WO2022199203A1 - 光学玻璃、光学元件和光学仪器 - Google Patents

光学玻璃、光学元件和光学仪器 Download PDF

Info

Publication number
WO2022199203A1
WO2022199203A1 PCT/CN2022/070075 CN2022070075W WO2022199203A1 WO 2022199203 A1 WO2022199203 A1 WO 2022199203A1 CN 2022070075 W CN2022070075 W CN 2022070075W WO 2022199203 A1 WO2022199203 A1 WO 2022199203A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
optical glass
optical
sio
components
Prior art date
Application number
PCT/CN2022/070075
Other languages
English (en)
French (fr)
Inventor
毛露路
郝良振
匡波
马赫
马志远
杨发茂
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to JP2023558201A priority Critical patent/JP2024511087A/ja
Priority to EP22773868.9A priority patent/EP4317095A1/en
Publication of WO2022199203A1 publication Critical patent/WO2022199203A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the invention relates to an optical glass, in particular to an optical glass with a refractive index of 1.51-1.58 and an Abbe number of 55-65, as well as an optical element and an optical instrument made of the same.
  • ultraviolet light in the 320-400 nm band has been widely used in anti-counterfeiting banknote inspection, food packaging, metal detection, blood analysis, ultraviolet packaging, ultraviolet lithography and ultraviolet exposure systems.
  • UV packaging, UV lithography and UV exposure systems have higher and higher requirements for precision.
  • the objective lens system of an ultraviolet lithography machine as an example, several or even dozens of large-diameter lenses with different refractive indices and Abbe numbers are required to be combined to achieve high-precision effects.
  • high transmittance and high radiation resistance characteristics are necessary.
  • the glass material is required to have better resistance to UV radiation. If the transmittance of the glass decreases under the irradiation of the ultraviolet band, the glass will heat up seriously, resulting in the deviation of the refractive index of the lens group and the deformation of the curved surface, and the image quality will be reduced.
  • Optical glass with a refractive index of 1.51 to 1.58 and an Abbe number of 55 to 65 belongs to barium crown glass according to the Chinese optical glass classification standard.
  • the transmittance of barium crown glass in the prior art in the ultraviolet band is much lower than that of lithography machines.
  • the use requirements, especially the most commonly used 365nm band, the transmittance of the glass decreases seriously after being irradiated, and it is difficult to apply it to the ultraviolet irradiation device.
  • the technical problem to be solved by the present invention is to provide an optical glass with high transmittance of ultraviolet light and excellent resistance to ultraviolet radiation.
  • Optical glass whose components are expressed in weight percentage, containing: SiO 2 : 55-70%; B 2 O 3 : 2-18%; ZnO: 1-20%; La 2 O 3 +Y 2 O 3 +Gd 2 O 3 : 4-30%; Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 : 0.5-20%; Li 2 O+Na 2 O+K 2 O: 3-15%, wherein (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/(Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 ) is 1.0 to 13.0.
  • the optical glass whose components are expressed in weight percentage, further contains: BaO+SrO+CaO+MgO: 0-15%; and/or Al 2 O 3 : 0-5%; and/or F : 0-3%; and/or clarifying agent: 0-1%, the clarifying agent is one or more of Sb 2 O 3 , SnO, SnO 2 , CeO 2 , Cl, and Br.
  • Optical glass its components are expressed by weight percentage, including SiO 2 : 55-70%; B 2 O 3 : 2-18%; ZnO: 1-20%; La 2 O 3 +Y 2 O 3 +Gd 2 O 3 : 4-30%; Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 : 0.5-20%; Li 2 O+Na 2 O+K 2 O: 3-15%; BaO+SrO+CaO +MgO: 0-15%; Al 2 O 3 : 0-5%; F: 0-3%; clarifying agent: 0-1% composition, the clarifying agent is Sb 2 O 3 , SnO, SnO 2 , CeO 2. One or more of Cl and Br.
  • the components of the optical glass are expressed in weight percentage, wherein: (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/(Ta 2 O 5 +Nb 2 O 5 +TiO 2 + ZrO 2 ) is 1.0 to 13.0, preferably (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/(Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 ) is 2.0 to 10.0, more preferably (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/(Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 ) is 3.0 to 7.0
  • the components of the optical glass are expressed in weight percentage, wherein: La 2 O 3 /Nb 2 O 5 is 3.5-15.0, preferably La 2 O 3 /Nb 2 O 5 is 5.0-14.0, more preferably La 2 O 3 /Nb 2 O 5 is 7.0 to 13.5
  • the components of the optical glass are expressed in weight percentage, wherein: (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2 is 0.07-0.35, preferably (La 2 O 3 + Y 2 O 3 +Gd 2 O 3 )/SiO 2 is 0.08 to 0.3, more preferably (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2 is 0.1 to 0.25.
  • the components of the optical glass are expressed in weight percentage, wherein: (B 2 O 3 +Al 2 O 3 )/SiO 2 is 0.05 to 0.4, preferably (B 2 O 3 +Al 2 O 3 ) /SiO 2 is 0.08 to 0.35, more preferably (B 2 O 3 +Al 2 O 3 )/SiO 2 is 0.1 to 0.3.
  • the components of the optical glass are expressed in weight percentage, wherein: (BaO+SrO+CaO+MgO)/SiO 2 is 0.01-0.25, preferably (BaO+SrO+CaO+MgO)/SiO 2 is 0.01 to 0.2, more preferably (BaO+SrO+CaO+MgO)/SiO 2 is 0.02 to 0.15, still more preferably (BaO+SrO+CaO+MgO)/SiO 2 is 0.02 to 0.1.
  • the components of the optical glass are expressed in weight percentage, wherein: (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/B 2 O 3 is 0.3-6.0, preferably (La 2 O 3 ) 3 +Y 2 O 3 +Gd 2 O 3 )/B 2 O 3 is 0.4 to 5.0, more preferably (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/B 2 O 3 is 0.5 to 3.0.
  • the components of the optical glass are expressed in weight percentage, wherein: SiO 2 : 56-68%, preferably SiO 2 : 57-67%; and/or B 2 O 3 : 4-16%, preferably B 2 O 3 : 5-15%; and/or ZnO: 2-16%, preferably ZnO: 3-12%; and/or La 2 O 3 +Y 2 O 3 +Gd 2 O 3 : 5-20% , preferably La 2 O 3 +Y 2 O 3 +Gd 2 O 3 : 7-15%; and/or Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 : 1-15%, preferably Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 : 2-10%; and/or Li 2 O+Na 2 O+K 2 O: 5-14%, preferably Li 2 O+Na 2 O+K 2 O : 6-13%; and/or BaO+SrO+CaO+MgO: 1-15%, preferably BaO+S
  • the components of the optical glass are expressed in weight percentage, wherein: La 2 O 3 : 4-25%, preferably La 2 O 3 : 6-20%, more preferably La 2 O 3 : 7-14% %; and/or Gd 2 O 3 : 0-8%, preferably Gd 2 O 3 : 0-7%, more preferably Gd 2 O 3 : 0-5%; and/or Y 2 O 3 : 0-10% , preferably Y 2 O 3 : 0-8%, more preferably Y 2 O 3 : 0-5%; and/or Na 2 O: 2-15%, preferably Na 2 O: 4-14%, more preferably Na 2 O: 5-13%; and/or K 2 O: 0-8%, preferably K 2 O: 1-6%, more preferably K 2 O: 2-5%; and/or Li 2 O: 0-5 %, preferably Li 2 O: 0 to 4%, more preferably Li 2 O: 0 to 3%.
  • the components of the optical glass do not contain F; and/or do not contain MgO; and/or do not contain CaO; and/or do not contain Li 2 O.
  • the refractive index n d of the optical glass is 1.51-1.58, preferably 1.52-1.57, more preferably 1.53-1.56, and/or the Abbe number v d is 55-65, preferably 56-63, More preferably, it is 57-60.
  • the ⁇ 365nm of the optical glass is 99.0% or more, preferably 99.2% or more, more preferably 99.4% or more, further preferably 99.5% or more, and/or ⁇ 365nm is 5.0% or less, preferably 2.0% Below, it is more preferable that it is 1.0% or less.
  • the water resistance stability D W of the optical glass is 2 or more types, preferably 1 type; and/or the acid resistance stability D A is 3 types or more, preferably 2 types or more, more preferably 1 type and/or the temperature coefficient of refraction dn/dt is 8.0 ⁇ 10 -6 /°C or less, preferably 7.0 ⁇ 10 -6 /°C or less, more preferably 6.0 ⁇ 10 -6 /°C or less; and/or the upper limit of crystallization
  • the temperature is 1300°C or lower, preferably 1280°C or lower, more preferably 1250°C or lower, and even more preferably 1230°C or lower; and/or the bubble degree is A grade or higher, preferably A 0 grade or higher, more preferably A 00 grade; And/or the streak degree is C-level or higher, preferably B-level or higher; and/or ⁇ n d value is 5 ⁇ 10 -6 or lower, preferably 3 ⁇ 10 -6 or lower, more preferably 2 ⁇ 10 -6 or lower.
  • the glass preform is made of the above-mentioned optical glass.
  • the optical element is made of the above-mentioned optical glass, or made of the above-mentioned glass preform.
  • An optical instrument containing the above-mentioned optical glass, and/or containing the above-mentioned optical element.
  • the optical glass obtained by the present invention has high ultraviolet light transmittance and excellent ultraviolet radiation resistance while having the desired refractive index and Abbe number.
  • optical glass of this invention is not limited to the following embodiment, It can change suitably within the range of the objective of this invention, and can implement.
  • this does not limit the gist of the invention.
  • the optical glass of the present invention may be simply referred to as glass.
  • each component (component) of the optical glass of the present invention will be described below.
  • the content of each component and the total content are all expressed in weight percent (wt%), that is, the content and total content of each component are relative to the total glass substance of the composition converted into oxides. Amounts are expressed in weight percent.
  • the “composition in terms of oxides” refers to the case where the oxides, complex salts, hydroxides, etc. used as raw materials of the optical glass composition of the present invention are decomposed and converted into oxides when melted. , and the total amount of the oxide is taken as 100%.
  • SiO 2 and B 2 O 3 are the main network former components of the glass of the present invention, and the stable structure formed by the two network former components is the basis for realizing high transmittance of ultraviolet light and excellent chemical stability. If the content of SiO 2 is lower than 55%, the transmittance of glass at 365nm is low, and it is difficult to reach more than 99.0%, which is fatal to ultraviolet optical systems with long light path and high illumination requirements, such as lithography machine lenses. , Exposure machine prism, etc. Therefore, the lower limit of the content of SiO 2 is 55%, preferably 56%, and more preferably 57%.
  • the content of SiO 2 is higher than 70%, the refractive index of the glass is difficult to meet the design requirements, and the glass needs to be melted at a higher temperature.
  • the higher melting temperature will lead to an exponential increase in the erosion of the crucible by the molten glass, iron ( The content of Fe) ions, platinum (Pt) ions and other ions that have a strong absorption effect on the ultraviolet band increases rapidly, but leads to a rapid decrease in the transmittance of ultraviolet light, especially at 365 nm.
  • an excessively high content of SiO 2 will also lead to excessive high temperature viscosity of the glass, making it difficult to meet the design requirements for optical uniformity, bubble degree and streak degree. Therefore, the upper limit of the content of SiO 2 is 70%, preferably 68%, and more preferably 67%.
  • a suitable amount of B 2 O 3 can increase the refractive index of the glass, strengthen the structure of the glass, and improve the ultraviolet radiation resistance of the glass. If the content of B 2 O 3 is higher than 18%, the erosion of the crucible by the molten glass increases rapidly, resulting in a rapid decrease in the UV transmittance. If the content of B 2 O 3 is less than 2%, it is difficult to melt the glass. Therefore, the content of B 2 O 3 is 2 to 18%, preferably 4 to 16%, and more preferably 5 to 15%.
  • Al 2 O 3 can improve the tightness of the internal structure of the glass, improve the ultraviolet transmittance and chemical stability of the glass, but if its content exceeds 5%, it is easy to produce stones in the glass, and the internal quality of the glass deteriorates. Therefore, the content of Al 2 O 3 is limited to 5% or less, preferably 4% or less, and more preferably 3% or less.
  • SiO 2 , B 2 O 3 and Al 2 O 3 can all form glass networks.
  • the inventors have found that when the above three network former components coexist, the structure of the glass undergoes complex changes, resulting in high temperature of the glass. Properties such as viscosity and chemical stability change.
  • the value of (B 2 O 3 +Al 2 O 3 )/SiO 2 is preferably 0.05 to 0.4, more preferably 0.08 to 0.35, and even more preferably 0.1 to 0.3.
  • BaO, SrO, CaO and MgO are alkaline earth metal oxides.
  • Traditional barium crown glass contains a large amount of BaO to increase the refractive index of the glass, which is also the origin of barium crown glass varieties.
  • the inventors found through research that although alkaline earth metal oxides can improve the refractive index and stability of the glass, it will make the glass structure insufficiently fastened, resulting in poor UV transmittance and chemical stability of the glass.
  • the total content of alkaline earth metal oxides BaO+SrO+CaO+MgO is higher than 15%, the ultraviolet transmittance of the glass is greatly reduced, so the total content of alkaline earth metal oxides in the present invention is BaO+SrO +CaO+MgO is 0 to 15%.
  • BaO+SrO+CaO+MgO is less than 1%, the effect of improving the glass stability is not obvious, and the glass crystallization tendency increases, which is very important for the forming of large-sized glass (such as glass with a width greater than 330mm and a thickness greater than 30mm). Very unfavorable.
  • the total content of the alkaline earth metal oxides BaO+SrO+CaO+MgO is preferably 1 to 15%, more preferably 1.5 to 10%, and even more preferably 1.5 to 8%.
  • BaO and/or SrO are preferred for improving glass stability, BaO is more preferred, and CaO and/or MgO are not contained.
  • the traditional barium crown glass uses a large amount of alkaline earth metal oxides to increase the refractive index of the glass.
  • the inventors have found that, in some embodiments, if the value of (BaO+SrO+CaO+MgO)/SiO 2 exceeds 0.25, Although the refractive index of the glass can easily meet the design requirements, the glass structure is destroyed and the impurity level increases, resulting in a rapid decrease in the ultraviolet transmittance. Therefore, in the present invention, the value of (BaO+SrO+CaO+MgO)/SiO 2 is preferably 0.25 or less, more preferably 0.2 or less, still more preferably 0.15 or less, and still more preferably 0.1 or less.
  • the value of (BaO+SrO+CaO+MgO)/SiO 2 is preferably 0.01 or more, and more preferably 0.02 or more.
  • Appropriate amount of ZnO can strengthen the network structure of glass, improve the refractive index and ultraviolet transmittance of glass. If the content of ZnO exceeds 20%, the phase separation trend of the glass increases, the UV transmittance decreases, and the streak degree is difficult to meet the design requirements. On the other hand, if the content of ZnO is less than 1%, the effect of improving the UV transmittance of the glass is not obvious, the surface tension of the glass increases, the air bubbles are not easily removed, and the degree of air bubbles is difficult to meet the design requirements. Therefore, the content of ZnO is 1 to 20%, preferably 2 to 16%, and more preferably 3 to 12%.
  • La 2 O 3 , Gd 2 O 3 and Y 2 O 3 are oxides with high refractive index and low dispersion, which can rapidly increase the refractive index of glass and adjust the dispersion of glass in glass.
  • the inventor found through a lot of research that La 2 O 3 , Gd 2 O 3 and Y 2 O 3 all have strong agglomeration in glass, which can improve the stability of the glass structure, and can improve the refractive index at the same time.
  • Ultraviolet transmittance on the other hand, a suitable amount of content can improve the anti-ultraviolet radiation ability of the glass, and can also reduce the viscosity of the glass, making the melting, clarification and forming of the glass easier, and more conducive to obtaining high optical uniformity Sex, bubbles and streaks.
  • the content of La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 is too large, the glass becomes particularly easy to crystallize, and in severe cases, glass ceramization occurs. Therefore, in the present invention, the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 is preferably 4 to 30 % , preferably 5 to 20 %. More preferably, it is 7 to 15%.
  • the content of La 2 O 3 in the present invention is preferably 4-25%, more preferably 6-20%, and further preferably 7-20%.
  • the content of Y 2 O 3 is preferably 0-10%, more preferably 0-8%, and further preferably 0-5%; the content of Gd 2 O 3 is preferably 0-8%, more preferably 0- 7%, more preferably 0 to 5%.
  • the inventors have found through extensive experimental research that, in some embodiments, if the value of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2 is higher than 0.35, the stability and devitrification resistance of the glass will change. Poor, and in severe cases, ceramics are formed even during the flow of the glass liquid. If the value of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2 is lower than 0.07, the viscosity of the glass at 1400°C will exceed 400 poise, and at high viscosity, the degree of bubbles and streaks in the production process will be reduced.
  • the value of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2 is preferably 0.07 to 0.35, and more preferably (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2
  • the value of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/SiO 2 is more preferably 0.1 to 0.25.
  • the value of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/B 2 O 3 exceeds 6.0, the devitrification resistance of the glass becomes poor; if (La 2 O 3 ) When the value of 3 +Y 2 O 3 +Gd 2 O 3 )/B 2 O 3 is less than 0.3, the chemical stability of the glass deteriorates, and the ultraviolet transmittance decreases. Therefore, the value of (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/B 2 O 3 is preferably 0.3 to 6.0, more preferably 0.4 to 5.0, and even more preferably 0.5 to 3.0.
  • Ta 2 O 5 , Nb 2 O 5 , TiO 2 , and ZrO 2 are oxides with high refraction and high dispersion. In glass, they can improve the anti-ultraviolet radiation performance of glass, and can also improve the refractive index and dispersion of glass.
  • the total content of Ta 2 O 5 , Nb 2 O 5 , TiO 2 , and ZrO 2 is set to be 0.5% or more, Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 to obtain the above effects, and Ta 2 O is preferable 5 +Nb 2 O 5 +TiO 2 +ZrO 2 is 1% or more, more preferably 2% or more.
  • Ta 2 O 5 , Nb 2 O 5 , TiO 2 and ZrO 2 all have the effect of reducing the UV transmittance in glass . If the content of Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 exceeds 20%, the ultraviolet transmittance of the glass, especially the transmittance at 365nm, is difficult to meet the design requirements. Therefore, Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 is 20% or less, preferably 15% or less, and more preferably 10% or less.
  • the ratio between Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 (La 2 O 3 +Y 2 O 3 +Gd 2 O 3 )/(Ta 2 O 5 +Nb 2 O 5 +TiO 2 +ZrO 2 ) is between 1.0 and 13.0, preferably between 2.0 and 10.0, more preferably between 3.0 and 7.0, it is possible to reduce the glass At the same time of the upper limit temperature of crystallization, the ultraviolet transmittance and radiation resistance of the glass are improved.
  • the ultraviolet radiation resistance of the glass is comparable to that of the glass. Glass has the best stability.
  • Li 2 O, Na 2 O and K 2 O are alkali metal oxides.
  • the high temperature viscosity of the glass can be reduced, and free oxygen can be provided to strengthen the network structure of the glass, thereby improving the ultraviolet transmittance of the glass.
  • Na 2 O and K 2 O have the strongest ability, but K 2 O has a stronger ability to reduce the chemical stability of glass than Na 2 O, so it needs to be more stringent Limit the content of K 2 O. If the content of Na 2 O and K 2 O is too high, the glass raw material will be seriously volatilized in the production process, the stability of the refractive index will not meet the design requirements, and the stability of the glass will be deteriorated. Therefore, the content of Na 2 O is preferably 2-15%, more preferably 4-14%, and still more preferably 5-13%; the content of K 2 O is preferably 0-8%, more preferably 1-6%, More preferably, it is 2 to 5%.
  • Li 2 O has the strongest ability to reduce the high temperature viscosity.
  • the high temperature viscosity design fails to meet the requirements, a small amount of Li 2 O can be contained, but if the content exceeds 5%, the glass will crystallize seriously, and the glass forming viscosity will be severe. Small, it is difficult to meet the requirements of thick gauge molding. Therefore, the content of Li 2 O is limited to 5% or less, preferably 4% or less, more preferably 3% or less, and further preferably not containing Li 2 O.
  • Li 2 O+Na 2 O+K 2 O is preferably 3 to 15%, more preferably 5 to 14%, and even more preferably 6 to 13%.
  • F fluorine
  • the content of F is controlled to be 3% or less, preferably 2% or less, and more preferably 1% or less.
  • the UV transmittance and UV radiation resistance of the glass are sufficient, it is more preferable not to contain F.
  • one or more components of Sb 2 O 3 , SnO, SnO 2 , CeO 2 , Cl and Br are contained in 0-1% as a clarifying agent, so that the clarifying effect of the glass can be improved.
  • the content is 0 to 0.8%, more preferably 0 to 0.5%.
  • the clarifying agent is Sb 2 O 3 .
  • the ultraviolet transmittance of the glass decreases.
  • the glass of the present invention even if the oxides of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained in small amounts alone or in combination, the glass will be colored, and in the visible light region Specified wavelengths are absorbed, thereby weakening the property of the present invention to improve the visible light transmittance effect. Therefore, it is preferable not to actually contain the optical glass, which requires transmittance at wavelengths in the visible light region.
  • Oxides of Th, Cd, Tl, Os, Be, and Se tend to be used in a controlled manner as harmful chemical substances in recent years, not only in the glass manufacturing process, but also in the processing process and disposal after productization. Action is required. Therefore, in the case of attaching importance to the influence on the environment, it is preferable not to actually contain them except for unavoidable mixing. Thereby, the optical glass becomes practically free of substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special measures for environmental measures.
  • the optical glass of the present invention preferably does not contain As 2 O 3 and PbO.
  • Does not contain and "0%” described herein means that the compound, molecule or element, etc. is not intentionally added as a raw material to the optical glass of the present invention; however, as a raw material and/or equipment for producing optical glass, there may be some Impurities or components that are not intentionally added will be contained in a small or trace amount in the final optical glass, and this situation is also within the protection scope of the patent of the present invention.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the methods specified in GB/T 7962.1-2010.
  • the lower limit of the refractive index (n d ) of the optical glass of the present invention is 1.51, preferably the lower limit is 1.52, and more preferably the lower limit is 1.53.
  • the upper limit of the refractive index (n d ) of the optical glass of the present invention is 1.58, preferably the upper limit is 1.57, and more preferably the upper limit is 1.56.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 55, preferably the lower limit is 56, and more preferably the lower limit is 57.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 65, preferably the upper limit is 63, and more preferably the upper limit is 60.
  • the water resistance stability (D W ) of the optical glass of the present invention is 2 or more types, preferably 1 type.
  • the acid resistance stability (D A ) (powder method) of optical glass is tested according to the method specified in "GB/T 17129".
  • the acid resistance stability (D A ) of the optical glass of the present invention is three or more types, preferably two or more types, and more preferably one type.
  • the temperature coefficient of refractive index (dn/dt) of optical glass is in accordance with the method specified in "GB/T 7962.4-2010", and the temperature coefficient of refractive index (d line dn/dtrelative (10 -6 /°C) of optical glass is tested in the range of 40 to 60 °C. ))
  • the temperature coefficient of refractive index (dn/dt) of the optical glass of the present invention is 8.0 ⁇ 10 ⁇ 6 /°C or less, preferably 7.0 ⁇ 10 ⁇ 6 /°C or less, and more preferably 6.0 ⁇ 10 ⁇ 6 /°C °C or lower.
  • the ultraviolet transmittance of the optical glass of the present invention is characterized by the internal transmittance at 365 nm, the internal transmittance at 365 nm ( ⁇ 365nm ) is tested according to the method specified in GB/T7962.12-2010, and the thickness of the glass sample is 10 mm.
  • the optical glass of the present invention has an internal transmittance ( ⁇ 365nm ) at 365 nm of 99.0% or more, preferably 99.2% or more, more preferably 99.4% or more, and further preferably 99.5% or more.
  • the ultraviolet radiation resistance performance of optical glass is characterized by ⁇ 365nm , that is, the internal transmittance resistance to ultraviolet radiation attenuation performance at 365nm.
  • the original internal transmittance ⁇ 365nm-1 and then irradiated with a high-pressure mercury lamp, the power density of the glass surface is 1W/cm 2 , and after 2 hours of irradiation, the test again at 365nm according to the method specified in "GB/T7962.12-2010"
  • the internal transmittance ⁇ 365nm-2 the difference between two tests, ⁇ 365nm-1 - ⁇ 365nm-2 , is the attenuation of the glass at this wavelength, and the thickness of the glass sample is 10mm.
  • the optical glass of the present invention has an internal transmittance at 365 nm that is resistant to UV radiation decay ( ⁇ 365 nm ) of 5.0% or less, preferably 2.0% or less, and more preferably 1.0% or less.
  • the crystallization performance of the glass was measured by the temperature gradient furnace method.
  • the glass was made into a sample of 180mm ⁇ 1mm0 ⁇ 10mm, the side was polished, and it was placed in a furnace with a temperature gradient (10°C/cm) and heated to a maximum temperature of 1400. °C, after holding for 4 hours, take it out and cool it to room temperature naturally, observe the crystallization of the glass under a microscope, and the maximum temperature corresponding to the appearance of crystals in the glass is the upper limit temperature of the crystallization of the glass.
  • the crystallization upper limit temperature of the optical glass of the present invention is 1300°C or lower, preferably 1280°C or lower, more preferably 1250°C or lower, and further preferably 1230°C or lower.
  • the bubble degree of optical glass is measured and graded according to the method specified in GB/T 7962.8-2010.
  • the bubble degree of the optical glass of the present invention is A grade or higher, preferably A 0 grade or higher, and more preferably A 00 grade.
  • the fringe degree test method of optical glass is as follows: a streak meter is composed of a point light source and a lens, and compared with the standard sample from the direction where the fringes are most easily seen, it is divided into four grades according to the provisions of Table 1.
  • the streak degree of the optical glass of the present invention is C-level or higher, preferably B-level or higher.
  • optical uniformity of optical glass is represented by the maximum refractive index deviation ⁇ n d of each part in a glass sample, which is tested according to the test method specified in GB/T 7962.2-2010.
  • the ⁇ n d value of the optical glass of the present invention is 5 ⁇ 10 -6 or less, preferably 3 ⁇ 10 -6 or less, and more preferably 2 ⁇ 10 -6 or less.
  • the manufacturing method of the optical glass of the present invention is as follows: the glass of the present invention is produced by using conventional raw materials and conventional processes, using carbonates, nitrates, sulfates, hydroxides, oxides, etc.
  • the good charge is put into a smelting furnace (such as platinum crucible, quartz crucible, etc.) at 1200-1600 ° C for melting, and after clarification, stirring and homogenization, a homogeneous molten glass without bubbles and no undissolved substances is obtained.
  • This molten glass is cast in a mold and annealed.
  • a smelting furnace such as platinum crucible, quartz crucible, etc.
  • a glass preform can be produced from the optical glass produced by using, for example, direct drop molding, grinding, or compression molding such as thermoforming. That is, it is possible to produce a glass preform by direct precision drop molding of molten optical glass, or to produce a glass preform by mechanical processing such as grinding and grinding, or to produce a preform for press molding from optical glass, This preform is subjected to reheat press molding, followed by grinding to produce a glass preform. It should be noted that the means for preparing the glass preform is not limited to the above-mentioned means.
  • the optical glass of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the optical glass of the present invention, and to perform reheat press molding, precision press molding, etc. using the preform. , making optical components such as lenses and prisms.
  • Both the glass preform and the optical element of the present invention are formed from the optical glass of the present invention described above.
  • the glass preform of the present invention has the excellent characteristics of optical glass;
  • the optical element of the present invention has the excellent characteristics of optical glass, and can provide various optical elements such as lenses and prisms with high optical value.
  • lenses include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
  • optical element formed by the optical glass of the present invention can be used to manufacture optical instruments such as photographic equipment, imaging equipment, projection equipment, display equipment, lithography machine, vehicle-mounted equipment and monitoring equipment.
  • the optical glass which has the composition shown in Table 2 - Table 3 was obtained by the manufacturing method of the said optical glass.
  • the properties of each glass were measured by the test method according to the present invention, and the measurement results are shown in Tables 2 to 3.
  • a concave meniscus lens, a convex meniscus lens, and a biconvex lens are produced by using the glass obtained in the optical glass Examples 1 to 13, for example, by means of grinding, or by means of press molding such as reheat press molding and precision press molding. , Bi-concave lenses, plano-convex lenses, plano-concave lenses and other lenses, prisms and other prefabricated parts.
  • the preforms obtained in the above glass preform examples are annealed, and the refractive index is fine-tuned while reducing the internal stress of the glass, so that the optical properties such as the refractive index reach desired values.
  • each preform is ground and polished to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
  • An antireflection film may also be coated on the surface of the obtained optical element.
  • optical elements produced by the above-mentioned optical element embodiments are optically designed and formed by using one or more optical elements to form optical components or optical assemblies, which can be used in, for example, imaging equipment, sensors, microscopes, medical technology, digital projection, communications, optical communications Technology/information transmission, optics/lighting in the automotive field, lithography, excimer lasers, wafers, computer chips and integrated circuits and electronic devices including such circuits and chips.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种光学玻璃,所述光学玻璃的组分以重量百分比表示,含有:SiO 2:55~70%;B 2O 3:2~18%;ZnO:1~20%;La 2O 3+Y 2O 3+Gd 2O 3:4~30%;Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:0.5~20%;Li 2O+Na 2O+K 2O:3~15%,其中(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为1.0~13.0。通过合理的组分设计,本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,紫外光透过率高,耐紫外辐照性能优异。

Description

光学玻璃、光学元件和光学仪器 技术领域
本发明涉及一种光学玻璃,尤其是涉及一种折射率为1.51~1.58,阿贝数为55~65的光学玻璃,以及由其制成的光学元件和光学仪器。
背景技术
近年来,320~400nm波段的紫外光在防伪验钞、食品包装、金属探测、血液分析、紫外封装、紫外光刻和紫外曝光系统等领域广泛应用。随着半导体制造领域的快速发展,紫外封装、紫外光刻以及紫外曝光系统对精度的要求越来越高。以紫外光刻机物镜系统为例,需要数枚甚至十数枚不同折射率与阿贝数的大口径镜片进行组合,以实现高精度的效果。在320~400nm波段的紫外光学系统中,高透过率与高的耐辐照特性是必须的。以光刻或曝光等高精度光学系统为例,为了获得更高的产率,需要使用千瓦级或更高功率的紫外光源,在如此高的功率下,要求玻璃材料具备较好的抗紫外辐照性能,若玻璃在紫外波段辐照下透过率降低,玻璃会发热严重,造成镜片组折射率偏离以及曲面变形,成像质量降低。
折射率在1.51~1.58,阿贝数在55~65范围内的光学玻璃根据中国光学玻璃分类标准属于钡冕玻璃,现有技术中的钡冕玻璃在紫外波段透过率远低于光刻机使用要求,尤其是最常用的365nm波段,玻璃经辐照后透过率下降严重,难以应用于紫外辐照装置中。
发明内容
本发明所要解决的技术问题是提供一种紫外光透过率高,耐紫外辐照性能优异的光学玻璃。
本发明解决技术问题采用的技术方案是:
光学玻璃,其组分以重量百分比表示,含有:SiO 2:55~70%;B 2O 3:2~18%;ZnO:1~20%;La 2O 3+Y 2O 3+Gd 2O 3:4~30%;Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:0.5~20%;Li 2O+Na 2O+K 2O:3~15%,其中(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2) 为1.0~13.0。
进一步的,所述的光学玻璃,其组分以重量百分比表示,还含有:BaO+SrO+CaO+MgO:0~15%;和/或Al 2O 3:0~5%;和/或F:0~3%;和/或澄清剂:0~1%,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种。
光学玻璃,其组分以重量百分比表示,由SiO 2:55~70%;B 2O 3:2~18%;ZnO:1~20%;La 2O 3+Y 2O 3+Gd 2O 3:4~30%;Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:0.5~20%;Li 2O+Na 2O+K 2O:3~15%;BaO+SrO+CaO+MgO:0~15%;Al 2O 3:0~5%;F:0~3%;澄清剂:0~1%组成,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为1.0~13.0,优选(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为2.0~10.0,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为3.0~7.0
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:La 2O 3/Nb 2O 5为3.5~15.0,优选La 2O 3/Nb 2O 5为5.0~14.0,更优选La 2O 3/Nb 2O 5为7.0~13.5
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2为0.07~0.35,优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2为0.08~0.3,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2为0.1~0.25。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(B 2O 3+Al 2O 3)/SiO 2为0.05~0.4,优选(B 2O 3+Al 2O 3)/SiO 2为0.08~0.35,更优选(B 2O 3+Al 2O 3)/SiO 2为0.1~0.3。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(BaO+SrO+CaO+MgO)/SiO 2为0.01~0.25,优选(BaO+SrO+CaO+MgO)/SiO 2为0.01~0.2,更优选(BaO+SrO+CaO+MgO)/SiO 2为0.02~0.15,进一步优选(BaO+SrO+CaO+MgO)/SiO 2为0.02~0.1。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3为0.3~6.0,优选(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3为0.4~5.0,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3为0.5~3.0。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:SiO 2:56~68%,优选SiO 2:57~67%;和/或B 2O 3:4~16%,优选B 2O 3:5~15%;和/或ZnO:2~16%,优选ZnO:3~12%;和/或La 2O 3+Y 2O 3+Gd 2O 3:5~20%,优选La 2O 3+Y 2O 3+Gd 2O 3:7~15%;和/或Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:1~15%,优选Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:2~10%;和/或Li 2O+Na 2O+K 2O:5~14%,优选Li 2O+Na 2O+K 2O:6~13%;和/或BaO+SrO+CaO+MgO:1~15%,优选BaO+SrO+CaO+MgO:1.5~10%,更优选BaO+SrO+CaO+MgO:1.5~8%;和/或Al 2O 3:0~4%,优选Al 2O 3:0~3%;和/或F:0~2%,优选F:0~1%;和/或澄清剂:0~0.8%,优选澄清剂:0~0.5%,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种。
进一步的,所述的光学玻璃,其组分以重量百分比表示,其中:La 2O 3:4~25%,优选La 2O 3:6~20%,更优选La 2O 3:7~14%;和/或Gd 2O 3:0~8%,优选Gd 2O 3:0~7%,更优选Gd 2O 3:0~5%;和/或Y 2O 3:0~10%,优选Y 2O 3:0~8%,更优选Y 2O 3:0~5%;和/或Na 2O:2~15%,优选Na 2O:4~14%,更优选Na 2O:5~13%;和/或K 2O:0~8%,优选K 2O:1~6%,更优选K 2O:2~5%;和/或Li 2O:0~5%,优选Li 2O:0~4%,更优选Li 2O:0~3%。
进一步的,所述的光学玻璃,其组分中不含有F;和/或不含有MgO;和/或不含有CaO;和/或不含有Li 2O。
进一步的,所述的光学玻璃的折射率n d为1.51~1.58,优选为1.52~1.57,更优选为1.53~1.56,和/或阿贝数v d为55~65,优选为56~63,更优选为57~60。
进一步的,所述的光学玻璃的τ 365nm为99.0%以上,优选为99.2%以上,更优选为99.4%以上,进一步优选为99.5%以上,和/或Δτ 365nm为5.0%以下,优选为2.0%以下,更优选为1.0%以下。
进一步的,所述的光学玻璃的耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为3类以上,优选为2类以上,更优选为1类;和/或折射率温度系数dn/dt为8.0×10 -6/℃以下,优选为7.0×10 -6/℃以下,更优选为6.0×10 -6/℃以下;和/或析晶上限温度为1300℃以下,优选为1280℃以下,更优选为1250℃以下,进一步优选为1230℃以下;和/或气泡度为A级以上,优选为A 0级以上,更优选为A 00级;和/或条纹度为C级以上,优选为B级以上;和/或Δn d值为5×10 -6以下,优选为3×10 -6以下,更优选为2×10 -6以下。
玻璃预制件,采用上述的光学玻璃制成。
光学元件,采用上述的光学玻璃制成,或采用上述的玻璃预制件制成。
光学仪器,含有上述的光学玻璃,和/或含有上述的光学元件。
本发明的有益效果是:通过合理的组分设计,本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,紫外光透过率高,耐紫外辐照性能优异。
具体实施方式
下面,对本发明的光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨,在以下内容中,本发明光学玻璃有时候简称为玻璃。
[光学玻璃]
下面对本发明光学玻璃的各组分(成分)范围进行说明。在本发明中,如果没有特殊说明,各组分的含量、总含量全部采用重量百分比(wt%)表示,即,各组分的含量、总含量相对于换算成氧化物的组成的玻璃物质总量的重量百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的光学玻璃组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作为100%。
除非在具体情况下另外指出,本发明所列出的数值范围包括上限和下 限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
<必要组分和任选组分>
SiO 2和B 2O 3是本发明玻璃的主要网络形成体组分,此两种网络形成体组分形成的稳固结构是实现紫外光高透过率和优异化学稳定性的基础。若SiO 2的含量低于55%,玻璃365nm处的透过率较低,难以达到99.0%以上,这对通光光程长、照度要求高的紫外光学系统是致命的,如光刻机镜片、曝光机棱镜等。因此,SiO 2的含量下限为55%,优选下限为56%,更优选下限为57%。若SiO 2的含量高于70%,玻璃的折射率难以达到设计要求,同时玻璃需要在更高温度下熔制,较高的熔炼温度会导致玻璃液对坩埚的侵蚀呈指数级增长,铁(Fe)离子、铂(Pt)离子等对紫外波段有强烈吸收作用的离子含量快速上升,反而导致紫外光透过率、尤其是365nm处透过率快速下降。另外,SiO 2的含量过高还会导致玻璃的高温粘度过大,光学均匀性、气泡度和条纹度等难以达到设计要求。因此,SiO 2的含量上限为70%,优选上限为68%,更优选上限为67%。
合适量的B 2O 3可以提升玻璃的折射率,加固玻璃的结构,使玻璃的耐紫外辐照性能升高。若B 2O 3的含量高于18%,玻璃液对坩埚的侵蚀快速上升,导致紫外透过率快速下降。若B 2O 3的含量低于2%,玻璃熔化困难。因此,B 2O 3的含量为2~18%,优选为4~16%,更优选为5~15%。
Al 2O 3可以提升玻璃内部结构的紧密性,提高玻璃的紫外透过率和化学稳定性,但若其含量超过5%,玻璃内部容易产生结石,玻璃内在质量变差。因此,Al 2O 3的含量限定为5%以下,优选为4%以下,更优选为3%以下。
SiO 2、B 2O 3和Al 2O 3均可以形成玻璃网络,发明人大量实验研究发现,当上述三种网络形成体组分共存时,玻璃的结构发生复杂的变化,从而导致玻璃的高温粘度和化学稳定性等性能发生变化。在一些实施方式中,通过控制(B 2O 3+Al 2O 3)/SiO 2的值在0.05~0.4范围内,可使玻璃在具有优异 化学稳定性的同时,防止高温粘度变大。因此,(B 2O 3+Al 2O 3)/SiO 2的值优选为0.05~0.4,更优选为0.08~0.35之间,进一步优选为0.1~0.3。
BaO、SrO、CaO和MgO为碱土金属氧化物,传统的钡冕玻璃中含有大量的BaO用于提升玻璃的折射率,这也是钡冕玻璃品种的由来。发明人通过研究发现,虽然碱土金属氧化物可以提升玻璃的折射率和稳定性,但会使玻璃结构不够紧固,从而导致玻璃的紫外透过率和化学稳定性较差。在本发明玻璃中,碱土金属氧化物的合计含量BaO+SrO+CaO+MgO若高于15%,玻璃的紫外透过率大幅度下降,因此本发明中碱土金属氧化物的合计含量BaO+SrO+CaO+MgO为0~15%。另一方面,若BaO+SrO+CaO+MgO低于1%,改善玻璃稳定性效果不明显,玻璃析晶倾向增加,这对大规格玻璃(如宽度大于330mm、厚度大于30mm的玻璃)的成型非常不利。因此,本发明中碱土金属氧化物的合计含量BaO+SrO+CaO+MgO优选为1~15%,更优选为1.5~10%,进一步优选为1.5~8%。碱土金属氧化物的种类选择方面,优选为BaO和/或SrO对玻璃稳定性的改善最为有利,更优选为BaO,进一步优选不含有CaO和/或MgO。
传统的钡冕玻璃使用大量的碱土金属氧化物来提升玻璃的折射率,发明人大量实验研究发现,在一些实施方式中,若(BaO+SrO+CaO+MgO)/SiO 2的值超过0.25,玻璃的折射率虽然能够较易达到设计要求,但是玻璃结构被破坏,杂能级增多,导致紫外透过率快速下降。因此,本发明中(BaO+SrO+CaO+MgO)/SiO 2的值优选为0.25以下,更优选为0.2以下,进一步优选为0.15以下,更进一步优选为0.1以下。另一方面,通过使(BaO+SrO+CaO+MgO)/SiO 2的值在0.01以上,可防止玻璃的稳定性和化学稳定性下降。因此,(BaO+SrO+CaO+MgO)/SiO 2的值优选为0.01以上,更优选为0.02以上。
合适量的ZnO可以加强玻璃的网络结构,提升玻璃的折射率和紫外透过率。若ZnO的含量超过20%,玻璃分相趋势增加,紫外透过率反而下降,同时条纹度难以满足设计要求。另一方面,若ZnO的含量低于1%,提升玻 璃紫外透过率的效果不明显,玻璃表面张力增加,气泡不易排除,气泡度难以达到设计要求。因此,ZnO的含量为1~20%,优选为2~16%,更优选为3~12%。
La 2O 3、Gd 2O 3、Y 2O 3属于高折射率低色散氧化物,在玻璃中可以快速提升玻璃的折射率,调节玻璃的色散。发明人通过大量研究发现,La 2O 3、Gd 2O 3、Y 2O 3在玻璃中均有强烈的集聚性,可以提升玻璃结构的稳固性,在提升折射率的同时还可以提升玻璃的紫外透过率;另一方面,合适量的含有可以提升玻璃的抗紫外辐照能力,还可以降低玻璃的粘度,使得玻璃的熔化、澄清和成型更为容易,更有利于获得高的光学均匀性、气泡度与条纹度。但是,La 2O 3、Gd 2O 3、Y 2O 3若含量过多,玻璃变得特别容易析晶,严重时甚至出现玻璃陶瓷化。因此,本发明中优选La 2O 3、Gd 2O 3、Y 2O 3的合计含量La 2O 3+Y 2O 3+Gd 2O 3为4~30%,优选为5~20%,更优选为7~15%。
通过不断的试验研究,本发明人发现在提升紫外透过率方面,La 2O 3优于Y 2O 3,Y 2O 3优于Gd 2O 3;在提升玻璃抗紫外辐照性能方面,La 2O 3稍优于Gd 2O 3,Gd 2O 3优于Y 2O 3。因此,综合玻璃紫外透过率、抗紫外辐照和抗析晶等性能,本发明中的La 2O 3的含量优选为4~25%,更优选为6~20%,进一步优选为7~14%;Y 2O 3的含量优选为0~10%,更优选为0~8%,进一步优选为0~5%;Gd 2O 3的含量优选为0~8%,更优选为0~7%,进一步优选为0~5%。
发明人通过大量实验研究发现,在一些实施方式中,若(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2的值高于0.35,玻璃的稳定性和抗析晶性能变差,严重时甚至在玻璃液流动过程中就形成陶瓷。若(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2的值低于0.07,玻璃在1400℃的粘度会超过400泊,在高的粘度下,生产过程中气泡度与条纹度难以达到设计要求,同时玻璃的紫外透过率难以达到设计要求;更为重要的是,玻璃的结构会趋于松弛,玻璃的抗紫外辐照性能下降。因此,优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2的值为0.07~0.35,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2的值为0.08~0.3,进一步优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2的值为0.1~0.25。
在本发明的一些实施方式中,若(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3的值超过6.0,玻璃的抗析晶性能变差;若(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3的值低于0.3,玻璃的化学稳定性劣化,紫外透过率下降。因此,优选(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3的值为0.3~6.0,更优选为0.4~5.0,进一步优选为0.5~3.0。
Ta 2O 5、Nb 2O 5、TiO 2、ZrO 2属于高折射高色散氧化物,在玻璃中可以提升玻璃的抗紫外辐照性能,同时还可以提升玻璃的折射率与色散。本发明中使Ta 2O 5、Nb 2O 5、TiO 2、ZrO 2的合计含量Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2在0.5%以上以获得上述效果,优选Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2为1%以上,更优选为2%以上。另一方面,Ta 2O 5、Nb 2O 5、TiO 2、ZrO 2在玻璃中均有降低紫外透过率的作用,若Ta 2O 5、Nb 2O 5、TiO 2、ZrO 2的合计含量Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2超过20%,玻璃的紫外透过率,尤其是365nm处的透过率难以达到设计要求。因此,Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2为20%以下,优选为15%以下,更优选为10%以下。
在玻璃生产过程中,玻璃的析晶上限温度若超过1300℃,玻璃液容易在熔炼炉各个连接环节中堵塞,导致玻璃的透过率、内在质量以及条纹度等达不到设计要求。本发明人通过大量实验研究发现,在一些实施方式中,通过控制La 2O 3、Y 2O 3、Gd 2O 3的合计含量La 2O 3+Y 2O 3+Gd 2O 3与Ta 2O 5、Nb 2O 5、TiO 2、ZrO 2的合计含量Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2之间的比例(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)处于1.0~13.0之间,优选为2.0~10.0之间,更优选为3.0~7.0之间时,可以在降低玻璃的析晶上限温度的同时,提高玻璃的紫外光透过率和耐辐照性能。
在一些实施方式中,当La 2O 3/Nb 2O 5的值控制在3.5~15.0之间,优选为5.0~14.0,更优选为7.0~13.5之间时,玻璃的耐紫外辐照性能与玻璃的稳定性最佳。
Li 2O、Na 2O、K 2O属于碱金属氧化物,在本发明中可以降低玻璃的高温粘度,提供自由氧以加固玻璃的网络结构,从而提升玻璃的紫外透过率。从加固玻璃网络结构来看,在合理的含量下,Na 2O与K 2O的能力最强,但K 2O相比于Na 2O降低玻璃化学稳定性的能力更强,因此需更严格限制K 2O的 含量。若Na 2O与K 2O的含量过高,在生产过程中玻璃原料挥发严重,折射率的稳定性难以达到设计要求,同时玻璃的稳定性变差。因此,优选Na 2O的含量为2~15%,更优选为4~14%,进一步优选为5~13%;优选K 2O的含量为0~8%,更优选为1~6%,进一步优选为2~5%。
碱金属氧化物中Li 2O降低高温粘度的能力最强,在高温粘度设计达不到要求时,可以少量含有Li 2O,但若其含量超过5%,玻璃析晶严重,同时玻璃成型粘度较小,难以满足厚规格成型要求。因此,Li 2O的含量限定为5%以下,优选为4%以下,更优选为3%以下,进一步优选不含有Li 2O。
在本发明的一些实施方式中,Li 2O、Na 2O、K 2O的合计量Li 2O+Na 2O+K 2O若低于3%,玻璃的折射率温度系数快速升高,玻璃镜片在相同温度变化幅度的条件下折射率变化更大,造成光学系统的成像质量快速下降;另一方面,玻璃不能实现较好的气泡度。若Li 2O+Na 2O+K 2O超过15%,玻璃的稳定性快速下降,玻璃的结构趋于松弛,抗紫外辐照性能下降。因此,优选Li 2O+Na 2O+K 2O为3~15%,更优选为5~14%,进一步优选为6~13%。
少量的F(氟)可以提升玻璃的紫外透过率和抗紫外辐照的能力。若F的含量超过3%,玻璃熔炼过程中挥发较大,带来玻璃折射率的波动,玻璃的光学均匀性难以达到设计要求,同时还对生产环境和操作人员的身体健康带来危害。因此,F的含量控制在3%以下,优选为2%以下,更优选为1%以下。在一些实施方式中,若玻璃的紫外透过率与抗紫外辐照性能有富余,更进一步优选不含有F。
本发明中通过含有0~1%的Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种组分作为澄清剂,可以提高玻璃的澄清效果,优选澄清剂的含量为0~0.8%,更优选为0~0.5%。优选澄清剂为Sb 2O 3,当Sb 2O 3含量超过1%时,玻璃的紫外透过率下降。
<不应含有的组分>
本发明玻璃中,V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属的氧化物,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可 见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有。
Th、Cd、Tl、Os、Be以及Se的氧化物,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
为了实现环境友好,本发明的光学玻璃优选不含有As 2O 3和PbO。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面,对本发明的光学玻璃的性能进行说明。
<折射率与阿贝数>
光学玻璃的折射率(n d)与阿贝数(ν d)按照《GB/T 7962.1—2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的折射率(n d)的下限为1.51,优选下限为1.52,更优选下限为1.53。在一些实施方式中,本发明光学玻璃的折射率(n d)的上限为1.58,优选上限为1.57,更优选上限为1.56。
在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的下限为55,优选下限为56,更优选下限为57。在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的上限为65,优选上限为63,更优选上限为60。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(D W)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(D A)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐酸作用稳定性(D A)为3类以上,优选为2类以上,更优选为1类。
<折射率温度系数>
光学玻璃的折射率温度系数(dn/dt)按照《GB/T 7962.4—2010》规定方法,测试在40~60℃范围光学玻璃的折射率温度系数(d线dn/dtrelative(10 -6/℃))
在一些实施方式中,本发明光学玻璃的折射率温度系数(dn/dt)为8.0×10 -6/℃以下,优选为7.0×10 -6/℃以下,更优选为6.0×10 -6/℃以下。
<365nm处内透过率τ 365nm>
本发明光学玻璃的紫外透过率以365nm处内透过率表征,365nm处内透过率(τ 365nm)按《GB/T7962.12-2010》规定方法测试,玻璃样品的厚度为10mm。
在一些实施方式中,本发明光学玻璃的365nm处内透过率(τ 365nm)为99.0%以上,优选为99.2%以上,更优选为99.4%以上,进一步优选为99.5%以上。
<365nm处内透过率耐紫外辐照衰减性能>
光学玻璃的耐紫外辐照性能用Δτ 365nm表征,即365nm处内透过率耐紫外辐照衰减性能,其测试方法为:按《GB/T7962.12-2010》规定的方法测试样品在365nm处的原始内透过率τ 365nm-1,再使用高压汞灯照射,玻璃表面功率密度为1W/cm 2,照射2小时后按《GB/T7962.12-2010》规定的方法再次测试365nm处的内透过率τ 365nm-2,两次测试的差值τ 365nm-1365nm-2即为玻璃在该波长处的衰减,玻璃样品的厚度为10mm。
在一些实施方式中,本发明光学玻璃的365nm处内透过率耐紫外辐照衰减性能(Δτ 365nm)为5.0%以下,优选为2.0%以下,更优选为1.0%以下。
<析晶上限温度>
采用梯温炉法测定玻璃的析晶性能,将玻璃制成180mm×1mm0×10mm的样品,侧面抛光,放入带有温度梯度(10℃/cm)的炉内升温至最高温区温度为1400℃,保温4小时后取出自然冷却到室温,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。
在一些实施方式中,本发明光学玻璃的析晶上限温度为1300℃以下,优选为1280℃以下,更优选为1250℃以下,进一步优选为1230℃以下。
<气泡度>
光学玻璃的气泡度按《GB/T 7962.8-2010》规定的方法测量与分级。
在一些实施方式中,本发明光学玻璃的气泡度为A级以上,优选为A 0级以上,更优选为A 00级。
<条纹度>
光学玻璃的条纹度测试方法如下:用点光源和透镜组成条纹仪,从最容易看见条纹的方向上,与标准试样作比较,按表1规定分为四级。
表1条纹度分级标准
级别 条纹程度
A 在规定检测条件下无肉眼可见条纹
B 在规定条件下有细而分散的条纹
C 在规定条件下有轻微平行条纹
D 在规定条件下游粗略的平行条纹
在一些实施方式中,本发明光学玻璃的条纹度为C级以上,优选为B级以上。
<光学均匀性>
光学玻璃的光学均匀性以一块玻璃样品中各部分折射率偏差最大值Δn d来表示,按照《GB/T 7962.2-2010》规定的测试方法测试。
在一些实施方式中,本发明光学玻璃的Δn d值为5×10 -6以下,优选为3×10 -6以下,更优选为2×10 -6以下。
[光学玻璃的制造方法]
本发明光学玻璃的制造方法如下:本发明的玻璃采用常规原料和常规工艺生产,使用碳酸盐、硝酸盐、硫酸盐、氢氧化物、氧化物等为原料,按常规方法配料后,将配好的炉料投入到1200~1600℃的熔炼炉(如铂金坩埚、石英坩埚等)中熔制,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如直接滴料成型、或研磨加工的手段、或热压成型等模压成型的手段,由所制成的光学玻璃来制作玻璃预制件。即,可以通过对熔融光学玻璃进行直接精密滴料成型为玻璃精密预制件,或通过磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件。需要说明的是,制备玻璃预制件的手段不限于上述手段。
如上所述,本发明的光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有光学玻璃所具有的优异特性;本发明的光学元件具有光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明光学玻璃所形成的光学元件可制作如照相设备、摄像设备、投影设备、显示设备、光刻机、车载设备和监控设备等光学仪器。
实施例
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述光学玻璃的制造方法得到具有表2~表3所示的组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表2~表3中。
表2.
Figure PCTCN2022070075-appb-000001
Figure PCTCN2022070075-appb-000002
表3.
实施例(wt%) 8# 9# 10# 11# 12# 13#
SiO 2 65.0 56.0 69.0 55.5 62.0 58.0
B 2O 3 4.0 9.0 15.0 3.0 8.0 10.0
BaO 0.5 6.5 1.0 1.0 1.5 1.0
SrO 0.5 2.0 0.0 1.0 0.5 0.5
CaO 0.0 0.5 0.0 0.5 0.0 0.5
MgO 0.0 0.2 0.0 0.5 0.0 0.0
ZnO 4.0 4.0 2.5 12.0 4.5 5.5
La 2O 3 6.5 6.0 5.1 13.0 6.0 5.5
Gd 2O 3 2.5 1.0 0.0 1.5 2.0 2.5
Y 2O 3 2.0 1.0 0.0 2.0 0.5 1.0
TiO 2 0.0 0.0 0.0 0.0 0.0 0.0
Nb 2O 5 0.9 1.5 0.5 2.0 1.2 0.9
Ta 2O 5 4.3 2.0 1.0 1.2 4.1 4.0
ZrO 2 0.2 1.0 0.5 0.5 0.2 0.2
Li 2O 1.5 0.2 1.0 0.0 0.0 1.5
Na 2O 4.5 6.0 2.0 3.0 6.5 6.0
K 2O 2.5 2.8 0.8 2.0 2.2 2.4
Al 2O 3 0.5 0.2 0.5 1.0 0.5 0.2
F 0.5 0.0 1.0 0.2 0.2 0.2
Sb 2O 3 0.1 0.1 0.1 0.1 0.1 0.1
合计 100.0 100.0 100.0 100.0 100.0 100.0
(B 2O 3+Al 2O 3)/SiO 2 0.07 0.16 0.22 0.07 0.14 0.18
BaO+SrO+CaO+MgO 1.0 9.2 1.0 3.0 2.0 2.0
(BaO+SrO+CaO+MgO)/SiO 2 0.02 0.16 0.01 0.05 0.03 0.03
(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2 0.17 0.14 0.07 0.30 0.14 0.16
(La 2O 3+Y 2O 3+Gd 2O 3)/ 2.75 0.89 0.34 5.50 1.06 0.90
B 2O 3            
Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2 5.40 4.50 2.00 3.70 5.50 5.10
(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2) 2.04 1.78 2.55 4.46 1.55 1.76
La 2O 3/Nb 2O 5 7.22 4.00 10.20 6.50 5.00 6.11
Li 2O+Na 2O+K 2O 8.50 9.00 3.80 5.00 8.70 9.90
La 2O 3+Y 2O 3+Gd 2O 3 11.0 8.0 5.1 16.5 8.5 9.0
n d 1.53913 1.56139 1.52071 1.57824 1.53862 1.5421
ν d 59.01 57.59 64.34 55.05 59.11 58.73
τ 365nm(%) 99.8 99.0 99.3 99.1 99.7 99.8
Δτ 365nm(%) 0.1 0.4 0.4 0.1 0.2 0.2
Δn d(×10 -6) 2.1 1.6 4.2 1.5 1.7 1.4
dn/dt(×10 -6/℃) 2.8 2.4 3.1 3.4 3.7 3.1
D A 1类 1类 1类 1类 1类 1类
D W 1类 1类 1类 1类 1类 1类
析晶温度上限(℃) 1240 1100 1200 1270 1190 1160
气泡度 A 00 A 00 A 0 A 00 A 00 A 00
条纹度(级) B B C B B B
<玻璃预制件实施例>
将光学玻璃实施例1~13所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部应力的同时对折射率进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件。

Claims (18)

  1. 光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO 2:55~70%;B 2O 3:2~18%;ZnO:1~20%;La 2O 3+Y 2O 3+Gd 2O 3:4~30%;Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:0.5~20%;Li 2O+Na 2O+K 2O:3~15%,其中(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为1.0~13.0。
  2. 根据权利要求1所述的光学玻璃,其特征在于,其组分以重量百分比表示,还含有:BaO+SrO+CaO+MgO:0~15%;和/或Al 2O 3:0~5%;和/或F:0~3%;和/或澄清剂:0~1%,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种。
  3. 光学玻璃,其特征在于,其组分以重量百分比表示,由SiO 2:55~70%;B 2O 3:2~18%;ZnO:1~20%;La 2O 3+Y 2O 3+Gd 2O 3:4~30%;Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:0.5~20%;Li 2O+Na 2O+K 2O:3~15%;BaO+SrO+CaO+MgO:0~15%;Al 2O 3:0~5%;F:0~3%;澄清剂:0~1%组成,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种。
  4. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为1.0~13.0,优选(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为2.0~10.0,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/(Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2)为3.0~7.0。
  5. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:La 2O 3/Nb 2O 5为3.5~15.0,优选La 2O 3/Nb 2O 5为5.0~14.0,更优选La 2O 3/Nb 2O 5为7.0~13.5。
  6. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2为0.07~0.35,优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2为0.08~0.3,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/SiO 2为0.1~0.25。
  7. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(B 2O 3+Al 2O 3)/SiO 2为0.05~0.4,优选 (B 2O 3+Al 2O 3)/SiO 2为0.08~0.35,更优选(B 2O 3+Al 2O 3)/SiO 2为0.1~0.3。
  8. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(BaO+SrO+CaO+MgO)/SiO 2为0.01~0.25,优选(BaO+SrO+CaO+MgO)/SiO 2为0.01~0.2,更优选(BaO+SrO+CaO+MgO)/SiO 2为0.02~0.15,进一步优选(BaO+SrO+CaO+MgO)/SiO 2为0.02~0.1。
  9. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3为0.3~6.0,优选(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3为0.4~5.0,更优选(La 2O 3+Y 2O 3+Gd 2O 3)/B 2O 3为0.5~3.0。
  10. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:SiO 2:56~68%,优选SiO 2:57~67%;和/或B 2O 3:4~16%,优选B 2O 3:5~15%;和/或ZnO:2~16%,优选ZnO:3~12%;和/或La 2O 3+Y 2O 3+Gd 2O 3:5~20%,优选La 2O 3+Y 2O 3+Gd 2O 3:7~15%;和/或Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:1~15%,优选Ta 2O 5+Nb 2O 5+TiO 2+ZrO 2:2~10%;和/或Li 2O+Na 2O+K 2O:5~14%,优选Li 2O+Na 2O+K 2O:6~13%;和/或BaO+SrO+CaO+MgO:1~15%,优选BaO+SrO+CaO+MgO:1.5~10%,更优选BaO+SrO+CaO+MgO:1.5~8%;和/或Al 2O 3:0~4%,优选Al 2O 3:0~3%;和/或F:0~2%,优选F:0~1%;和/或澄清剂:0~0.8%,优选澄清剂:0~0.5%,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2、Cl、Br中的一种或多种。
  11. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:La 2O 3:4~25%,优选La 2O 3:6~20%,更优选La 2O 3:7~14%;和/或Gd 2O 3:0~8%,优选Gd 2O 3:0~7%,更优选Gd 2O 3:0~5%;和/或Y 2O 3:0~10%,优选Y 2O 3:0~8%,更优选Y 2O 3:0~5%;和/或Na 2O:2~15%,优选Na 2O:4~14%,更优选Na 2O:5~13%;和/或K 2O:0~8%,优选K 2O:1~6%,更优选K 2O:2~5%;和/或Li 2O:0~5%,优选Li 2O:0~4%,更优选Li 2O:0~3%。
  12. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于, 其组分中不含有F;和/或不含有MgO;和/或不含有CaO;和/或不含有Li 2O。
  13. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的折射率n d为1.51~1.58,优选为1.52~1.57,更优选为1.53~1.56,和/或阿贝数v d为55~65,优选为56~63,更优选为57~60。
  14. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的τ 365nm为99.0%以上,优选为99.2%以上,更优选为99.4%以上,进一步优选为99.5%以上,和/或Δτ 365nm为5.0%以下,优选为2.0%以下,更优选为1.0%以下。
  15. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为3类以上,优选为2类以上,更优选为1类;和/或折射率温度系数dn/dt为8.0×10 -6/℃以下,优选为7.0×10 -6/℃以下,更优选为6.0×10 -6/℃以下;和/或析晶上限温度为1300℃以下,优选为1280℃以下,更优选为1250℃以下,进一步优选为1230℃以下;和/或气泡度为A级以上,优选为A 0级以上,更优选为A 00级;和/或条纹度为C级以上,优选为B级以上;和/或Δn d值为5×10 -6以下,优选为3×10 -6以下,更优选为2×10 -6以下。
  16. 玻璃预制件,其特征在于,采用权利要求1~15任一所述的光学玻璃制成。
  17. 光学元件,其特征在于,采用权利要求1~15任一所述的光学玻璃制成,或采用权利要求16所述的玻璃预制件制成。
  18. 光学仪器,含有权利要求1~15任一所述的光学玻璃,和/或含有权利要求17所述的光学元件。
PCT/CN2022/070075 2021-03-23 2022-01-04 光学玻璃、光学元件和光学仪器 WO2022199203A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023558201A JP2024511087A (ja) 2021-03-23 2022-01-04 光学ガラス、光学素子及び光学機器
EP22773868.9A EP4317095A1 (en) 2021-03-23 2022-01-04 Optical glass, optical element, and optical instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110308615.0A CN112939455B (zh) 2021-03-23 2021-03-23 光学玻璃、光学元件和光学仪器
CN202110308615.0 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022199203A1 true WO2022199203A1 (zh) 2022-09-29

Family

ID=76227597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070075 WO2022199203A1 (zh) 2021-03-23 2022-01-04 光学玻璃、光学元件和光学仪器

Country Status (4)

Country Link
EP (1) EP4317095A1 (zh)
JP (1) JP2024511087A (zh)
CN (1) CN112939455B (zh)
WO (1) WO2022199203A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112939455B (zh) * 2021-03-23 2022-04-15 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN113754278A (zh) * 2021-09-23 2021-12-07 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN117285251A (zh) * 2023-09-25 2023-12-26 成都光明光电股份有限公司 玻璃材料和玻璃元件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249341A (ja) * 2001-02-19 2002-09-06 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP2004137145A (ja) * 2002-09-25 2004-05-13 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
US20190062199A1 (en) * 2016-03-07 2019-02-28 Cdgm Glass Co., Ltd. Optical glass and optical element
CN112939455A (zh) * 2021-03-23 2021-06-11 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN113045199A (zh) * 2021-03-23 2021-06-29 成都光明光电股份有限公司 透紫外玻璃

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822760B2 (ja) * 1987-03-05 1996-03-06 日本電気硝子株式会社 Fe−Ni−Co合金封着用ガラス
GB9012533D0 (en) * 1990-06-05 1990-07-25 Johnson Matthey Plc Glass composition
DE19924520C1 (de) * 1999-05-28 2000-06-21 Schott Glas Kurzflintsondergläser
JP2004175592A (ja) * 2002-11-25 2004-06-24 Hikari Glass Co Ltd 光学ガラス
JP4592353B2 (ja) * 2003-09-09 2010-12-01 株式会社オハラ 低屈折率光学ガラス
AT414310B (de) * 2004-03-19 2007-01-15 Swarovski & Co Blei- und bariumfreies kristallglas
JP5224087B2 (ja) * 2006-04-05 2013-07-03 日本電気硝子株式会社 モールドプレス成形用光学ガラス
JP5274855B2 (ja) * 2007-02-19 2013-08-28 日本板硝子株式会社 屈折率分布型レンズ用母材ガラス組成物、屈折率分布型レンズとその製造方法ならびに光学製品および光学機器
CN101074146B (zh) * 2007-06-16 2010-10-06 成都光明光电股份有限公司 吸收紫外光的低膨胀系数玻璃
JP6547995B2 (ja) * 2013-04-25 2019-07-24 日本電気硝子株式会社 高屈折率ガラス基板
CN103449720B (zh) * 2013-08-22 2016-08-17 成都尤利特光电科技股份有限公司 高折射、低色散光学玻璃及其制造方法
CN105585245B (zh) * 2014-10-22 2019-08-23 成都光明光电股份有限公司 硼硅酸盐光学玻璃和光学元件
JP6678008B2 (ja) * 2014-11-07 2020-04-08 Hoya株式会社 ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子
WO2016129254A1 (ja) * 2015-02-10 2016-08-18 日本板硝子株式会社 レーザ加工用ガラス及びそれを用いた孔付きガラスの製造方法
CN108975687B (zh) * 2015-06-24 2019-12-24 成都光明光电股份有限公司 光学玻璃
CN105859131B (zh) * 2016-06-21 2019-04-02 成都光明光电股份有限公司 冕牌光学玻璃
CN107777873B (zh) * 2016-08-29 2020-09-08 深圳南玻应用技术有限公司 一种导光板玻璃及其制备方法
JP7086339B2 (ja) * 2017-06-27 2022-06-20 日本電気硝子株式会社 光学ガラスレンズ及び光学ガラスレンズの製造方法
JP7331092B2 (ja) * 2018-09-28 2023-08-22 シーディージーエム グラス カンパニー リミテッド 光学ガラス、プリフォーム、光学素子及びその光学機器
CN109775982B (zh) * 2019-03-28 2022-04-15 成都光明光电股份有限公司 光学玻璃
CN109912195B (zh) * 2019-04-24 2021-12-07 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN109896740B (zh) * 2019-04-24 2022-04-22 成都光明光电股份有限公司 光学玻璃及光学元件
CN110316960B (zh) * 2019-07-22 2022-02-11 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件及光学仪器
CN110228946B (zh) * 2019-07-22 2022-01-25 成都光明光电股份有限公司 光学玻璃
CN111423111B (zh) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 玻璃材料
CN111533443B (zh) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 光学玻璃
CN112028474B (zh) * 2020-09-11 2022-04-15 成都光明光电股份有限公司 光学玻璃
CN112028475B (zh) * 2020-09-11 2022-04-15 成都光明光电股份有限公司 光学玻璃和光学元件
CN112047625B (zh) * 2020-09-17 2022-04-15 成都光明光电股份有限公司 透紫外光学玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249341A (ja) * 2001-02-19 2002-09-06 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
JP2004137145A (ja) * 2002-09-25 2004-05-13 Nippon Electric Glass Co Ltd モールドプレス成形用光学ガラス
US20190062199A1 (en) * 2016-03-07 2019-02-28 Cdgm Glass Co., Ltd. Optical glass and optical element
CN112939455A (zh) * 2021-03-23 2021-06-11 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器
CN113045199A (zh) * 2021-03-23 2021-06-29 成都光明光电股份有限公司 透紫外玻璃

Also Published As

Publication number Publication date
JP2024511087A (ja) 2024-03-12
EP4317095A1 (en) 2024-02-07
CN112939455B (zh) 2022-04-15
CN112939455A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
TWI756114B (zh) 光學玻璃
TWI779744B (zh) 光學玻璃、玻璃預製件及光學元件
CN113045199B (zh) 透紫外玻璃
WO2022199203A1 (zh) 光学玻璃、光学元件和光学仪器
WO2022267751A1 (zh) 特殊色散光学玻璃
TWI798501B (zh) 光學玻璃、玻璃預製件、光學元件和光學儀器
WO2022193797A1 (zh) 高折射高色散光学玻璃及光学元件
WO2022062637A1 (zh) 光学玻璃
TW202012330A (zh) 光學玻璃、其預製件、光學元件和光學儀器
WO2022062638A1 (zh) 光学玻璃、光学元件和光学仪器
CN115072990A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2022048335A1 (zh) 光学玻璃及光学元件
CN110937802B (zh) 光学玻璃
WO2023035887A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN109650716B (zh) 一种无色光学玻璃及其玻璃预制件、元件和仪器
CN115974402A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN111453989A (zh) 镧系光学玻璃及其玻璃预制件、元件和仪器
CN114907011B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2024041277A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041274A1 (zh) 光学玻璃、光学元件和光学仪器
TW202408958A (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
WO2024041276A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
CN117023975A (zh) 光学玻璃
TW202408954A (zh) 光學玻璃、光學元件和光學儀器
WO2023246559A1 (zh) 光学玻璃、光学元件和光学仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023558201

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022773868

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022773868

Country of ref document: EP

Effective date: 20231023