.6mAh/g
  • the first discharge capacity reaches 186.9mAh/g
  • the first discharge efficiency is as high as 89.6% .
  • Fig. 1 is the SEM image of the cobalt-free layered nickel-manganese cathode material obtained in step (3) in Example 1;
  • Fig. 2 is the SEM image of the nickel-manganese positive electrode material with single crystal morphology and no cobalt layered coating obtained in step (5) in Example 1;
  • Fig. 3 is the SEM image of the double-coated nickel-manganese positive electrode material without cobalt layers obtained in step (6) in Example 1;
  • Example 4 is a SEM image of a cobalt-free layered nickel-manganese positive electrode material with a monocrystalline-like morphology obtained in step (3) in Example 2;
  • Fig. 5 is the SEM image of the nickel-manganese positive electrode material with quasi-single crystal morphology and no cobalt layered obtained in step (5) in Example 2;
  • Example 6 is a schematic diagram of the coating of the cobalt-free layered nickel-manganese positive electrode material after coating with a coating agent in Example 1-2;
  • Fig. 7 shows the film-like coated titanium sol and the metal oxide coated single-crystal nickel-manganese positive electrode material without cobalt layer obtained in Example 1-2 and the cobalt-free layered cathode material obtained in Comparative Example 1-3 XRD comparison of nickel-manganese cathode materials.
  • the preparation method of the cobalt-free layered nickel-manganese positive electrode material (Li 1.06 Ni 0.6 Mn 0.3974 Me 0.0026 O 2 @(Al 2 O 3 ) 0.001 ⁇ (TiO 2 ) 0.0015 ) of the present embodiment is as follows:
  • the centrifugal speed is 600 rpm /min, the centrifugation time was 90 min, and then dried at 150°C for 4 h, and finally the cobalt-free nickel-manganese hydroxide precursor Ni 0.6 Mn 0.4 (OH) 2 was obtained;
  • the mixed material is sintered for the first time in a box furnace, the amount of the pot is 3.5kg/bottle, the air atmosphere, the air intake pressure is 0.15Mpa, and the intake flow adopts the bottom intake method, and the flow rate is 10m 3 /h
  • the sintering process is as follows: first use a heating rate of 3°C/min to raise the temperature to 550°C, then increase the temperature to 750°C at a heating rate of 2.5°C/min for 5 hours, and then heat up at a heating rate of 2°C/min
  • the temperature was kept at 950°C for 11 hours, and finally the temperature was lowered to room temperature at a cooling rate of 3°C/min, and then by airflow pulverization, the particle size D50 of the material was pulverized to 3.5 ⁇ m to obtain a cobalt-free layered nickel-manganese cathode material with a single crystal morphology.
  • the shape is shown in Figure 1;
  • the mixture is sintered for the second time in a box furnace.
  • the sintering process is as follows: first, the temperature rises at a rate of 3°C/min to 600°C, then the temperature is kept for 6 hours, and finally the temperature is lowered to room temperature at a cooling rate of 3°C/min. Then, sieved through a 300-mesh sieve to obtain a single-crystal, cobalt-free layered nickel-manganese cathode material coated with Al 2 O 3 , as shown in Figure 2;
  • the titanium sol (wherein Ti is 1500ppm) is diluted 3 times in the alcohol phase and sprayed onto the metal oxide-coated cobalt-free layered nickel-manganese positive electrode material for wet coating, and vacuum drying is performed after the spraying is completed. Dry, the drying temperature is 150 °C, and the drying time is 4h, to obtain a double-coated non-cobalt layered nickel-manganese positive electrode material Li 1.06 Ni 0.6 Mn 0.3974 Me 0.0026 O 2 @(Al 2 O 3 ) 0.001 ⁇ (TiO 2 ) 0.0015 , as shown in Figure 3.
  • the mixed material is sintered for the first time in a box furnace, and the amount of the pot used is 3.5kg/bottle, the air atmosphere, the air intake pressure is 0.15Mpa, and the intake flow adopts the bottom intake mode, and the flow rate is 8m 3 /h
  • the sintering process is as follows: first, the temperature is raised to 550°C at a heating rate of 3°C/min, then the temperature is raised to 750°C at a heating rate of 2.5°C/min for 6 hours, and then the temperature is raised at a heating rate of 2°C/min. The temperature was kept at 945°C for 11 hours, and finally the temperature was lowered to room temperature at a cooling rate of 3°C/min.
  • the particle size D50 of the material was pulverized to 4.5 microns to obtain a cobalt-free layered nickel-manganese cathode material with a quasi-single crystal morphology. , the morphology is shown in Figure 4;
  • the above-mentioned cobalt-free layered nickel-manganese positive electrode material is mixed with TiO 2 and Al 2 O 3 (wherein Ti is 1000 ppm, Al is 1000 ppm), and the mixing speed is 200 rpm/min for 10 min and 250 rpm through a high-speed mixer. /min mixing for 15min, 300rpm/min mixing for 20min to obtain a mixture;
  • the mixture is sintered for the second time in a box furnace.
  • the sintering process is as follows: first, the temperature is lowered to 650°C at a heating rate of 3°C/min, then kept for 6 hours, and finally lowered to a temperature of 2.5°C/min. room temperature, and then sieved through a 300-mesh sieve to obtain a nickel-manganese cathode material with a metal oxide-like single crystal morphology and no cobalt layered layer.
  • the morphology is shown in Figure 5;
  • the mixed material is sintered for the first time in a box furnace, the amount of the pot is 3.5kg/bottle, the air atmosphere, the air intake pressure is 0.15Mpa, and the intake flow adopts the bottom intake method, and the flow rate is 10m 3 /h
  • the sintering process is as follows: first use a heating rate of 3°C/min to raise the temperature to 550°C, then increase the temperature to 750°C at a heating rate of 2.5°C/min for 5 hours, and then heat up at a heating rate of 2°C/min
  • the temperature was kept at 950°C for 11 hours, and finally the temperature was lowered to room temperature at a cooling rate of 3°C/min, and then by airflow pulverization, the particle size D50 of the material was pulverized to 3.5 ⁇ m to obtain a cobalt-free layered nickel-manganese cathode material with a single crystal morphology.
  • the shape is shown in Figure 1;
  • test method of the material prepared in Comparative Example 1 is the same as the test steps (1) (2) (3) in Example 1.
  • Comparative example 2 is the same as the preparation method of the positive grade material obtained in step (1)(2)(3)(4)(5) in Example 1, and the test method of the prepared material is the same as that in test step (1)(2) in Example 1 (3) Same.
  • the centrifugal rotation speed is 600rpm/min, the centrifugal time is 90min, and then dried at 150°C for 4h, and finally the cobalt-free nickel-manganese hydroxide precursor Ni 0.6 Mn 0.4 (OH) 2 is obtained;
  • the mixed material is sintered for the first time in a box furnace, the amount of the pot is 3.5kg/bottle, the air atmosphere, the air inlet pressure is 0.15Mpa, and the air inlet flow adopts the bottom air inlet method, and the flow rate is 8m 3 /h
  • the sintering temperature is as follows: first, the temperature was raised to 550°C at a heating rate of 3°C/min, then the temperature was raised to 750°C at a heating rate of 2.5°C/min for 6 hours, and then the temperature was raised at a heating rate of 2°C/min. The temperature was kept at 945°C for 11 hours, and finally the temperature was lowered to room temperature at a cooling rate of 3°C/min.
  • the particle size D50 of the material was pulverized to 4.5 microns to obtain a cobalt-free layered nickel-manganese cathode material with a quasi-single crystal morphology. ;
  • Table 1 is a comparison of the electrochemical properties of the positive electrode materials of Example 1-2 and Comparative Example 1-3.
  • the highest voltage of Example 1 is 4.4V, the first discharge specific capacity at 0.1C is 186.9mAh/g, and the discharge efficiency is 89.6 %; the discharge specific capacity after 50 cycles is 184.3mAh/g, the capacity retention rate at the 50th cycle is 98.6%, and the capacity retention rate at the 100th cycle is 96.5%, which is obviously better than the electrochemical performance of the cathode material of the comparative example.
  • Doping metal can stabilize the crystal structure of the ternary material, reduce the energy barrier of lithium ion extraction and insertion, and uniformly coat the positive electrode material with metal oxide and then coat the surface of the material with a titanium sol film, reducing the electrolyte.
  • Contact with the positive electrode material reduces the occurrence of side reactions, so the film-like coating and coating of the metal oxide-doped single-crystal positive electrode material by spraying improves the capacity and cycle performance of the battery;
  • the single crystal morphology material and the single crystal morphology material, the capacity and first effect of the single crystal material, as well as the electrical properties of the material at the 50th cycle, and the capacity retention rate at the 100th cycle, are significantly higher than those of the single crystal sample; Comparative Example 2 and Comparative example 3, comparative example 1 and comparative example 2, the first discharge capacity and first effect of the material, as well as the 50-cycle specific capacity and the 100-cycle capacity retention rate are significantly higher, indicating that the material can effectively improve the positive electrode material by coating the metal oxide. Material electrical
  • Fig. 1 is the SEM image of the cobalt-free layered nickel-manganese cathode material obtained in step (3) in Example 1; Primary particles are more uniform.
  • Fig. 2 is the SEM image of the nickel-manganese positive electrode material with single crystal morphology and no cobalt layered by the metal oxide coating obtained in step (5) in Example 1; it can be seen from the figure that the surface of the nickel-manganese positive electrode material is uniformly coated and coated coating agent.
  • Fig. 3 is the SEM image of the film-coated titanium sol and the metal oxide coated nickel-manganese cathode material obtained in step (6) in Example 1 with a single crystal morphology and no cobalt layer; it can be seen from the figure that the surface of the material is sprayed After coating, the surface of the material is uniformly coated with a film-like coating agent.
  • Example 4 is a SEM image of the cobalt-free layered nickel-manganese cathode material obtained in step (3) in Example 2 with a quasi-single-crystal morphology; it can be seen from the figure that the material has a quasi-single-crystal morphology, and the primary particle size is relatively uniform.
  • Fig. 5 is the SEM image of the nickel-manganese positive electrode material with quasi-single-crystal morphology and no cobalt layered coating obtained in step (5) in Example 2; it can be seen from the figure that the surface of the nickel-manganese positive electrode material is uniformly coated coating agent.
  • Example 6 is a schematic diagram of the coating of the cobalt-free layered nickel-manganese positive electrode material after coating with the coating agent of Example 1-2; the double coating of the materials in Example 1 and Example 2 is visually shown from the figure.
  • Figure 7 shows the XRD comparison chart of the materials obtained in Example 1-2 and Comparative Example 1-3. It can be seen that the prepared materials have characteristic peaks (003) and (104) peaks belonging to the ⁇ -NaFeO 2 -type layered structure , and the (006) and (102) peaks and (108) and (110) peaks that are commonly used to characterize the order degree of the two-dimensional layered structure, indicating that the prepared material has a layered structure; ) peak and (102) peak and (108) peak and (110) peak are well split, indicating that the material has an ordered layered structure; secondly, the I(003)/I(104) of the material is greater than 1.2, indicating that the material has an orderly layered structure.
  • the layered structure of the material is relatively complete; the material prepared in Example 1 has the best layered structure, wherein I(003)/I(104) reaches 1.40, (006) peaks and (102) peaks and (108) ) peaks and (110) peaks are significantly split, indicating that the layered structure of the material prepared by uniformly coating the cathode material with metal oxides and then coating the surface of the material with a titanium sol film is better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

提供一种无钴层状的镍锰正极材料及其制备方法和应用,无钴层状的镍锰正极材料的化学式为Li aNi xMn yMe zO 2@M b,Me为Zr、Al、W、Sr、Ti或Mg中的至少一种;M为Al 2O 3、CeO 2、TiO 2、Yb 2O 3、Nb 2O 5、La 2O 3、WO 3、钛溶胶、铝溶胶、钛铝溶胶、异丙醇铝、钛酸丁酯、磷酸氢二铝或钨酸锂中的至少一种。通过金属氧化物包覆后高温烧结达到浅层包覆,材料浅层包覆有利于阻止材料在循环过程中由于充放电过程材料结构变化和内部应力变化产生的微裂纹扩张。

Description

一种无钴的镍锰正极材料及其制备方法和应用 技术领域
本发明属于电池材料技术领域,具体涉及一种无钴的镍锰正极材料及其制备方法和应用。
背景技术
目前市场上能量密度较高的正极材料为镍钴锰三元正极材料,但是由于镍钴锰三元正极材料中含有钴元素,而钴属于稀缺资源,钴价格呈现出增长趋势,这就使得正极材料的价格随着钴含量发生较大波动,故开发无钴正极材料便成为今后的一种趋势,可降低正极材料由于钴的价格造成成本高的问题,其次市场上对于层状镍锰正极材料的报道较少,尤其是中低镍含量无钴正极材料。
因此,亟需研发一种镍含量相对较低的层状无钴正极材料。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种无钴的镍锰正极材料及其制备方法和应用,将正极材料的镍含量做的相对较低,以及通过掺杂高价态金属元素改变正极材料中部分元素价态,可以稳定三元正极材料晶体结构,让锂离子脱出和嵌入,使得能垒降低,使正极材料中存在较多的电子空位,提升正极材料容量。
为实现上述目的,本发明采用以下技术方案:
一种无钴层状的镍锰正极材料,所述无钴层状的镍锰正极材料的化学式为Li aNi xMn yMe zO 2@M b,所述Me为Zr、Al、W、Sr、Ti或Mg中的至少一种;所述M为Al 2O 3、CeO 2、TiO 2、Yb 2O 3、Nb 2O 5、La 2O 3、WO 3、钛溶胶、铝溶胶、钛铝溶胶、异丙醇铝、钛酸丁酯、磷酸氢二铝或钨酸锂中的至少一种,其中0.9≤a≤1.10,0.50≤x≤0.70,0.50≤y≤0.30,0.001≤z≤0.009,0.001≤b≤0.005。
优选地,所述无钴层状的镍锰正极材料的比表面积为0.4~0.9m 2/g,粒度D50为3.0~5.0μm。
一种无钴层状的镍锰正极材料的制备方法,包括以下步骤:
(1)将镍盐与锰盐配置成A溶液,再滴加氢氧化钠与氨水的混合液,搅拌反应,洗涤,烘干,即得镍锰氢氧化物前驱体Ni xMn y(OH) 2
(2)将所述镍锰氢氧化物前驱体Ni xMn y(OH) 2与锂源、掺杂剂混合,进行第一次烧结,粉碎后得到无钴的镍锰正极材料Li aNi xMn yMe zO 2
(3)将所述无钴的镍锰正极材料Li aNi xMn yMe zO 2与包覆剂A混合,经过第二次烧结、过筛,得到金属氧化物包覆的无钴层状的镍锰正极材料;
(4)将包覆剂B喷雾到所述金属氧化物包覆的无钴层状的镍锰正极材料表面进行湿法包覆,真空干燥,即得双重包覆的无钴层状正极材料Li aNi xMn yMe zO 2@M b
优选地,步骤(1)中,所述镍盐为NiSO 4、Ni(CH 3COO) 2、Ni(NO 3) 2、C 2O 4·Ni或NiCl 2中的至少一种。
优选地,步骤(1)中,所述锰盐为MnSO 4、Mn(NO 3) 2、MnC 2O 4或MnCl 2中的至少一种。
优选地,步骤(1)中,所述A溶液浓度按镍锰离子混合液计算,配置浓度要求为2.0mol/L-3.2mol/L。
优选地,步骤(1)中,所述反应的温度为55±5℃,反应的时间为2-10h。
优选地,步骤(2)中,所述锂源为LiOH·H 2O、Li 2CO 3或CH 3COOLi中的至少一种。
优选地,步骤(2)中,所述掺杂剂为ZrO 2、Al 2O 3、Al(OH) 3、WO 3、SrO、TiO 2、Mg(OH) 2或MgO 2中的至少一种。
优选地,步骤(2)中,所述前驱体中的金属与锂盐的金属摩尔含量比Li/M1=0.9~1.10(M1为前驱体中金属Ni、Co、Mn金属摩尔含量)。
优选地,步骤(2)中,所述第一次烧结的温度为450℃-980℃;第一次烧结的时间为5h-27h。
优选地,步骤(3)中,所述包覆剂A为Al 2O 3、CeO 2、TiO 2、Yb 2O 3、Nb 2O 5、La 2O 3或WO 3中的至少一种。
优选地,步骤(3)中,所述第二次烧结的温度为250℃-600℃;第二次烧结的时间为5h-12h。
优选地,步骤(4)中,所述包覆剂B为钛溶胶、铝溶胶、钛铝溶胶、异丙醇铝、 钛酸丁酯、磷酸氢二铝或钨酸锂中的至少一种。
优选地,步骤(4)中,所述双重包覆的无钴层状的镍锰正极材料为表面膜状包覆和金属氧化物包覆的无钴层状的镍锰正极材料。
优选地,步骤(4)中,所述真空干燥的温度为130℃-180℃。
一种电池,包括所述的无钴层状的镍锰正极材料。
相对于现有技术,本发明的有益效果如下:
1.本发明通过金属氧化物包覆后高温烧结达到浅层包覆,材料浅层包覆有利于阻止材料在循环过程中由于充放电过程材料结构变化和内部应力变化产生的微裂纹扩张;通过在材料表面浅层包覆,能有效阻止微裂纹扩张到材料表面,提升材料在高电压下的使用寿命,提高材料循环性能,材料100次循环容量保持率达到96.5%。
2.本发明在材料表面通过湿法喷雾方式将包覆剂致密的包覆在材料表面,形成区别于干法包覆得到的点接触包覆的致密膜状包覆,更有利于阻止材料直接与电解液接触,抑制材料中的阳离子溶出,提升材料的结构稳定性,提升材料的循环性能。
3.本发明用廉价的Mn取代价值昂贵Co或部分的镍,因材料中不含钴,制备成本下降20-30%。并将材料的镍含量做的相对较低,低成本的锰稳定材料结构,以及通过掺杂高价态金属元素改变材料中部分元素价态,可以稳定材料的晶体结构,让锂离子脱出和嵌入能垒降低,使材料中存在较多的电子空位,提升材料容量,如实施例1中,正极材料的首次充电容量达到208.6mAh/g,首次放电容量达到186.9mAh/g,首次放电效率高达89.6%。
附图说明
图1为实施例1中步骤(3)所得单晶形貌的无钴层状的镍锰正极材料SEM图;
图2为实施例1中步骤(5)所得金属氧化物包覆的单晶形貌无钴层状的镍锰正极材料SEM图;
图3为实施例1中步骤(6)所得双重包覆的无钴层状的镍锰正极材料SEM图;
图4为实施例2中步骤(3)所得类单晶形貌的无钴层状的镍锰正极材料SEM图;
图5为实施例2中步骤(5)所得金属氧化物包覆的类单晶形貌无钴层状的镍锰正极材料SEM图;
图6为实施例1-2包覆剂包覆后无钴层状的镍锰正极材料的包覆示意图;
图7为实施例1-2制得的膜状包覆钛溶胶和金属氧化物包覆的单晶形貌无钴层状的镍锰正极材料以及对比例1-3所得的无钴层状的镍锰正极材料的XRD对比图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的无钴层状的镍锰正极材料(Li 1.06Ni 0.6Mn 0.3974Me 0.0026O 2@(Al 2O 3) 0.001·(TiO 2) 0.0015)的制备方法,具体步骤如下:
(1)将NiSO 4与MnSO 4按摩尔比Ni:Mn=6:4配置成2.5mol/L的溶液A,放置于反应搅拌釜中搅拌,搅拌转速25rpm/min,再将氢氧化钠与氨水按5m 3/h流量滴加入配置好的A溶液中,反应温度为55℃~60℃,反应时间2h,反应完成后使用去离子水洗涤后,放置于离心机中进行过滤,离心转速为600rpm/min,离心时间为90min,然后经过150℃烘干,烘干时间为4h,最后得到无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2
(2)将上述无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2与碳酸锂、WO 3和SrO混合(其中锂与氢氧化物前驱体中Ni、Co、Mn金属的摩尔比为1.06:1,掺杂W元素为2000ppm,掺杂Sr元素为1500ppm),经过高速混合机混合,混合转速为300rpm/min混合10min,500rp m/min混合30min,得到混合物料;
(3)将混合物料在箱式炉中进行第一次烧结,使用装钵量为3.5kg/钵,空气气氛,空气进气压力为0.15Mpa,进气流量使用底进气方式,流量为10m 3/h,烧结过程为:先使用3℃/min升温速率将温度升到550℃,然后再2.5℃/min升温速率升温到750℃进行保温5h,然后再已升温速率为2℃/min升温到950℃进行保温11h,最后以3℃/min的降温速率进行降温至室温,再经过气流粉碎,将物料粒度D50粉碎为3.5μm得到单晶形貌的无钴层状的镍锰正极材料,形貌如图1所示;
(4)然后将上述无钴层状的镍锰正极材料与Al 2O 3混合(其中Al为1000ppm),经过高速混合机,混合转速为200rpm/min混合10min,250rpm/min混合15min,300rpm/min混合20min,得到混合物;
(5)将混合物在箱式炉中进行第二次烧结,烧结过程为:先使用3℃/min升温速率 升到600℃,然后进行保温6h,最后以3℃/min降温速率降温到室温,然后经过300目筛网过筛得到Al 2O 3包覆的单晶形貌无钴层状的镍锰正极材料,形貌如图2所示;
(6)将钛溶胶(其中Ti为1500ppm)在酒精相中稀释3倍后喷雾到金属氧化物包覆的无钴层状的镍锰正极材料上进行湿法包覆,喷雾完成后进行真空烘干,烘干温度为150℃,烘干时间4h,得到双重包覆的无钴层状的镍锰正极材料Li 1.06Ni 0.6Mn 0.3974Me 0.0026O 2@(Al 2O 3) 0.001·(TiO 2) 0.0015,如图3所示。
实验测试
(1)正极片制备:以上述实施例1步骤(6)中自制正极材料为活性物质,以NMP为溶剂,将活性物质:SP:聚四氟乙烯按质量比为90:4:6的混合均匀涂在铝箔上,经过辊压等制备得到正极极片。
(2)电池组装:以金属锂作为负极,电解液为1mol/L的LiPF 6,在充满氩气的不锈钢干燥手套箱中完成电池组装。
测试:将组装的电池静置12h后采用电池测试系统进行25℃,电流0.1C,充电电压(2.75~4.4)V下测试其电化学性能。
实施例2
本实施例的无钴层状的镍锰正极材料(Li 1.04Ni 0.6Mn 0.3969Me 0.0031O 2@(Al 2O 3·TiO 2) 0.001·(Li 2WO 4) 0.0015)的制备方法,具体步骤如下:
(1)将NiSO 4与MnSO 4按摩尔比Ni:Mn=6:4配置成2.3mol/L的溶液A,放置于反应搅拌釜中搅拌,搅拌转速优选30rpm/min,再将氢氧化钠与氨水按6.3m 3/h流量滴加入配置好的A溶液中,反应温度50℃~55℃,反应时间2.5h,反应完成后使用去离子水洗涤后,放置于离心机中进行过滤,离心转速为600rpm/min,离心时间为90min,然后经过150℃烘干,烘干时间为4h,最后得到无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2
(2)将上述无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2与碳酸锂、ZrO 2、WO 3和SrO混合(其中锂与氢氧化物前驱体中Ni、Co、Mn金属的摩尔比为1.04:1,掺杂Zr元素为1500ppm,掺杂W元素为1500ppm,掺杂Sr元素为800ppm),经过高速混合机混合,混合转速为300rpm/min混合10min,400rpm/min混合15min,500rpm/min,混合30min,得到混合物料;
(3)将混合物料在箱式炉中进行第一次烧结,使用装钵量为3.5kg/钵,空气气氛, 空气进气压力为0.15Mpa,进气流量使用底进气方式,流量为8m 3/h,烧结过程为:先使用3℃/min升温速率将温度升到550℃,然后再2.5℃/min升温速率升温到750℃进行保温6h,然后再已升温速率为2℃/min升温到945℃进行保温11h,最后以3℃/min的降温速率进行降温至室温,再经过气流粉碎,将物料粒度D50粉碎为4.5微米得到类单晶形貌的无钴层状的镍锰正极材料,形貌如图4所示;
(4)然后将上述无钴层状的镍锰正极材料与TiO 2、Al 2O 3混合(其中Ti为1000ppm,Al为1000ppm),经过高速混合机,混合转速为200rpm/min混合10min,250rpm/min混合15min,300rpm/min混合20min,得到混合物;
(5)将混合物在箱式炉中进行第二次烧结,烧结过程为:先使用3℃/min升温速率降温度升到650℃,然后进行保温6h,最后以2.5℃/min降温速率降温到室温,然后经过300目筛网过筛得到金属氧化物包覆的类单晶形貌无钴层状的镍锰正极材料,形貌如图5所示;
(6)将钨酸锂(其中钨为1500ppm)在水相中稀释3.3倍后喷雾到金属氧化物包覆的无钴层状的镍锰正极材料上进行湿法包覆,喷雾完成后进行真空烘干,烘干温度为140℃,烘干时间4.5h,得到双重包覆的类单晶形貌无钴层状镍锰正极材Li 1.04Ni 0.6Mn 0.3969Me 0.0031O 2@(Al 2O 3·TiO 2) 0.001·(Li 2WO 4) 0.0015
实验测试
(1)正极片制备:以上述实施例2中步骤(5)中自制正极材料为活性物质,以NMP为溶剂,将活性物质:SP:聚四氟乙烯按质量比为90:4:6的混合均匀涂在铝箔上,经过辊压等制备得到正极极片;
(2)电池组装:以金属锂作为负极,电解液为1mol/L的LiPF 6,在充满氩气的不锈钢干燥手套箱中完成电池组装。
测试:将组装的电池静置12h后采用电池测试系统进行25℃,电流0.1C,充电电压(2.75~4.4)V下测试其电化学性能。
对比例1
本对比例的无钴层状的镍锰正极材料(Li 1.06Ni 0.6Mn 0.3974Me 0.0026O 2)的制备方法,具体步骤如下:
(1)将NiSO 4与MnSO 4按摩尔比Ni:Mn=6:4配置成2.5mol/L的溶液A,放置于反应搅拌釜中搅拌,搅拌转速25rpm/min,再将氢氧化钠与氨水按5m 3/h流量滴加入配 置好的A溶液中,反应温度为55℃~60℃,反应时间2h,反应完成后使用去离子水洗涤后,放置于离心机中进行过滤,离心转速为600rpm/min,离心时间为90min,然后经过150℃烘干,烘干时间为4h,最后得到无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2
(2)将上述无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2与碳酸锂、WO 3和SrO混合(其中锂与氢氧化物前驱体中Ni、Co、Mn金属的摩尔比为1.06:1,掺杂W元素为2000ppm,掺杂Sr元素为1500ppm),经过高速混合机混合,混合转速为300rpm/min混合10min,500rp m/min混合30min,得到混合物料;
(3)将混合物料在箱式炉中进行第一次烧结,使用装钵量为3.5kg/钵,空气气氛,空气进气压力为0.15Mpa,进气流量使用底进气方式,流量为10m 3/h,烧结过程为:先使用3℃/min升温速率将温度升到550℃,然后再2.5℃/min升温速率升温到750℃进行保温5h,然后再已升温速率为2℃/min升温到950℃进行保温11h,最后以3℃/min的降温速率进行降温至室温,再经过气流粉碎,将物料粒度D50粉碎为3.5μm得到单晶形貌的无钴层状的镍锰正极材料,形貌如图1所示;
(4)将物料粒度D50粉碎为3.5微米得到单晶形貌的无钴层状的镍锰正极材料在箱式炉中进行第二次烧结,烧结温度为:先使用3℃/min升温速率升到600℃,然后进行保温6h,,最后以3℃/min降温速率降温到室温,然后经过300目筛网过筛得到单晶形貌无钴层状的镍锰正极材料Li 1.06Ni 0.6Mn 0.3974Me 0.0026O 2
对比例1所制备材料测试方法与实施例1中测试步骤(1)(2)(3)一样。
对比例2
本对比例的无钴层状的镍锰正极材料的制备方法,具体步骤如下:
对比例2与实施例1中步骤(1)(2)(3)(4)(5)所得正级材料制备方法一样,所制备材料测试方法与实施例1中测试步骤(1)(2)(3)一样。
对比例3
本对比例的无钴层状的镍锰正极材料的制备方法,具体步骤如下:
(1)将NiSO 4与MnSO 4按摩尔比Ni:Mn=6:4配置成2.3mol/L的溶液A,放置于反应搅拌釜中搅拌,搅拌转速优选30rpm/min,再将氢氧化钠与氨水按6.3m 3/h流量滴加入配置好的A溶液中,反应温度为50℃~55℃,反应时间为2.5h,反应完成后使用去离子水洗涤后,放置于离心机中进行过滤,离心转速为600rpm/min,离心时间90min,然后经过150℃烘干,烘干时间为4h,最后得到无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2
(2)将上述无钴镍锰氢氧化物前驱体Ni 0.6Mn 0.4(OH) 2与碳酸锂,ZrO 2、WO 3和SrO混合(其中锂与氢氧化物前驱体中Ni、Co、Mn金属的摩尔比为1.04:1,掺杂Zr元素为1500ppm,掺杂W元素为1500ppm,掺杂Sr元素为800ppm),经过高速混合机混合,混合转速为300rpm/min混合10min,400rpm/min混合15min,500rpm/min,混合30min,得到混合物料;
(3)将混合物料在箱式炉中进行第一次烧结,使用装钵量为3.5kg/钵,空气气氛,空气进气压力为0.15Mpa,进气流量使用底进气方式,流量为8m 3/h,烧结温度为:先使用3℃/min升温速率将温度升到550℃,然后再2.5℃/min升温速率升温到750℃进行保温6h,然后再已升温速率为2℃/min升温到945℃进行保温11h,最后以3℃/min的降温速率进行降温至室温,再经过气流粉碎,将物料粒度D50粉碎为4.5微米得到类单晶形貌的无钴层状的镍锰正极材料;
(4)将粒度D50粉碎为4.5微米得到类单晶形貌的无钴层状的镍锰正极材料在箱式炉中进行第二次烧结,烧结温度为:先使用3℃/min升温速率降温度升到650℃,然后进行保温6h,,最后以2.5℃/min降温速率降温到室温,然后经过300目筛网过筛得到类单晶形貌无钴层状的镍锰正极材料Li 1.04Ni 0.6Mn 0.3969Me 0.0031O 2
实验测试
(1)正极片制备:以上述对比例3中步骤(4)中自制正极材料为活性物质,以NMP为溶剂,将活性物质:SP:聚四氟乙烯=90:4:6的质量比混合均匀涂在铝箔上,经过辊压等制备得到正极极片;
(2)电池组装:以金属锂作为负极,电解液为1mol/L的LiPF 6,在充满氩气的不锈钢干燥手套箱中完成电池组装。
测试:将组装的电池静置12h后采用电池测试系统进行25℃,电流0.1C,充电电压(2.75~4.4)V下测试其电化学性能。
实施例1-2和对比例1-3的正极材料的电化学性能的比较结果,如表1所示:
表1实施例1-2和对比例1-3的正极材料的电化学性能的比较结果
Figure PCTCN2021142817-appb-000001
表1为实施例1-2和对比例1-3的正极材料的电化学性能的比较,实施例1在最高电压为4.4V,0.1C首次放电比容量为186.9mAh/g,放电效率为89.6%;50圈循环后放电比容量为184.3mAh/g,第50圈容量保持率为98.6%,第100圈容量保持率为96.5%,这明显优于对比例的正极材料的电化学性能,利用掺杂金属可稳定三元材料晶体结构结构,让锂离子脱出和嵌入能垒降低,还有通过金属氧化物均匀包覆正极材料后再通过钛溶胶膜状包覆在材料表面,降低了电解液与正极材料接触,降低副反应的发生,故通过喷雾方式膜状包覆和包覆金属氧化物已掺杂的单晶正极材料提高了电池的容量和循环性能;其次对比1和对比例3,单晶形貌材料和类单晶形貌材料,类单晶材料容量、首效,以及材料第50圈电性能,第100圈容量保持率,明显略高于单晶样品;对比实施例2和对比例3,对比例1和对比例2,材料的首次放电容量和首效以及50圈比容量和第100圈容量保持率明显较高,说明材料通过金属氧化物包覆正极材料,能有效提升材料电性能,提高电池的容量和循环性能。
图1为实施例1中步骤(3)所得单晶形貌的无钴层状的镍锰正极材料SEM图;从图中可得材料为单晶形貌,且材料单晶分散性较好,一次粒子较均匀。
图2为实施例1中步骤(5)所得金属氧化物包覆的单晶形貌无钴层状的镍锰正极材料SEM图;从图中可得镍锰正极材料表面均匀的包覆着包覆剂。
图3为实施例1中步骤(6)所得膜状包覆钛溶胶和金属氧化物包覆的单晶形貌无钴层状的镍锰正极材料SEM图;从图中可得材料表面经过喷雾包覆后,材料表面均匀的包覆了一层膜状的包覆剂。
图4为实施例2中步骤(3)所得类单晶形貌的无钴层状的镍锰正极材料SEM图;从图中可得材料为类单晶形貌,且一次颗粒大小较均一。
图5为实施例2中步骤(5)所得金属氧化物包覆的类单晶形貌无钴层状的镍锰正极材料SEM图;从图中可得镍锰正极材料表面均匀的包覆着包覆剂。
图6为实施例1-2包覆剂包覆后无钴层状的镍锰正极材料的包覆示意图;从图中形象的展示实施例1和实施例2中材料的双重包覆。
图7所示实施例1-2和对比例1-3所得材料XRD对比图,可以看出,所制备材料具有属于α-NaFeO 2型层状结构的特征峰(003)峰,(104)峰,以及常用来表征二维层状结构的有序度的(006)峰与(102)峰以及(108)峰与(110)峰,说明所制备材料具有层状结构;其次材料中的(006)峰与(102)峰以及(108)峰与(110)峰分裂程度较好,说明材料具有有序的层状结构;再其次材料的I(003)/I(104)均大于1.2,说明材料的层状结构较完整;其中实施例1所制备材料具有最好的层状结构,其中I(003)/I(104)达到了1.40的,(006)峰与(102)峰以及(108)峰与(110)峰分裂程度明显较好,说明通过通过金属氧化物均匀包覆正极材料后再通过钛溶胶膜状包覆在材料表面方法所制备材料层状结构较好。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种无钴层状的镍锰正极材料,其特征在于,所述无钴层状的镍锰正极材料的化学式为Li aNi xMn yMe zO 2@M b,所述Me为Zr、Al、W、Sr、Ti或Mg中的至少一种;所述M为Al 2O 3、CeO 2、TiO 2、Yb 2O 3、Nb 2O 5、La 2O 3、WO 3、钛溶胶、铝溶胶、钛铝溶胶、异丙醇铝、钛酸丁酯、磷酸氢二铝或钨酸锂中的至少一种,其中0.9≤a≤1.10,0.50≤x≤0.70,0.50≤y≤0.30,0.001≤z≤0.009,0.001≤b≤0.005。
  2. 根据权利要求1所述的无钴层状的镍锰正极材料,其特征在于,所述无钴层状的镍锰正极材料的比表面积为0.4~0.9m 2/g,粒度D50为3.0~5.0μm。
  3. 权利要求1-2任一项所述的无钴层状的镍锰正极材料的制备方法,其特征在于,包括以下步骤:
    (1)将镍盐与锰盐配置成A溶液,再滴加氢氧化钠与氨水的混合液,搅拌反应,洗涤,烘干,即得镍锰氢氧化物前驱体Ni xMn y(OH) 2
    (2)将所述镍锰氢氧化物前驱体Ni xMn y(OH) 2与锂源、掺杂剂混合,进行第一次烧结,粉碎后得到无钴的镍锰正极材料Li aNi xMn yMe zO 2
    (3)将所述无钴的镍锰正极材料Li aNi xMn yMe zO 2与包覆剂A混合,经过第二次烧结、过筛,得到金属氧化物包覆的无钴层状的镍锰正极材料;
    (4)将包覆剂B喷雾到所述金属氧化物包覆的无钴层状的镍锰正极材料表面进行湿法包覆,真空干燥,即得双重包覆的无钴层状的镍锰正极材料Li aNi xMn yMe zO 2@M b
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中,所述镍盐为NiSO 4、Ni(CH 3COO) 2、Ni(NO 3) 2、C 2O 4·Ni或NiCl 2中的至少一种;步骤(1)中,所述锰盐为MnSO 4、Mn(NO 3) 2、MnC 2O 4或MnCl 2中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述锂源为LiOH·H 2O、Li 2CO 3或CH 3COOLi中的至少一种。
  6. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述掺杂剂为ZrO 2、Al 2O 3、Al(OH) 3、WO 3、SrO、TiO 2、Mg(OH) 2或MgO 2中的至少一种。
  7. 根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述第一次烧结的温度为450℃~980℃;第一次烧结的时间为5h-27h;步骤(3)中,所述第二次烧结的温度为250℃~600℃;第二次烧结的时间为5h-12h。
  8. 根据权利要求3所述的制备方法,其特征在于,步骤(3)中,所述包覆剂A为Al 2O 3、CeO 2、TiO 2、Yb 2O 3、Nb 2O 5、La 2O 3或WO 3中的至少一种。
  9. 根据权利要求3所述的制备方法,其特征在于,步骤(4)中,所述包覆剂B为钛溶胶、铝溶胶、钛铝溶胶混合物、异丙醇铝、钛酸丁酯、磷酸氢二铝或钨酸锂中的至少一种。
  10. 一种电池,其特征在于,包括权利要求1-2任一项所述的无钴层状的镍锰正极材料。
PCT/CN2021/142817 2021-03-29 2021-12-30 一种无钴的镍锰正极材料及其制备方法和应用 WO2022206071A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112021005685.9T DE112021005685T5 (de) 2021-03-29 2021-12-30 Cobaltfreies nickel-mangan-kathodenmaterial und herstellung und anwendung davon
ES202390081A ES2956478A2 (es) 2021-03-29 2021-12-30 Material catódico de níquel-manganeso sin cobalto y preparación y aplicación del mismo.
HU2200275A HUP2200275A1 (hu) 2021-03-29 2021-12-30 Kobaltmentes nikkel-mangán katódanyag, annak elõállítási eljárása és felhasználása
GB2310086.0A GB2618689A (en) 2021-03-29 2021-12-30 Cobalt-free nickel-manganese positive electrode material, preparation method therefor, and application thereof
US18/230,727 US20230373815A1 (en) 2021-03-29 2023-08-07 Cobalt-free nickel-manganese cathode material and preparation and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110335607.5A CN113161548B (zh) 2021-03-29 2021-03-29 一种无钴的镍锰正极材料及其制备方法和应用
CN202110335607.5 2021-03-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/230,727 Continuation US20230373815A1 (en) 2021-03-29 2023-08-07 Cobalt-free nickel-manganese cathode material and preparation and application thereof

Publications (1)

Publication Number Publication Date
WO2022206071A1 true WO2022206071A1 (zh) 2022-10-06

Family

ID=76885391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142817 WO2022206071A1 (zh) 2021-03-29 2021-12-30 一种无钴的镍锰正极材料及其制备方法和应用

Country Status (7)

Country Link
US (1) US20230373815A1 (zh)
CN (1) CN113161548B (zh)
DE (1) DE112021005685T5 (zh)
ES (1) ES2956478A2 (zh)
GB (1) GB2618689A (zh)
HU (1) HUP2200275A1 (zh)
WO (1) WO2022206071A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557544A (zh) * 2022-10-28 2023-01-03 安徽格派新能源有限公司 一种高容量镍锰酸锂的制备方法
WO2024037261A1 (zh) * 2023-07-13 2024-02-22 广东邦普循环科技有限公司 一种双层包覆锂钠复合富锂锰基正极材料的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161548B (zh) * 2021-03-29 2023-02-10 广东邦普循环科技有限公司 一种无钴的镍锰正极材料及其制备方法和应用
CN113571680A (zh) * 2021-07-27 2021-10-29 浙江帕瓦新能源股份有限公司 一种双改性的三元正极材料
CN113745494A (zh) * 2021-07-30 2021-12-03 格林美股份有限公司 一种无钴正极材料的制备方法
CN113735189A (zh) * 2021-08-13 2021-12-03 荆门市格林美新材料有限公司 一种Al、Zr掺杂的高比表面积无钴前驱体的制备方法
CN114039031A (zh) * 2021-11-02 2022-02-11 远景动力技术(江苏)有限公司 钨单包覆正极材料及其制备方法与应用
CN114335415A (zh) * 2021-11-23 2022-04-12 佛山(华南)新材料研究院 一种全固态锂离子电池复合型正极膜片及其制造方法
CN115231624A (zh) * 2022-05-12 2022-10-25 多氟多新能源科技有限公司 一种高性价比无钴镍锰二元材料及其制备方法
CN114853088A (zh) * 2022-05-20 2022-08-05 宁夏汉尧石墨烯储能材料科技有限公司 铝包覆锂离子电池无钴正极材料的制备方法及正极材料
CN114927693B (zh) * 2022-05-30 2024-05-17 远景动力技术(江苏)有限公司 正极活性材料、其制备方法、电化学装置和电子设备
CN115621450A (zh) * 2022-11-02 2023-01-17 广东邦普循环科技有限公司 一种复合包覆改性正极材料及其制备方法与应用
CN116314759B (zh) * 2023-05-16 2023-08-15 湖南长远锂科新能源有限公司 高镍正极材料及其制备方法、锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070066453A (ko) * 2005-12-22 2007-06-27 한국전기연구원 정극 활물질. 그 제조방법 및 이를 구비한 리튬 이차 전지
CN105355905A (zh) * 2015-11-26 2016-02-24 中信大锰矿业有限责任公司大新锰矿分公司 一种高电压改性锂离子电池正极材料镍锰酸锂的制备方法
CN109616655A (zh) * 2018-12-17 2019-04-12 成都市水泷头化工科技有限公司 双层包覆硼酸铁锂/焦磷酸镍锂电池正极材料及制备方法
CN110931797A (zh) * 2019-12-09 2020-03-27 宁波容百新能源科技股份有限公司 一种具有复合包覆层的高镍正极材料及其制备方法
CN111916711A (zh) * 2020-08-18 2020-11-10 成都巴莫科技有限责任公司 一种双核壳结构三元正极材料及其制备方法
CN113161548A (zh) * 2021-03-29 2021-07-23 广东邦普循环科技有限公司 一种无钴的镍锰正极材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5153156B2 (ja) * 2007-02-13 2013-02-27 三洋電機株式会社 非水電解質二次電池用正極の製造方法
CN105322151B (zh) * 2015-11-26 2018-05-08 中信大锰矿业有限责任公司大新锰矿分公司 一种改性锂离子电池正极材料镍锰酸锂的制备方法
CN105428631A (zh) * 2016-01-20 2016-03-23 宁德新能源科技有限公司 一种锂电池正极材料,其制备方法及含有该材料的锂离子电池
CN108123114B (zh) * 2016-11-28 2019-11-29 华为技术有限公司 钴酸锂正极材料及其制备方法以及锂离子二次电池
JP7051312B2 (ja) * 2017-06-14 2022-04-11 三星エスディアイ株式会社 正極活物質、非水二次電池、および正極活物質の製造方法
CN108777296A (zh) * 2018-06-04 2018-11-09 国联汽车动力电池研究院有限责任公司 一种表面改性高镍三元正极材料及其制备和其制成的电池
CN110176581A (zh) * 2019-04-26 2019-08-27 广东邦普循环科技有限公司 一种醇系钛铝溶胶包覆的锂电池正极材料及其制法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070066453A (ko) * 2005-12-22 2007-06-27 한국전기연구원 정극 활물질. 그 제조방법 및 이를 구비한 리튬 이차 전지
CN105355905A (zh) * 2015-11-26 2016-02-24 中信大锰矿业有限责任公司大新锰矿分公司 一种高电压改性锂离子电池正极材料镍锰酸锂的制备方法
CN109616655A (zh) * 2018-12-17 2019-04-12 成都市水泷头化工科技有限公司 双层包覆硼酸铁锂/焦磷酸镍锂电池正极材料及制备方法
CN110931797A (zh) * 2019-12-09 2020-03-27 宁波容百新能源科技股份有限公司 一种具有复合包覆层的高镍正极材料及其制备方法
CN111916711A (zh) * 2020-08-18 2020-11-10 成都巴莫科技有限责任公司 一种双核壳结构三元正极材料及其制备方法
CN113161548A (zh) * 2021-03-29 2021-07-23 广东邦普循环科技有限公司 一种无钴的镍锰正极材料及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557544A (zh) * 2022-10-28 2023-01-03 安徽格派新能源有限公司 一种高容量镍锰酸锂的制备方法
WO2024037261A1 (zh) * 2023-07-13 2024-02-22 广东邦普循环科技有限公司 一种双层包覆锂钠复合富锂锰基正极材料的制备方法

Also Published As

Publication number Publication date
US20230373815A1 (en) 2023-11-23
ES2956478A2 (es) 2023-12-21
GB2618689A (en) 2023-11-15
DE112021005685T5 (de) 2023-12-21
CN113161548A (zh) 2021-07-23
GB202310086D0 (en) 2023-08-16
CN113161548B (zh) 2023-02-10
HUP2200275A1 (hu) 2023-01-28

Similar Documents

Publication Publication Date Title
WO2022206071A1 (zh) 一种无钴的镍锰正极材料及其制备方法和应用
CN113036095B (zh) 一种单晶形貌锂离子电池正极材料的制备方法
WO2020043135A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN103606674B (zh) 一种表面改性处理的钴酸锂材料及其制备方法
CN107403913B (zh) 一种表面修饰的镍钴铝酸锂正极材料及其制备方法
WO2022011939A1 (zh) 无钴正极材料及其制备方法以及锂离子电池正极和锂电池
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
CN112103496B (zh) 一种高镍三元正极材料及其制备方法
WO2021143373A1 (zh) 无钴层状正极材料及其制备方法、锂离子电池
CN109301189B (zh) 一种类单晶型高镍多元材料的制备方法
CN112018341A (zh) 一种高容量高镍正极材料及其制备方法
CN110112388B (zh) 多孔三氧化钨包覆改性的正极材料及其制备方法
WO2023071409A1 (zh) 一种单晶三元正极材料及其制备方法和应用
WO2024031913A1 (zh) 一种层状氧化物正极材料及其制备方法和钠离子电池
CN110034274B (zh) 改性三元正极材料、其制备方法及锂离子电池
CN113644272B (zh) 一种铈铋复合氧化物掺杂锂离子电池正极材料及其制备方法
CN114520318B (zh) 一种动力电池用高镍无钴镍钨锰酸锂正极材料及制备方法
WO2022089205A1 (zh) 一种掺杂型高镍三元材料及其制备方法
CN105006566A (zh) 一种改性正极材料及其制备方法和锂离子电池
WO2024087872A1 (zh) 三元正极材料、其制备方法及应用
WO2023184996A1 (zh) 一种改性高镍三元正极材料及其制备方法
CN111592053A (zh) 一种镍基层状锂离子电池正极材料及其制备方法与应用
CN114524468B (zh) 一种改性单晶超高镍四元ncma正极材料的制备方法
EP4369440A1 (en) High-nickel ternary positive electrode material, preparation method therefor and use thereof, and lithium battery
CN109037669A (zh) 一种改性镍钴铝酸锂正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021005685

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 202310086

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211230

122 Ep: pct application non-entry in european phase

Ref document number: 21934707

Country of ref document: EP

Kind code of ref document: A1