WO2022196470A1 - 機能性水溶液供給装置 - Google Patents

機能性水溶液供給装置 Download PDF

Info

Publication number
WO2022196470A1
WO2022196470A1 PCT/JP2022/010167 JP2022010167W WO2022196470A1 WO 2022196470 A1 WO2022196470 A1 WO 2022196470A1 JP 2022010167 W JP2022010167 W JP 2022010167W WO 2022196470 A1 WO2022196470 A1 WO 2022196470A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
storage tank
aqueous solution
washing
functional aqueous
Prior art date
Application number
PCT/JP2022/010167
Other languages
English (en)
French (fr)
Inventor
祐一 小川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US18/279,917 priority Critical patent/US20240150206A1/en
Priority to KR1020237022770A priority patent/KR20230157293A/ko
Priority to CN202280020131.9A priority patent/CN117063264A/zh
Publication of WO2022196470A1 publication Critical patent/WO2022196470A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Definitions

  • the present invention relates to a device for supplying a functional aqueous solution as cleaning water to a point of use such as a cleaning device for electronic components and electronic members used in the electronic industry, etc., and more particularly to a device for supplying a functional aqueous solution as cleaning water to a plurality of functional aqueous solutions as cleaning water.
  • the present invention relates to a functional aqueous solution supply device capable of efficiently supplying a point of use having a washing machine.
  • Patent Document 1 proposes a system in which a storage tank is provided for the purpose of saving water, and the functional aqueous solution not used in the washing machine is returned to the storage tank and circulated.
  • the adjusted functional aqueous solution is replenished to the storage tank, and at this time, in order to stabilize the concentration of the replenished functional aqueous solution, the flow rate of the replenishing water is kept constant. Therefore, even when the functional aqueous solution is not replenished to the storage tank, it is necessary to continue producing the functional aqueous solution as make-up water and discharge the surplus as drain water, resulting in a small water-saving effect. Especially when the point of use has a plurality of single-wafer type wafer cleaning machines, the amount of cleaning water to be used fluctuates greatly, resulting in a large amount of drain water to be discharged.
  • the present invention supplies wash water to a point of use, in which at least one functional component selected from conductivity-imparting substances, oxidation-reduction potential adjusting substances, and pH adjusting substances is added to raw water.
  • a functional aqueous solution supply device comprising: a supplementary water producing unit for producing the cleaning water; a storage tank for supplying, replenishing and storing the cleaning water produced by the supplementary water producing unit; and the use point from the storage tank a circulating washing water supply pipe that supplies washing water to the point of use; a return pipe that returns unused washing water at the point of use to the circulating washing water supply pipe; (Invention 1).
  • the discharge amount of the functional aqueous solution can be greatly reduced. can be reduced.
  • the production amount of the functional aqueous solution can also be reduced.
  • the production amount of the functional aqueous solution can be set in advance according to the required amount based on the amount of replenishment of the cleaning water supplied from the replenishing water production unit to the storage tank based on the scheduled use information of the cleaning liquid. , the concentration of the functional aqueous solution can be precisely controlled.
  • the point of use has a plurality of washing machines (invention 2).
  • invention 2 although the amount of cleaning liquid used at the point of use varies greatly depending on the operating status of a plurality of cleaning machines, the operating information of this cleaning machine is obtained in advance and the cleaning liquid to be used at the point of use is determined. By estimating the amount of in advance and controlling the production/replenishment amount thereof, it is possible to greatly reduce the discharge amount of the functional aqueous solution and also reduce the production amount of the functional aqueous solution. Also, the concentration of the functional aqueous solution can be controlled with high accuracy.
  • the conductivity imparting substance is preferably ammonia or carbonic acid (invention 3).
  • invention 3 it can be particularly suitably applied when a very small amount of ammonia or carbonic acid is dissolved.
  • the oxidation-reduction potential adjusting substance is preferably hydrogen peroxide, O 3 or H 2 (invention 4).
  • invention 4 it is particularly suitable for dissolving a small amount of hydrogen peroxide and O 3 .
  • the functional aqueous solution supply device of the present invention it is possible to control the supply amount of the cleaning water supplied from the supplementary water production unit to the storage tank based on the usage plan information of the cleaning solution of the point of use.
  • the amount of aqueous solution discharged can be greatly reduced, and the production amount of functional aqueous solution can also be reduced.
  • the concentration of the functional aqueous solution can be accurately controlled by setting the replenishment amount of the cleaning water to be supplied from the replenishing water production unit to the storage tank based on the usage schedule information of the cleaning liquid.
  • the amount of cleaning liquid used at a point of use fluctuates greatly depending on the operating conditions of a plurality of cleaning machines.
  • FIG. 1 is a schematic diagram showing a functional aqueous solution supply device according to an embodiment of the present invention
  • FIG. It is a schematic diagram showing a conventional functional aqueous solution supply device.
  • FIG. 1 shows a functional aqueous solution supply device according to one embodiment of the present invention, and in FIG. etc. to produce cleaning water W1 and supply it to a cleaning machine for semiconductor wafers as a point of use.
  • a reservoir 5 to which the produced washing water W1 is supplied and replenished through a pipe 4; and a circulation line 7 for supplying unused washing water W1 to the single-wafer type washing machines 6A, 6B, 6C and 6D and returning the unused washing water W1 to the storage tank 5.
  • the circulation pipe 7 is branched into supply pipes 7A, 7B, 7C, and 7D for supplying washing water W1 to the washing machines 6A, 6B, .
  • Communicating return pipes 8A, 8B, 8C and 8D connect respectively. Operation plans of the washers 6A, 6B, .
  • 10 is a drain pipe for discharging the drain water DW.
  • the ultrapure water W to be raw water is, for example, resistivity: 18.1 M ⁇ cm or more, fine particles: 1000 particles / L or less with a particle size of 50 nm or more, viable bacteria: 1 particle / L or less, TOC (Total Organic Carbon): 1 ⁇ g/L or less Total silicon: 0.1 ⁇ g/L or less Metals: 1 ng/L or less Ions: 10 ng/L or less Hydrogen peroxide: 30 ⁇ g/L or less Water temperature: 25 ⁇ 2° C. is preferred.
  • the pH adjusting substance is not particularly limited, and when adjusting the pH to less than 7, liquids such as citric acid, formic acid, and hydrochloric acid, and gases such as CO 2 can be used. Moreover, when adjusting to pH 7 or more, ammonia, sodium hydroxide, potassium hydroxide, etc. can be used. These pH-adjusting substances also function as conductivity-imparting substances when added in very small amounts.
  • the oxidation - reduction potential adjusting substance is not particularly limited.
  • a gas body such as can be used.
  • a liquid such as oxalic acid or a gas such as hydrogen (H 2 ) can be used to adjust the oxidation-reduction potential to the negative side.
  • ultrapure water W is supplied to the make-up water production unit 3, and at least one selected from a conductivity-imparting substance, an oxidation-reduction potential adjusting substance, and a pH-adjusting substance is added to make washing water in the make-up water production unit 3.
  • (Functional aqueous solution) W1 is produced.
  • This functional aqueous solution W1 is once stored in the storage tank 5 from the pipe 4, and once a predetermined amount of washing water W1 is stored, a liquid feed pump (not shown) is driven, and the circulation pipe 7 is supplied to the supply pipes 7A, 7B, 7C and Washing water W1 is supplied to washing machines 6A, 6B, . . . via 7D.
  • the cleaning water W1 not used in the single-wafer cleaning machines 6A, 6B, 6C, and 6D is returned to the storage tank 5 through the return pipes 8A, 8B, 8C, and 8D to the circulation pipe 7.
  • the washing water W1 returned at this time was in a state in which the dissolved oxygen was increased by coming into contact with the air in the single-wafer washing machines 6A, 6B, 6C, 6D, etc., so the dissolved oxygen was removed as necessary. You can send it back later.
  • the wash water W1 produced by the make-up water producing unit 3 is supplied to the storage tank 5 through the pipe 4.
  • operation information of the washing machines 6A, 6B, . . . is obtained in advance. Based on this operating information, the amount of cleaning water W1 used is predicted by the control means 9, and the amount of cleaning water W1 produced by the replenishing water producing section 3 is set according to this usage amount. Washing water W1 is supplied to the storage tank 5 according to the fluctuation. As a result, it is possible to reduce the production amount of the washing water W1, and also to significantly reduce the discharge amount of the washing water W1. Moreover, it is possible to accurately control the concentration of the cleaning liquid of the cleaning water W1.
  • the average flow rate of drain water was 110 mL/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen peroxide concentration was also ⁇ 10%.
  • Table 1 shows whether or not the make-up water production unit is controlled in Comparative Example 1, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 shows the variation rate of conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 110 L/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen peroxide concentration was also ⁇ 10%.
  • Table 1 shows whether or not the make-up water production unit is controlled, the conductivity-imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration in Comparative Example 2.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 110 L/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the ozone concentration was also ⁇ 10%.
  • Table 1 shows the presence or absence of control of the make-up water production unit in Comparative Example 3, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 110 L/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen concentration was also ⁇ 10%.
  • Table 1 shows the presence or absence of control of the make-up water production unit in Comparative Example 4, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 110 L/min. Further, the variations in the carbonic acid concentration of the washing water W1 sent from the storage tank 5 to the washing machines 6A, 6B, . . . were ⁇ 10%, and the variations in the hydrogen peroxide concentration were also ⁇ 10%.
  • Table 1 shows whether or not the make-up water production unit is controlled, the conductivity-imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration in Comparative Example 5.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 110 L/min. Further, the variation in carbonic acid concentration of washing water W1 sent from storage tank 5 to washing machines 6A, 6B, . . . was ⁇ 10%, and the variation in ozone concentration was also ⁇ 10%.
  • Table 1 shows the presence or absence of control of the make-up water production unit in Comparative Example 6, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 110 L/min. Further, the variations in the carbonic acid concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . were ⁇ 10%, and the variations in the hydrogen concentration were also ⁇ 10%.
  • Table 1 shows whether or not the make-up water production unit is controlled, conductivity-imparting substances and their set values, oxidation-reduction potential adjusting substances and their set concentrations in Comparative Example 7.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 0 L/min.
  • the variation in the concentration of ammonia in the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 200%, and the variation in the concentration of hydrogen peroxide was ⁇ 100%. From these facts, it was found that although the amount of drain water was small, the variation in concentration was large and it was not practical.
  • Table 1 shows the presence or absence of control of the make-up water production unit, conductivity-imparting substances and their set values, oxidation-reduction potential adjusting substances and their set concentrations in Comparative Example 8.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • the average flow rate of drain water was 0 L/min.
  • the variation in the ammonia concentration of the washing water W1 sent from the storage tank 5 to the washing machines 6A, 6B, . . . was ⁇ 80%, and the variation in the hydrogen peroxide concentration was ⁇ 100%. From these facts, it was found that although the amount of drain water was small, the variation in concentration was large and it was not practical.
  • Table 1 shows whether or not the make-up water production unit is controlled, the conductivity-imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration in Comparative Example 9.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 1 Using the functional aqueous solution supply device 1 shown in FIG. ) was added, and hydrogen peroxide (oxidation-reduction potential adjusting substance) was added so as to be 100 ppm to produce washing water (functional aqueous solution) W1, which was sent to the storage tank 5.
  • the washing water W1 was sent from the storage tank 5 to the four washing machines 6A, 6B, 6C and 6D, and the unused washing water W1 was returned to the storage tank 5.
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen peroxide concentration was also ⁇ 10%.
  • Table 1 shows the presence or absence of control of the make-up water production unit in Example 1, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 2 Using the functional aqueous solution supply device 1 shown in FIG. 1, ultrapure water W is supplied to the makeup water production unit 3, ammonia is added to this ultrapure water W so that the conductivity is 100 ⁇ S / cm, and further Hydrogen peroxide was added to 100 ppm to produce washing water W1, which was sent to the storage tank 5.
  • the washing water W1 was sent from the storage tank 5 to the four washing machines 6A, 6B, 6C and 6D, and the unused washing water W1 was returned to the storage tank 5.
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen peroxide concentration was also ⁇ 10%.
  • Table 1 shows the presence/absence of control of the make-up water production unit in Example 2, the conductivity-imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 3 Using the functional aqueous solution supply device 1 shown in FIG. 1, ultrapure water W is supplied to the makeup water production unit 3, ammonia is added to this ultrapure water W so that the conductivity is 100 ⁇ S / cm, and further Ozone (O 3 ) (oxidation-reduction potential adjusting substance) was added to 30 ppm to produce cleaning water W1, which was sent to the storage tank 5 .
  • O 3 oxidation-reduction potential adjusting substance
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variation in the ozone concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen peroxide concentration was also ⁇ 10%.
  • Table 1 shows whether or not the make-up water production unit is controlled, conductivity-imparting substances and their set values, oxidation-reduction potential adjusting substances and their set concentrations in Example 3.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 4 Using the functional aqueous solution supply device 1 shown in FIG. 1, ultrapure water W is supplied to the makeup water production unit 3, ammonia is added to this ultrapure water W so that the conductivity is 100 ⁇ S / cm, and further Hydrogen gas (H 2 ) (oxidation-reduction potential adjusting substance) was added to 1.2 ppm to produce cleaning water W1, which was sent to the storage tank 5.
  • the washing water W1 was sent from the storage tank 5 to the four washing machines 6A, 6B, 6C and 6D, and the unused washing water W1 was returned to the storage tank 5.
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variation in the ammonia concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . was ⁇ 10%, and the variation in the hydrogen concentration was also ⁇ 10%.
  • Table 1 shows the presence or absence of control of the make-up water production unit, conductivity imparting substance and its set value, oxidation-reduction potential adjusting substance and its set concentration in Example 4.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 5 Using the functional aqueous solution supply device 1 shown in FIG. 1, ultrapure water W is supplied to the makeup water production unit 3, and carbon dioxide (CO 2 ) is added to the ultrapure water W so that the conductivity is 10 ⁇ S / cm. (conductivity-imparting substance) was added, and hydrogen peroxide was further added so as to be 100 ppm to prepare washing water W1, which was sent to the storage tank 5.
  • the washing water W1 was sent from the storage tank 5 to the four washing machines 6A, 6B, 6C and 6D, and the unused washing water W1 was returned to the storage tank 5.
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variations in the carbonic acid concentration of the washing water W1 sent from the storage tank 5 to the washing machines 6A, 6B, . . . were ⁇ 10%, and the variations in the hydrogen peroxide concentration were also ⁇ 10%.
  • Table 1 shows the presence or absence of control of the make-up water production unit, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 6 Using the functional aqueous solution supply device 1 shown in FIG. 1, ultrapure water W is supplied to the makeup water production unit 3, and carbon dioxide (CO 2 ) is added to the ultrapure water W so that the conductivity is 10 ⁇ S / cm. was added, and further ozone (O 3 ) was added to 30 ppm to produce cleaning water W 1 , which was sent to the storage tank 5 .
  • the washing water W1 was sent from the storage tank 5 to the four washing machines 6A, 6B, 6C and 6D, and the unused washing water W1 was returned to the storage tank 5.
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variation in carbonic acid concentration of washing water W1 sent from storage tank 5 to washing machines 6A, 6B, . . . was ⁇ 10%, and the variation in ozone concentration was also ⁇ 10%.
  • Table 1 shows whether or not the make-up water production unit is controlled, conductivity-imparting substances and their set values, oxidation-reduction potential adjusting substances and their set concentrations in Example 6.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.
  • Example 7 Using the functional aqueous solution supply device 1 shown in FIG. 1, ultrapure water W is supplied to the makeup water production unit 3, and carbon dioxide (CO 2 ) is added to the ultrapure water W so that the conductivity is 10 ⁇ S / cm. was added, and further hydrogen gas (H 2 ) was added so as to be 1.2 ppm to produce washing water (functional aqueous solution) W1, which was sent to the storage tank 5.
  • the washing water W1 was sent from the storage tank 5 to the four washing machines 6A, 6B, 6C and 6D, and the unused washing water W1 was returned to the storage tank 5.
  • Data on the amount of cleaning water W1 used is calculated in advance by the control means 9 from the operating information of the washing machines 6A, 6B, 6C and 6D, and the make-up water producing section 3 is controlled based on the data on the amount of cleaning water W1 used. Then, the production amount of the wash water W1 in the replenishment water producing section 3 was adjusted according to this usage amount. At this time, excess cleaning water W1 was discharged as drain water.
  • the average flow rate of drain water was 30 L/min. Further, the variations in the carbonic acid concentration of the cleaning water W1 sent from the storage tank 5 to the cleaning machines 6A, 6B, . . . were ⁇ 10%, and the variations in the hydrogen concentration were also ⁇ 10%.
  • Table 1 also shows the presence or absence of control of the make-up water production unit, the conductivity imparting substance and its set value, and the oxidation-reduction potential adjusting substance and its set concentration in Example 7.
  • Table 2 also shows the variation rate of the conductivity, the variation rate of the concentration of the oxidation-reduction potential adjusting substance, and the average drain water flow rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

機能性水溶液供給装置1は、超純水Wを管路2から供給して洗浄水W1としての機能性水溶液を製造する補給水製造部3と、製造された洗浄水W1を配管4を介して供給・補給される貯留槽5と、該貯留槽5から洗浄水W1を枚葉式の洗浄機6A,6B,6C及び6Dに供給するとともに未使用の洗浄水W1を貯留槽5に返送する循環管路7とを有する。循環管路7は供給管7A,7B,7C及び7Dがそれぞれ分岐していて、さらに洗浄機6A,6B…から循環管路7に連通する返送管8A,8B,8C及び8Dがそれぞれ接続している。そして、洗浄機6A,6B…の運転計画は、あらかじめ制御手段9に伝達され、この制御手段9により補給水製造部3が制御可能となっている。このような機能性水溶液供給装置であれば、洗浄水としての機能性水溶液を電子部品・電子部材などの洗浄装置等のユースポイントに供給可能である。

Description

機能性水溶液供給装置
 本発明は、電子産業分野等で使用される電子部品・電子部材などの洗浄装置等のユースポイントに洗浄水としての機能性水溶液を供給する装置に関し、特に洗浄水としての機能性水溶液を複数の洗浄機を有するユースポイントに効率的に供給可能な機能性水溶液供給装置に関する。
 近年、電子産業分野のウエハ処理に使用される洗浄溶液として、超純水に導電率付与物質や酸化還元電位調整物質、ガスなどを添加することで、各種機能を付与した機能性水溶液が使用されている。この機能性水溶液を供給する方法として、特許文献1には、節水を目的として貯留槽を設け、洗浄機で使用しない機能性水溶液を貯留槽に戻し循環する方式が提案されている。
特開2018-182099号公報
 しかしながら、この特許文献1に記載された方式では、調整した機能性水溶液を貯留槽に補給しており、この際、補給する機能性水溶液の濃度を安定させるために、補給水の流量を一定にしており、貯留槽に機能性水溶液を補給しない時でも補給水としての機能性水溶液を作り続け、余剰分をドレン水として排出する必要があり、節水効果が小さい、という問題点がある。特にユースポイントが複数の枚葉式のウエハ洗浄機を有する場合には、使用する洗浄水の量が大きく変動するので、排出するドレン水が多くなってしまう。
 本発明は上記課題に鑑みてなされたものであり、洗浄水としての機能性水溶液を電子部品・電子部材などの洗浄装置等のユースポイントに供給可能な機能性水溶液供給装置を提供することを目的とする。
 上記目的に鑑み本発明は、原料水に対して、導電性付与物質、酸化還元電位調整物質およびpH調整物質から選ばれた1種以上の機能性成分を添加した洗浄水をユースポイントに供給する機能性水溶液供給装置であって、前記洗浄水を製造する補給水製造部と、前記補給水製造部で製造された洗浄水を供給・補給して貯留する貯留槽と前記貯留槽から前記ユースポイントに洗浄水を供給する循環式の洗浄水供給管と、前記ユースポイントで未使用の洗浄水を前記循環式の洗浄水供給管に返送する返送管と、前記ユースポイントの前記洗浄液の使用予定情報に基づき前記補給水製造部から前記貯留槽に供給する洗浄水の補給量を制御する制御手段とを備える、機能性水溶液供給装置を提供する(発明1)。
 かかる発明(発明1)によれば、洗浄水としての機能性水溶液の貯留槽への補給量をユースポイントでの洗浄液の使用予定情報に基づき制御することで、機能性水溶液の排出量を大幅に削減することができる。しかも、機能性水溶液の製造量も削減することができる。さらに、洗浄液の使用予定情報に基づき補給水製造部から前記貯留槽に供給する洗浄水の補給量に基づいて、機能性水溶液の製造量をあらかじめ必要量に応じて設定しておくことができるので、機能性水溶液の濃度を精度よく制御することができる。
 上記発明(発明1)においては、前記ユースポイントが複数の洗浄機を有することが好ましい(発明2)。
 かかる発明(発明2)によれば、複数の洗浄機の稼働状況によりユースポイントで使用する洗浄液の量は大きく変動するが、この洗浄機の稼働情報をあらかじめ入手して、ユースポイントで使用する洗浄液の量をあらかじめ予測して、その製造・補給量を制御することにより、機能性水溶液の排出量を大幅に削減し、機能性水溶液の製造量も削減することができる。また、機能性水溶液の濃度を精度よく制御することができる。
 上記発明(発明1,2)においては、前記導電性付与物質が、アンモニア又は炭酸であることが好ましい(発明3)。
 かかる発明(発明3)によれば、アンモニア又は炭酸を微量溶解する場合に特に好適に適用することができる。
 また、上記発明(発明1,2)においては、前記酸化還元電位調整物質が、過酸化水素、OもしくはHであることが好ましい(発明4)。
 かかる発明(発明4)によれば、過酸化水素、Oを微量溶解する場合に特に好適に適用することができる。
 本発明の機能性水溶液供給装置によれば、ユースポイントの前記洗浄液の使用予定情報に基づき前記補給水製造部から前記貯留槽に供給する洗浄水の補給量を制御することができるので、機能性水溶液の排出量を大幅に削減することができ、しかも機能性水溶液の製造量も削減することができる。さらに、洗浄液の使用予定情報に基づき補給水製造部から前記貯留槽に供給する洗浄水の補給量を設定しておくことにより、機能性水溶液の濃度を精度よく制御することができる。特に複数の洗浄機の稼働状況によりユースポイントで使用する洗浄液の量は大きく変動するが、このような場合に好適に適用することができる。
本発明の一実施形態による機能性水溶液供給装置を示す概略図である。 従来の機能性水溶液供給装置を示す概略図である。
 以下、本発明の機能性水溶液供給装置の一実施形態について添付図面を参照にして詳細に説明する。
〔機能性水溶液供給装置〕
 図1は、本発明の一実施形態による機能性水溶液供給装置を示しており、図1において機能性水溶液供給装置1は、原料水としての超純水WにpH調整物質や酸化還元電位調整物質等を添加して洗浄水W1を製造し、ユースポイントとしての半導体ウエハの洗浄機に供給するためのものであり、超純水Wを管路2から供給して洗浄水W1としての機能性水溶液を製造する補給水製造部3と、製造された洗浄水W1が配管4を介して供給・補給される貯留槽5と、該貯留槽5から洗浄水W1をユースポイントとしての複数個(本実施形態においては4個)の枚葉式の洗浄機6A,6B,6C及び6Dに供給するとともに未使用の洗浄水W1を貯留槽5に返送する循環管路7とを有する。循環管路7は、それぞれの洗浄機6A,6B…に洗浄水W1を供給する供給管7A,7B,7C及び7Dがそれぞれ分岐していて、さらに洗浄機6A,6B…から循環管路7に連通する返送管8A,8B,8C及び8Dがそれぞれ接続している。そして、ユースポイントとしての洗浄機6A,6B…の運転計画は、あらかじめパーソナルコンピュータなどの制御手段9に伝達され、この制御手段9により補給水製造部3を制御可能となっている。なお、10はドレン水DWを排出するドレン配管である。
<超純水>
 本実施形態において、原水となる超純水Wとは、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
<pH調整物質>
 本実施形態において、pH調整物質としては特に制限はなく、pH7未満に調整する場合には、クエン酸、ギ酸、塩酸などの液体やCOなどの気体を用いることができる。また、pH7以上に調整する場合には、アンモニア、水酸化ナトリウム、水酸化カリウム等を用いることができる。これらpH調整物質は、微量添加するだけで導電性付与物質としても機能する。
<酸化還元電位調整物質>
 本実施形態において、酸化還元電位調整物質としては特に制限はないが、酸化還元電位を正側に調整するには、過酸化水素水などの液体やオゾンガス(O)、酸素ガス(O)などのガス体を用いることができる。また、酸化還元電位を負側に調整するにはシュウ酸などの液体や水素(H)などのガス体を用いることができる。
〔機能性水の供給方法〕
 前述したような構成を有する本実施形態の機能性水溶液供給装置1を用いた機能性水溶液W1の供給方法について以下説明する。
 まず、超純水Wを補給水製造部3に供給し、導電性付与物質、酸化還元電位調整物質およびpH調整物質から選ばれた1種以上を添加することで補給水製造部3において洗浄水(機能性水溶液)W1を製造する。この機能性水溶液W1は、配管4から一旦貯留槽5に貯留して所定量の洗浄水W1を貯留したら、図示しない送液ポンプを駆動し、循環管路7から供給管7A,7B,7C及び7Dを経由して洗浄機6A,6B…に洗浄水W1を供給する。この際、枚葉式洗浄機6A,6B,6C,6Dで使用しなかった洗浄水W1は、返送管8A,8B,8C,8Dから循環管路7に戻して貯留槽5に還流する。このとき返送された洗浄水W1は、枚葉式洗浄機6A,6B,6C,6Dなどで空気に接することによりその溶存酸素が上昇した状態となっているので、必要に応じ溶存酸素を除去した後返送してもよい。
 このような枚葉式洗浄機6A,6B・・・へ洗浄水W1を供給するに伴い、貯留槽5内の洗浄水W1が減少する。そこで、補給水製造部3で製造された洗浄水W1を配管4を介して貯留槽5に補給するが、本実施形態においては、予め洗浄機6A,6B・・・の稼働情報をあらかじめ入手し、この稼働情報に基づき洗浄水W1の使用量を制御手段9により予測し、さらに補給水製造部3で製造する洗浄水W1の量をこの使用量に応じたものとすることにより、使用量の変動に対応して洗浄水W1を貯留槽5に洗浄水W1を補給する。これにより、洗浄水W1の製造量を削減し、かつ洗浄水W1の排出量を大幅に削減することができる。しかも、洗浄水W1の洗浄液の薬液濃度を精度よく制御することができる、という効果も奏する。
 以上、本発明について添付図面を参照にして前記実施形態に基づき説明してきたが、本発明は前記実施形態に限定されず、種々の変更実施が可能である。例えば、補給水製造部3では、pH調整物質や酸化還元電位調整物質などを複数組み合わせて溶解して機能性水溶液(洗浄水)W1とすることができる。
 以下の具体的実施例により本発明をさらに詳細に説明する。
[比較例1]
 図2に示すように図1に示す機能性水溶液供給装置1において、補給水製造部3を制御する制御手段9を有せず、余剰の洗浄水W1をドレン配管10から排出する構成の機能性水溶液供給装置1を用意した。この機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が1μS/cmとなるようにアンモニア(導電性付与物質)を添加し、さらに過酸化水素(酸化還元電位調整物質)を100ppmとなるよう添加して洗浄水(機能性水溶液)W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110mL/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 比較例1における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1に示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2に示す。
[比較例2]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらに過酸化水素を100ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 比較例2における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例3]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらにオゾン(O)(酸化還元電位調整物質)を30ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、オゾン濃度のばらつきも<±10%であった。
 比較例3における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例4]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらに水素ガス(H)(酸化還元電位調整物質)を1.2ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、水素濃度のばらつきも<±10%であった。
 比較例4における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例5]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が10μS/cmとなるように二酸化炭素(CO)(導電性付与物質)を添加し、さらに過酸化水素を100ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1の炭酸濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 比較例5における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例6]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が10μS/cmとなるように二酸化炭素(CO)を添加し、さらにオゾン(O)を30ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1の炭酸濃度のばらつきは<±10%であり、オゾン濃度のばらつきも<±10%であった。
 比較例6における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例7]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が10μS/cmとなるように二酸化炭素(CO)を添加し、さらに水素ガス(H)を1.2ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3で製造した洗浄水W1を貯留槽5に入れずにドレン配管10からドレン水DWとして排出した。
 この結果、ドレン水の平均流量は110L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1の炭酸濃度のばらつきは<±10%であり、水素濃度のばらつきも<±10%であった。
 比較例7における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例8]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が1μS/cmとなるようにアンモニアを添加し、さらに過酸化水素を100ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3での洗浄水W1の製造を停止した。
 この結果、この結果、ドレン水の平均流量は0L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは±200%であり、過酸化水素濃度のばらつきは<±100%であった。これらのことより、ドレン水は少ないものの濃度のばらつきが大きく、実用的でないことがわかった。
 比較例8における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[比較例9]
 図2に示す機能性水溶液供給装置1を用いて、補給水製造部3に150L/分で超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらに過酸化水素を100ppmとなるよう添加して洗浄水(機能性水溶液)W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。貯留槽5のレベルが低い時は補給水製造部3からの洗浄水W1を補給し、レベルが高い時は補給水製造部3での洗浄水W1の製造を停止した。
 この結果、ドレン水の平均流量は0L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは±80%であり、過酸化水素濃度のばらつきは<±100%であった。これらのことより、ドレン水は少ないものの濃度のばらつきが大きく、実用的でないことがわかった。
 比較例9における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例1]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が1μS/cmとなるようにアンモニア(導電性付与物質)を添加し、さらに過酸化水素(酸化還元電位調整物質)を100ppmとなるよう添加して洗浄水(機能性水溶液)W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 実施例1における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例2]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらに過酸化水素を100ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 実施例2における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例3]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらにオゾン(O)(酸化還元電位調整物質)を30ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のオゾン濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 実施例3における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例4]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が100μS/cmとなるようにアンモニアを添加し、さらに水素ガス(H)(酸化還元電位調整物質)を1.2ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1のアンモニア濃度のばらつきは<±10%であり、水素濃度のばらつきも<±10%であった。
 実施例4における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例5]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が10μS/cmとなるように二酸化炭素(CO)(導電性付与物質)を添加し、さらに過酸化水素を100ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1の炭酸濃度のばらつきは<±10%であり、過酸化水素濃度のばらつきも<±10%であった。
 実施例5に補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例6]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が10μS/cmとなるように二酸化炭素(CO)を添加し、さらにオゾン(O)を30ppmとなるよう添加して洗浄水W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1の炭酸濃度のばらつきは<±10%であり、オゾン濃度のばらつきも<±10%であった。
 実施例6における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
[実施例7]
 図1に示す機能性水溶液供給装置1を用いて、補給水製造部3に超純水Wを供給し、この超純水Wに導電率が10μS/cmとなるように二酸化炭素(CO)を添加し、さらに水素ガス(H)を1.2ppmとなるよう添加して洗浄水(機能性水溶液)W1を製造し、貯留槽5に送水した。貯留槽5から4台の洗浄機6A,6B,6C及び6Dにこの洗浄水W1を送水し、使用しなかった洗浄水W1は貯留槽5に戻した。そして、洗浄機6A,6B,6C及び6Dの稼働情報から制御手段9により予め洗浄水W1の使用量に関するデータ算出し、この洗浄水W1の使用量に関するデータに基づいて補給水製造部3を制御して、この使用量に応じて補給磯製造部3での洗浄水W1の製造量を調整した。この際、余剰の洗浄水W1はドレン水として排出した。
 この結果、ドレン水の平均流量は30L/分であった。また、貯留槽5から洗浄機6A,6B・・・へ送水した洗浄水W1の炭酸濃度のばらつきは<±10%であり、水素濃度のばらつきも<±10%であった。
 実施例7における補給水製造部の制御の有無、導電性付与物質及びその設定値、酸化還元電位調整物質及びその設定濃度をそれぞれ表1にあわせて示す。また、導電率のばらつき率、酸化還元電位調整物質の濃度のばらつき率、及び平均ドレン水流量をそれぞれ表2にあわせて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1 機能性水溶液供給装置
2 管路
3 補給水製造部
4 配管
5 貯留槽
6A,6B,6C,6D 枚葉式洗浄機(ユースポイント)
7 循環管路
7A,7B,7C,7D 供給管
8A,8B,8C,8D 返送管
9 制御手段
W 超純水
W1 洗浄水(機能性水溶液)

Claims (4)

  1.  原料水に対して、導電性付与物質、酸化還元電位調整物質およびpH調整物質から選ばれた1種以上の機能性成分を添加した洗浄水をユースポイントに供給する機能性水溶液供給装置であって、
     前記洗浄水を製造する補給水製造部と、
     前記補給水製造部で製造された洗浄水を供給・補給して貯留する貯留槽と
     前記貯留槽から前記ユースポイントに洗浄水を供給する循環式の洗浄水供給管と、
     前記ユースポイントで未使用の洗浄水を前記循環式の洗浄水供給管に返送する返送管と、
     前記ユースポイントの前記洗浄液の使用予定情報に基づき前記補給水製造部から前記貯留槽に供給する洗浄水の補給量を制御する制御手段と
    を備える、機能性水溶液供給装置。
  2.  前記ユースポイントが複数の洗浄機を有する、請求項1に記載の機能性水溶液供給装置。
  3.  前記導電性付与物質が、アンモニア又は炭酸である、請求項1又は2に記載の機能性水溶液供給装置。
  4.  前記酸化還元電位調整物質が、過酸化水素、OもしくはHである、請求項1又は2に記載の機能性水溶液供給装置。
PCT/JP2022/010167 2021-03-15 2022-03-09 機能性水溶液供給装置 WO2022196470A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/279,917 US20240150206A1 (en) 2021-03-15 2022-03-09 Functional aqueous solution supply apparatus
KR1020237022770A KR20230157293A (ko) 2021-03-15 2022-03-09 기능성 수용액 공급 장치
CN202280020131.9A CN117063264A (zh) 2021-03-15 2022-03-09 功能性水溶液供给装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021041867A JP7147901B1 (ja) 2021-03-15 2021-03-15 機能性水溶液供給装置
JP2021-041867 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196470A1 true WO2022196470A1 (ja) 2022-09-22

Family

ID=83320526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010167 WO2022196470A1 (ja) 2021-03-15 2022-03-09 機能性水溶液供給装置

Country Status (6)

Country Link
US (1) US20240150206A1 (ja)
JP (1) JP7147901B1 (ja)
KR (1) KR20230157293A (ja)
CN (1) CN117063264A (ja)
TW (1) TW202237535A (ja)
WO (1) WO2022196470A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190090A1 (ja) * 2017-04-14 2018-10-18 栗田工業株式会社 洗浄水供給装置
WO2020039764A1 (ja) * 2018-08-23 2020-02-27 栗田工業株式会社 電子部品用洗浄水製造システム及び電子部品用洗浄水製造システムの運転方法
JP2020188151A (ja) * 2019-05-15 2020-11-19 栗田工業株式会社 溶液製造装置及び濃度制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190090A1 (ja) * 2017-04-14 2018-10-18 栗田工業株式会社 洗浄水供給装置
WO2020039764A1 (ja) * 2018-08-23 2020-02-27 栗田工業株式会社 電子部品用洗浄水製造システム及び電子部品用洗浄水製造システムの運転方法
JP2020188151A (ja) * 2019-05-15 2020-11-19 栗田工業株式会社 溶液製造装置及び濃度制御方法

Also Published As

Publication number Publication date
US20240150206A1 (en) 2024-05-09
JP7147901B1 (ja) 2022-10-05
TW202237535A (zh) 2022-10-01
CN117063264A (zh) 2023-11-14
KR20230157293A (ko) 2023-11-16
JP2022141518A (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
TW201938260A (zh) 臭氧水供給方法及臭氧水供給裝置
JP2009219995A (ja) ガス溶解水供給システム
CN109954414B (zh) 气体溶解液制造装置及气体溶解液的制造方法
TWI553168B (zh) 用於再生鍍覆組成物之方法及再生裝置
WO2020039764A1 (ja) 電子部品用洗浄水製造システム及び電子部品用洗浄水製造システムの運転方法
JP5020784B2 (ja) オゾン水の製造装置及び製造方法
JP6427378B2 (ja) アンモニア溶解水供給システム、アンモニア溶解水供給方法、およびイオン交換装置
WO2022196470A1 (ja) 機能性水溶液供給装置
TWI742266B (zh) 洗淨水供給裝置
WO2022054320A1 (ja) 電子部品・部材の洗浄水供給装置及び電子部品・部材の洗浄水の供給方法
JP6973534B2 (ja) 希薄薬液供給装置
CN116651832A (zh) 一种晶片稳定清洗控制方法
WO2022070475A1 (ja) 電子部品・部材の洗浄水供給装置及び電子部品・部材の洗浄水の供給方法
JP7103394B2 (ja) ウェハ洗浄水供給システム及びウェハ洗浄水の供給方法
JP7480594B2 (ja) 電子部品部材洗浄水の製造装置
JP2022187362A (ja) ウェハ洗浄水供給装置
JP7099603B1 (ja) 半導体製造用液体供給装置
JP3809608B2 (ja) 無電解銅めっき方法とその装置及びその銅補給液の作製方法とその装置
JPH0645308A (ja) 混合液の薬液補充方法
JP2001284295A (ja) 化学的機械研磨方法および化学的機械研磨装置
JP2024032251A (ja) ウェハ洗浄水供給装置
JP2022173817A (ja) 半導体製造用プロセス溶液供給装置及び半導体材料の処理方法
CN111918842A (zh) 产生清洗液体的方法
JPH11342356A (ja) 基板処理装置および基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18279917

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280020131.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771222

Country of ref document: EP

Kind code of ref document: A1