WO2022267751A1 - 特殊色散光学玻璃 - Google Patents

特殊色散光学玻璃 Download PDF

Info

Publication number
WO2022267751A1
WO2022267751A1 PCT/CN2022/093261 CN2022093261W WO2022267751A1 WO 2022267751 A1 WO2022267751 A1 WO 2022267751A1 CN 2022093261 W CN2022093261 W CN 2022093261W WO 2022267751 A1 WO2022267751 A1 WO 2022267751A1
Authority
WO
WIPO (PCT)
Prior art keywords
bao
sio
less
glass
optical glass
Prior art date
Application number
PCT/CN2022/093261
Other languages
English (en)
French (fr)
Inventor
匡波
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Publication of WO2022267751A1 publication Critical patent/WO2022267751A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the invention relates to an optical glass, in particular to a special dispersion optical glass, and a glass preform, an optical element and an optical instrument made therefrom.
  • Optical glass is an important part of optoelectronic products.
  • optical glass is expected to have the ability to eliminate or eliminate the residual chromatic aberration of the secondary spectrum as much as possible in optical design, which requires optical glass to have lower relative partial dispersion (P g, F ) and relative partial dispersion deviation ( ⁇ P g ,F ).
  • P g, F relative partial dispersion
  • ⁇ P g ,F relative partial dispersion deviation
  • optical glass will be exposed to substances such as acid, alkali and water during processing, cleaning or use. If there is no relatively excellent chemical stability, the service life of optical glass will be shortened.
  • the technical problem to be solved by the present invention is to provide an optical glass with low P g,F value and ⁇ P g,F value and excellent chemical stability.
  • Special dispersion optical glass the composition of which is expressed in weight percent, containing: SiO 2 : 23-45%; Nb 2 O 5 : 20-40%; ZrO 2 : 2-14%; RO: 1-25% ; Rn 2 O: 0-25%; Ln 2 O 3 : 0-20%, wherein SiO 2 /Nb 2 O 5 is 0.65-2.0, the RO is the total content of BaO, SrO, CaO, MgO, Rn 2 O is the total content of Li 2 O, Na 2 O, and K 2 O, and Ln 2 O 3 is the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , and Yb 2 O 3 .
  • the clarifying agent is one or more of Sb 2 O 3 , SnO, SnO 2 , CeO 2 .
  • the special dispersion optical glass described in (4) its components are represented by weight percentage, including: SiO 2 : 23-45%; and/or Nb 2 O 5 : 20-40%; and/or ZrO 2 : 2 ⁇ 14%; and/or RO: 1 ⁇ 25%; and/or Rn 2 O: 0 ⁇ 25%; and/or Ln 2 O 3 : 0 ⁇ 20%; and/or ZnO: 0 ⁇ 10% %; and/or WO 3 : 0-5%; and/or B 2 O 3 : 0-8%; and/or TiO 2 : 0-5%; and/or Al 2 O 3 : 0-5%; And/or Ta 2 O 5 : 0-5%; and/or clarifying agent: 0-1%, the RO is the total content of BaO, SrO, CaO, MgO, Rn 2 O is Li 2 O, Na 2 O , the total content of K 2 O, Ln 2 O 3 is the total content of La 2 O 3 , Gd 2 O
  • the special dispersion optical glass according to any one of (1) to (6), its components are expressed in weight percent, wherein: SiO 2 /Nb 2 O 5 is 0.75 to 1.8, preferably SiO 2 /Nb 2 O 5 is 0.8 to 1.5, more preferably SiO 2 /Nb 2 O 5 is 0.9 to 1.3.
  • Nb 2 O 5 /(BaO+La 2 O 3 ) is 0.8 to 8.0, preferably Nb 2 O 5 /(BaO+La 2 O 3 ) is 1.0 to 6.0, more preferably Nb 2 O 5 /(BaO+La 2 O 3 ) is 1.2 to 4.0, more preferably Nb 2 O 5 /(BaO+La 2 O 3 ) is 1.5 to 3.0.
  • the refractive index n d of the special dispersion optical glass according to any one of (1) to (17) is 1.68 to 1.82, preferably 1.70 to 1.80, more preferably 1.71 to 1.79, and even more preferably 1.73 to 1.77;
  • Abbe number v d is 31-40, Preferably it is 32-38, More preferably, it is 33-37.
  • the P g, F value of the special dispersion optical glass according to any one of (1) to (18) is 0.7000 or less, preferably 0.6500 or less, more preferably 0.6000 or less; and/or ⁇ P g, F value 0 or less, preferably -0.0010 or less, more preferably -0.0020 or less, still more preferably -0.0030 or less.
  • the density ⁇ of the special dispersion optical glass according to any one of (1) to (19) is 3.80 g/cm 3 or less, preferably 3.70 g/cm 3 or less, more preferably 3.60 g/cm 3 or less; And/or the coefficient of thermal expansion ⁇ -30/70°C is 100 ⁇ 10 -7 /K or less, preferably 90 ⁇ 10 -7 /K or less, more preferably 85 ⁇ 10 -7 /K or less; and/or the transition temperature T g is below 600°C, preferably below 590°C, more preferably below 580°C, more preferably below 570°C; and/or ⁇ 80 is less than or equal to 410nm, preferably ⁇ 80 is less than or equal to 400nm, more preferably ⁇ 80 is less than or equal to Equal to 395nm; and/or ⁇ 5 is less than or equal to 340nm, preferably ⁇ 5 is less than or equal to 335nm, more preferably ⁇ 5 is less than or equal to
  • the beneficial effects of the present invention are: through reasonable component design, the special dispersion optical glass obtained by the present invention has a relatively low P g, F value and ⁇ P g, F value, and has excellent chemical stability.
  • the special dispersion optical glass of the present invention is not limited to the following embodiments, and can be implemented with appropriate changes within the scope of the purpose of the present invention.
  • the special dispersion optical glass of the present invention is sometimes simply referred to as optical glass or glass.
  • each component (ingredient) of the special dispersion optical glass of the present invention will be described below.
  • the content and total content of each component are all expressed in weight percent (wt%), that is, the content of each component and the total content are relative to the total amount of glass substances converted into oxides.
  • the amount is expressed in weight percent.
  • the “composition in terms of oxides” refers to the case where oxides, composite salts, hydroxides, etc. used as raw materials for the optical glass composition of the present invention are decomposed and converted into oxides during melting , and the total amount of the oxide was taken as 100%.
  • SiO2 has the effect of improving the chemical stability of glass, maintaining the viscosity suitable for molten glass molding, and reducing the corrosion of refractory materials or platinum vessels.
  • the above effects are obtained by containing more than 23% SiO2 , preferably SiO2
  • the content of SiO2 is more than 28%, more preferably the content of SiO2 is more than 31%. If the content of SiO 2 is too high, the melting difficulty of the glass will increase, and at the same time, it will be unfavorable to lower the transition temperature of the glass. Therefore, the upper limit of the content of SiO2 in the present invention is 45%, preferably the upper limit is 42%, more preferably the upper limit is 40%.
  • Nb 2 O 5 is a high-refraction and high-dispersion component, which can increase the refractive index and devitrification resistance of the glass, and has the effect of reducing the relative partial dispersion P g, F and the relative partial dispersion deviation ⁇ P g, F of the glass.
  • the lower limit of the content of Nb 2 O 5 is preferably 22%, more preferably 26%. If the content of Nb 2 O 5 exceeds 40%, the thermal stability and chemical stability of the glass will decrease, and the light transmittance will decrease. Therefore, the upper limit of the content of Nb 2 O 5 in the present invention is 40%, preferably the upper limit is 37%, more preferably A preferred upper limit is 33%.
  • SiO 2 /Nb 2 O 5 is preferably 0.65 to 2.0, more preferably SiO 2 /Nb 2 O 5 is 0.75 to 1.8, still more preferably SiO 2 /Nb 2 O 5 is 0.8 to 1.5, still more preferably SiO 2 /Nb 2 O 5 is 0.9 to 1.3.
  • ZrO2 can increase the refractive index of the glass and adjust the dispersion, reduce the Pg , F value and ⁇ Pg , F value of the glass, and optimize the alkali resistance of the glass.
  • the above effects are obtained by containing more than 2 % ZrO2, It is preferably 3% or more of ZrO 2 , more preferably 5% or more of ZrO 2 . If the content of ZrO2 is higher than 14%, it will be more difficult to melt the glass, and the melting temperature will rise, which will lead to the occurrence of inclusions inside the glass and the decrease of light transmittance. Therefore, the content of ZrO2 is 14 % or less, preferably 12% or less, more preferably 10% or less.
  • ZnO can adjust the refractive index and dispersion of the glass and improve the stability of the glass. At the same time, ZnO can also reduce the high-temperature viscosity and transition temperature of the glass, so that the glass can be melted at a lower temperature, thereby increasing the light transmittance of the glass. On the other hand, if the content of ZnO is too high, the difficulty of glass forming will increase, and the devitrification resistance will deteriorate. Therefore, the content of ZnO is 10% or less, preferably 0.1 to 8%, more preferably 0.5 to 6%.
  • Alkaline earth metal oxides can adjust the optical constants of the glass and improve the resistance to devitrification of the glass. If the content is too high, the chemical stability of the glass will decrease. Therefore, the total content RO of the alkaline earth metal oxides BaO, SrO, CaO, and MgO is 1 to 25%, preferably 3 to 20%, and more preferably 6 to 15%.
  • BaO can improve the resistance to devitrification and hardness of the glass, and reduce the temperature coefficient of refractive index and thermal expansion coefficient of the glass.
  • the above effects are obtained by containing more than 2% BaO, preferably the content of BaO is more than 4%. , more preferably the content of BaO is 5% or more.
  • the BaO content is preferably 15% or less, more preferably 12% or less.
  • SiO 2 /(BaO+ZnO) is preferably 1.0 to 20.0, more preferably SiO 2 /(BaO+ZnO) is 1.5 to 15.0, still more preferably SiO 2 /(BaO+ZnO) is 2.0 to 10.0, still more preferably SiO 2 /(BaO+ZnO) is 2.5 to 5.0.
  • CaO helps to adjust the optical constants of the glass and improve the processing performance of the glass, but when the content of CaO is too much, the optical constants of the glass will not meet the requirements, and the anti-devitrification performance will be deteriorated. Therefore, the range of CaO content is 0-18%, Preferably it is 0-16.5%, More preferably, it is 0-8%. In some embodiments, it is further preferable not to contain CaO.
  • SrO can adjust the refractive index and dispersion of glass in glass, but if the content is too much, the chemical stability of glass will decrease, and the cost of glass will also increase rapidly. Therefore, the content of SrO is 0 to 8%, preferably 0 to 5%, more preferably 0 to 2%. In some embodiments, it is further preferable not to contain SrO.
  • MgO is beneficial to reduce the density and melting temperature of the glass, but when the content of MgO is too much, the refractive index of the glass is difficult to meet the design requirements, and the anti-devitrification performance and stability of the glass decrease. Therefore, the content of MgO is 0 to 8%, preferably 0 to 5%, more preferably 0 to 2%. In some embodiments, it is further preferable not to contain MgO.
  • Alkali metal oxides can lower the glass transition temperature and optimize the melting property of the glass. If the content is too much, the chemical stability and devitrification resistance of the glass will be reduced. Therefore, in the present invention, the total content Rn 2 O of alkali metal oxides Li 2 O, Na 2 O, and K 2 O is 25% or less, preferably 1-20%, more preferably 2-15%.
  • Li 2 O can significantly improve the melting property of glass, increase the solubility of ZrO 2 in glass, lower the transition temperature of glass, and adjust the refractive index of glass, but its content is too high to be unfavorable to the acid resistance stability and thermal expansion coefficient of glass. Therefore, the content of Li 2 O in the present invention is 1-12%, preferably 1-10%, more preferably 1-9%.
  • Na 2 O has the effect of improving glass melting property and lowering glass transition temperature. If its content exceeds 10%, the chemical stability and weather resistance of glass will decrease. Therefore, the content of Na 2 O is 0 to 10%, preferably 0.5 to 8%, more preferably 1 to 6%.
  • the ratio (CaO + Na2O ) /BaO between the total content of CaO and Na2O (CaO + Na2O) and the content of BaO in the range of 0.02 to 8.0, While improving the chemical stability of the optical glass, the density of the glass can be reduced, which is beneficial to realize the light weight of the optical system. Therefore, it is preferable that (CaO + Na2O)/BaO is 0.02-8.0, and it is more preferable that (CaO + Na2O)/BaO is 0.05-5.0. Furthermore, by setting (CaO+Na 2 O)/BaO in the range of 0.1 to 3.0, the hardness of the glass can be further optimized. Therefore, it is more preferable that (CaO + Na2O)/BaO is 0.1-3.0, and it is still more preferable that (CaO + Na2O)/BaO is 0.2-1.0.
  • the ratio BaO/(Na 2 O+Nb 2 O 5 ) between the content of BaO and the total content of Na 2 O and Nb 2 O 5 (Na 2 O+Nb 2 O 5 ) In the range of 0.05-0.8, the light transmittance of the glass can be optimized while improving the hardness of the glass.
  • BaO/(Na 2 O+Nb 2 O 5 ) is preferably 0.05 to 0.8, more preferably BaO/(Na 2 O+Nb 2 O 5 ) is 0.1 to 0.6, further preferably BaO/(Na 2 O+Nb 2 O 5 ) is 0.15 to 0.5, more preferably BaO/(Na 2 O+Nb 2 O 5 ) is 0.2 to 0.4.
  • K 2 O can improve the thermal stability and melting property of glass, but when the content of K 2 O exceeds 8%, the resistance to devitrification of the glass decreases. Therefore, the upper limit of the content of K 2 O is 8%, preferably 5%, more preferably 4%.
  • Li 2 O/Rn 2 O when Li 2 O/Rn 2 O is in the range of 0.3-1.0, the devitrification resistance of the glass can be optimized and the water resistance of the glass can be improved. Therefore, Li 2 O/Rn 2 O is preferably 0.3 to 1.0, and Li 2 O/Rn 2 O is more preferably 0.4 to 0.9. Furthermore, by making Li 2 O/Rn 2 O in the range of 0.45-0.8, it is also beneficial to improve the weather resistance of the glass. Therefore, it is more preferable that Li 2 O/Rn 2 O is 0.45 to 0.8, and it is still more preferable that Li 2 O/Rn 2 O is 0.5 to 0.75.
  • Ln 2 O 3 (Ln 2 O 3 is the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , and Yb 2 O 3 ) can increase the refractive index of glass. If its content is higher than 20%, the glass’s The resistance to devitrification decreases. Therefore, the content of Ln 2 O 3 is 20% or less, preferably 1 to 15%, more preferably 2 to 10%.
  • La 2 O 3 can effectively increase the refractive index of the glass, enhance the chemical stability and mechanical strength of the glass, and at the same time not significantly increase the P g,F value and ⁇ P g,F value of the glass, but when its content exceeds 14% , the devitrification resistance of the glass deteriorates. Therefore, the content of La 2 O 3 in the glass of the present invention is 0-14%, preferably 2-12%, more preferably 4-10%.
  • Nb 2 O 5 /(BaO+La 2 O 3 ) in the range of 0.8 to 8.0 can reduce the P g,F value and ⁇ P g,F value of the glass while optimizing the thermal expansion coefficient of the glass and the anti-devitrification performance of the second compression molding.
  • Nb 2 O 5 /(BaO+La 2 O 3 ) is preferably 0.8 to 8.0, more preferably Nb 2 O 5 /(BaO+La 2 O 3 ) is 1.0 to 6.0, further preferably Nb 2 O 5 /(BaO +La 2 O 3 ) is 1.2 to 4.0, more preferably Nb 2 O 5 /(BaO+La 2 O 3 ) is 1.5 to 3.0.
  • ZnO/(BaO+La 2 O 3 ) is preferably 2.0 or less, and ZnO/(BaO+La 2 O 3 ) is more preferably 0.05 to 1.5.
  • ZnO/(BaO+La 2 O 3 ) is 0.08 to 1.0, and it is still more preferable that ZnO/(BaO+La 2 O 3 ) is 0.1 to 0.5.
  • Gd 2 O 3 has the effect of increasing the refractive index, but if its content exceeds 10%, the resistance to devitrification of the glass will decrease, and the transition temperature will tend to rise. Therefore, the content of Gd 2 O 3 in the present invention is 10% or less, preferably It is 0 to 5%, more preferably 0 to 3%. In some embodiments, it is further preferable not to contain Gd 2 O 3 .
  • Y 2 O 3 can improve the meltability and devitrification resistance of the glass, and increase the chemical stability of the glass, but if its content exceeds 10%, the stability and devitrification resistance of the glass will decrease. Therefore, the content of Y 2 O 3 ranges from 0 to 10%, preferably from 0 to 5%, more preferably from 0 to 3%, and further preferably does not contain Y 2 O 3 .
  • Yb 2 O 3 can increase the refractive index of the glass, and if its content exceeds 10%, the stability and devitrification resistance of the glass will decrease. Therefore, the content of Yb 2 O 3 ranges from 0 to 10%, preferably from 0 to 5%, more preferably from 0 to 3%, and further preferably does not contain Yb 2 O 3 .
  • WO 3 can increase the refractive index and mechanical strength of the glass. If the content of WO 3 exceeds 5%, the thermal stability of the glass will decrease, and the transmittance and devitrification resistance will decrease. Therefore, the upper limit of the WO 3 content is 5%, preferably 3%, more preferably 2%. In some embodiments, it is further preferred not to contain WO 3 .
  • B 2 O 3 can be used as a glass network generator in the glass of the present invention, which is beneficial to reduce the P g,F value and ⁇ P g,F value of the glass.
  • the content of B 2 O 3 is greater than 8%, the chemical stability of the glass becomes worse, the viscosity of the glass at high temperature becomes smaller, and the glass transmittance and the devitrification resistance of the second pressing type deteriorate. Therefore, the content of B 2 O 3 is limited to 8% or less, preferably 4% or less, more preferably 2% or less. In some embodiments, it is further preferable not to contain B 2 O 3 .
  • controlling B 2 O 3 /SiO 2 below 0.3 can improve the devitrification resistance and chemical stability of the glass. Therefore, B 2 O 3 /SiO 2 is preferably 0.3 or less, more preferably B 2 O 3 /SiO 2 is 0.2 or less. Furthermore, keeping B 2 O 3 /SiO 2 below 0.15 is also beneficial to increase the hardness of the glass. Therefore, it is more preferable that B 2 O 3 /SiO 2 is 0.15 or less, and it is still more preferable that B 2 O 3 /SiO 2 is 0.1 or less.
  • TiO 2 has the effect of increasing the refractive index and dispersion of the glass, and an appropriate amount can make the glass more stable and reduce the viscosity of the glass, but the presence of TiO 2 will obviously increase the P g,F value and ⁇ P g,F value of the glass. Therefore, this paper
  • the content of TiO2 in the invention is 5% or less, preferably 3% or less, more preferably 2% or less. In some embodiments, it is further preferred not to contain TiO 2 .
  • Al 2 O 3 can improve the chemical stability of the glass, but when its content exceeds 5%, the melting property and light transmittance of the glass will be deteriorated. Therefore, the content of Al 2 O 3 in the present invention is 0-5%, preferably 0-2%, more preferably 0-1%. In some embodiments, it is further preferable not to contain Al 2 O 3 .
  • Ta 2 O 5 can increase the refractive index of the glass, reduce the P g,F value and ⁇ P g,F value of the glass, and improve the devitrification resistance of the glass.
  • the content of Ta 2 O 5 in the present invention is limited to 0 to 5%, preferably 0 to 2%, more preferably 0 to 1%, and further preferably does not contain Ta 2 O 5 .
  • the clarification effect of glass can be improved by containing 0-1% of one or more components of Sb 2 O 3 , SnO, SnO 2 , and CeO 2 as clarifiers, and the content of clarifiers is preferably 0-1%. 0.5%.
  • the Sb 2 O 3 content exceeds 1%, the glass has a tendency to reduce the clarification performance, and at the same time, due to its strong oxidation effect, it promotes the corrosion of platinum or platinum alloy vessels for melting glass and the deterioration of molding molds, so Sb 2 is preferred in the present invention.
  • the content of O 3 is 0 to 1%, more preferably 0 to 0.5%.
  • the content of SnO 2 in the present invention is preferably 0-1%, more preferably 0-0.5%; the content of SnO is preferably 0-1%, more preferably 0-0.5%.
  • the function and content ratio of CeO 2 are the same as those of SnO 2 , and its content is preferably 0-1%, more preferably 0-0.5%, and still more preferably does not contain CeO 2 .
  • the glass of the present invention even if oxides of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained alone or in a small amount in combination, the glass will be colored, and in the visible light region Absorption at specific wavelengths weakens the visible light transmittance enhancement effect of the present invention. Therefore, it is preferable not to substantially contain it, especially in optical glasses that require transmittance at wavelengths in the visible light region.
  • Oxides of Th, Cd, Tl, Os, Be, and Se have tended to be controlled and used as harmful chemical substances in recent years, not only in the manufacturing process of glass, but also in the process of processing and disposal after production. Measures are required. Therefore, in the case of emphasizing the influence on the environment, it is preferable not to substantially contain them except for unavoidable mixing. Thereby, the optical glass becomes practically free of environmental polluting substances. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special environmental measures.
  • the optical glass of the present invention preferably does not contain As 2 O 3 and PbO.
  • does not contain and "0%” described herein means that no such compound, molecule or element is intentionally added as a raw material to the optical glass of the present invention; however, as a raw material and/or equipment for producing optical glass, some Impurities or components that are not intentionally added may be contained in small or trace amounts in the final optical glass, and this situation is also within the protection scope of the patent of the present invention.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the method specified in "GB/T 7962.1-2010".
  • the lower limit of the refractive index ( nd ) of the special dispersion optical glass of the present invention is 1.68, preferably 1.70, more preferably 1.71, and even more preferably 1.73.
  • the upper limit of the refractive index ( nd ) of the optical glass of the present invention is 1.82, preferably 1.80, more preferably 1.79, and even more preferably 1.77.
  • the lower limit of the Abbe number ( ⁇ d ) of the special dispersion optical glass of the present invention is 31, preferably the lower limit is 32, and more preferably the lower limit is 33.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 40, preferably 38, and more preferably 37.
  • the density ( ⁇ ) of optical glass is tested according to the method specified in "GB/T7962.20-2010".
  • the density ( ⁇ ) of the special dispersion optical glass of the present invention is 3.80 g/cm 3 or less, preferably 3.70 g/cm 3 or less, more preferably 3.60 g/cm 3 or less.
  • the thermal expansion coefficient of optical glass ( ⁇ -30/70°C ) is tested according to the method specified in "GB/T7962.16-2010" -30 ⁇ 70°C data.
  • the thermal expansion coefficient ( ⁇ -30/70°C ) of the special dispersion optical glass of the present invention is 100 ⁇ 10 -7 /K or less, preferably 90 ⁇ 10 -7 /K or less, more preferably 85 ⁇ Below 10 -7 /K.
  • transition temperature (T g ) of optical glass is tested according to the method specified in "GB/T7962.16-2010".
  • the transition temperature (T g ) of the special dispersion optical glass of the present invention is lower than 600°C, preferably lower than 590°C, more preferably lower than 580°C, and even more preferably lower than 570°C.
  • the short-wave transmission spectral properties of the glasses of the present invention are expressed in degrees of coloration ( ⁇ 80 and ⁇ 5 ).
  • ⁇ 80 refers to the corresponding wavelength when the glass transmittance reaches 80%.
  • the measurement of ⁇ 80 is to use glass with a thickness of 10 ⁇ 0.1mm having two opposite planes parallel to each other and optically polished, to measure the spectral transmittance in the wavelength range from 280nm to 700nm and to show the wavelength at which the transmittance is 80%.
  • the so-called spectral transmittance or transmittance is the amount represented by I out /I in when the light of the intensity I in is incident vertically on the above-mentioned surface of the glass, and the light of the intensity I out is emitted from a plane through the glass, and Transmittance for surface reflection losses on the above-mentioned surfaces of the glass is also included.
  • the ⁇ 80 of the special dispersion optical glass of the present invention is less than or equal to 410nm, preferably ⁇ 80 is less than or equal to 400nm, more preferably ⁇ 80 is less than or equal to 395nm.
  • the ⁇ 5 of the special dispersion optical glass of the present invention is less than or equal to 340nm, preferably ⁇ 5 is less than or equal to 335nm , more preferably ⁇ 5 is less than or equal to 330nm.
  • the water resistance stability (D W ) of the special dispersion optical glass of the present invention is Class 2 or higher, preferably Class 1.
  • the acid resistance stability (DA) (powder method) of optical glass is tested according to the method specified in “GB/T 17129 ".
  • the acid resistance stability (DA ) of the special dispersion optical glass of the present invention is at least Class 2, preferably Class 1.
  • the Knoop hardness (H K ) of the special dispersion optical glass of the present invention is above 520 ⁇ 10 7 Pa, preferably above 540 ⁇ 10 7 Pa, more preferably above 550 ⁇ 10 7 Pa, and even more preferably It is more than 570 ⁇ 10 7 Pa.
  • the correction of the secondary spectrum that is, the achromatization of more than two wavelengths, requires at least one glass that does not conform to the above formula (2) (that is, its P x, y value deviates from Abbe's empirical formula), and its deviation value is represented by ⁇ P x, y means that each P x, y -v d point is translated by the amount of ⁇ P x, y relative to the "normal line" conforming to the above formula (2), so that the value of ⁇ P x, y of each glass can be used in the following formula ( 3) Find out:
  • the relative partial dispersion (P g,F ) of the special dispersion optical glass of the present invention is 0.7000 or less, preferably 0.6500 or less, more preferably 0.6000 or less.
  • the relative partial dispersion deviation value ( ⁇ P g,F ) of the special dispersion optical glass of the present invention is 0 or less, preferably -0.0010 or less, more preferably -0.0020 or less, and even more preferably -0.0030 or less.
  • the test method for crystallization resistance is: cut the sample glass into a size of 20 ⁇ 20 ⁇ 10mm, put it in a muffle furnace with a temperature of T g + (200-250)°C and keep it warm for 15-30 minutes, take it out and observe it after cooling Whether there are crystals or opacity on the surface and inside of the glass. If the glass sample is free of opacification and crystals, the glass has excellent resistance to devitrification. This test method is used to characterize the anti-devitrification performance of the glass of the present invention after secondary pressing.
  • the manufacturing method of the special dispersion optical glass of the present invention is as follows: the glass of the present invention is produced using conventional raw materials and processes, including but not limited to using oxides, hydroxides, carbonates, nitrates, phosphates, metaphosphates, etc. as raw materials , after batching according to the conventional method, put the prepared charge into a smelting furnace (such as platinum or platinum alloy crucible) at 1200-1400 ° C for melting, and after clarification and homogenization, no bubbles and no undissolved substances are obtained.
  • the homogeneous molten glass is formed by casting the molten glass in a mold and annealing it.
  • a smelting furnace such as platinum or platinum alloy crucible
  • a glass preform can be produced from the produced special dispersion optical glass by using compression molding methods such as direct drop molding, grinding processing, or thermocompression molding. That is, the molten optical glass can be formed into a glass precision preform by direct precision drop molding, or a glass preform can be produced by mechanical processing such as grinding and grinding, or a preform for molding can be made from optical glass, The preform is reheated and press-molded, and then ground to produce a glass preform. It should be noted that the means for preparing the glass preform are not limited to the above means.
  • the special dispersion optical glass of the present invention is useful for various optical elements and optical designs, and it is particularly preferable to form a preform from the special dispersion optical glass of the present invention, and to use the preform for reheat press molding, Precision stamping, etc., to produce optical components such as lenses and prisms.
  • Both the glass preform and the optical element of the present invention are formed of the above-mentioned special dispersion optical glass of the present invention.
  • the glass preform of the present invention has the excellent characteristics of special dispersion optical glass;
  • the optical element of the present invention has the excellent characteristics of special dispersion optical glass, and can provide various optical elements such as lenses and prisms with high optical value.
  • the lens examples include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
  • optical elements formed by the special dispersion optical glass of the present invention can be used to make optical instruments such as photographic equipment, video equipment, projection equipment, display equipment, vehicle equipment and monitoring equipment.
  • the optical glass having the compositions shown in Table 1 to Table 5 was obtained by adopting the manufacturing method of the above-mentioned special dispersion optical glass.
  • the properties of each glass were measured by the test method described in the present invention, and the measurement results are shown in Tables 1 to 5.
  • the glass without opacification and no crystal particles inside is marked as "A”
  • the glass without opacification but with 1 to 10 crystal particles inside is marked as "A”.
  • “B” no opacification but with 10 to 20 crystal particles in it is marked as "C”
  • the case with opacification or dense devitrification particles in it is marked as "X”.
  • the glasses obtained in Examples 1 to 32 of the special dispersion optical glass are used, for example, by means of grinding, or hot press molding, precision stamping, and other compression molding methods to produce concave meniscus lenses, convex meniscus lenses, Prefabricated parts of various lenses such as biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses, and prisms.
  • the preforms obtained in the above glass preform embodiment are annealed, and the refractive index is fine-tuned while reducing the internal stress of the glass, so that the optical properties such as the refractive index reach the required values.
  • each preform is ground and polished to produce various lenses and prisms such as concave meniscus lens, convex meniscus lens, biconvex lens, biconcave lens, plano-convex lens, and plano-concave lens.
  • An antireflection film may be coated on the surface of the obtained optical element.
  • optical element prepared by the above optical element embodiment can be used for example in imaging equipment, sensor, microscope, medical technology, digital projection, communication, optical communication by using one or more optical elements to form optical components or optical components through optical design.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种特殊色散光学玻璃,其组分以重量百分比表示,含有:SiO2:23~45%;Nb2O5:20~40%;ZrO2:2~14%;RO:1~25%;Rn2O:0~25%;Ln2O3:0~20%,其中SiO2/Nb2O5为0.65~2.0,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn2O为Li2O、Na2O、K2O的合计含量,Ln2O3为La2O3、Gd2O3、Y2O3、Yb2O3的合计含量。通过合理的组分设计,本发明获得的特殊色散光学玻璃在具有较低Pg,F值和ΔPg,F值的同时,化学稳定性优异。

Description

特殊色散光学玻璃 技术领域
本发明涉及一种光学玻璃,尤其是涉及一种特殊色散光学玻璃,以及由其制成的玻璃预制件、光学元件和光学仪器。
背景技术
光学玻璃是光电产品的重要组成部分,近年来随着智能手机、单反相机和监控安防等光电产品的快速发展,对光学玻璃的性能提出了更高的要求。例如,光学设计中期望光学玻璃具有消除或尽可能消除二级光谱的残余色差的性能,这就要求光学玻璃具有较低的相对部分色散(P g,F)和相对部分色散偏离值(ΔP g,F)。另一方面,光学玻璃在加工、清洗或使用过程中会接触酸、碱和水等物质,如果没有较为优异的化学稳定性,将会缩短光学玻璃的使用寿命。
因此,开发一款P g,F值和ΔP g,F值较低,化学稳定性优异的光学玻璃,成为了广大科研工作者的新课题。
发明内容
本发明所要解决的技术问题是提供一种P g,F值和ΔP g,F值较低,化学稳定性优异的光学玻璃。
本发明解决技术问题采用的技术方案是:
(1)特殊色散光学玻璃,其组分以重量百分比表示,含有:SiO 2:23~45%;Nb 2O 5:20~40%;ZrO 2:2~14%;RO:1~25%;Rn 2O:0~25%;Ln 2O 3:0~20%,其中SiO 2/Nb 2O 5为0.65~2.0,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量。
(2)特殊色散光学玻璃,其组分以重量百分比表示,含有:SiO 2:23~45%;Nb 2O 5:20~40%;ZrO 2:2~14%;RO:1~25%;Rn 2O:0~25%;Ln 2O 3:0~20%,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量。
(3)根据(1)或(2)任一所述的特殊色散光学玻璃,其组分以重量百分比表示, 还含有:ZnO:0~10%;和/或WO 3:0~5%;和/或B 2O 3:0~8%;和/或TiO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ta 2O 5:0~5%;和/或澄清剂:0~1%,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
(4)特殊色散光学玻璃,其组分中含有SiO 2、Nb 2O 5和碱土金属氧化物,其组分以重量百分比表示,其中SiO 2/Nb 2O 5为0.65~2.0,所述特殊色散光学玻璃的折射率n d为1.68~1.82,阿贝数v d为31~40,P g,F值为0.7000以下,ΔP g,F值为0以下。
(5)根据(4)所述的特殊色散光学玻璃,其组分以重量百分比表示,含有:SiO 2:23~45%;和/或Nb 2O 5:20~40%;和/或ZrO 2:2~14%;和/或RO:1~25%;和/或Rn 2O:0~25%;和/或Ln 2O 3:0~20%;和/或ZnO:0~10%;和/或WO 3:0~5%;和/或B 2O 3:0~8%;和/或TiO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ta 2O 5:0~5%;和/或澄清剂:0~1%,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
(6)特殊色散光学玻璃,其组分以重量百分比表示,由SiO 2:23~45%;Nb 2O 5:20~40%;ZrO 2:2~14%;RO:1~25%;Rn 2O:0~25%;Ln 2O 3:0~20%;ZnO:0~10%;WO 3:0~5%;B 2O 3:0~8%;TiO 2:0~5%;Al 2O 3:0~5%;Ta 2O 5:0~5%;澄清剂:0~1%组成,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
(7)根据(1)~(6)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:SiO 2/Nb 2O 5为0.75~1.8,优选SiO 2/Nb 2O 5为0.8~1.5,更优选SiO 2/Nb 2O 5为0.9~1.3。
(8)根据(1)~(7)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:Nb 2O 5/(BaO+La 2O 3)为0.8~8.0,优选Nb 2O 5/(BaO+La 2O 3)为1.0~6.0,更优选Nb 2O 5/(BaO+La 2O 3)为1.2~4.0,进一步优选Nb 2O 5/(BaO+La 2O 3)为1.5~3.0。
(9)根据(1)~(8)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:ZnO/(BaO+La 2O 3)为2.0以下,优选ZnO/(BaO+La 2O 3)为0.05~1.5,更优选 ZnO/(BaO+La 2O 3)为0.08~1.0,进一步优选ZnO/(BaO+La 2O 3)为0.1~0.5。
(10)根据(1)~(9)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:(CaO+Na 2O)/BaO为0.02~8.0,优选(CaO+Na 2O)/BaO为0.05~5.0,更优选(CaO+Na 2O)/BaO为0.1~3.0,进一步优选(CaO+Na 2O)/BaO为0.2~1.0。
(11)根据(1)~(10)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:BaO/(Na 2O+Nb 2O 5)为0.05~0.8,优选BaO/(Na 2O+Nb 2O 5)为0.1~0.6,更优选BaO/(Na 2O+Nb 2O 5)为0.15~0.5,进一步优选BaO/(Na 2O+Nb 2O 5)为0.2~0.4。
(12)根据(1)~(11)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:Li 2O/Rn 2O为0.3~1.0,优选Li 2O/Rn 2O为0.4~0.9,更优选Li 2O/Rn 2O为0.45~0.8,进一步优选Li 2O/Rn 2O为0.5~0.75。
(13)根据(1)~(12)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:SiO 2/(BaO+ZnO)为1.0~20.0,优选SiO 2/(BaO+ZnO)为1.5~15.0,更优选SiO 2/(BaO+ZnO)为2.0~10.0,进一步优选SiO 2/(BaO+ZnO)为2.5~5.0。
(14)根据(1)~(13)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:B 2O 3/SiO 2为0.3以下,优选B 2O 3/SiO 2为0.2以下,更优选B 2O 3/SiO 2为0.15以下,进一步优选B 2O 3/SiO 2为0.1以下。
(15)根据(1)~(14)任一所述的特殊色散光学玻璃,其组分以重量百分比表示,其中:SiO 2:28~42%,优选SiO 2:31~40%;和/或Nb 2O 5:22~37%,优选Nb 2O 5:26~33%;和/或ZrO 2:3~12%,优选ZrO 2:5~10%;和/或RO:3~20%,优选RO:6~15%;和/或Rn 2O:1~20%,优选Rn 2O:2~15%;和/或Ln 2O 3:1~15%,优选Ln 2O 3:2~10%;和/或ZnO:0.1~8%,优选ZnO:0.5~6%;和/或WO 3:0~3%,优选WO 3:0~2%;和/或B 2O 3:0~4%,优选B 2O 3:0~2%;和/或TiO 2:0~3%,优选TiO 2:0~2%;和/或Al 2O 3:0~2%,优选Al 2O 3:0~1%;和/或Ta 2O 5:0~2%,优选Ta 2O 5:0~1%;和/或澄清剂:0~0.5%,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量,澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
(16)根据(1)~(15)任一所述的特殊色散光学玻璃,其组分以重量百分比表 示,其中:BaO:2~18%,优选BaO:4~15%,更优选BaO:5~12%;和/或CaO:0~18%,优选CaO:0~16.5%,更优选CaO:0~8%;和/或SrO:0~8%,优选SrO:0~5%,更优选SrO:0~2%;和/或MgO:0~8%,优选MgO:0~5%,更优选MgO:0~2%;和/或Li 2O:1~12%,优选Li 2O:1~10%,更优选Li 2O:1~9%;和/或Na 2O:0~10%,优选Na 2O:0.5~8%,更优选Na 2O:1~6%;和/或K 2O:0~8%,优选K 2O:0~5%,更优选K 2O:0~4%;和/或La 2O 3:0~14%,优选La 2O 3:2~12%,更优选La 2O 3:4~10%;和/或Gd 2O 3:0~10%,优选Gd 2O 3:0~5%,更优选Gd 2O 3:0~3%;和/或Y 2O 3:0~10%,优选Y 2O 3:0~5%,更优选Y 2O 3:0~3%;和/或Yb 2O 3:0~10%,优选Yb 2O 3:0~5%,更优选Yb 2O 3:0~3%。
(17)根据(1)~(16)任一所述的特殊色散光学玻璃,其组分中不含有B 2O 3;和/或不含有TiO 2;和/或不含有WO 3;和/或不含有Ta 2O 5;和/或不含有SrO;和/或不含有MgO;和/或不含有CaO;和/或不含有Gd 2O 3;和/或不含有Y 2O 3
(18)根据(1)~(17)任一所述的特殊色散光学玻璃的折射率n d为1.68~1.82,优选为1.70~1.80,更优选为1.71~1.79,进一步优选为1.73~1.77;和/或阿贝数v d为31~40,优选为32~38,更优选为33~37。
(19)根据(1)~(18)任一所述的特殊色散光学玻璃的P g,F值为0.7000以下,优选为0.6500以下,更优选为0.6000以下;和/或ΔP g,F值为0以下,优选为-0.0010以下,更优选为-0.0020以下,进一步优选为-0.0030以下。
(20)根据(1)~(19)任一所述的特殊色散光学玻璃的密度ρ为3.80g/cm 3以下,优选为3.70g/cm 3以下,更优选为3.60g/cm 3以下;和/或热膨胀系数α -30/70℃为100×10 -7/K以下,优选为90×10 -7/K以下,更优选为85×10 -7/K以下;和/或转变温度T g为600℃以下,优选为590℃以下,更优选为580℃以下,进一步优选为570℃以下;和/或λ 80小于或等于410nm,优选λ 80小于或等于400nm,更优选λ 80小于或等于395nm;和/或λ 5小于或等于340nm,优选λ 5小于或等于335nm,更优选λ 5小于或等于330nm;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或努氏硬度H K为520×10 7Pa以上,优选为540×10 7Pa以上,更优选为550×10 7Pa以上,进一步优选为570×10 7Pa以上。
(21)玻璃预制件,采用(1)~(20)任一所述的特殊色散光学玻璃制成。
(22)光学元件,采用(1)~(20)任一所述的特殊色散光学玻璃制成,或采用(21)所述的玻璃预制件制成。
(23)光学仪器,含有(1)~(20)任一所述的特殊色散光学玻璃,或含(22)所述的光学元件。
本发明的有益效果是:通过合理的组分设计,本发明获得的特殊色散光学玻璃在具有较低P g,F值和ΔP g,F值的同时,化学稳定性优异。
具体实施方式
下面,对本发明的特殊色散光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨,在以下内容中,本发明特殊色散光学玻璃有时候简称为光学玻璃或玻璃。
[特殊色散光学玻璃]
下面对本发明特殊色散光学玻璃的各组分(成分)范围进行说明。在本发明中,如果没有特殊说明,各组分的含量、总含量全部采用重量百分比(wt%)表示,即,各组分的含量、总含量相对于换算成氧化物的组成的玻璃物质总量的重量百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的光学玻璃组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作为100%。
除非在具体情况下另外指出,本发明所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
<必要组分和任选组分>
SiO 2具有改善玻璃的化学稳定性、维持适于熔融玻璃成型的粘度、降低对耐火材料或铂金器皿侵蚀的作用,本发明中通过含有23%以上的SiO 2以获得上述效果,优选SiO 2的含量为28%以上,更优选SiO 2的含量为31%以上。若SiO 2的含量过高,玻璃的熔融难度增加,同时对降低玻璃的转变温度不利。因此,本发明中SiO 2的含量上限为45%, 优选上限为42%,更优选上限为40%。
Nb 2O 5是高折射高色散组分,可以提高玻璃的折射率和耐失透性,并具有降低玻璃相对部分色散P g,F和相对部分色散偏离值ΔP g,F的作用,本发明中通过含有20%以上的Nb 2O 5以获得上述效果,优选Nb 2O 5的含量下限为22%,更优选下限为26%。若Nb 2O 5的含量超过40%,玻璃的热稳定性和化学稳定性降低,光透过率下降,因此本发明中Nb 2O 5的含量上限为40%,优选上限为37%,更优选上限为33%。
发明人通过大量实验研究发现,在本发明的一些实施方式中,通过控制SiO 2的含量与Nb 2O 5的含量之间的比例SiO 2/Nb 2O 5在0.65~2.0范围内,可以使本发明光学玻璃在获得期望的光学常数的同时,降低玻璃的P g,F值和ΔP g,F值,并提高玻璃的化学稳定性。因此,优选SiO 2/Nb 2O 5为0.65~2.0,更优选SiO 2/Nb 2O 5为0.75~1.8,进一步优选SiO 2/Nb 2O 5为0.8~1.5,更进一步优选SiO 2/Nb 2O 5为0.9~1.3。
ZrO 2可以提高玻璃的折射率并调节色散,降低玻璃的P g,F值和ΔP g,F值,优化玻璃的耐碱性,本发明中通过含有2%以上的ZrO 2以获得上述效果,优选含有3%以上的ZrO 2,更优选含有5%以上的ZrO 2。若ZrO 2的含量高于14%,玻璃熔化难度增加,熔炼温度上升,并导致玻璃内部出现夹杂物及光透过率下降。因此,ZrO 2的含量为14%以下,优选为12%以下,更优选为10%以下。
ZnO可以调整玻璃的折射率和色散,提高玻璃的稳定性,同时ZnO还可以降低玻璃的高温粘度和转变温度,使得玻璃可以在较低温度下熔制,从而提高玻璃的光透过率。另一方面,若ZnO的含量过高,玻璃成型难度增加,抗析晶性能变差。因此,ZnO的含量为10%以下,优选为0.1~8%,更优选为0.5~6%。
碱土金属氧化物可以调节玻璃的光学常数,改善玻璃的耐失透性,若其含量过高,则玻璃的化学稳定性下降。因此,碱土金属氧化物BaO、SrO、CaO、MgO的合计含量RO为1~25%,优选为3~20%,更优选为6~15%。
BaO在本发明中可提高玻璃的耐失透性和硬度,降低玻璃的折射率温度系数和热膨胀系数,本发明中通过含有2%以上的BaO以获得上述效果,优选BaO的含量为4%以上,更优选BaO的含量为5%以上。另一方面,通过使BaO的含量为18%以下,可以防止因BaO含量过高引起的化学稳定性降低,优选BaO的含量为15%以下,更优选BaO的含量 为12%以下。
在本发明的一些实施方式中,通过控制SiO 2的含量与BaO和ZnO的合计含量(BaO+ZnO)之间的比例SiO 2/(BaO+ZnO)在1.0~20.0范围内,可在优化玻璃的成玻稳定性和光透过率的同时,降低玻璃的热膨胀系数。因此,优选SiO 2/(BaO+ZnO)为1.0~20.0,更优选SiO 2/(BaO+ZnO)为1.5~15.0,进一步优选SiO 2/(BaO+ZnO)为2.0~10.0,更进一步优选SiO 2/(BaO+ZnO)为2.5~5.0。
CaO有助于调整玻璃的光学常数,改善玻璃的加工性能,但是CaO的含量过多时,会使得玻璃的光学常数达不到要求,抗析晶性能变差。因此,CaO含量的范围为0~18%,优选为0~16.5%,更优选为0~8%。在一些实施方式中,进一步优选不含有CaO。
SrO在玻璃中可以调节玻璃的折射率和色散,但若含量过多,玻璃的化学稳定性下降,同时玻璃的成本也会快速上升。因此,SrO的含量为0~8%,优选为0~5%,更优选为0~2%。在一些实施方式中,进一步优选不含有SrO。
MgO有利于降低玻璃的密度和熔制温度,但是MgO含量过多时玻璃的折射率难以达到设计要求,玻璃的抗析晶性能和稳定性下降。因此,MgO的含量为0~8%,优选为0~5%,更优选为0~2%。在一些实施方式中,进一步优选不含有MgO。
碱金属氧化物可以降低玻璃转变温度,优化玻璃的熔融性,若其含量过多,玻璃的化学稳定性和耐失透性降低。因此,本发明中碱金属氧化物Li 2O、Na 2O、K 2O的合计含量Rn 2O为25%以下,优选为1~20%,更优选为2~15%。
Li 2O可以显著改善玻璃的熔融性,增大ZrO 2在玻璃中的溶解度,并降低玻璃的转变温度,调节玻璃的折射率,但其含量过高对玻璃的耐酸稳定性和热膨胀系数不利。因此,本发明中Li 2O的含量为1~12%,优选为1~10%,更优选为1~9%。
Na 2O具有改善玻璃熔融性、降低玻璃转变温度的作用,若其含量超过10%,玻璃的化学稳定性和耐候性降低。因此,Na 2O的含量为0~10%,优选为0.5~8%,更优选为1~6%。
在本发明的一些实施方式中,通过使CaO和Na 2O的合计含量(CaO+Na 2O)与BaO的含量之间的比例(CaO+Na 2O)/BaO在0.02~8.0范围内,可在提高光学玻璃化学稳定性的同时,降低玻璃的密度,有利于实现光学系统的轻量化。因此,优选(CaO+Na 2O) /BaO为0.02~8.0,更优选(CaO+Na 2O)/BaO为0.05~5.0。进一步的,通过使(CaO+Na 2O)/BaO在0.1~3.0范围内,还可进一步优化玻璃的硬度。因此,进一步优选(CaO+Na 2O)/BaO为0.1~3.0,更进一步优选(CaO+Na 2O)/BaO为0.2~1.0。
在本发明的一些实施方式中,通过使BaO的含量与Na 2O和Nb 2O 5的合计含量(Na 2O+Nb 2O 5)之间的比例BaO/(Na 2O+Nb 2O 5)在0.05~0.8范围内,可在提高玻璃的硬度的同时,优化玻璃的光透过率。因此,优选BaO/(Na 2O+Nb 2O 5)为0.05~0.8,更优选BaO/(Na 2O+Nb 2O 5)为0.1~0.6,进一步优选BaO/(Na 2O+Nb 2O 5)为0.15~0.5,更进一步优选BaO/(Na 2O+Nb 2O 5)为0.2~0.4。
K 2O具有改善玻璃热稳定性和熔融性的作用,但当K 2O的含量超过8%,玻璃的耐失透性下降。因此,K 2O的含量上限为8%,优选上限为5%,更优选上限为4%。
发明人通过大量实验研究发现,在本发明的一些实施方式中,当Li 2O/Rn 2O在0.3~1.0范围内,可优化玻璃的耐失透性,提高玻璃的耐水性。因此,优选Li 2O/Rn 2O为0.3~1.0,更优选Li 2O/Rn 2O为0.4~0.9。进一步的,通过使Li 2O/Rn 2O在0.45~0.8范围内,还有利于提高玻璃的耐候性。因此,进一步优选Li 2O/Rn 2O为0.45~0.8,更进一步优选Li 2O/Rn 2O为0.5~0.75。
Ln 2O 3(Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量)可以提高玻璃的折射率,若其含量高于20%,玻璃的耐失透性降低。因此,Ln 2O 3的含量为20%以下,优选为1~15%,更优选为2~10%。
La 2O 3可在有效提高玻璃的折射率,增强玻璃的化学稳定性和机械强度的同时,不明显增大玻璃的P g,F值和ΔP g,F值,但当其含量超过14%时,玻璃的耐失透性变差。因此,本发明玻璃中La 2O 3的含量为0~14%,优选含量为2~12%,更优选为4~10%。
通过发明人大量实验研究发现,在本发明的一些实施方式中,通过控制Nb 2O 5的含量与BaO和La 2O 3的合计含量(BaO+La 2O 3)之间的比例Nb 2O 5/(BaO+La 2O 3)在0.8~8.0范围内,可在降低玻璃P g,F值和ΔP g,F值的同时,优化玻璃的热膨胀系数和二次压型抗析晶性能。因此,优选Nb 2O 5/(BaO+La 2O 3)为0.8~8.0,更优选Nb 2O 5/(BaO+La 2O 3)为1.0~6.0,进一步优选Nb 2O 5/(BaO+La 2O 3)为1.2~4.0,更进一步优选Nb 2O 5/(BaO+La 2O 3)为1.5~3.0。
在本发明的一些实施方式中,通过控制ZnO的含量与BaO和La 2O 3的合计含量(BaO+La 2O 3)之间的比例ZnO/(BaO+La 2O 3)在2.0以下,可防止玻璃硬度的降低。因此,优选ZnO/(BaO+La 2O 3)为2.0以下,更优选ZnO/(BaO+La 2O 3)为0.05~1.5。进一步的,通过使ZnO/(BaO+La 2O 3)在0.08~1.0范围内,还可进一步优化玻璃的抗析晶性能和磨耗度,防止玻璃热膨胀系数变大。因此,进一步优选ZnO/(BaO+La 2O 3)为0.08~1.0,更进一步优选ZnO/(BaO+La 2O 3)在0.1~0.5。
Gd 2O 3具有提高折射率的作用,但若其含量超过10%,玻璃的耐失透性降低,转变温度有上升的趋势,因此本发明中Gd 2O 3的含量为10%以下,优选为0~5%,更优选为0~3%。在一些实施方式中,进一步优选不含有Gd 2O 3
Y 2O 3可以改善玻璃的熔融性和抗析晶性能,提高玻璃的化学稳定性,但若其含量超过10%,玻璃的稳定性和耐失透性降低。因此,Y 2O 3的含量范围为0~10%,优选为0~5%,更优选为0~3%,进一步优选不含有Y 2O 3
Yb 2O 3可以提高玻璃的折射率,若其含量超过10%,玻璃的稳定性和耐失透性降低。因此,Yb 2O 3的含量范围为0~10%,优选为0~5%,更优选为0~3%,进一步优选不含有Yb 2O 3
WO 3可以提高玻璃的折射率和机械强度,若WO 3的含量超过5%,玻璃的热稳定性下降,透过率和耐失透性降低。因此,WO 3的含量上限为5%,优选上限为3%,更优选上限为2%。在一些实施方式中,进一步优选不含有WO 3
B 2O 3在本发明玻璃中可作为玻璃网络生成体,有利于降低玻璃的P g,F值和ΔP g,F值。当B 2O 3的含量大于8%时,玻璃的化学稳定变差,玻璃高温粘度变小,且玻璃透过率和二次压型抗析晶性能劣化。因此,B 2O 3的含量限定为8%以下,优选为4%以下,更优选为2%以下。在一些实施方式中,进一步优选不含有B 2O 3
在本发明的一些实施方式中,将B 2O 3/SiO 2控制在0.3以下,可提高玻璃的抗析晶性能和化学稳定性。因此,优选B 2O 3/SiO 2为0.3以下,更优选B 2O 3/SiO 2为0.2以下。进一步的,使B 2O 3/SiO 2在0.15以下,还有利于提高玻璃的硬度。因此,进一步优选B 2O 3/SiO 2为0.15以下,更进一步优选B 2O 3/SiO 2为0.1以下。
TiO 2具有提高玻璃折射率和色散的作用,适量含有可使玻璃更稳定并降低玻璃的粘 度,但TiO 2的存在会明显提高玻璃的P g,F值和ΔP g,F值,因此,本发明中TiO 2的含量为5%以下,优选为3%以下,更优选为2%以下。在一些实施方式中,进一步优选不含有TiO 2
Al 2O 3能改善玻璃的化学稳定性,但其含量超过5%时,玻璃的熔融性和光透过率变差。因此,本发明中Al 2O 3的含量为0~5%,优选为0~2%,更优选为0~1%。在一些实施方式中,进一步优选不含有Al 2O 3
Ta 2O 5具有提高玻璃折射率、降低玻璃的P g,F值和ΔP g,F值,提升玻璃耐失透性的作用,但如其含量过高,玻璃的化学稳定性下降,玻璃表面张力增大,气泡消除困难;另一方面,与其他成分相比,Ta 2O 5的价格非常昂贵,从实用以及成本的角度考虑,应尽量减少其使用量。因此,本发明中Ta 2O 5的含量限定为0~5%,优选为0~2%,更优选为0~1%,进一步优选不含有Ta 2O 5
本发明中通过含有0~1%的Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种组分作为澄清剂,可以提高玻璃的澄清效果,优选澄清剂的含量为0~0.5%。当Sb 2O 3含量超过1%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了熔制玻璃的铂金或铂合金器皿的腐蚀以及成型模具的恶化,因此本发明优选Sb 2O 3的含量为0~1%,更优选为0~0.5%。SnO和SnO 2也可以作为澄清剂,但当其含量超过1%时,则玻璃着色倾向增加,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn会成为晶核生成的起点,产生失透的倾向。因此本发明的SnO 2的含量优选为0~1%,更优选为0~0.5%;SnO的含量优选为0~1%,更优选为0~0.5%。CeO 2的作用及含量比例与SnO 2一致,其含量优选为0~1%,更优选为0~0.5%,更进一步优选不含有CeO 2
<不应含有的组分>
本发明玻璃中,V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属的氧化物,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有。
Th、Cd、Tl、Os、Be以及Se的氧化物,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实 际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
为了实现环境友好,本发明的光学玻璃优选不含有As 2O 3和PbO。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面,对本发明的特殊色散光学玻璃的性能进行说明。
<折射率与阿贝数>
光学玻璃的折射率(n d)与阿贝数(ν d)按照《GB/T 7962.1—2010》规定的方法测试。
在一些实施方式中,本发明特殊色散光学玻璃的折射率(n d)的下限为1.68,优选下限为1.70,更优选下限为1.71,进一步优选下限为1.73。在一些实施方式中,本发明光学玻璃的折射率(n d)的上限为1.82,优选上限为1.80,更优选上限为1.79,进一步优选上限为1.77。
在一些实施方式中,本发明特殊色散光学玻璃的阿贝数(ν d)的下限为31,优选下限为32,更优选下限为33。在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的上限为40,优选上限为38,更优选上限为37。
<密度>
光学玻璃的密度(ρ)按照《GB/T7962.20-2010》规定的方法进行测试。
在一些实施方式中,本发明特殊色散光学玻璃的密度(ρ)为3.80g/cm 3以下,优选为3.70g/cm 3以下,更优选为3.60g/cm 3以下。
<热膨胀系数>
光学玻璃的热膨胀系数(α -30/70℃)按照《GB/T7962.16-2010》规定的方法测试-30~70℃的数据。
在一些实施方式中,本发明的特殊色散光学玻璃的热膨胀系数(α -30/70℃)为100×10 -7/K以下,优选为90×10 -7/K以下,更优选为85×10 -7/K以下。
<转变温度>
光学玻璃的转变温度(T g)按照《GB/T7962.16-2010》规定的方法进行测试。
在一些实施方式中,本发明特殊色散光学玻璃的转变温度(T g)为600℃以下,优选为590℃以下,更优选为580℃以下,进一步优选为570℃以下。
<着色度>
本发明玻璃的短波透射光谱特性用着色度(λ 80和λ 5)表示。λ 80是指玻璃透射比达到80%时对应的波长。λ 80的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1mm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率80%的波长。所谓分光透射率或透射率是在向玻璃的上述表面垂直地入射强度I in的光,透过玻璃并从一个平面射出强度I out的光的情况下通过I out/I in表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在高折射率玻璃中,λ 80的值小意味着玻璃自身的着色极少,光透过率高。
在一些实施方式中,本发明的特殊色散光学玻璃的λ 80小于或等于410nm,优选λ 80小于或等于400nm,更优选λ 80小于或等于395nm。
在一些实施方式中,本发明的特殊色散光学玻璃的λ 5小于或等于340nm,优选λ 5小于或等于335nm,更优选λ 5小于或等于330nm。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(D W)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明特殊色散光学玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(D A)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明特殊色散光学玻璃的耐酸作用稳定性(D A)为2类以上,优选为1类。
<努氏硬度>
光学玻璃的努氏硬度(H K)按《GB/T7962.18-2010》规定的测试方法进行测试。
在一些实施方式中,本发明的特殊色散光学玻璃的努氏硬度(H K)为520×10 7Pa 以上,优选为540×10 7Pa以上,更优选为550×10 7Pa以上,进一步优选为570×10 7Pa以上。
<相对部分色散和相对部分色散偏离值>
用下述公式来说明相对部分色散(P g,F)和相对部分色散偏离值(ΔP g,F)的由来。
对波长x和y的相对部分色散用下式(1)表示:
P x,y=(n x-n y)/(n F-n C)         (1)
根据阿贝数公式,对于大多数所谓的“正常玻璃”而言(以下选用H-K6和F4作为“正常玻璃”),下式(2)是成立的
P x,y=m x,y·v d+b x,y             (2)
这种直线关系是以P x,y为纵坐标、v d为横坐标来表示的,式中m x,y为斜率,b x,y为截距。
众所周知,二级光谱的校正,即对两个以上波长消色差,至少需要一种不符合上式(2)的玻璃(即其P x,y值偏离阿贝经验公式),其偏离值用ΔP x,y表示,则每个P x,y-v d点相对于符合上式(2)的“正常线”平移了ΔP x,y量,这样各玻璃的ΔP x,y数值可用下式(3)求出:
P x,y=m x,y·v d+b x,y+ΔP x,y            (3)
因此ΔP x,y就定量地表示了与“正常玻璃”相比时的特殊色散的偏离特性。
因此,由以上可以得到相对部分色散(P g,F)和相对部分色散偏离值(ΔP g,F)的计算公式为下式(4)和(5):
P g,F=(n g-n F)/(n F-n C)           (4)
ΔP g,F=P g,F-0.6457+0.001703v d               (5)
在一些实施方式中,本发明特殊色散光学玻璃的相对部分色散(P g,F)为0.7000以下,优选为0.6500以下,更优选为0.6000以下。
在一些实施方式中,本发明特殊色散光学玻璃的相对部分色散偏离值(ΔP g,F)为0以下,优选为-0.0010以下,更优选为-0.0020以下,进一步优选为-0.0030以下。
<抗析晶性能>
抗析晶性能的测试方法为:将样品玻璃切割为20×20×10mm的规格,放入温度为T g+(200~250)℃的马弗炉中保温15~30分钟,取出冷却后观察玻璃表面及内部有无 晶体或产生乳浊。若玻璃样品无乳浊和晶体,则玻璃的抗析晶性能优异。本测试方法用以表征本发明玻璃的二次压型抗析晶性能。
[特殊色散光学玻璃的制造方法]
本发明特殊色散光学玻璃的制造方法如下:本发明的玻璃采用常规原料和工艺生产,包括但不限于使用氧化物、氢氧化物、碳酸盐、硝酸盐、磷酸盐、偏磷酸盐等为原料,按常规方法配料后,将配好的炉料投入到1200~1400℃的熔炼炉(如铂金或铂合金坩埚)中熔制,并且经澄清和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如直接滴料成型、或研磨加工的手段、或热压成型等模压成型的手段,由所制成的特殊色散光学玻璃来制作玻璃预制件。即,可以通过对熔融光学玻璃进行直接精密滴料成型为玻璃精密预制件,或通过磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件。需要说明的是,制备玻璃预制件的手段不限于上述手段。
如上所述,本发明的特殊色散光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的特殊色散光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的特殊色散光学玻璃形成。本发明的玻璃预制件具有特殊色散光学玻璃所具有的优异特性;本发明的光学元件具有特殊色散光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明特殊色散光学玻璃所形成的光学元件可制作如照相设备、摄像设备、投影设备、显示设备、车载设备和监控设备等光学仪器。
实施例
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述特殊色散光学玻璃的制造方法得到具有表1~表5所示的组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表1~表5中。在表1~表5的抗析晶性能测试中,根据前述测试方法,玻璃无乳浊且内部无晶体颗粒的记做“A”,无乳浊但内部有1~10个晶体颗粒的记为“B”,无乳浊但内部有10~20个晶体颗粒的记为“C”,产生乳浊或内部有密集析晶颗粒的记为“×”。
表1.
组分(wt%) 1# 2# 3# 4# 5# 6# 7#
SiO 2 34 24.6 29.2 35 35 34.5 37
Nb 2O 5 29.5 29 29.1 26.5 29.5 27.5 32
ZrO 2 7 8 7.5 9 6.5 6.5 8.9
ZnO 2 5 2.8 0 0 3.2 0
BaO 8 4 6.7 7 8 8 3
CaO 0 14.5 7.5 0 0 0 0
SrO 0 0 0 0 0 0 0
MgO 0 0 0 0 0 0 0
Li 2O 7.5 2.5 3.75 7.5 7.5 7.5 6.5
Na 2O 3.5 4 5 2.5 3.5 3.5 4.5
K 2O 0 1 0.75 0 0 0 0
La 2O 3 8.3 0 3.9 10.5 6.5 9 4
Gd 2O 3 0 0 0 0 0 0 0
Y 2O 3 0 0 0 0 0 0 0
Yb 2O 3 0 0 0 0 0 0 0
WO 3 0 0 0 0 0 0 0
B 2O 3 0 7.2 3.6 0 0 0 0
TiO 2 0 0 0 0 0 0 0
Al 2O 3 0 0 0 0 0 0 0
Ta 2O 5 0 0 0 1.85 3.4 0 4
Sb 2O 3 0.2 0.2 0.2 0.15 0.1 0.3 0.1
SnO 0 0 0 0 0 0 0
SnO 2 0 0 0 0 0 0 0
CeO 2 0 0 0 0 0 0 0
合计 100 100 100 100 100 100 100
Ln 2O 3 8.3 0 3.9 10.5 6.5 9 4
RO 8 18.5 14.2 7 8 8 3
Rn 2O 11 7.5 9.5 10 11 11 11
Nb 2O 5/(BaO+La 2O 3) 1.81 7.25 2.745 1.514 2.034 1.618 4.571
ZnO/(BaO+La 2O 3) 0.123 1.25 0.264 0 0 0.188 0
(CaO+Na 2O)/BaO 0.438 4.625 1.866 0.357 0.438 0.438 1.5
BaO/(Na 2O+Nb 2O 5) 0.242 0.121 0.196 0.241 0.242 0.258 0.082
SiO 2/Nb 2O 5 1.153 0.848 1.003 1.321 1.186 1.255 1.156
Li 2O/Rn 2O 0.682 0.333 0.395 0.75 0.682 0.682 0.591
SiO 2/(BaO+ZnO) 3.4 2.733 3.074 5 4.375 3.08 12.33
B 2O 3/SiO 2 0 0.293 0.123 0 0 0 0
n d 1.752 1.754 1.752 1.75 1.748 1.746 1.748
v d 35.22 35.5 35.22 36.06 34.98 35.78 33.48
λ 80 394 409 400 390 391 389 396
λ 5 331 338 335 330 331 330 333
T g(℃) 557 588 584 569 562 565 565
ρ(g/cm 3) 3.5 3.42 3.5 3.54 3.48 3.49 3.45
D A 1类 1类 1类 1类 1类 1类 1类
D W 1类 1类 1类 1类 1类 1类 1类
α -30/70℃(×10 -7/K) 80 83 82 78 80 80 81
H K(×10 7Pa) 590 582 590 596 585 586 592
P g,F 0.582 0.581 0.581 0.58 0.582 0.582 0.582
ΔP g,F -0.004 -0.005 -0.005 -0.004 -0.005 -0.003 -0.007
抗析晶性能 A B B A A A A
表2.
组分(wt%) 8# 9# 10# 11# 12# 13# 14#
SiO 2 32.5 35.3 29.4 27.4 26.3 31.1 38.4
Nb 2O 5 32.0 26.5 37.3 38.6 30.4 23.5 25.7
ZrO 2 5.5 9.2 4.2 13.2 7.5 12.2 8.5
ZnO 2.4 1.5 5.5 0.8 3.3 1.0 0.5
BaO 8.5 3.7 5.1 11.2 12.2 15.2 7.0
CaO 0 1.5 0 0 0 1.0 2.0
SrO 0 0 0 0 0 0 0.5
MgO 0 1.0 0 0 0 0 0
Li 2O 6.3 6.4 3.8 4.5 5.7 2.7 7.7
Na 2O 2.5 4.2 1.0 1.2 2.0 0 0
K 2O 0.5 0 0 0 0 1.0 0
La 2O 3 8.5 5.2 11.5 3.1 12.5 10.8 8.0
Gd 2O 3 0 2.0 0 0 0 0.5 0
Y 2O 3 0 0 2.0 0 0 0 0
Yb 2O 3 0 0 0 0 0 0 0
WO 3 0 1.5 0 0 0 0 0
B 2O 3 1.1 0 0 0 0 0 0
TiO 2 0 2.0 0 0 0 0 0.7
Al 2O 3 0 0 0 0 0 1 0.5
Ta 2O 5 0 0 0 0 0 0 0.5
Sb 2O 3 0.2 0 0.2 0 0.1 0 0
SnO 0 0 0 0 0 0 0
SnO 2 0 0 0 0 0 0 0
CeO 2 0 0 0 0 0 0 0
合计 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ln 2O 3 8.5 7.2 13.5 3.1 12.5 11.3 8.0
RO 8.5 6.2 5.1 11.2 12.2 16.2 9.5
Rn 2O 9.3 10.6 4.8 5.7 7.7 3.7 7.7
Nb 2O 5/(BaO+La 2O 3) 1.882 2.978 2.247 2.699 1.231 0.904 1.713
ZnO/(BaO+La 2O 3) 0.141 0.169 0.331 0.056 0.134 0.038 0.033
(CaO+Na 2O)/BaO 0.294 1.541 0.196 0.107 0.164 0.066 0.286
BaO/(Na 2O+Nb 2O 5) 0.246 0.121 0.133 0.281 0.377 0.647 0.272
SiO 2/Nb 2O 5 1.016 1.332 0.788 0.71 0.865 1.323 1.494
Li 2O/Rn 2O 0.677 0.604 0.792 0.789 0.74 0.73 1
SiO 2/(BaO+ZnO) 2.982 6.788 2.774 2.283 1.697 1.92 5.12
B 2O 3/SiO 2 0.034 0 0 0 0 0 0
n d 1.7657 1.74282 1.8170 1.8182 1.8047 1.7723 1.7313
v d 34.30 34.70 32.42 34.54 33.73 35.22 35.50
λ 80 395 405 396 395 397 398 394
λ 5 335 339 331 330 333 332 336
T g(℃) 562 570 568 580 568 592 570
ρ(g/cm 3) 3.58 3.48 3.48 3.52 3.47 3.60 3.43
D A 1类 1类 1类 2类 2类 1类 1类
D W 1类 1类 1类 1类 1类 1类 1类
α -30/70℃(×10 -7/K) 79 81 78 79 84 75 79
H K(×10 7Pa) 586 580 582 590 588 570 598
P g,F 0.5863 0.5822 0.5725 0.5635 0.5810 0.5795 0.5876
ΔP g,F -0.0038 -0.0042 -0.0050 -0.0051 -0.0040 -0.0062 -0.0039
抗析晶性能 B A A A A A A
表3.
组分(wt%) 15# 16# 17# 18# 19# 20# 21#
SiO 2 35.6 37.0 36.3 41.5 40.6 30.5 42.2
Nb 2O 5 31.5 28.6 27.5 24.0 22.5 28.7 26.5
ZrO 2 6.3 3.5 10.2 6.2 5.6 12.0 9.4
ZnO 4.2 8.4 6.6 2.3 7.5 1.5 0.7
BaO 10.0 6.3 9.5 7.4 8.6 9.5 10.4
CaO 0 0 0 0 0.5 0 0
SrO 0 0 0 0 0 0 0
MgO 0 0 0 0 0.5 0 0
Li 2O 8.3 8.2 5.2 10.5 5.4 2.4 3.7
Na 2O 0.5 3.4 1.7 1.8 2.7 2.0 3.5
K 2O 0 0 0 0 0 0.8 0
La 2O 3 3.5 4.5 2.9 6.2 5.6 10.7 3.5
Gd 2O 3 0 0 0 0 0 1.9 0
Y 2O 3 0 0 0 0 0 0 0
Yb 2O 3 0 0 0 0 0 0 0
WO 3 0 0 0 0 0.5 0 0
B 2O 3 0 0 0 0 0 0 0
TiO 2 0 0 0 0 0 0 0
Al 2O 3 0 0 0 0 0 0 0
Ta 2O 5 0 0 0 0 0 0 0
Sb 2O 3 0.1 0.1 0 0.1 0 0 0.1
SnO 0 0 0 0 0 0 0
SnO 2 0 0 0.1 0 0 0 0
CeO 2 0 0 0 0 0 0 0
合计 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Ln 2O 3 3.5 4.5 2.9 6.2 5.6 12.6 3.5
RO 10.0 6.3 9.5 7.4 9.6 9.5 10.4
Rn 2O 8.8 11.6 6.9 12.3 8.1 5.2 7.2
Nb 2O 5/(BaO+La 2O 3) 2.333 2.648 2.218 1.765 1.585 1.421 1.906
ZnO/(BaO+La 2O 3) 0.311 0.778 0.532 0.169 0.528 0.074 0.05
(CaO+Na 2O)/BaO 0.05 0.54 0.179 0.243 0.372 0.211 0.337
BaO/(Na 2O+Nb 2O 5) 0.313 0.197 0.325 0.287 0.341 0.309 0.347
SiO 2/Nb 2O 5 1.13 1.294 1.32 1.729 1.804 1.063 1.592
Li 2O/Rn 2O 0.943 0.707 0.754 0.854 0.667 0.462 0.514
SiO 2/(BaO+ZnO) 2.507 2.517 2.255 4.278 2.522 2.773 3.802
B 2O 3/SiO 2 0 0 0 0 0 0 0
n d 1.7488 1.7264 1.7403 1.6912 1.6989 1.7928 1.7128
v d 35.19 34.74 35.44 38.08 38.15 33.69 35.27
λ 80 390 386 391 390 391 392 378
λ 5 330 328 331 325 327 326 328
T g(℃) 555 548 562 563 560 577 576
ρ(g/cm 3) 3.48 3.39 3.42 3.49 3.51 3.56 3.35
D A 1类 1类 1类 1类 1类 1类 1类
D W 1类 1类 1类 2类 2类 2类 1类
α -30/70℃(×10 -7/K) 81 82 78 78 80 76 76
H K(×10 7Pa) 587 567 570 580 578 587 593
P g,F 0.5806 0.5898 0.5791 0.5914 0.6042 0.5847 0.5799
ΔP g,F -0.0038 -0.0033 -0.0062 -0.0041 -0.0025 -0.0035 -0.0057
抗析晶性能 A A A A A A A
表4.
组分(wt%) 22# 23# 24# 25# 26# 27# 28#
SiO 2 36.4 34.5 33.6 37 26 38.05 37
Nb 2O 5 27.4 29.3 30.5 37 28.9 36.9 32
ZrO 2 4.4 2.5 7.6 5.9 5 5.9 8.9
ZnO 2.0 1.6 1.0 0 5.7 0 0
BaO 7.2 8.5 9.4 3 8 3.5 3
CaO 0 0 0 0 14 0 0
SrO 0 0 0 0 0 0 0
MgO 0 0 0 0 0 0 0
Li 2O 7.2 8.6 6.4 6.5 2 6.5 6.5
Na 2O 1.7 5.2 2.0 4.5 4.3 3 4.5
K 2O 0 0 1 0 0 0 0
La 2O 3 13.7 9.6 5.5 6 0 6 6
Gd 2O 3 0 0 0 0 0 0 0
Y 2O 3 0 0 0 0 0 0 0
Yb 2O 3 0 0 0 0 0 0 0
WO 3 0 0 0 0 0 0 0
B 2O 3 0 0 3.0 0 6 0 0
TiO 2 0 0 0 0 0 0 0
Al 2O 3 0 0 0 0 0 0 0
Ta 2O 5 0 0 0 0 0 0 2
Sb 2O 3 0 0.2 0 0.1 0.1 0.15 0.1
SnO 0 0 0 0 0 0 0
SnO 2 0 0 0 0 0 0 0
CeO 2 0 0 0 0 0 0 0
合计 100.0 100.0 100.0 100 100 100 100
Ln 2O 3 13.7 9.6 5.5 6 0 6 6
RO 7.2 8.5 9.4 3 22 3.5 3
Rn 2O 8.9 13.8 9.4 11 6.3 9.5 11
Nb 2O 5/(BaO+La 2O 3) 1.311 1.619 2.047 4.111 3.613 3.884 3.556
ZnO/(BaO+La 2O 3) 0.096 0.088 0.067 0 0.713 0 0
(CaO+Na 2O)/BaO 0.236 0.612 0.213 1.5 2.288 0.857 1.5
BaO/(Na 2O+Nb 2O 5) 0.247 0.246 0.289 0.072 0.241 0.088 0.082
SiO 2/Nb 2O 5 1.328 1.177 1.102 1 0.9 1.031 1.156
Li 2O/Rn 2O 0.809 0.623 0.681 0.591 0.317 0.684 0.591
SiO 2/(BaO+ZnO) 3.957 3.416 3.231 12.33 1.898 10.87 12.33
B 2O 3/SiO 2 0 0 0.089 0 0.231 0 0
n d 1.7425 1.7404 1.7562 1.757 1.752 1.749 1.748
v d 36.47 34.73 35.15 32.43 35.19 33.07 33.82
λ 80 390 389 393 399 408 401 400
λ 5 330 329 332 336 338 335 334
T g(℃) 565 548 568 570 589 572 575
ρ(g/cm 3) 3.48 3.42 3.53 3.47 3.44 3.45 3.46
D A 1类 1类 1类 1类 1类 1类 1类
D W 1类 1类 1类 1类 1类 1类 1类
α -30/70℃(×10 -7/K) 77 88 80 81 78 81 80
H K(×10 7Pa) 592 589 592 580 582 586 597
P g,F 0.5804 0.5840 0.5816 0.585 0.583 0.585 0.583
ΔP g,F -0.0032 -0.0026 -0.0042 -0.006 -0.003 -0.005 -0.006
抗析晶性能 A A B A B A A
表5.
组分(wt%) 29# 30# 31# 32#
SiO 2 32.4 33.6 35.2 36.4
Nb 2O 5 31.2 27.5 32.7 31.5
ZrO 2 7.8 8.0 3.2 6.9
ZnO 0.8 1.4 2.5 1.0
BaO 5.8 13.3 10.4 7.9
CaO 0 0 0 0
SrO 0 0 0 0
MgO 0 0 0 0
Li 2O 6.8 7.4 6.0 6.5
Na 2O 2.5 2.4 3.3 1.6
K 2O 0 0 0 0
La 2O 3 7.4 6.3 6.5 8.2
Gd 2O 3 0 0 0 0
Y 2O 3 0 0 0 0
Yb 2O 3 0 0 0 0
WO 3 0 0 0 0
B 2O 3 5.2 0 0 0
TiO 2 0 0 0 0
Al 2O 3 0 0 0 0
Ta 2O 5 0 0 0 0
Sb 2O 3 0.1 0.1 0.2 0
SnO 0 0 0 0
SnO 2 0 0 0 0
CeO 2 0 0 0 0
合计 100.0 100.0 100.0 100.0
Ln 2O 3 7.4 6.3 6.5 8.2
RO 5.8 13.3 10.4 7.9
Rn 2O 9.3 9.8 9.3 8.1
Nb 2O 5/(BaO+La 2O 3) 2.364 1.403 1.935 1.957
ZnO/(BaO+La 2O 3) 0.061 0.071 0.148 0.062
(CaO+Na 2O)/BaO 0.431 0.18 0.317 0.203
BaO/(Na 2O+Nb 2O 5) 0.172 0.445 0.289 0.239
SiO 2/Nb 2O 5 1.038 1.222 1.076 1.156
Li 2O/Rn 2O 0.731 0.755 0.645 0.802
SiO 2/(BaO+ZnO) 4.909 2.286 2.729 4.09
B 2O 3/SiO 2 0.16 0 0 0
n d 1.7365 1.7454 1.7542 1.7524
v d 37.01 35.98 34.24 34.88
λ 80 387 392 395 394
λ 5 328 332 333 330
T g(℃) 570 560 567 569
ρ(g/cm 3) 3.40 3.46 3.52 3.50
D A 1类 1类 1类 1类
D W 1类 1类 1类 1类
α -30/70℃(×10 -7/K) 81 83 80 79
H K(×10 7Pa) 590 586 585 595
P g,F 0.5784 0.5796 0.5843 0.5813
ΔP g,F -0.0043 -0.0048 -0.0031 -0.0050
抗析晶性能 B A A A
<玻璃预制件实施例>
将特殊色散光学玻璃实施例1~32所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部应力的同时对折射率进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字 投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件。

Claims (13)

  1. 特殊色散光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO 2:23~45%;Nb 2O 5:20~40%;ZrO 2:2~14%;RO:1~25%;Rn 2O:0~25%;Ln 2O 3:0~20%,其中SiO 2/Nb 2O 5为0.65~2.0,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量。
  2. 根据权利要求1所述的特殊色散光学玻璃,其特征在于,其组分以重量百分比表示,还含有:ZnO:0~10%;和/或WO 3:0~5%;和/或B 2O 3:0~8%;和/或TiO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ta 2O 5:0~5%;和/或澄清剂:0~1%,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
  3. 特殊色散光学玻璃,其特征在于,其组分中含有SiO 2、Nb 2O 5和碱土金属氧化物,其组分以重量百分比表示,其中SiO 2/Nb 2O 5为0.65~2.0,所述特殊色散光学玻璃的折射率n d为1.68~1.82,阿贝数v d为31~40,P g,F值为0.7000以下,ΔP g,F值为0以下。
  4. 根据权利要求3所述的特殊色散光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO 2:23~45%;和/或Nb 2O 5:20~40%;和/或ZrO 2:2~14%;和/或RO:1~25%;和/或Rn 2O:0~25%;和/或Ln 2O 3:0~20%;和/或ZnO:0~10%;和/或WO 3:0~5%;和/或B 2O 3:0~8%;和/或TiO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ta 2O 5:0~5%;和/或澄清剂:0~1%,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量,所述澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
  5. 根据权利要求1~4任一所述的特殊色散光学玻璃,其特征在于,其组分以重量百分比表示,满足以下8种情形中的一种以上:
    1)SiO 2/Nb 2O 5为0.75~1.8,优选SiO 2/Nb 2O 5为0.8~1.5,更优选SiO 2/Nb 2O 5为0.9~1.3,进一步优选SiO 2/Nb 2O 5为1~1.255,更进一步优选SiO 2/Nb 2O 5为1.102~1.255;
    2)Nb 2O 5/(BaO+La 2O 3)为0.8~8.0,优选Nb 2O 5/(BaO+La 2O 3)为1.0~6.0,更优选Nb 2O 5/(BaO+La 2O 3)为1.2~4.0,进一步优选Nb 2O 5/(BaO+La 2O 3)为1.5~3.0,更进一步优选Nb 2O 5/(BaO+La 2O 3)为1.5~2.364;
    3)ZnO/(BaO+La 2O 3)为2.0以下,优选ZnO/(BaO+La 2O 3)为0.05~1.5,更优选 ZnO/(BaO+La 2O 3)为0.08~1.0,进一步优选ZnO/(BaO+La 2O 3)为0.1~0.5,更进一步优选ZnO/(BaO+La 2O 3)为0.1~0.331;
    4)(CaO+Na 2O)/BaO为0.02~8.0,优选(CaO+Na 2O)/BaO为0.05~5.0,更优选(CaO+Na 2O)/BaO为0.1~3.0,进一步优选(CaO+Na 2O)/BaO为0.2~1.0,更进一步优选CaO+Na 2O)/BaO为0.357~0.857;
    5)BaO/(Na 2O+Nb 2O 5)为0.05~0.8,优选BaO/(Na 2O+Nb 2O 5)为0.1~0.6,更优选BaO/(Na 2O+Nb 2O 5)为0.15~0.5,进一步优选BaO/(Na 2O+Nb 2O 5)为0.2~0.4,更进一步优选BaO/(Na 2O+Nb 2O 5)为0.2~0.313;
    6)Li 2O/Rn 2O为0.3~1.0,优选Li 2O/Rn 2O为0.4~0.9,更优选Li 2O/Rn 2O为0.45~0.8,进一步优选Li 2O/Rn 2O为0.5~0.75;
    7)SiO 2/(BaO+ZnO)为1.0~20.0,优选SiO 2/(BaO+ZnO)为1.5~15.0,更优选SiO 2/(BaO+ZnO)为2.0~10.0,进一步优选SiO 2/(BaO+ZnO)为2.5~5.0,更进一步优选SiO 2/(BaO+ZnO)为2.774~4.09;
    8)B 2O 3/SiO 2为0.3以下,优选B 2O 3/SiO 2为0.2以下,更优选B 2O 3/SiO 2为0.15以下,进一步优选B 2O 3/SiO 2为0.1以下。
  6. 根据权利要求1~4任一所述的特殊色散光学玻璃,其特征在于,其组分以重量百分比表示,含有:SiO 2:28~42%,优选SiO 2:31~40%;和/或Nb 2O 5:22~37%,优选Nb 2O 5:26~33%;和/或ZrO 2:3~12%,优选ZrO 2:5~10%;和/或RO:3~20%,优选RO:6~15%;和/或Rn 2O:1~20%,优选Rn 2O:2~15%;和/或Ln 2O 3:1~15%,优选Ln 2O 3:2~10%;和/或ZnO:0.1~8%,优选ZnO:0.5~6%;和/或WO 3:0~3%,优选WO 3:0~2%;和/或B 2O 3:0~4%,优选B 2O 3:0~2%;和/或TiO 2:0~3%,优选TiO 2:0~2%;和/或Al 2O 3:0~2%,优选Al 2O 3:0~1%;和/或Ta 2O 5:0~2%,优选Ta 2O 5:0~1%;和/或澄清剂:0~0.5%,所述RO为BaO、SrO、CaO、MgO的合计含量,Rn 2O为Li 2O、Na 2O、K 2O的合计含量,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3的合计含量,澄清剂为Sb 2O 3、SnO、SnO 2、CeO 2中的一种或多种。
  7. 根据权利要求1~4任一所述的特殊色散光学玻璃,其特征在于,其组分以重量百分比表示,含有:BaO:2~18%,优选BaO:5~12%;和/或CaO:0~18%,优选CaO: 0~8%;和/或SrO:0~8%,优选SrO:0~2%;和/或MgO:0~8%,优选MgO:0~2%;和/或Li 2O:1~12%,优选Li 2O:1~9%;和/或Na 2O:0~10%,优选Na 2O:1~6%;和/或K 2O:0~8%,优选K 2O:0~4%;和/或La 2O 3:0~14%,优选La 2O 3:4~10%;和/或Gd 2O 3:0~10%,优选Gd 2O 3:0~3%;和/或Y 2O 3:0~10%,优选Y 2O 3:0~3%;和/或Yb 2O 3:0~10%,优选Yb 2O 3:0~3%。
  8. 根据权利要求1~4任一所述的特殊色散光学玻璃,其特征在于,其组分中不含有B 2O 3;和/或不含有TiO 2;和/或不含有WO 3;和/或不含有Ta 2O 5;和/或不含有SrO;和/或不含有MgO;和/或不含有CaO;和/或不含有Gd 2O 3;和/或不含有Y 2O 3
  9. 根据权利要求1~4任一所述的特殊色散光学玻璃,其特征在于,所述特殊色散光学玻璃的折射率n d为1.70~1.80,优选为1.73~1.77;和/或阿贝数v d为31~40,优选为33~37。
  10. 根据权利要求1~4任一所述的特殊色散光学玻璃,其特征在于,所述特殊色散光学玻璃的P g,F值为0.7000以下,优选为0.6000以下;和/或ΔP g,F值为-0.0010以下,优选为-0.0030以下;和/或密度ρ为3.80g/cm 3以下,优选为3.60g/cm 3以下;和/或热膨胀系数α -30/70℃为100×10 -7/K以下,优选为85×10 -7/K以下;和/或转变温度T g为600℃以下,优选为580℃以下;和/或λ 80小于或等于410nm,优选λ 80小于或等于395nm;和/或λ 5小于或等于340nm,优选λ 5小于或等于330nm;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或努氏硬度H K为540×10 7Pa以上,优选为570×10 7Pa以上。
  11. 玻璃预制件,其特征在于,采用权利要求1~10任一所述的特殊色散光学玻璃制成。
  12. 光学元件,其特征在于,采用权利要求1~10任一所述的特殊色散光学玻璃制成,或采用权利要求11所述的玻璃预制件制成。
  13. 光学仪器,含有权利要求1~10任一所述的特殊色散光学玻璃,或含有权利要求12所述的光学元件。
PCT/CN2022/093261 2021-06-24 2022-05-17 特殊色散光学玻璃 WO2022267751A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110708242.6 2021-06-24
CN202110708242.6A CN113292242B (zh) 2021-06-24 2021-06-24 特殊色散光学玻璃

Publications (1)

Publication Number Publication Date
WO2022267751A1 true WO2022267751A1 (zh) 2022-12-29

Family

ID=77329466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093261 WO2022267751A1 (zh) 2021-06-24 2022-05-17 特殊色散光学玻璃

Country Status (2)

Country Link
CN (1) CN113292242B (zh)
WO (1) WO2022267751A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292242B (zh) * 2021-06-24 2022-04-12 成都光明光电股份有限公司 特殊色散光学玻璃
CN114907009B (zh) * 2022-06-22 2023-08-01 成都光明光电有限责任公司 光学玻璃和光学元件
CN115028355B (zh) * 2022-06-22 2023-08-08 成都光明光电有限责任公司 特殊色散光学玻璃
CN115677209A (zh) * 2022-10-18 2023-02-03 成都光明光电股份有限公司 特殊色散光学玻璃
CN115466049B (zh) * 2022-10-18 2023-08-08 成都光明光电股份有限公司 光学玻璃
CN115448591B (zh) * 2022-10-18 2023-07-25 成都光明光电股份有限公司 光学玻璃、光学元件和光学仪器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213787A (en) * 1978-06-07 1980-07-22 Jenaer Glaswerk Schott & Gen. High refractive index glasses of limited specific gravity for distance and near vision spectacle lenses
US20030013595A1 (en) * 2001-06-06 2003-01-16 Susumu Uehara Optical glass
US20180141851A1 (en) * 2016-07-28 2018-05-24 Asahi Glass Company, Limited Optical glass and optical component
CN109264989A (zh) * 2018-09-28 2019-01-25 成都光明光电股份有限公司 光学玻璃、其预制件、光学元件和光学仪器
CN110204196A (zh) * 2019-06-27 2019-09-06 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN110342814A (zh) * 2019-07-22 2019-10-18 成都光明光电股份有限公司 高折射高色散光学玻璃
CN112125511A (zh) * 2020-09-28 2020-12-25 成都光明光电股份有限公司 光学玻璃
CN113292242A (zh) * 2021-06-24 2021-08-24 成都光明光电股份有限公司 特殊色散光学玻璃

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496548B2 (de) * 1965-09-04 1971-09-30 Jenaer Glaswerk Schott & Gen , 6500 Mainz Kristallisationsstabile thoriumoxid und berylliumoxid freie optische glaeser
CN110028239B (zh) * 2019-05-23 2022-08-09 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN110128005B (zh) * 2019-05-23 2021-12-07 成都光明光电股份有限公司 光学玻璃

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213787A (en) * 1978-06-07 1980-07-22 Jenaer Glaswerk Schott & Gen. High refractive index glasses of limited specific gravity for distance and near vision spectacle lenses
US20030013595A1 (en) * 2001-06-06 2003-01-16 Susumu Uehara Optical glass
US20180141851A1 (en) * 2016-07-28 2018-05-24 Asahi Glass Company, Limited Optical glass and optical component
CN109264989A (zh) * 2018-09-28 2019-01-25 成都光明光电股份有限公司 光学玻璃、其预制件、光学元件和光学仪器
CN110204196A (zh) * 2019-06-27 2019-09-06 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN110342814A (zh) * 2019-07-22 2019-10-18 成都光明光电股份有限公司 高折射高色散光学玻璃
CN112125511A (zh) * 2020-09-28 2020-12-25 成都光明光电股份有限公司 光学玻璃
CN113292242A (zh) * 2021-06-24 2021-08-24 成都光明光电股份有限公司 特殊色散光学玻璃

Also Published As

Publication number Publication date
CN113292242B (zh) 2022-04-12
CN113292242A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
TWI779744B (zh) 光學玻璃、玻璃預製件及光學元件
TWI756114B (zh) 光學玻璃
WO2022267751A1 (zh) 特殊色散光学玻璃
WO2022193797A1 (zh) 高折射高色散光学玻璃及光学元件
WO2022062637A1 (zh) 光学玻璃
CN113264675B (zh) 光学玻璃、光学元件和光学仪器
CN112142322B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
TWI783603B (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
CN112159098A (zh) 光学玻璃、光学元件和光学仪器
WO2023040558A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2023035887A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN115466051A (zh) 光学玻璃、玻璃预制件和光学元件
CN115028353A (zh) 具有负向反常色散的光学玻璃
CN112174517B (zh) 光学玻璃及光学元件
CN112028472B (zh) 光学玻璃、光学元件和光学仪器
CN109650716B (zh) 一种无色光学玻璃及其玻璃预制件、元件和仪器
CN115448591B (zh) 光学玻璃、光学元件和光学仪器
WO2024041277A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2023246559A1 (zh) 光学玻璃、光学元件和光学仪器
TW202408958A (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
WO2024041276A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041274A1 (zh) 光学玻璃、光学元件和光学仪器
WO2024041294A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
TW202408954A (zh) 光學玻璃、光學元件和光學儀器
WO2024041273A1 (zh) 光学玻璃、光学元件和光学仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023579011

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE