WO2023040558A1 - 光学玻璃、玻璃预制件、光学元件和光学仪器 - Google Patents

光学玻璃、玻璃预制件、光学元件和光学仪器 Download PDF

Info

Publication number
WO2023040558A1
WO2023040558A1 PCT/CN2022/112973 CN2022112973W WO2023040558A1 WO 2023040558 A1 WO2023040558 A1 WO 2023040558A1 CN 2022112973 W CN2022112973 W CN 2022112973W WO 2023040558 A1 WO2023040558 A1 WO 2023040558A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
tio
optical glass
less
optical
Prior art date
Application number
PCT/CN2022/112973
Other languages
English (en)
French (fr)
Inventor
匡波
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Publication of WO2023040558A1 publication Critical patent/WO2023040558A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the invention relates to an optical glass, in particular to an optical glass with a refractive index of 1.88-1.96 and an Abbe number of less than 25, as well as a glass preform, an optical element and an optical instrument made therefrom.
  • the technical problem to be solved by the present invention is to provide a high-refraction and high-dispersion optical glass with low thermal expansion coefficient and excellent devitrification resistance.
  • Optical glass its components are expressed in weight percent, containing: P 2 O 5 : 10-30%; Bi 2 O 3 : 16-35%; Nb 2 O 5 : 20-40%; WO 3 : 5 ⁇ 20%, wherein Bi 2 O 3 /Nb 2 O 5 is 0.5 ⁇ 1.5.
  • the optical glass according to (1) further contains: TiO 2 : 0-10%; and/or B 2 O 3 : 0-8%; and/or Li 2 O: 0-10%; and/or Na 2 O: 0-10%; and/or K 2 O: 0-10%; and/or RO: 0-10%; and/or SiO 2 : 0-5 %; and/or ZrO 2 : 0-5%; and/or Al 2 O 3 : 0-5%; and/or Ln 2 O 3 : 0-8%; and/or GeO 2 : 0-5%; And/or clarifying agent: 0-1%, the RO is one or more of MgO, CaO, SrO, BaO, ZnO, Ln 2 O 3 is La 2 O 3 , Gd 2 O 3 , Y 2 O 3. One or more of Yb 2 O 3 , Lu 2 O 3 , and the clarifying agent is one or more of Sb 2 O 3 , SnO 2
  • Optical glass containing P 2 O 5 , Nb 2 O 5 , WO 3 and Bi 2 O 3 as essential components, and its components are expressed in weight percentage, wherein Bi 2 O 3 /Nb 2 O 5 is 0.5 ⁇ 1.5, the refractive index n d of the optical glass is 1.88-1.96, the Abbe number ⁇ d is less than 25, and the coefficient of thermal expansion ⁇ -30/70°C is less than 100 ⁇ 10 -7 /K.
  • the optical glass according to (3) the components of which are expressed in weight percent, containing: P 2 O 5 : 10-30%; and/or Bi 2 O 3 : 16-35%; and/or Nb 2 O 5 : 20-40%; and/or WO 3 : 5-20%; and/or TiO 2 : 0-10%; and/or B 2 O 3 : 0-8%; and/or Li 2 O and/or Na 2 O: 0-10%; and/or K 2 O: 0-10%; and/or RO: 0-10%; and/or SiO 2 : 0-5% and/or ZrO 2 : 0-5%; and/or Al 2 O 3 : 0-5%; and/or Ln 2 O 3 : 0-8%; and/or GeO 2 : 0-5%; and /or clarifying agent: 0-1%, the RO is one or more of MgO, CaO, SrO, BaO, ZnO, Ln 2 O 3 is La 2 O 3 , Gd 2 O 3 :
  • the optical glass according to any one of (1) to (4), its components are represented by weight percentage, wherein: WO 3 /Bi 2 O 3 is 0.2 to 1.0, preferably WO 3 /Bi 2 O 3 is 0.25-0.8, more preferably WO 3 /Bi 2 O 3 is 0.3-0.6, still more preferably WO 3 /Bi 2 O 3 is 0.35-0.46.
  • (10) The optical glass according to any one of (1) to (4), the components of which are expressed in weight percent, wherein: (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.05 ⁇ 1.0, preferably (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.1-0.8, more preferably (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.15-0.6 More preferably, (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.2 to 0.5.
  • TiO 2 /(Li 2 O+Na 2 O+K 2 O) is less than 1.0, preferably TiO 2 /(Li 2 O+Na 2 O+K 2 O) is 0.02-0.8, more preferably TiO 2 /(Li 2 O+Na 2 O+K 2 O) is 0.05-0.6, still more preferably TiO 2 /( Li 2 O+Na 2 O+K 2 O) is 0.1 to 0.38.
  • optical glass according to any one of (1) to (4), the components of which are represented by weight percent, wherein: RO/Li 2 O is 1.0 or less, preferably RO/Li 2 O is 0.7 or less, more preferably RO/Li 2 O is 0.5 or less, more preferably RO/Li 2 O is 0.4 or less.
  • the refractive index n d of the optical glass according to any one of (1) to (4) is 1.88 to 1.96, preferably 1.90 to 1.95, more preferably 1.91 to 1.94; the Abbe number ⁇ d is 15 to 25 , preferably 17-23, more preferably 18-22.
  • the acid resistance stability D A of the optical glass according to any one of (1) to (4) is more than 2 types, preferably 1 type; and/or the water resistance stability D W is 2 or more types, preferably Class 1; and/or the thermal expansion coefficient ⁇ -30/70°C is 100 ⁇ 10 -7 /K or less, preferably 95 ⁇ 10 -7 /K or less, more preferably 90 ⁇ 10 -7 /K or less; and/or Or the transition temperature Tg is below 500°C, preferably below 495°C, more preferably below 490°C, even more preferably below 485°C, even more preferably below 480°C; and/or the degree of abrasion F A is 310-400, Preferably 320-380, more preferably 340-370; and/or ⁇ 70 is 480nm or less, preferably 475nm or less, more preferably 470nm or less, further preferably 465nm or less, even more preferably 460nm or less; and/or ⁇ 5 is 410
  • the beneficial effects of the invention are: through reasonable component design, the optical glass obtained by the invention has a lower coefficient of thermal expansion and excellent crystallization resistance while having expected refractive index and Abbe number.
  • optical glass of this invention is not limited to the following embodiment, It can change suitably within the scope of the object of this invention, and can implement.
  • the gist of the invention is not limited thereto.
  • the optical glass of the present invention is sometimes simply referred to as glass.
  • each component (ingredient) of the optical glass of the present invention will be described below.
  • the content and total content of each component are all expressed in weight percent (wt%), that is, the content of each component and the total content are relative to the total amount of glass substances converted into oxides.
  • the amount is expressed in weight percent.
  • the “composition in terms of oxides” refers to the case where oxides, composite salts, hydroxides, etc. used as raw materials for the optical glass composition of the present invention are decomposed and converted into oxides during melting , and the total amount of the oxide was taken as 100%.
  • the numerical ranges set forth herein include the upper and lower values, and "above” and “below” include the endpoints, as well as all integers and fractions within the range, without limitation to the defined range The specific values listed at the time.
  • the term “about” means that formulations, parameters and other quantities and characteristics are not, and need not be, exact, but may be approximated and/or greater or lesser if desired, reflecting tolerances, conversion factors and measurement errors, etc. .
  • the term “and/or” herein is inclusive, for example, "A and/or B" means only A, or only B, or both A and B.
  • P 2 O 5 has the effect of lowering the melting temperature of glass raw materials and improving the stability and visible light transmittance of the glass.
  • the above effects are obtained by containing more than 10% of P 2 O 5 , preferably P
  • the content of 2 O 5 is 15% or more, and the content of P 2 O 5 is more preferably 17% or more.
  • the content of P 2 O 5 is controlled below 30%, so as to prevent the refractive index of the glass from decreasing and devitrification resistance from deteriorating. Therefore, the content of P 2 O 5 in the present invention is 30% or less, preferably 25% or less, more preferably 23% or less.
  • Bi 2 O 3 can increase the refractive index and partial dispersion ratio of the glass, lower the softening temperature of the glass, and improve the weather resistance and stability of the glass.
  • the above effects are obtained by containing 16% or more of Bi 2 O 3 , preferably 18% or more of Bi 2 O 3 , more preferably 22% or more of Bi 2 O 3 .
  • the content of Bi2O3 is 35% or less, preferably 32% or less, more preferably 29.5% or less.
  • Nb 2 O 5 can increase the refractive index and dispersion of glass, and can also improve the chemical stability and devitrification resistance of optical glass.
  • the above effects are obtained by containing 20% or more of Nb 2 O 5 , preferably 25% or more of Nb 2 O 5 , more preferably 27% or more of Nb 2 O 5 . If the Nb 2 O 5 content exceeds 40%, the anti-devitrification performance of the glass decreases, and the wear degree becomes poor. Therefore, in the optical glass of the present invention, the Nb 2 O 5 content is 40% or less, preferably 35% or less, more preferably 33% or less.
  • Bi 2 O 3 /Nb 2 O 5 is preferably 0.5 to 1.5, and more preferably Bi 2 O 3 /Nb 2 O 5 is 0.6 to 1.2. Further, by controlling the Bi 2 O 3 /Nb 2 O 5 within the range of 0.65-1.15, it is also beneficial to improve the devitrification resistance of the glass and optimize the wear degree.
  • Bi 2 O 3 /Nb 2 O 5 is 0.65 to 1.15, and it is still more preferable that Bi 2 O 3 /Nb 2 O 5 is 0.7 to 1.1.
  • the value of Bi2O3 / Nb2O5 can be 0.5, 0.55, 0.6 , 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95 , 1.0, 1.05, 1.1, 1.15, 1.2, 1.25 , 1.3, 1.35, 1.4, 1.45, 1.5.
  • WO 3 can increase the refractive index and mechanical strength of the glass, and lower the transition temperature of the glass. In the process of precision molding, WO 3 can inhibit the wettability between the glass blank and the mold, and improve the release property of the glass. In the present invention, the above effects are obtained by containing more than 5% of WO 3 , preferably the lower limit of the WO 3 content is 7%, more preferably the lower limit of the WO 3 content is 9%. If the content of WO 3 exceeds 20%, the thermal stability of the glass will decrease, and it will be easily colored during the precision molding process, the high-temperature viscosity of the glass will decrease, and the forming difficulty will increase. Therefore, the upper limit of the WO 3 content is 20%, preferably 17%, more preferably 15%.
  • the ratio WO 3 /Bi 2 O 3 between the content of WO 3 and the content of Bi 2 O 3 is controlled within the range of 0.2-1.0, which can improve the devitrification resistance and striae degree of the glass. Therefore, WO 3 /Bi 2 O 3 is preferably 0.2 to 1.0, more preferably WO 3 /Bi 2 O 3 is 0.25 to 0.8, and still more preferably WO 3 /Bi 2 O 3 is 0.3 to 0.6. Furthermore, by controlling WO 3 /Bi 2 O 3 within the range of 0.35-0.46, the transition temperature and thermal expansion coefficient of the glass can be further reduced. Therefore, WO 3 /Bi 2 O 3 is more preferably 0.35 to 0.46.
  • the value of WO 3 /Bi 2 O 3 may be 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36 .
  • the ratio between the combined content of WO 3 and Bi 2 O 3 WO 3 +Bi 2 O 3 and the combined content of Nb 2 O 5 and P 2 O 5 Nb 2 O 5 + P 2 O 5 (WO 3 +Bi 2 O 3 )/(Nb 2 O 5 +P 2 O 5 ) is controlled within the range of 0.4 to 1.5, which can increase the light transmittance of the glass while improving the chemical stability of the glass. Therefore, preferably (WO 3 +Bi 2 O 3 )/(Nb 2 O 5 +P 2 O 5 ) is 0.4 to 1.5, more preferably (WO 3 +Bi 2 O 3 )/(Nb 2 O 5 +P 2 O 5 5 ) is 0.5 to 1.2.
  • the value of (WO 3 +Bi 2 O 3 )/(Nb 2 O 5 +P 2 O 5 ) may be 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.71, 0.72, 0.73 . , 1.35, 1.4, 1.45, 1.5.
  • TiO 2 has the function of increasing the refractive index and dispersion of the glass, and an appropriate amount can make the glass obtain a suitable Young's modulus and prevent the thermal expansion coefficient of the glass from increasing. If the content of TiO 2 is too large, the abrasion resistance, transmittance and chemical stability of the glass will be deteriorated. Therefore, in the present invention, the content of TiO 2 is 10% or less, preferably 0.5-8%, more preferably 1-5%.
  • the ratio between the combined content of Nb 2 O 5 and TiO 2 Nb 2 O 5 +TiO 2 and the combined content of WO 3 and Bi 2 O 3 WO 3 +Bi 2 O 3 is controlled in the range of 0.4 to 1.5, which can reduce the transition temperature of the glass while optimizing the chemical stability of the glass. Therefore, (Nb 2 O 5 +TiO 2 )/(WO 3 +Bi 2 O 3 ) is preferably 0.4 to 1.5, more preferably (Nb 2 O 5 +TiO 2 )/(WO 3 +Bi 2 O 3 ) is 0.6 ⁇ 1.2.
  • the Young's modulus and density of the glass can also be optimized. Therefore, it is more preferable that (Nb 2 O 5 +TiO 2 )/(WO 3 +Bi 2 O 3 ) is 0.72 to 1.0, and it is still more preferable that (Nb 2 O 5 +TiO 2 )/(WO 3 +Bi 2 O 3 ) 0.75 to 0.92.
  • the value of (Nb 2 O 5 +TiO 2 )/(WO 3 +Bi 2 O 3 ) can be 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.71, 0.72, 0.73, 0.74 . , 1.4, 1.45, 1.5.
  • the ratio P 2 O 5 / (Nb 2 O 5 +TiO 2 ) between the content of P 2 O 5 and the total content of Nb 2 O 5 and TiO 2 Nb 2 O 5 +TiO 2 is controlled In the range of 0.3-1.2, the light transmittance of the glass can be increased while reducing the thermal expansion coefficient of the glass. Therefore, P 2 O 5 /(Nb 2 O 5 +TiO 2 ) is preferably 0.3 to 1.2, and more preferably P 2 O 5 /(Nb 2 O 5 +TiO 2 ) is 0.4 to 1.0.
  • P 2 O 5 /(Nb 2 O 5 +TiO 2 ) in the range of 0.45-0.9, the degree of abrasion and striae of the glass can be further optimized. Therefore, it is more preferable that P 2 O 5 /(Nb 2 O 5 +TiO 2 ) is 0.45 to 0.9, and it is still more preferable that P 2 O 5 /(Nb 2 O 5 +TiO 2 ) is 0.5 to 0.8.
  • the value of P 2 O 5 /(Nb 2 O 5 +TiO 2 ) can be 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2.
  • B 2 O 3 can improve the meltability and devitrification resistance of the glass, and is an optional component of the glass of the present invention.
  • the content of B 2 O 3 is 8% or less, preferably 5% or less, more preferably 3% or less.
  • Li 2 O can reduce the transition temperature of glass and adjust the viscosity of glass, but when its content is high, it is unfavorable to the chemical stability and thermal expansion coefficient of glass. Therefore, the content of Li 2 O in the present invention is 10% or less, preferably 0.5 ⁇ 8%, more preferably 1 to 5%.
  • Na 2 O has the effect of improving glass melting, can improve the glass melting effect, and can also reduce the glass transition temperature. If the Na 2 O content exceeds 10%, the chemical stability and weather resistance of the glass will be reduced. Therefore, Na 2 O
  • the content of Na 2 O is 0-10%, preferably the content of Na 2 O is 1-8%, more preferably the content of Na 2 O is 2-7%.
  • the ratio (Na 2 O+TiO 2 )/WO 3 between the total content of Na 2 O and TiO 2 Na 2 O+TiO 2 and the content of WO 3 is controlled within the range of 0.1 to 2.0, It can increase the Young's modulus of the glass while obtaining a lower thermal expansion coefficient. Therefore, (Na 2 O+TiO 2 )/WO 3 is preferably 0.1 to 2.0, and more preferably (Na 2 O+TiO 2 )/WO 3 is 0.2 to 1.5. Further, controlling (Na 2 O+TiO 2 )/WO 3 within the range of 0.3-1.2 can also optimize the hardness and transition temperature of the glass.
  • (Na 2 O+TiO 2 )/WO 3 is 0.3 to 1.2, and it is still more preferable that (Na 2 O+TiO 2 )/WO 3 is 0.4 to 1.0.
  • the value of (Na 2 O+TiO 2 )/WO 3 may be 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8 ,0.85,0.9,0.95,1.0,1.05,1.1,1.15,1.2,1.25,1.3,1.35,1.4,1.45,1.5,1.55,1.6,1.65,1.7,1.75,1.8,1.85,1.9,1.95,2.0
  • K 2 O has the function of improving the thermal stability and melting property of glass, but if its content exceeds 10%, the devitrification resistance and chemical stability of the glass will deteriorate. Therefore, the content of K 2 O in the present invention is less than 10%, preferably K The content of 2 O is 8% or less, more preferably 5% or less. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% K2O .
  • Li 2 O+Na 2 O+K 2 O and the content of Bi 2 O 3 (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is controlled in the range of 0.05-1.0, which can improve the devitrification resistance of the glass while preventing the light transmittance of the glass from decreasing. Therefore, preferably (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.05 to 1.0, more preferably (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.1 to 0.8 .
  • the bubble degree and abrasion degree of the glass can be further optimized. Therefore, it is more preferable that (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.15 to 0.6, and it is still more preferable that (Li 2 O+Na 2 O+K 2 O)/Bi 2 O 3 is 0.2. ⁇ 0.5.
  • the value of ( Li2O + Na2O + K2O )/ Bi2O3 can be 0.05, 0.1, 0.15 , 0.2 , 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0.
  • TiO 2 /(Li 2 O+ Na 2 O+K 2 O) is controlled below 1.0, which is beneficial to reduce the density of the glass and optimize the striation and transmittance of the glass. Therefore, TiO 2 /(Li 2 O+Na 2 O+K 2 O) is preferably 1.0 or less, more preferably TiO 2 /(Li 2 O+Na 2 O+K 2 O) is 0.02 to 0.8, still more preferably TiO 2 /(Li 2 O+Na 2 O+K 2 O) is 0.05 to 0.6.
  • TiO 2 /(Li 2 O+Na 2 O+K 2 O) is 0.1 to 0.38.
  • the value of TiO 2 /(Li 2 O+Na 2 O+K 2 O) can be 0, greater than 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 . . .
  • RO is one or more of MgO, CaO, SrO, BaO, ZnO
  • the upper limit of the RO content range is 10%, preferably 8%, more preferably 4%.
  • RO/Li 2 O is preferably 1.0 or less, more preferably RO/Li 2 O is 0.7 or less. Furthermore, by controlling RO/Li 2 O below 0.5, the devitrification resistance and Young's modulus of the glass can be further optimized. Therefore, it is more preferable that RO/Li 2 O is 0.5 or less, and it is still more preferable that RO/Li 2 O is 0.4 or less.
  • the value of RO/ Li2O can be 0, greater than 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16,0.17,0.18,0.19,0.2,0.21,0.22,0.23,0.24,0.25,0.26,0.27,0.28,0.29,0.3,0.31,0.32,0.33,0.34,0.35,0.36,0.37,0.38,0.39,0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0.
  • Ln 2 O 3 (Ln 2 O 3 is one or more of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , Yb 2 O 3 , Lu 2 O 3 ) is to improve the glass refractive index and chemical stability
  • the devitrification resistance of the glass can be prevented by controlling the content of Ln 2 O 3 to 8% or less.
  • the upper limit of the content range of Ln 2 O 3 is preferably 5%, more preferably 3%.
  • SiO2 can improve the devitrification resistance and chemical stability of the glass, and is an optional component of the glass of the present invention.
  • the content of SiO2 in the present invention is 5% or less, preferably 3% or less, more preferably 2% or less. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% of SiO 2 .
  • ZrO 2 can increase the refractive index of the glass, adjust the dispersion, and improve the anti-devitrification performance and strength of the glass. If the content of ZrO 2 is too much, it will be more difficult to melt the glass and the transition temperature will rise. Therefore, the ZrO2 content is 5% or less, preferably 3% or less, more preferably 2% or less. In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% of ZrO 2 .
  • Al2O3 can improve the chemical stability of glass, but when its content is too high, the devitrification resistance and melting property of glass will be reduced, so its content is 5% or less, preferably 3% or less, more preferably 2% or less, It is more preferable not to contain Al 2 O 3 . In some embodiments, about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1 %, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5% of Al 2 O 3 .
  • GeO has the effect of increasing the refractive index of the glass and increasing the resistance to devitrification, and is an optional component of the optical glass of the present invention.
  • it is expensive, and too much content is not conducive to the reduction of cost, and the light transmittance of the glass is reduced. Therefore, its content is limited to 5% or less, preferably 3% or less, more preferably 2% or less.
  • it is further preferable not to contain GeO 2 .
  • the optical glass may also contain 0-1% clarifier to improve the defoaming ability of the glass.
  • the clarifying agent includes but not limited to one or more of Sb 2 O 3 , SnO 2 , SnO and CeO 2 , preferably Sb 2 O 3 as the clarifying agent.
  • the upper limit of the content is preferably 0.5%, more preferably 0.2%.
  • the content of one or more of the above clarifying agents is about 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.15%, 0.2%, 0.25%, 0.3%, 0.35% , 0.4%, 0.45%, 0.5%, 0.55%, 0.6%, 0.65%, 0.7%, 0.75%, 0.8%, 0.85%, 0.9%, 0.95%, 1%.
  • the glass of the present invention even if oxides of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained alone or in a small amount in combination, the glass will be colored, and in the visible light region Absorption at specific wavelengths weakens the visible light transmittance enhancement effect of the present invention. Therefore, it is preferable not to substantially contain it, especially in optical glasses that require transmittance at wavelengths in the visible light region.
  • Oxides of Th, Cd, Tl, Os, Be, and Se have tended to be controlled and used as harmful chemical substances in recent years, not only in the manufacturing process of glass, but also in the process of processing and disposal after production. Measures are required. Therefore, when emphasis is placed on the influence on the environment, it is preferable not to contain them substantially except for unavoidable mixing. Thereby, the optical glass becomes practically free of environmental polluting substances. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special environmental measures. At the same time, in order to achieve environmental friendliness, the optical glass of the present invention preferably does not contain As 2 O 3 and PbO.
  • does not contain and "0%” described herein means that no such compound, molecule or element is intentionally added as a raw material to the optical glass of the present invention; however, as a raw material and/or equipment for producing optical glass, some Impurities or components that are not intentionally added may be contained in small or trace amounts in the final optical glass, and this situation is also within the protection scope of the patent of the present invention.
  • optical glass of the present invention The performance of the optical glass of the present invention will be described below:
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the method specified in "GB/T 7962.1-2010".
  • the upper limit of the refractive index ( nd ) of the optical glass of the present invention is 1.96, preferably 1.95, more preferably 1.94.
  • the lower limit of the refractive index ( nd ) of the optical glass of the present invention is 1.88, preferably 1.90, more preferably 1.91.
  • the upper limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 25, preferably 23, and more preferably 22.
  • the lower limit of the Abbe number ( ⁇ d ) of the optical glass of the present invention is 15, preferably 17, more preferably 18, and even more preferably 19.
  • the short-wave transmission spectral characteristics of optical glass are expressed by coloring degree ( ⁇ 70 and ⁇ 5 ).
  • ⁇ 70 refers to the corresponding wavelength when the glass transmittance reaches 70%.
  • the measurement of ⁇ 70 is to measure the spectral transmittance in the wavelength range from 280nm to 700nm and exhibit the wavelength at which the transmittance is 70%, using glass with a thickness of 10 ⁇ 0.1mm having two opposite planes parallel to each other and optically polished.
  • the so-called spectral transmittance or transmittance is the amount represented by I out /I in when the light of the intensity I in is incident vertically on the above-mentioned surface of the glass, and the light of the intensity I out is emitted from a plane through the glass, and Transmittance for surface reflection losses on the above-mentioned surfaces of the glass is also included.
  • the optical glass of the present invention has a ⁇ 70 of 480 nm or less, preferably 475 nm or less, more preferably 470 nm or less, further preferably 465 nm or less, even more preferably 460 nm or less.
  • the optical glass of the present invention has a ⁇ 5 of 410 nm or less, preferably 405 nm or less, more preferably 400 nm or less, even more preferably 395 nm or less.
  • the acid resistance stability ( DA ) (powder method) of optical glass is tested according to the method specified in "GB/T 17129".
  • the acid resistance stability ( DA ) of the optical glass of the present invention is Class 2 or higher, preferably Class 1.
  • the water resistance stability (D W ) of the optical glass of the present invention is Class 2 or higher, preferably Class 1.
  • the devitrification resistance of optical glass was measured by the gradient temperature furnace method.
  • the glass was made into a sample of 180 ⁇ 10 ⁇ 10mm, the side was polished, and placed in a chamber with a temperature gradient (10°C/cm) and a temperature of the highest temperature zone of 1200°C. After 4 hours of heat preservation in the furnace, take it out and let it cool down to room temperature naturally. Observe the crystallization of the glass under a microscope. The highest temperature corresponding to the appearance of crystals in the glass is the crystallization upper limit temperature of the glass.
  • the crystallization upper limit temperature of the optical glass of the present invention is 1000°C or lower, preferably 980°C or lower, more preferably 960°C or lower, even more preferably 950°C or lower.
  • the Young's modulus (E) of optical glass is measured by ultrasonic wave velocity and transverse wave velocity, and then calculated according to the following formula.
  • E Young's modulus, Pa
  • G is the shear modulus, Pa
  • V T is the shear wave velocity, m/s
  • V S is the longitudinal wave velocity, m/s
  • is the glass density, g/cm 3 .
  • the Young's modulus (E) of the optical glass of the present invention is above 8000 ⁇ 10 7 /Pa, preferably 8500 ⁇ 10 7 /Pa to 10000 ⁇ 10 7 /Pa, more preferably 8700 ⁇ 10 7 /Pa ⁇ 9500 ⁇ 10 7 /Pa.
  • the thermal expansion coefficient of optical glass ( ⁇ -30/70°C ) is tested according to the method specified in "GB/T7962.16-2010" -30 ⁇ 70°C data.
  • the thermal expansion coefficient ( ⁇ -30/70°C ) of the optical glass of the present invention is 100 ⁇ 10 -7 /K or less, preferably 95 ⁇ 10 -7 /K or less, more preferably 90 ⁇ 10 -7 /K or less.
  • the density ( ⁇ ) of optical glass is tested according to the method specified in "GB/T7962.20-2010".
  • the density ( ⁇ ) of the optical glass of the present invention is 4.70 g/cm 3 or less, preferably 4.60 g/cm 3 or less, more preferably 4.50 g/cm 3 or less.
  • the abrasion degree of optical glass refers to the value obtained by multiplying the ratio of the abrasion amount of the sample to the abrasion amount (volume) of the standard sample (H-K9 glass) by 100 under exactly the same conditions.
  • the formula is expressed as follows:
  • V volume wear of the sample to be tested
  • V 0 standard sample volume loss
  • W 0 the wear amount of the standard sample mass
  • the upper limit of the degree of abrasion ( FA ) of the optical glass of the present invention is 400, preferably 380, and more preferably 370.
  • the lower limit of the degree of abrasion ( FA ) of the optical glass of the present invention is 310, preferably the lower limit is 320, and more preferably the lower limit is 340.
  • transition temperature (T g ) of optical glass is tested according to the method specified in "GB/T7962.16-2010".
  • the transition temperature (T g ) of the optical glass of the present invention is below 500°C, preferably below 495°C, more preferably below 490°C, even more preferably below 485°C, even more preferably below 480°C.
  • the manufacture method of optical glass of the present invention is as follows: glass of the present invention adopts conventional raw material and process production, includes but not limited to using oxide, hydroxide, fluoride, various salts (carbonate, nitrate, sulfate, Phosphate, metaphosphate), etc. as raw materials, after batching according to conventional methods, put the prepared charge into a melting furnace (such as platinum, gold or platinum alloy crucible) at 800-1200 ° C for melting, and after clarification and homogenization After melting, a homogeneous molten glass without bubbles and undissolved substances is obtained, which is cast in a mold and annealed.
  • a melting furnace such as platinum, gold or platinum alloy crucible
  • a homogeneous molten glass without bubbles and undissolved substances is obtained, which is cast in a mold and annealed.
  • a glass preform can be produced from the produced optical glass using, for example, direct drop molding, grinding processing, or compression molding such as thermocompression molding. That is, the molten optical glass can be formed into a glass precision preform by direct precision drop molding, or a glass preform can be produced by mechanical processing such as grinding and grinding, or a preform for molding can be made from optical glass, The preform is reheated and press-molded, and then ground to produce a glass preform. It should be noted that the means for preparing the glass preform are not limited to the above means.
  • the optical glass of the present invention is useful for various optical elements and optical designs, and it is particularly preferable to form a preform from the optical glass of the present invention, and to use the preform for reheat press molding, precision press molding, etc. , to make optical components such as lenses and prisms.
  • Both the glass preform and the optical element of the present invention are formed from the above-mentioned optical glass of the present invention.
  • the glass preform of the present invention has the excellent characteristics of optical glass;
  • the optical element of the present invention has the excellent characteristics of optical glass, and can provide various optical elements such as lenses and prisms with high optical value.
  • the lens examples include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
  • optical elements formed by the optical glass of the present invention can be used to make optical instruments such as photographic equipment, imaging equipment, projection equipment, display equipment, vehicle-mounted equipment, and monitoring equipment.
  • the optical glass having the compositions shown in Table 1 to Table 4 was obtained by using the above-mentioned manufacturing method of optical glass.
  • the properties of each glass were measured by the test method described in the present invention, and the measurement results are shown in Tables 1 to 4.
  • the glasses obtained in Examples 1 to 26 of the optical glass are used, for example, by means of grinding, or hot press molding, precision stamping, and other compression molding methods to produce concave meniscus lenses, convex meniscus lenses, and double-convex lenses. , biconcave lens, plano-convex lens, plano-concave lens and other prefabricated parts of various lenses and prisms.
  • These preforms obtained in the above glass preform embodiment are annealed, and fine-tuning is performed while reducing the deformation inside the glass, so that the optical properties such as the refractive index reach the required values.
  • each preform is ground and polished to produce various lenses and prisms such as concave meniscus lens, convex meniscus lens, biconvex lens, biconcave lens, plano-convex lens, and plano-concave lens.
  • An antireflection film may be coated on the surface of the obtained optical element.
  • optical element prepared by the above optical element embodiment can be used for example in imaging equipment, sensor, microscope, medical technology, digital projection, communication, optical communication by using one or more optical elements to form optical components or optical components through optical design.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明提供一种光学玻璃,所述光学玻璃的组分以重量百分比表示,含有:P 2O 5:10~30%;Bi 2O 3:16~35%;Nb 2O 5:20~40%;WO 3:5~20%,其中Bi 2O 3/Nb 2O 5为0.5~1.5。通过合理的组分设计,本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,具有较低的热膨胀系数和优异的抗析晶性能。

Description

光学玻璃、玻璃预制件、光学元件和光学仪器 技术领域
本发明涉及一种光学玻璃,尤其是涉及一种折射率为1.88~1.96,阿贝数为25以下的光学玻璃,以及由其制成的玻璃预制件、光学元件和光学仪器。
背景技术
近年来,随着光电信息、数码显示等领域的发展,对应用于光学系统的光学元件提出了小型化、轻量化、高性能化的要求。高折射高色散光学玻璃能够与低色散光学玻璃耦合使用,从而有效地消除色差和二级光谱,同时可以有效地缩短镜头的光学总长,使成像系统小型化,因此,该类玻璃应用前景十分广泛。
光学玻璃的热膨胀系数越大,玻璃抗热冲击的性能就越差,越容易在热压型及冷加工过程中因热胀冷缩造成破裂,从而降低玻璃的良品率。另一方面,具有优异抗析晶性能的光学玻璃能够降低玻璃生产和热加工过程中的工艺难度。现有技术中,如专利文献CN101746953A公开的一种折射率为1.91~1.96,阿贝数为17.5~21的光学玻璃,专利文献CN1332901C公开的一种高折射高色散光学玻璃,其抗析晶性能都有进一步提升的空间。
发明内容
本发明所要解决的技术问题是提供一种具有较低热膨胀系数和优异抗析晶性能的高折射高色散光学玻璃。
本发明解决技术问题采用的技术方案是:
(1)光学玻璃,其组分以重量百分比表示,含有:P 2O 5:10~30%;Bi 2O 3:16~35%;Nb 2O 5:20~40%;WO 3:5~20%,其中Bi 2O 3/Nb 2O 5为0.5~1.5。
(2)根据(1)所述的光学玻璃,其组分以重量百分比表示,还含有:TiO 2:0~10%;和/或B 2O 3:0~8%;和/或Li 2O:0~10%;和/或Na 2O:0~10%;和/或K 2O:0~10%;和/或RO:0~10%;和/或SiO 2:0~5%;和/或ZrO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ln 2O 3:0~8%;和/或GeO 2:0~5%;和/或澄清剂:0~1%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种, 澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
(3)光学玻璃,含有P 2O 5、Nb 2O 5、WO 3和Bi 2O 3作为必要组分,其组分以重量百分比表示,其中Bi 2O 3/Nb 2O 5为0.5~1.5,所述光学玻璃的折射率n d为1.88~1.96,阿贝数ν d为25以下,热膨胀系数α -30/70℃为100×10 -7/K以下。
(4)根据(3)所述的光学玻璃,其组分以重量百分比表示,含有:P 2O 5:10~30%;和/或Bi 2O 3:16~35%;和/或Nb 2O 5:20~40%;和/或WO 3:5~20%;和/或TiO 2:0~10%;和/或B 2O 3:0~8%;和/或Li 2O:0~10%;和/或Na 2O:0~10%;和/或K 2O:0~10%;和/或RO:0~10%;和/或SiO 2:0~5%;和/或ZrO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ln 2O 3:0~8%;和/或GeO 2:0~5%;和/或澄清剂:0~1%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
(5)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:Bi 2O 3/Nb 2O 5为0.6~1.2,优选Bi 2O 3/Nb 2O 5为0.65~1.15,更优选Bi 2O 3/Nb 2O 5为0.7~1.1。
(6)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.4~1.5;优选(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.6~1.2,更优选(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.72~1.0,进一步优选(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.75~0.92。
(7)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.4~1.5,优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.5~1.2,更优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.6~1.0,进一步优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.7~1.0。
(8)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:WO 3/Bi 2O 3为0.2~1.0,优选WO 3/Bi 2O 3为0.25~0.8,更优选WO 3/Bi 2O 3为0.3~0.6,进一步优选WO 3/Bi 2O 3为0.35~0.46。
(9)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:P 2O 5/(Nb 2O 5+TiO 2)为0.3~1.2,优选P 2O 5/(Nb 2O 5+TiO 2)为0.4~1.0,更优选P 2O 5/(Nb 2O 5+TiO 2)为0.45~0.9,进一步优选P 2O 5/(Nb 2O 5+TiO 2)为0.5~0.8。
(10)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.05~1.0,优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.1~0.8,更优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.15~0.6,进一步优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.2~0.5。
(11)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:TiO 2/(Li 2O+Na 2O+K 2O)为1.0以下,优选TiO 2/(Li 2O+Na 2O+K 2O)为0.02~0.8,更优选TiO 2/(Li 2O+Na 2O+K 2O)为0.05~0.6,进一步优选TiO 2/(Li 2O+Na 2O+K 2O)为0.1~0.38。
(12)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:RO/Li 2O为1.0以下,优选RO/Li 2O为0.7以下,更优选RO/Li 2O为0.5以下,进一步优选RO/Li 2O为0.4以下。
(13)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,其中:(Na 2O+TiO 2)/WO 3为0.1~2.0,优选(Na 2O+TiO 2)/WO 3为0.2~1.5,更优选(Na 2O+TiO 2)/WO 3为0.3~1.2,进一步优选(Na 2O+TiO 2)/WO 3为0.4~1.0。
(14)根据(1)~(4)任一所述的光学玻璃,其组分以重量百分比表示,含有:P 2O 5:15~25%,优选P 2O 5:17~23%;和/或Bi 2O 3:18~32%,优选Bi 2O 3:22~29.5%;和/或Nb 2O 5:25~35%,优选Nb 2O 5:27~33%;和/或WO 3:7~17%,优选WO 3:9~15%;和/或TiO 2:0.5~8%,优选TiO 2:1~5%;和/或B 2O 3:0~5%,优选B 2O 3:0~3%;和/或Li 2O:0.5~8%,优选Li 2O:1~5%;和/或Na 2O:1~8%,优选Na 2O:2~7%;和/或K 2O:0~8%,优选K 2O:0~5%;和/或RO:0~8%,优选RO:0~4%;和/或SiO 2:0~3%,优选SiO 2:0~2%;和/或ZrO 2:0~3%,优选ZrO 2:0~2%;和/或Al 2O 3:0~3%,优选Al 2O 3:0~2%;和/或Ln 2O 3:0~5%,优选Ln 2O 3:0~3%;和/或GeO 2:0~3%,优选GeO 2:0~2%;和/或澄清剂:0~0.5%,优选澄清剂:0~0.2%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
(15)根据(1)~(4)任一所述的光学玻璃的折射率n d为1.88~1.96,优选为1.90~1.95,更优选为1.91~1.94;阿贝数ν d为15~25,优选为17~23,更优选为18~22。
(16)根据(1)~(4)任一所述的光学玻璃的耐酸作用稳定性D A为2类以上,优选为1类;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或热膨胀系数α -30/70℃为100×10 -7/K以下,优选为95×10 -7/K以下,更优选为90×10 -7/K以下;和/或转变温度T g为500℃以下,优选为495℃以下,更优选为490℃以下,进一步优选为485℃以下,更进一步优选为480℃以下;和/或磨耗度F A为310~400,优选为320~380,更优选为340~370;和/或λ 70为480nm以下,优选为475nm以下,更优选为470nm以下,进一步优选为465nm以下,更进一步优选为460nm以下;和/或λ 5为410nm以下,优选为405nm以下,更优选为400nm以下,进一步优选为395nm以下;和/或杨氏模量E为8000×10 7/Pa以上,优选为8500×10 7/Pa~10000×10 7/Pa,更优选为8700×10 7/Pa~9500×10 7/Pa;和/或密度ρ为4.70g/cm 3以下,优选为4.60g/cm 3以下,更优选为4.50g/cm 3以下;和/或析晶上限温度为1000℃以下,优选为980℃以下,更优选为960℃以下,进一步优选为950℃以下。
(17)玻璃预制件,采用(1)~(16)任一所述的光学玻璃制成。
(18)光学元件,采用(1)~(16)任一所述的光学玻璃或(17)所述的玻璃预制件制成。
(19)光学仪器,含有(1)~(16)任一所述的光学玻璃,和/或含有(18)所述的光学元件。
本发明的有益效果是:通过合理的组分设计,本发明获得的光学玻璃在具有期望的折射率和阿贝数的同时,具有较低的热膨胀系数和优异的抗析晶性能。
具体实施方式
下面,对本发明的光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨。在以下内容中,本发明光学玻璃有时候简称为玻璃。
[光学玻璃]
下面对本发明光学玻璃的各组分(成分)范围进行说明。在本发明中,如果没有特殊说明,各组分的含量、总含量全部采用重量百分比(wt%)表示,即,各组分的含量、 总含量相对于换算成氧化物的组成的玻璃物质总量的重量百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的光学玻璃组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作为100%。
除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所使用的术语“约”指配方、参数和其他数量以及特征不是、且无需是精确的,如有需要,可以近似和/或更大或更低,这反映公差、换算因子和测量误差等。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
<必要组分和任选组分>
P 2O 5作为玻璃生成体,具有降低玻璃原料的熔融温度,提高玻璃的稳定性和可见光透过率的作用,本发明中通过含有10%以上的P 2O 5以获得上述效果,优选P 2O 5的含量为15%以上,更优选P 2O 5的含量为17%以上。另一方面,将P 2O 5的含量控制在30%以下,以防止玻璃折射率降低、抗析晶性能变差。因此,本发明中P 2O 5的含量为30%以下,优选为25%以下,更优选为23%以下。在一些实施方式中,可包含约10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%、30%的P 2O 5
Bi 2O 3可以提高玻璃的折射率和部分色散比,降低玻璃软化温度,提高玻璃的耐候性和稳定性。本发明中通过含有16%以上的Bi 2O 3以获得上述效果,优选含有18%以上的Bi 2O 3,更优选含有22%以上的Bi 2O 3。另一方面,通过将Bi 2O 3的含量控制在35%以下,可使玻璃具有优异的抗析晶性能和杨氏模量。因此,Bi 2O 3的含量为35%以下,优选为32%以下,更优选为29.5%以下。在一些实施方式中,可包含约16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%的Bi 2O 3
Nb 2O 5可以提高玻璃的折射率和色散,同时还能够改善光学玻璃的化学稳定性和耐失透性。本发明中通过含有20%以上的Nb 2O 5以获得上述效果,优选含有25%以上的Nb 2O 5,更优选含有27%以上的Nb 2O 5。若Nb 2O 5含量超过40%,玻璃的抗析晶性能下降,磨耗度变差。因此,在本发明的光学玻璃中,Nb 2O 5含量为40%以下,优选为35%以下,更优选为33%以下。在一些实施方式中,可包含约20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%、35.5%、36%、36.5%、37%、37.5%、38%、38.5%、39%、39.5%、40%的Nb 2O 5
在一些实施方式中,通过将Bi 2O 3的含量与Nb 2O 5的含量之间的比值Bi 2O 3/Nb 2O 5控制在0.5~1.5范围内,可以在提高玻璃的化学稳定性的同时,降低玻璃的热膨胀系数。因此,优选Bi 2O 3/Nb 2O 5为0.5~1.5,更优选Bi 2O 3/Nb 2O 5为0.6~1.2。进一步的,通过控制Bi 2O 3/Nb 2O 5在0.65~1.15范围内,还有利于提高玻璃的抗析晶性能,优化磨耗度。因此,进一步优选Bi 2O 3/Nb 2O 5为0.65~1.15,更进一步优选Bi 2O 3/Nb 2O 5为0.7~1.1。在一些实施方式中,Bi 2O 3/Nb 2O 5的值可为0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5。
WO 3可以提高玻璃的折射率和机械强度,降低玻璃的转变温度,在精密压型过程中,WO 3可以抑制玻璃坯料与模具之间的湿润性,提高玻璃的脱模性。本发明中通过含有5%以上的WO 3以获得上述效果,优选WO 3的含量下限为7%,更优选WO 3的含量下限为9%。若WO 3的含量超过20%,玻璃的热稳定性下降,精密模压过程中容易着色,玻璃的高温粘度降低,成型难度增加。因此,WO 3的含量上限为20%,优选上限为17%,更优选上限为15%。在一些实施方式中,可包含约5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%的WO 3
在一些实施方式中,将WO 3的含量与Bi 2O 3的含量之间的比值WO 3/Bi 2O 3控制在0.2~1.0范围内,可以提高玻璃的抗析晶性能和条纹度。因此,优选WO 3/Bi 2O 3为0.2~1.0,更优选WO 3/Bi 2O 3为0.25~0.8,进一步优选WO 3/Bi 2O 3为0.3~0.6。进一步的,通过控制WO 3/Bi 2O 3在0.35~0.46范围内,还可进一步降低玻璃的转变温度和热膨胀系数。因 此,更进一步优选WO 3/Bi 2O 3为0.35~0.46。在一些实施方式中,WO 3/Bi 2O 3的值可为0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.4、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0。
在一些实施方式中,将WO 3和Bi 2O 3的合计含量WO 3+Bi 2O 3与Nb 2O 5和P 2O 5的合计含量Nb 2O 5+P 2O 5之间的比值(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)控制在0.4~1.5范围内,可以在提高玻璃化学稳定性的同时,提高玻璃的光透过率。因此,优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.4~1.5,更优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.5~1.2。进一步的,通过控制(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)在0.6~1.0范围内,还可降低玻璃的折射率温度系数和热膨胀系数。因此,进一步优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.6~1.0,更进一步优选(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.7~1.0。在一些实施方式中,(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)的值可为0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.71、0.72、0.73、0.74、0.75、0.76、0.77、0.78、0.79、0.8、0.85、0.9、0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、0.99、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5。
TiO 2具有提高玻璃折射率和色散的作用,适量含有可使玻璃获得适宜的杨氏模量,防止玻璃热膨胀系数增加。若TiO 2的含量过大,玻璃的磨耗度、透过率和化学稳定性变差。因此本发明中,TiO 2的含量为10%以下,优选为0.5~8%,更优选为1~5%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的TiO 2
在一些实施方式中,将Nb 2O 5和TiO 2的合计含量Nb 2O 5+TiO 2与WO 3和Bi 2O 3的合计含量WO 3+Bi 2O 3之间的比值(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)控制在0.4~1.5范围内,可以在优化玻璃化学稳定性的同时降低玻璃的转变温度。因此,优选(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.4~1.5,更优选(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.6~1.2。进一步的,通过控制(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)在0.72~1.0范围内,还可以优化玻璃的杨氏模量和密度。因此,进一步优选(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.72~1.0,更进一步优选(Nb 2O 5+TiO 2) /(WO 3+Bi 2O 3)为0.75~0.92。在一些实施方式中,(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)的值可为0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.71、0.72、0.73、0.74、0.75、0.76、0.77、0.78、0.79、0.8、0.85、0.9、0.91、0.92、0.93、0.94、0.95、0.96、0.97、0.98、0.99、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5。
在一些实施方式中,将P 2O 5的含量与Nb 2O 5和TiO 2的合计含量Nb 2O 5+TiO 2之间的比值P 2O 5/(Nb 2O 5+TiO 2)控制在0.3~1.2范围内,可以在降低玻璃热膨胀系数的同时,提高玻璃的光透过率。因此,优选P 2O 5/(Nb 2O 5+TiO 2)为0.3~1.2,更优选P 2O 5/(Nb 2O 5+TiO 2)为0.4~1.0。进一步的,通过控制P 2O 5/(Nb 2O 5+TiO 2)在0.45~0.9范围内,还可以进一步优化玻璃的磨耗度和条纹度。因此,进一步优选P 2O 5/(Nb 2O 5+TiO 2)为0.45~0.9,更进一步优选P 2O 5/(Nb 2O 5+TiO 2)为0.5~0.8。在一些实施方式中,P 2O 5/(Nb 2O 5+TiO 2)的值可为0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2。
B 2O 3可以提高玻璃的熔融性和耐失透性,是本发明玻璃的任选组分。通过将B 2O 3的含量限定在8%以下,可以防止因B 2O 3过量含有导致的玻璃稳定性和折射率的降低。因此,B 2O 3的含量为8%以下,优选为5%以下,更优选为3%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%的B 2O 3
Li 2O可以降低玻璃的转变温度,调整玻璃的粘度,但其含量高时对玻璃的化学稳定性和热膨胀系数不利,因此,本发明中Li 2O的含量为10%以下,优选为0.5~8%,更优选为1~5%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Li 2O。
Na 2O具有改善玻璃熔融性的作用,可以提高玻璃熔制效果,同时还可以降低玻璃 的转变温度,若Na 2O含量超过10%,玻璃的化学稳定性和耐候性降低,因此Na 2O的含量为0~10%,优选Na 2O的含量为1~8%,更优选Na 2O的含量为2~7%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Na 2O。
在一些实施方式中,将Na 2O和TiO 2的合计含量Na 2O+TiO 2与WO 3的含量之间的比值(Na 2O+TiO 2)/WO 3控制在0.1~2.0范围内,可以使玻璃在获得较低热膨胀系数的同时,提高玻璃的杨氏模量。因此,优选(Na 2O+TiO 2)/WO 3为0.1~2.0,更优选(Na 2O+TiO 2)/WO 3为0.2~1.5。进一步的,将(Na 2O+TiO 2)/WO 3控制在0.3~1.2范围内,还可优化玻璃的硬度和转变温度。因此,进一步优选(Na 2O+TiO 2)/WO 3为0.3~1.2,更进一步优选(Na 2O+TiO 2)/WO 3为0.4~1.0。在一些实施方式中,(Na 2O+TiO 2)/WO 3的值可为0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、1.95、2.0。
K 2O具有改善玻璃热稳定性和熔融性的作用,但其含量超过10%,玻璃的耐失透性和化学稳定性恶化,因此本发明中K 2O的含量为10%以下,优选K 2O的含量为8%以下,更优选为5%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的K 2O。
在一些实施方式中,通过将Li 2O、Na 2O、K 2O的合计含量Li 2O+Na 2O+K 2O与Bi 2O 3的含量之间的比值(Li 2O+Na 2O+K 2O)/Bi 2O 3控制在0.05~1.0范围内,可以在防止玻璃光透过率降低的同时提高玻璃的抗析晶性能。因此,优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.05~1.0,更优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.1~0.8。进一步的,通过控制(Li 2O+Na 2O+K 2O)/Bi 2O 3在0.15~0.6范围内,还可以进一步优化玻璃的气泡度和磨耗度。因此,进一步优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.15~0.6,更进一步优选(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.2~0.5。在一些实施方式中,(Li 2O+Na 2O+K 2O)/Bi 2O 3的值可为0.05、0.1、0.15、0.2、 0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0。
在一些实施方式中,通过将TiO 2的含量与Li 2O、Na 2O、K 2O的合计含量Li 2O+Na 2O+K 2O之间的比值TiO 2/(Li 2O+Na 2O+K 2O)控制在1.0以下,有利于降低玻璃的密度,优化玻璃的条纹度和透过率。因此,优选TiO 2/(Li 2O+Na 2O+K 2O)为1.0以下,更优选TiO 2/(Li 2O+Na 2O+K 2O)为0.02~0.8,进一步优选TiO 2/(Li 2O+Na 2O+K 2O)为0.05~0.6。进一步的,通过控制TiO 2/(Li 2O+Na 2O+K 2O)在0.1~0.38范围内,还可进一步优化玻璃的杨氏模量和磨耗度。因此,更进一步优选TiO 2/(Li 2O+Na 2O+K 2O)为0.1~0.38。在一些实施方式中,TiO 2/(Li 2O+Na 2O+K 2O)的值可为0、大于0、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.4、0.41、0.42、0.43、0.44、0.45、0.46、0.47、0.48、0.49、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0。
RO(RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种)可以调整玻璃的折射率,提高玻璃耐失透性,是本发明光学玻璃中的任选组分。通过将RO的含量控制为10%以下,可以抑制玻璃抗析晶性和化学稳定性的降低。因此,在本发明的光学玻璃中,RO含量范围的上限为10%,优选上限为8%,更优选上限为4%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、14%、1.5%、1.6%、1.7%、1.8%、1.9%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的RO。
在一些实施方式中,通过将RO的含量与Li 2O的含量之间的比值RO/Li 2O控制在1.0以下,有利于提高玻璃的化学稳定性和热稳定性。因此,优选RO/Li 2O为1.0以下,更优选RO/Li 2O为0.7以下。进一步的,通过控制RO/Li 2O在0.5以下,还可进一步优化玻璃的抗析晶性能和杨氏模量。因此,进一步优选RO/Li 2O为0.5以下,更进一步优选RO/Li 2O在为0.4以下。在一些实施方式中,RO/Li 2O的值可为0、大于0、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.11、0.12、0.13、0.14、0.15、 0.16、0.17、0.18、0.19、0.2、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.3、0.31、0.32、0.33、0.34、0.35、0.36、0.37、0.38、0.39、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0。
Ln 2O 3(Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种)是提高玻璃折射率和化学稳定性的组分,通过将Ln 2O 3的含量控制为8%以下,能够防止玻璃的耐失透性降低,优选Ln 2O 3含量范围的上限为5%,更优选上限为3%。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%的Ln 2O 3
SiO 2可以提高玻璃的耐失透性和化学稳定性,是本发明玻璃的任选组分。当其含量过高时,玻璃的转变温度升高,折射率降低且易出现结石。因此,本发明中SiO 2的含量为5%以下,优选为3%以下,更优选为2%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的SiO 2
ZrO 2可以提高玻璃的折射率并调节色散,提高玻璃的抗析晶性能和强度,若ZrO 2的含量过多,则玻璃熔化难度增加,转变温度上升。因此,ZrO 2含量为5%以下,优选为3%以下,更优选为2%以下。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的ZrO 2
Al 2O 3能改善玻璃的化学稳定性,但其含量过高时玻璃的耐失透性和熔融性降低,因此其含量为5%以下,优选为3%以下,更优选为2%以下,进一步优选不含有Al 2O 3。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的Al 2O 3
GeO 2具有提高玻璃折射率且增加耐失透性的效果,是本发明光学玻璃的任选组分,然而其价格昂贵,过多含有不利于成本的降低,且玻璃的光透过率降低,因此其含量限定为5%以下,优选为3%以下,更优选为2%以下。在一些实施方式中,进一步优选不含 有GeO 2。在一些实施方式中,可包含约0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的GeO 2
在一些实施方式中,光学玻璃中还可含有0~1%的澄清剂,以提高玻璃的除泡能力。所述澄清剂包括但不限于Sb 2O 3、SnO 2、SnO和CeO 2中的一种或多种,优选Sb 2O 3作为澄清剂。上述澄清剂单独或组合存在时,其含量的上限优选为0.5%,更优选上限为0.2%。在一些实施方式中,上述澄清剂中的一种或多种的含量约为0%、大于0%、0.01%、0.05%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%、0.6%、0.65%、0.7%、0.75%、0.8%、0.85%、0.9%、0.95%、1%。
<不应含有的组分>
本发明玻璃中,V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属的氧化物,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有。
Th、Cd、Tl、Os、Be以及Se的氧化物,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。同时,为了实现环境友好,本发明的光学玻璃优选不含有As 2O 3和PbO。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面将描述本发明的光学玻璃的性能:
<折射率与阿贝数>
光学玻璃的折射率(n d)与阿贝数(ν d)按照《GB/T 7962.1—2010》规定的方法测 试。
在一些实施方式中,本发明光学玻璃的折射率(n d)的上限为1.96,优选上限为1.95,更优选上限为1.94。
在一些实施方式中,本发明光学玻璃的折射率(n d)的下限为1.88,优选下限为1.90,更优选下限为1.91。
在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的上限为25,优选上限为23,更优选上限为22。
在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的下限为15,优选下限为17,更优选下限为18,进一步优选下限为19。
<着色度>
光学玻璃的短波透射光谱特性用着色度(λ 70和λ 5)表示。λ 70是指玻璃透射比达到70%时对应的波长。λ 70的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1mm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率70%的波长。所谓分光透射率或透射率是在向玻璃的上述表面垂直地入射强度I in的光,透过玻璃并从一个平面射出强度I out的光的情况下通过I out/I in表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在高折射率玻璃中,λ 70的值小意味着玻璃自身的着色极少,光透过率高。
在一些实施方式中,本发明的光学玻璃的λ 70为480nm以下,优选为475nm以下,更优选为470nm以下,进一步优选为465nm以下,更进一步优选为460nm以下。
在一些实施方式中,本发明的光学玻璃的λ 5为410nm以下,优选为405nm以下,更优选为400nm以下,进一步优选为395nm以下。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(D A)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐酸作用稳定性(D A)为2类以上,优选为1类。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(D W)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
<析晶上限温度>
采用梯温炉法测定光学玻璃的抗析晶性能,将玻璃制成180×10×10mm的样品,侧面抛光,放入带有温度梯度(10℃/cm)、最高温区温度为1200℃的炉内保温4小时后取出自然冷却到室温,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。
在一些实施方式中,本发明的光学玻璃的析晶上限温度为1000℃以下,优选为980℃以下,更优选为960℃以下,进一步优选为950℃以下。
<杨氏模量>
光学玻璃的杨氏模量(E)采用超声波测试其纵波速度和横波速度,再按以下公式计算得出。
Figure PCTCN2022112973-appb-000001
G=V S 2ρ
式中:E为杨氏模量,Pa;
G为剪切模量,Pa;
V T为横波速度,m/s;
V S为纵波速度,m/s;
ρ为玻璃密度,g/cm 3
在一些实施方式中,本发明的光学玻璃的杨氏模量(E)为8000×10 7/Pa以上,优选为8500×10 7/Pa~10000×10 7/Pa,更优选为8700×10 7/Pa~9500×10 7/Pa。
<热膨胀系数>
光学玻璃的热膨胀系数(α -30/70℃)按照《GB/T7962.16-2010》规定的方法进行测试-30~70℃的数据。
本发明的光学玻璃的热膨胀系数(α -30/70℃)为100×10 -7/K以下,优选为95×10 -7/K以下,更优选为90×10 -7/K以下。
<密度>
光学玻璃的密度(ρ)按《GB/T7962.20-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的密度(ρ)为4.70g/cm 3以下,优选为4.60g/cm 3以下,更优选为4.50g/cm 3以下。
<磨耗度>
光学玻璃的磨耗度(F A)是指在完全相同的条件下,试样的磨损量与标准试样(H-K9玻璃)的磨损量(体积)的比值乘以100后所得的数值,用公式表示如下:
F A=V/V 0×100=(W/ρ)/(W 00)×100
式中:V—被测样品体积磨耗量;
V 0—标准样品体积磨耗量;
W—被测样品质量磨耗量;
W 0—标准样品质量磨耗量;
ρ—被测样品密度;
ρ 0—标准样品密度。
在一些实施方式中,本发明光学玻璃的磨耗度(F A)的上限为400,优选上限为380,更优选上限为370。
在一些实施方式中,本发明光学玻璃的磨耗度(F A)的下限为310,优选下限为320,更优选下限为340。
<转变温度>
光学玻璃的转变温度(T g)按照《GB/T7962.16-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的转变温度(T g)为500℃以下,优选为495℃以下,更优选为490℃以下,进一步优选为485℃以下,更进一步优选为480℃以下。
[制造方法]
本发明光学玻璃的制造方法如下:本发明的玻璃采用常规原料和工艺生产,包括但不限于使用氧化物、氢氧化物、氟化物、各种盐类(碳酸盐、硝酸盐、硫酸盐、磷酸盐、偏磷酸盐)等为原料,按常规方法配料后,将配好的炉料投入到800~1200℃的熔炼炉(如铂金、黄金或铂合金坩埚)中熔制,并且经澄清和均化后,得到没有气泡及不含未 溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如直接滴料成型、或研磨加工的手段、或热压成型等模压成型的手段,由所制成的光学玻璃来制作玻璃预制件。即,可以通过对熔融光学玻璃进行直接精密滴料成型为玻璃精密预制件,或通过磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件。需要说明的是,制备玻璃预制件的手段不限于上述手段。
如上所述,本发明的光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有光学玻璃所具有的优异特性;本发明的光学元件具有光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明光学玻璃所形成的光学元件可制作如照相设备、摄像设备、投影设备、显示设备、车载设备和监控设备等光学仪器。
实施例
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述光学玻璃的制造方法得到具有表1~表4所示的组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表1~表4中。
表1.
Figure PCTCN2022112973-appb-000002
Figure PCTCN2022112973-appb-000003
Figure PCTCN2022112973-appb-000004
表2.
Figure PCTCN2022112973-appb-000005
Figure PCTCN2022112973-appb-000006
表3.
Figure PCTCN2022112973-appb-000007
Figure PCTCN2022112973-appb-000008
Figure PCTCN2022112973-appb-000009
表4.
Figure PCTCN2022112973-appb-000010
Figure PCTCN2022112973-appb-000011
<玻璃预制件实施例>
将光学玻璃实施例1~26所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部的变形的同时进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激 光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件,或用于车载领域的摄像设备和装置。

Claims (17)

  1. 光学玻璃,其特征在于,其组分以重量百分比表示,含有:P 2O 5:10~30%;Bi 2O 3:16~35%;Nb 2O 5:20~40%;WO 3:5~20%,其中Bi 2O 3/Nb 2O 5为0.5~1.5。
  2. 根据权利要求1所述的光学玻璃,其特征在于,其组分以重量百分比表示,还含有:TiO 2:0~10%;和/或B 2O 3:0~8%;和/或Li 2O:0~10%;和/或Na 2O:0~10%;和/或K 2O:0~10%;和/或RO:0~10%;和/或SiO 2:0~5%;和/或ZrO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ln 2O 3:0~8%;和/或GeO 2:0~5%;和/或澄清剂:0~1%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
  3. 光学玻璃,其特征在于,含有P 2O 5、Nb 2O 5、WO 3和Bi 2O 3作为必要组分,其组分以重量百分比表示,其中Bi 2O 3/Nb 2O 5为0.5~1.5,所述光学玻璃的折射率n d为1.88~1.96,阿贝数ν d为25以下,热膨胀系数α -30/70℃为100×10 -7/K以下。
  4. 根据权利要求3所述的光学玻璃,其特征在于,其组分以重量百分比表示,含有:P 2O 5:10~30%;和/或Bi 2O 3:16~35%;和/或Nb 2O 5:20~40%;和/或WO 3:5~20%;和/或TiO 2:0~10%;和/或B 2O 3:0~8%;和/或Li 2O:0~10%;和/或Na 2O:0~10%;和/或K 2O:0~10%;和/或RO:0~10%;和/或SiO 2:0~5%;和/或ZrO 2:0~5%;和/或Al 2O 3:0~5%;和/或Ln 2O 3:0~8%;和/或GeO 2:0~5%;和/或澄清剂:0~1%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
  5. 根据权利要求1~4任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下9种情形中的一种或多种:
    1)Bi 2O 3/Nb 2O 5为0.6~1.2;
    2)(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.4~1.5;
    3)(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.4~1.5;
    4)WO 3/Bi 2O 3为0.2~1.0;
    5)P 2O 5/(Nb 2O 5+TiO 2)为0.3~1.2;
    6)(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.05~1.0;
    7)TiO 2/(Li 2O+Na 2O+K 2O)为1.0以下;
    8)RO/Li 2O为1.0以下;
    9)(Na 2O+TiO 2)/WO 3为0.1~2.0,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种。
  6. 根据权利要求1~4任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下9种情形中的一种或多种:
    1)Bi 2O 3/Nb 2O 5为0.65~1.15;
    2)(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.6~1.2;
    3)(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.5~1.2;
    4)WO 3/Bi 2O 3为0.25~0.8;
    5)P 2O 5/(Nb 2O 5+TiO 2)为0.4~1.0;
    6)(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.1~0.8;
    7)TiO 2/(Li 2O+Na 2O+K 2O)为0.02~0.8;
    8)RO/Li 2O为0.7以下;
    9)(Na 2O+TiO 2)/WO 3为0.2~1.5,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种。
  7. 根据权利要求1~4任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下9种情形中的一种或多种:
    1)Bi 2O 3/Nb 2O 5为0.7~1.1;
    2)(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.72~1.0;
    3)(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.6~1.0;
    4)WO 3/Bi 2O 3为0.3~0.6;
    5)P 2O 5/(Nb 2O 5+TiO 2)为0.45~0.9;
    6)(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.15~0.6;
    7)TiO 2/(Li 2O+Na 2O+K 2O)为0.05~0.6;
    8)RO/Li 2O为0.5以下;
    9)(Na 2O+TiO 2)/WO 3为0.3~1.2,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种 或多种。
  8. 根据权利要求1~4任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,满足以下8种情形中的一种或多种:
    1)(Nb 2O 5+TiO 2)/(WO 3+Bi 2O 3)为0.75~0.92;
    2)(WO 3+Bi 2O 3)/(Nb 2O 5+P 2O 5)为0.7~1.0;
    3)WO 3/Bi 2O 3为0.35~0.46;
    4)P 2O 5/(Nb 2O 5+TiO 2)为0.5~0.8;
    5)(Li 2O+Na 2O+K 2O)/Bi 2O 3为0.2~0.5;
    6)TiO 2/(Li 2O+Na 2O+K 2O)为0.1~0.38;
    7)RO/Li 2O为0.4以下;
    8)(Na 2O+TiO 2)/WO 3为0.4~1.0,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种。
  9. 根据权利要求1~4任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,含有:P 2O 5:15~25%;和/或Bi 2O 3:18~32%;和/或Nb 2O 5:25~35%;和/或WO 3:7~17%;和/或TiO 2:0.5~8%;和/或B 2O 3:0~5%;和/或Li 2O:0.5~8%;和/或Na 2O:1~8%;和/或K 2O:0~8%;和/或RO:0~8%;和/或SiO 2:0~3%;和/或ZrO 2:0~3%;和/或Al 2O 3:0~3%;和/或Ln 2O 3:0~5%;和/或GeO 2:0~3%;和/或澄清剂:0~0.5%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
  10. 根据权利要求1~4任一所述的光学玻璃,其特征在于,其组分以重量百分比表示,含有:P 2O 5:17~23%;和/或Bi 2O 3:22~29.5%;和/或Nb 2O 5:27~33%;和/或WO 3:9~15%;和/或TiO 2:1~5%;和/或B 2O 3:0~3%;和/或Li 2O:1~5%;和/或Na 2O:2~7%;和/或K 2O:0~5%;和/或RO:0~4%;和/或SiO 2:0~2%;和/或ZrO 2:0~2%;和/或Al 2O 3:0~2%;和/或Ln 2O 3:0~3%;和/或GeO 2:0~2%;和/或澄清剂:0~0.2%,所述RO为MgO、CaO、SrO、BaO、ZnO中的一种或多种,Ln 2O 3为La 2O 3、Gd 2O 3、Y 2O 3、Yb 2O 3、Lu 2O 3中的一种或多种,澄清剂为Sb 2O 3、SnO 2、SnO、CeO 2中的一种或多种。
  11. 根据权利要求1~4任一所述的光学玻璃,其特征在于,所述光学玻璃的折射率 n d为1.88~1.96;阿贝数ν d为15~25。
  12. 根据权利要求1~4任一所述的光学玻璃,其特征在于,所述光学玻璃的折射率n d为1.91~1.94;阿贝数ν d为18~22。
  13. 根据权利要求1~4任一所述的光学玻璃,其特征在于,所述光学玻璃的耐酸作用稳定性D A为2类以上;和/或耐水作用稳定性D W为2类以上;和/或热膨胀系数α -30/70℃为100×10 -7/K以下;和/或转变温度T g为500℃以下;和/或磨耗度F A为310~400;和/或λ 70为480nm以下;和/或λ 5为410nm以下;和/或杨氏模量E为8000×10 7/Pa以上;和/或密度ρ为4.70g/cm 3以下;和/或析晶上限温度为1000℃以下。
  14. 根据权利要求1~4任一所述的光学玻璃,其特征在于,所述光学玻璃的耐酸作用稳定性D A为1类;和/或耐水作用稳定性D W为1类;和/或热膨胀系数α -30/70℃为90×10 -7/K以下;和/或转变温度T g为480℃以下;和/或磨耗度F A为340~370;和/或λ 70为460nm以下;和/或λ 5为395nm以下;和/或杨氏模量E为8700×10 7/Pa~9500×10 7/Pa;和/或密度ρ为4.50g/cm 3以下;和/或析晶上限温度为950℃以下。
  15. 玻璃预制件,其特征在于,采用权利要求1~14任一所述的光学玻璃制成。
  16. 光学元件,其特征在于,采用权利要求1~14任一所述的光学玻璃或权利要求15所述的玻璃预制件制成。
  17. 光学仪器,其特征在于,含有权利要求1~14任一所述的光学玻璃,和/或含有权利要求16所述的光学元件。
PCT/CN2022/112973 2021-09-14 2022-08-17 光学玻璃、玻璃预制件、光学元件和光学仪器 WO2023040558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111074235.1 2021-09-14
CN202111074235.1A CN113666636B (zh) 2021-09-14 2021-09-14 光学玻璃、玻璃预制件、光学元件和光学仪器

Publications (1)

Publication Number Publication Date
WO2023040558A1 true WO2023040558A1 (zh) 2023-03-23

Family

ID=78549316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112973 WO2023040558A1 (zh) 2021-09-14 2022-08-17 光学玻璃、玻璃预制件、光学元件和光学仪器

Country Status (3)

Country Link
CN (1) CN113666636B (zh)
TW (1) TW202311185A (zh)
WO (1) WO2023040558A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666636B (zh) * 2021-09-14 2022-12-13 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159343A (ja) * 2013-02-19 2014-09-04 Hoya Corp 光学ガラス、精密プレス成形用ガラス素材、光学素子およびその製造方法
CN107614449A (zh) * 2015-07-07 2018-01-19 Hoya株式会社 玻璃、光学玻璃、磷酸盐光学玻璃、抛光用玻璃材料、压制成型用玻璃材料及光学元件
CN108975682A (zh) * 2018-10-12 2018-12-11 湖北新华光信息材料有限公司 光学玻璃及其制备方法
CN113024110A (zh) * 2021-03-18 2021-06-25 成都光明光电股份有限公司 玻璃组合物
CN113024107A (zh) * 2021-03-18 2021-06-25 成都光明光电股份有限公司 高折射高色散光学玻璃及光学元件
CN113666636A (zh) * 2021-09-14 2021-11-19 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160355A (ja) * 2001-09-13 2003-06-03 Fuji Photo Optical Co Ltd プレス成形レンズ用光学ガラス
JP4059695B2 (ja) * 2002-04-02 2008-03-12 株式会社オハラ 光学ガラス
JP2005154248A (ja) * 2003-04-17 2005-06-16 Hoya Corp 光学ガラス、プレス成形用プリフォーム及びその製造方法、光学素子及びその製造方法
EP1468974A3 (en) * 2003-04-17 2004-12-01 Hoya Corporation Optical glass; press-molding preform and method of manufacturing same; and optical element and method of manufacturing same
JP4675587B2 (ja) * 2003-06-30 2011-04-27 Hoya株式会社 精密プレス成形用プリフォーム、光学素子及びそれぞれの製造方法
CN1576252B (zh) * 2003-06-30 2010-04-28 Hoya株式会社 精密加压成形用预成形体、光学元件及各自的制备方法
JP4448003B2 (ja) * 2004-10-15 2010-04-07 Hoya株式会社 光学ガラス、精密プレス成形用プリフォーム及びその製造方法、光学素子及びその製造方法
KR20090123883A (ko) * 2007-03-14 2009-12-02 아사히 가라스 가부시키가이샤 광학 유리
CN102862347B (zh) * 2009-05-20 2015-03-25 Hoya株式会社 压制成型用玻璃材料、以及使用该玻璃材料的玻璃光学元件的制造方法、以及玻璃光学元件
CN101591142B (zh) * 2009-06-25 2013-04-10 成都光明光电股份有限公司 高折射高色散光学玻璃
JP5260623B2 (ja) * 2010-09-30 2013-08-14 Hoya株式会社 光学ガラス、プレス成形用ガラス素材および光学素子
JP2012224501A (ja) * 2011-04-19 2012-11-15 Ohara Inc 光学ガラス、光学素子及びプリフォーム
JP6587276B2 (ja) * 2013-02-19 2019-10-09 Hoya株式会社 光学ガラス、光学ガラスブランク、プレス成型用ガラス素材、光学素子、およびそれらの製造方法
KR20150120346A (ko) * 2013-02-19 2015-10-27 호야 가부시키가이샤 광학 유리, 광학 유리 블랭크, 프레스 성형용 유리 소재, 광학 소자, 및 그들의 제조 방법
JP6893749B2 (ja) * 2014-02-28 2021-06-23 株式会社オハラ 光学ガラス、レンズプリフォーム及び光学素子
JP5979455B2 (ja) * 2015-06-16 2016-08-24 日本電気硝子株式会社 光学ガラス
TWI735451B (zh) * 2016-02-29 2021-08-11 日商Hoya股份有限公司 玻璃、光學玻璃、抛光用玻璃材料、壓製成型用玻璃材料及光學元件
CN110255893B (zh) * 2019-07-22 2021-10-26 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件及光学仪器
JP7401236B2 (ja) * 2019-09-26 2023-12-19 Hoya株式会社 光学ガラスおよび光学素子
CN111960665B (zh) * 2020-08-31 2022-04-12 成都光明光电股份有限公司 光学玻璃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159343A (ja) * 2013-02-19 2014-09-04 Hoya Corp 光学ガラス、精密プレス成形用ガラス素材、光学素子およびその製造方法
CN107614449A (zh) * 2015-07-07 2018-01-19 Hoya株式会社 玻璃、光学玻璃、磷酸盐光学玻璃、抛光用玻璃材料、压制成型用玻璃材料及光学元件
CN108975682A (zh) * 2018-10-12 2018-12-11 湖北新华光信息材料有限公司 光学玻璃及其制备方法
CN113024110A (zh) * 2021-03-18 2021-06-25 成都光明光电股份有限公司 玻璃组合物
CN113024107A (zh) * 2021-03-18 2021-06-25 成都光明光电股份有限公司 高折射高色散光学玻璃及光学元件
CN113666636A (zh) * 2021-09-14 2021-11-19 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器

Also Published As

Publication number Publication date
CN113666636B (zh) 2022-12-13
CN113666636A (zh) 2021-11-19
TW202311185A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2022062637A1 (zh) 光学玻璃
WO2022193797A1 (zh) 高折射高色散光学玻璃及光学元件
WO2022267751A1 (zh) 特殊色散光学玻璃
CN113264675B (zh) 光学玻璃、光学元件和光学仪器
CN117756402A (zh) 光学玻璃和光学元件
CN113582537B (zh) 高折射高色散光学玻璃
CN112142322B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN111960665A (zh) 光学玻璃
TWI783603B (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
TWI805187B (zh) 光學玻璃、玻璃預製件、光學元件和光學儀器
CN112159098B (zh) 光学玻璃、光学元件和光学仪器
WO2023040558A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2023035887A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN112174517B (zh) 光学玻璃及光学元件
CN112028472A (zh) 光学玻璃、光学元件和光学仪器
CN113603361B (zh) 磷酸盐光学玻璃
CN113603360B (zh) 高折射高色散光学玻璃及光学元件
TW202408954A (zh) 光學玻璃、光學元件和光學儀器
WO2024041277A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041276A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041294A1 (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2024041274A1 (zh) 光学玻璃、光学元件和光学仪器
JP2024059599A (ja) 光学ガラス、光学素子及び光学機器
CN115466050A (zh) 光学玻璃和光学元件
JPWO2022048335A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22868934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE