WO2022196346A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2022196346A1
WO2022196346A1 PCT/JP2022/008632 JP2022008632W WO2022196346A1 WO 2022196346 A1 WO2022196346 A1 WO 2022196346A1 JP 2022008632 W JP2022008632 W JP 2022008632W WO 2022196346 A1 WO2022196346 A1 WO 2022196346A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
automatic analyzer
amount
light source
analysis
Prior art date
Application number
PCT/JP2022/008632
Other languages
English (en)
French (fr)
Inventor
大空 堀川
昌史 深谷
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US18/276,101 priority Critical patent/US20240103027A1/en
Priority to CN202280014776.1A priority patent/CN116848416A/zh
Priority to JP2023506947A priority patent/JPWO2022196346A1/ja
Priority to EP22771100.9A priority patent/EP4310509A1/en
Publication of WO2022196346A1 publication Critical patent/WO2022196346A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/025Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having a carousel or turntable for reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1004Cleaning sample transfer devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0162Arrangements or apparatus for facilitating the optical investigation using microprocessors for control of a sequence of operations, e.g. test, powering, switching, processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0621Supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed

Definitions

  • the present invention relates to an automatic analyzer.
  • the light source is one of the important parts that affect the analysis performance.
  • the light emitted from the light source passes through a reaction solution in which reagents and specimens are mixed, is dispersed into a specific number of wavelengths by a spectroscope, and is detected by a detector.
  • a halogen lamp has been used as a light source, but an automatic analyzer using an LED as a new light source has been proposed.
  • Patent Document 1 discloses that a plurality of LED light sources with different wavelengths are periodically caused to emit light in order during measurement (analysis), and that a plurality of LED light sources are periodically emitted in order even during non-measurement such as in a standby state.
  • this patent document 1 also discloses that an LED light source with a short wavelength does not emit light when not measuring because the time required for the light amount to stabilize is shorter than that of LED light sources with other wavelengths ( paragraph 0094, etc.).
  • the object of the present invention is to provide an automatic analyzer that can stabilize the amount of light in a short time before measurement while extending the life of the light source.
  • the present invention provides an automatic analyzer, a light source having two or more LED elements with different wavelengths, an analysis unit that performs analysis based on the light irradiated to the reaction vessel, and and a current adjustment unit that adjusts the amount of current supplied to each LED element, wherein the current adjustment unit individually reduces the amount of current for each LED element in the non-analysis state with respect to the amount of current in the analysis state. value.
  • an automatic analyzer capable of stabilizing the amount of light in a short time before measurement while extending the life of the light source.
  • FIG. 1 is an overall configuration diagram of an automatic analyzer according to an embodiment
  • FIG. The figure which shows the module connection example of the automatic analyzer which concerns on embodiment.
  • 5 is a graph showing the transition of the current value supplied to the light source after the start of analysis by the current adjustment unit according to the first embodiment
  • 4 is a flow chart showing the processing from the start of the automatic analyzer according to the first embodiment to the transition to the rack reception mode
  • 5 is a flow chart showing processing in a rack reception mode immediately after the end of analysis of the automatic analyzer according to the first embodiment
  • 5 is a graph showing the transition of the current value supplied from the current adjustment unit to the light source from the power-off state of the automatic analyzer according to Example 1.
  • FIG. 4 is a graph showing the transition of the amount of light from the power-off state of the automatic analyzer according to Example 1.
  • FIG. 6 is a flow chart showing processing of light amount monitoring in the first embodiment.
  • 9 is a graph showing changes in current value supplied to the light source by the current adjustment unit according to the second embodiment; 9 is a graph showing changes in current values supplied to LED elements A and B by a current adjusting unit according to Example 2;
  • the configuration and operation of the automatic analyzer 100 according to the embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
  • the automatic analyzer 100 performs colorimetric analysis using biochemical reactions as described below.
  • FIG. 1 is an overall configuration diagram of an automatic analyzer 100 according to an embodiment.
  • the automatic analyzer 100 includes a transport line 101, a rotor 102, a reagent disk 103, a reaction disk 104, a dispensing mechanism 105, a stirring mechanism 106, a spectroscope 107, a reaction cell cleaning mechanism 108, a nozzle cleaning mechanism 109, a controller 115, an input It is composed of a unit 123, a display unit 124, and the like.
  • the transport line 101 transports the sample rack 111 holding the sample container 110 containing the sample to the sample dispensing position 121 by the required amount.
  • the dispensing mechanism 105 dispenses the sample from the sample container 110 to the reaction cell 112 (reaction container) at the sample dispensing position 121 .
  • the conveying line 101 is further connected with the rotor 102 . By rotating the rotor 102 , sample racks 111 are exchanged with other transport lines 101 .
  • the reagent disk 103 holds a reagent container 113 containing a reagent, and rotates and transfers the reagent container 113 to a position where the dispensing mechanism 105 can perform a dispensing operation.
  • the dispensing mechanism 105 dispenses the reagent from the reagent container 113 to the reaction cell 112 at the reagent dispensing position 122 .
  • the reagent is dispensed into the reaction cell 112 in an amount required for colorimetric analysis, and reacts with the component in the sample to be analyzed.
  • the reaction disk 104 holds the reaction cell 112, and the reaction cell 112 which is the object of each operation up to the operation position indicating the position where the spectroscope 107 for colorimetric analysis, the stirring mechanism 106, the reaction cell cleaning mechanism 108, etc. operates respectively. is rotated. Note that the reaction cell 112 is kept warm by a constant temperature medium such as water. This promotes the chemical reaction between the components in the specimen and the reagent in the reaction liquid, which is a mixture of the specimen and the reagent.
  • the dispensing mechanism 105 aspirates the sample to be colorimetrically analyzed from the sample container 110 and discharges it into the reaction cell 112 .
  • the dispensing mechanism 105 aspirates a reagent corresponding to an object to be analyzed from the reagent container 113 and discharges it into the reaction cell 112 .
  • the dispensing mechanism 105 includes an arm 118 , a nozzle 116 and a dispensing mechanism motor 119 .
  • Arm 118 holds nozzle 116 and liquid level sensor 117 .
  • Nozzle 116 is connected to liquid level sensor 117 .
  • the liquid level sensor 117 detects the presence or absence of liquid based on changes in capacitance.
  • a shield part 114 is installed in the vicinity of the position where the dispensing mechanism 105 performs the dispensing operation.
  • the dispensing mechanism motor 119 moves the dispensing mechanism 105 vertically or in a rotational direction.
  • Agitation mechanism 106 stirs the reaction in reaction cell 112 in order to promote the reaction between the component to be analyzed in the sample discharged from sample container 110 into reaction cell 112 and the reagent discharged from reagent container 113 into reaction cell 112 . Stir the liquid.
  • the light source 120 irradiates the reaction liquid, which is stirred by the stirring mechanism 106 and chemically reacted, with output light.
  • a spectrometer 107 spectroscopically separates the transmitted light that has passed through the reaction liquid. Based on the spectrally transmitted light, a colorimetric analysis by absorbance measurement is performed.
  • the reaction cell cleaning mechanism 108 sucks the reaction liquid from the reaction cell 112 for which the colorimetric analysis has been completed, discharges detergent and the like, and cleans the reaction cell 112 .
  • the nozzle cleaning mechanism 109 cleans the tip of the nozzle 116 of the dispensing mechanism 105 that has dispensed the sample or reagent. This removes the residue adhering to the nozzle 116 and does not affect the next analysis target.
  • the control unit 115 is composed of a processor, memory, etc., and controls each mechanism, device, and the like.
  • the input unit 123 is composed of a keyboard, mouse, touch panel, etc., and inputs instructions from the user to the control unit 115 .
  • the display unit 124 is configured by an LCD (Liquid Crystal Display) or the like, and displays an operation screen or the like.
  • FIG. 2 is a diagram showing an example of module connection of the automatic analyzer 100 according to the embodiment.
  • the automatic analyzer 100 includes an input/storage unit 201 , an ISE unit 202 (electrolyte measurement unit), a sample transport unit 203 , and a colorimetric analysis unit 204 .
  • the loading/storage unit 201 is used to load and store the sample rack 111 .
  • the sample rack 111 loaded into the loading/storage unit 201 is moved to the sample transport unit 203 .
  • the sample rack 111 is transported to the ISE section 202 via the rotor 102 (not shown in FIG. 2).
  • ISE section 202 only measures items that do not use light source 120 .
  • the sample rack 111 is returned to the sample transport section 203 via the rotor 102 .
  • the sample rack 111 returned to the sample transport section 203 is transported to the sample dispensing position 121 of the colorimetric analysis section 204 .
  • the dispensing mechanism 105 After the reaction cell 112 is washed and cell blank measurement is performed, the dispensing mechanism 105 performs a dispensing operation. The colorimetric analysis unit 204 then performs colorimetric analysis using the light source 120 . Details of the cell blank measurement will be described later with reference to FIG.
  • FIG. 3 is a diagram showing an optical system used in the automatic analyzer 100 according to the embodiment and devices arranged therearound.
  • the light source 120 is composed of two or more LED elements with different wavelengths.
  • Automatic biochemical analysis has a plurality of measurement items, and the wavelengths of light used for each measurement item are different, and 12 wavelengths of light in the range of 340 to 800 nm are used for measurement.
  • Conventionally used halogen lamps can output light of 12 wavelengths in one unit, but LED elements must use two or more LED elements capable of outputting light of different wavelengths. The current value supplied to each LED element is individually set.
  • the light in the absorption region corresponding to the photometric target substance is absorbed by the photometric target substance.
  • the light transmitted through the reaction liquid is incident on the concave diffraction grating 304 .
  • the diffraction grating 304 splits the incident light into wavelengths and outputs the split light to the photodetector 305 .
  • the photodetector 305 converts the amount of light into an electrical signal and outputs the electrical signal to the absorbance calculator 306 .
  • the absorbance calculator 306 calculates the absorbance based on the electrical signal output from the photodetector 305 and outputs the calculated absorbance to the controller 115 .
  • the controller 115 performs colorimetric analysis based on the absorbance output from the absorbance calculator 306 .
  • cell blank water is dispensed to all reaction cells 112, and the absorbance of light at each wavelength of 340 to 800 nm is measured (cell blank measurement).
  • the control unit 115 holds (stores) this measurement result as a cell blank value.
  • the control unit 115 compares the cell blank value and the absorbance of the mixed liquid to be analyzed, corrects the absorbance, and outputs the corrected absorbance as measurement data to the user interface (screen displayed on the display unit 124, etc.).
  • the current detection unit 307 monitors (measures) the current flowing through the light source 120 .
  • the current adjustment unit 308 has a circuit that reduces the amount of current supplied to the light source 120 or turns off the power of the light source 120 at timing that does not affect analysis.
  • the automatic analyzer 100 of the present embodiment adjusts the current supplied to the light source 120 by the current adjustment unit 308, and continues the control of supplying a low current and the pulse control without completely turning it off. It has a function to maintain an idle state so that it can immediately shift to the measured light amount of .
  • Example 1 is an example in which the current adjusting unit 308 controls to supply a low current (a value that is reduced with respect to the amount of current in the analysis state) when the light source 120 is in an idle state.
  • FIG. 4 is a graph showing changes in current values supplied to the light source 120 by the current adjusting unit 308 according to the first embodiment after the start of analysis.
  • the automated analyzer 100 is in the measurement state (measurement mode) from time T0 to time T1, and transitions to the rack reception mode from time T1.
  • the first standby mode is a sleep mode in which not only the dispensing mechanism 105 but also the cleaning mechanism and reaction disk 104 are stopped.
  • the second standby mode is a rack reception mode in which the dispensing mechanism 105 is stopped but the washing mechanism and reaction disk 104 are not stopped. Therefore, in the rack reception mode, when receiving a measurement request from the user, the pre-analysis preparatory operation can be omitted and the measurement can be started.
  • two LED elements are used as the light source 120 .
  • the LED element A takes longer than the LED element B to stabilize at the light amount at the time of measurement when the current value at the time of measurement (first current value) is supplied from the power off state.
  • the LED element A emits visible light and the LED element B emits ultraviolet light having a shorter wavelength than that of the LED element A. Therefore, when the automatic analyzer 100 transitions to the rack reception mode (second standby mode) at time T1, the measured current value I A1 of the LED element A changes to the idle state current value (fourth current value) I A2 is set smaller than the rate of decrease from the measured current value I B1 in the LED element B to the idle state current value (fourth current value) I B1 . As a result, two types of LED elements with different stabilization times can be stabilized at the same timing when transitioning to the measurement mode.
  • the automatic analyzer 100 stops the analysis operation and transitions to sleep mode (first standby mode).
  • the current values supplied to the respective LED elements are changed to idle current values (second current values) I A3 and I B3 used in the sleep mode.
  • the values of I A3 and I B3 are set so that the rate of decrease from the measured current values I A1 and I B1 is greater than that of I A2 and I B2 .
  • the sleep mode since the measurement operation of the automatic analyzer 100 is stopped as described above, it takes longer than the rack reception mode to transition from the execution instruction by the user to the measurement state. As a result, in the sleep mode, a longer time margin can be obtained until the light source 120 is stabilized than in the rack reception mode. load can be reduced. With such control, in the automatic analyzer 100 of the present embodiment, it is possible to extend the life of the light source 120 while stabilizing the amount of light in a short period of time before measurement.
  • FIG. 5 is a flow chart showing the processing from the startup of the automatic analyzer 100 according to the first embodiment to the transition to the rack reception mode.
  • the control unit 115 executes the initialization mode (step S500), and simultaneously activates the light source 120 (step S510). ).
  • the initialization mode performs the minimum necessary initialization and preparation for measurement, and operations in the initialization mode include resetting of the dispensing mechanism 105, cell blank measurement, and the like.
  • the control unit 115 causes the light source 120 to light up by causing the amount of current used during measurement to flow (supplying the current value during measurement). Even in the initialization mode in which no measurement is performed, the light source 120 is lit with the same level of current as in the measurement mode, so the LED elements are warmed and the light intensity can be stabilized during the initialization mode. At this time, it is monitored whether or not the amount of light has reached the amount at the time of measurement (step S511). Detailed processing of light amount monitoring will be described later. When the amount of light reaches the amount of light used for measurement, the initialization mode ends.
  • the control unit 115 transitions to the sleep mode (step S501), and at the same time transitions the light source 120 to the idle state (step S512).
  • the current adjustment unit 308 sets the amount of current for each LED element to a value obtained by individually decreasing the amount of current at the time of measurement (analysis state). Specifically, the current adjuster 308 makes the rate of decrease in the amount of current for the LED element B with the short wavelength greater than the rate of decrease in the amount of current for the LED element A with the long wavelength.
  • the control unit 115 starts the pre-colorimetric analysis operation (step S502), and supplies a current exceeding the current value at the time of measurement to the light source 120 (step S513).
  • the pre-analysis operation rack transportation, cell blank measurement, and the like are performed.
  • the control unit 115 reduces the current amount to the current value at measurement (step S514), and again reduces the amount of light at the time of measurement. is reached (step S515).
  • the control section 115 starts the analysis operation (measurement mode) (step S503).
  • the colorimetric analysis unit 204 analyzes (measures) based on the light with which the reaction cell 112 is irradiated.
  • the control section 115 determines whether or not the rack reception mode is set (step S520), and if it is set, causes the automatic analyzer 100 to transition to the rack reception mode.
  • the time to shift from the analysis request to the analysis state in the mode is short, and the time margin to stabilize the light source 120 is short.
  • the rate of decrease in the amount of current supplied to 120 is set smaller than in the normal idle state.
  • FIG. 6 is a flow chart showing the processing in the rack reception mode immediately after the analysis of the automatic analyzer 100 according to the first embodiment. Note that the user can select enable/disable of the rack reception mode.
  • the control unit 115 shifts the automatic analyzer 100 to the rack reception mode (step S600), and also shifts the light source 120 to the idle state (step S610).
  • the control unit 115 causes the automatic analyzer 100 to start the pre-analysis operation (step S601), and supplies the current value at measurement to the light source 120 (step S611).
  • the control unit 115 monitors whether or not the light from the light source 120 has reached the light intensity at the time of measurement (step S612).
  • the control unit 115 shifts the light source 120 to the measurement state (step S613) and causes the automatic analyzer 100 to start the analysis operation (step S602).
  • the control unit 115 causes the measurement mode to transition again to the rack representation mode (step S600).
  • FIG. 7A is a graph showing the transition of the current value supplied from the current adjustment unit 308 to the light source 120 from the power OFF state of the automatic analyzer 100 according to the first embodiment.
  • the vertical axis indicates current I supplied to light source 120
  • the horizontal axis indicates time T.
  • the solid line shows the transition when the light source is previously idled before the start of measurement as in this embodiment
  • the dashed line shows the transition when the light source is turned off until the start of measurement as a comparative example. Show transition.
  • time t0 be the time when the automatic analyzer 100 is powered on.
  • the current adjustment unit 308 sets the amount of current supplied to the light source 120 to the measurement current value (first current value) i1.
  • the current adjustment unit 308 reduces the current amount to the second current value i2 used in the idle state.
  • the rate of decrease in the amount of current may be set differently for each LED element (eg, 50% decrease for LED element A and 30% decrease for LED element B).
  • the period from time t ⁇ b>2 to time t ⁇ b>3 corresponds to the sleep mode, but the duration of the sleep mode varies depending on the usage conditions of the automatic analyzer 100 .
  • the amount of current supplied to the light source 120 is maintained at the second current value i2 in the idle state.
  • the current adjustment unit 308 sets the amount of current supplied to the light source 120 to a current value (third current value) i3 higher than the current value at the time of measurement. As a result, the temperature of the LED element rises, shortening the time until the amount of light stabilizes. Further, at time t4, the current adjustment unit 308 reduces the amount of current to the measurement current value i1, and maintains that value while the analysis operation is being performed. Then, at time t5, the analysis operation ends, the automatic analyzer 100 transitions to the rack reception mode, and the light source 120 transitions to the idle state.
  • the current value (fourth current value) i4 that is higher than that in the normal idle state is set in order to enable the transition to the analysis state in a shorter time than in the normal standby mode (sleep mode). is supplied to the light source 120 .
  • the automatic analyzer 100 After transitioning to the rack reception mode, when the next analysis request is made at a certain time (time t6 in FIG. 7A) within the time specified in advance by the user, the automatic analyzer 100 quickly transitions to the measurement mode. Accordingly, the current value supplied to the light source 120 is also changed to the measurement current value i1. On the other hand, after the transition to the rack reception mode, if the next analysis request is not made within the time specified in advance by the user, the automatic analyzer 100 transitions to the normal standby mode (sleep mode), and accordingly the current The value is also changed to the idle second current value i2.
  • FIG. 7B is a graph showing the transition of the amount of light from the power off state of the automatic analyzer 100 according to Example 1.
  • the vertical axis indicates the amount of light L from the light source 120 measured by the photodetector 305
  • the horizontal axis indicates the time T.
  • the solid line shows the transition when the light source is previously idled before the start of measurement as in this embodiment
  • the dashed line shows the transition when the light source is turned off until the start of measurement as a comparative example. Show transition.
  • the light intensity of the light source 120 gradually increases and eventually reaches l1, which is the light intensity at the time of measurement.
  • l1 which is the light intensity at the time of measurement.
  • the light amount also decreases to l2. This amount of light is maintained until the standby mode transitions to the measurement mode in response to an analysis request from the user.
  • the third current value i3 larger than the current value at the time of measurement is supplied to the light source 120, and the light intensity rises to l3.
  • the amount of light is stabilized by temporarily supplying a current amount exceeding the current value i1 at the time of measurement. After that, at time t4, the current value decreases to the measurement current value i1, the light intensity also changes to l1, and this light intensity is maintained during the analysis operation. If the rack reception mode is set at time t5 when the analysis operation ends, the supply current value decreases to the fourth current value i4 and the light intensity decreases to l4.
  • FIG. 8 is a flow chart showing processing for light quantity monitoring in the first embodiment.
  • control unit 115 of this embodiment has a function of controlling the current detection unit 307 and the absorbance calculation unit 306 to check whether the amount of light from the light source 120 is stable.
  • the current detection unit 307 monitors the current by detecting the current value of the light source 120, and the absorbance calculation unit 306 calculates the absorbance based on the light transmitted through the reaction cell 112 to obtain the absorbance. monitor. Then, the control unit 115 uses the current value detected by the current detection unit 307 and the absorbance calculated by the absorbance calculation unit 306 to monitor whether there is an abnormality in the stabilization of the light amount.
  • the current detection unit 307 monitors the current
  • the absorbance calculation unit 306 monitors the absorbance of all wavelengths.
  • the current value of the light source 120 detected by the current detector 307 and the absorbance calculated by the absorbance calculator 306 are sent to the controller 115 .
  • the control unit 115 determines that the current monitoring value is within a certain range with respect to the setting value of the current adjustment unit 308 (for example, within ⁇ 1% of the setting current value), and the difference between the absorbance monitoring value and the previous value is It is determined whether or not it is within a certain range (step S801-1).
  • the previous value to be compared with the monitored absorbance value the latest absorbance value calculated before the current value at the time of measurement is changed to another current value is used.
  • the last cell blank value calculated before the power of the automatic analyzer 100 is turned off is used as the previous value. .
  • step S801-1 when both the current monitoring value and the absorbance monitoring value satisfy the conditions, the control unit 115 determines whether the standard deviation of the absorbance at all wavelengths in the cell blank is within a certain range. (Step S802).
  • step S802 when the standard deviation of the absorbance of all wavelengths in the cell blank is within a certain range, there is little variation in absorbance. and transition to sleep mode. Further, when the automatic analyzer 100 is in the pre-analysis operation, the control unit 115 ends the pre-analysis operation and starts the analysis operation.
  • the control unit 115 determines whether or not a certain period of time has elapsed since the measurement current value was supplied (step S801-2). In the initialization mode, the time required for the amount of light to stabilize is longer than in the transition from the idle state to the measurement state. set longer than the
  • step S801-1 If the condition of step S801-1 is not satisfied, the control unit 115 returns to step S800 to continue current monitoring and absorbance monitoring.
  • step S801-1 if the condition of step S801-1 is satisfied, the control unit 115 indicates that there is an abnormality in the stabilization of the light source and displays a system alarm on the display unit 124 (step S801-3).
  • the life of the light source 120 is calculated based on the total period when it is lit with the current value i1 at the time of measurement in FIG. 7A.
  • the current value supplied to the light source 120 is not always the current value i1 at the time of measurement. desirable. Therefore, the control unit 115 of the present embodiment corrects the total lighting period in consideration of the period during which the light source 120 is supplied with the amount of current that is decreased from the measured state and the rate of decrease thereof. Therefore, the control unit 115 records the time during which the current is supplied to the light source 120 and the amount of current.
  • the control unit 115 considers the reduction rate and corrects 50% of the actual lighting period. Record as lighting period. Then, the control unit 115 predicts the life of the light source 120 based on the recorded lighting period, and displays the light source replacement timing on the display unit 124, thereby providing the timing of providing the replacement service for the light source 120, which is difficult for the user. It is possible to comprehend.
  • the second embodiment is an example in which the current adjustment unit 308 performs pulse control (alternately repeating the current value during measurement and the current value during OFF) when the light source 120 is in an idle state.
  • FIG. 9A is a graph showing changes in current value supplied to the light source 120 by the current adjustment unit 308 according to the second embodiment. 9A, the vertical axis indicates the current I supplied to the light source 120, and the horizontal axis indicates the time T. In FIG.
  • time t0 be the time when the automatic analyzer 100 is powered on.
  • Light source 120 is in the OFF state from time t0 to time t1, and the current value supplied to light source 120 at this time is assumed to be OFF current value i0.
  • the current adjustment unit 308 supplies the light source 120 with the current value i1 during measurement.
  • the control unit 115 shifts the light source 120 to the idle state.
  • the current adjustment unit 308 alternately switches the current value to be supplied to the light source 120 between the OFF time current value i0 and the measurement time current value i1 to perform pulse control.
  • it takes five minutes or more to restore the light source 120 from the completely off state. Therefore, by not creating a complete OFF state by pulse control as in this embodiment, it is possible to shorten the recovery time.
  • the life of the LED element depends on the temperature during operation, and the lower the temperature, the longer the life. Therefore, pulse control increases the OFF time of the light source 120 rather than continuously supplying the current value at the time of measurement.
  • pulse control in which the duration of OFF is longer than the duration of ON reduces the temperature further, so that the life of the light source 120 is further extended. can.
  • the pulse control period TI is set to a value that allows the light amount to stabilize before the analysis and that the life of the light source 120 can be extended as much as possible.
  • the automatic analyzer 100 is in sleep mode, and the current adjustment unit 308 maintains pulse control.
  • the automatic analyzer 100 transitions to measurement mode.
  • the current adjustment unit 308 terminates the pulse control and supplies the current value i1 at measurement to the light source 120 .
  • the automatic analyzer 100 is in the measurement mode, and the current adjustment unit 308 maintains the current value supplied to the light source 120 at the measurement current value i1.
  • the control unit 115 transitions to the rack reception mode, and the current adjustment unit 308 starts pulse control at period TII .
  • period T II is set to a value shorter than T I . It should be noted that instead of changing the pulse cycle between the rack reception mode and the sleep mode, the OFF duration of the pulse may be changed.
  • the automatic analyzer 100 is in the rack reception mode, and the current adjustment section 308 maintains pulse control.
  • the current adjustment unit 308 ends the pulse control and supplies the light source 120 with the measurement current value i1.
  • the light source 120 is caused to emit light continuously without periodically emitting light during measurement. It can also be applied to an automatic analyzer with a short photometric time, such as a post-spectroscopic automatic analyzer.
  • FIG. 9B is a graph showing changes in current values supplied to the LED elements A and B by the current adjusting unit 308 according to the second embodiment. 9B, the vertical axis indicates the current I supplied to the light source 120, and the horizontal axis indicates the time T. In FIG. 9B, the vertical axis indicates the current I supplied to the light source 120, and the horizontal axis indicates the time T.
  • the light source 120 has two LED elements, and the LED element A takes longer than the LED element B to stabilize at the light amount at the time of measurement when the current value at the time of measurement is supplied from the power off state. and I A1 is the current value supplied to the LED element A by the current adjusting section 308, and I B1 is the current value supplied to the LED element B by the current adjusting section 308.
  • the current regulator 308 pulse-controls the current supplied to each of the LED elements A and B.
  • T A be the cycle of the pulse control performed on the LED element A
  • T B be the cycle of the pulse control performed on the LED element B.
  • FIG. As described above, LED element A has a longer stabilization time than LED element B.
  • period T A is set to a value shorter than period T B .
  • the function of monitoring the amount of light can prevent measurement due to an abnormal amount of light. Also, by monitoring the life of the light source under usage conditions, it is possible to provide an optimal replacement service.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail to facilitate understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
  • Sample container 111 Sample rack 112 Reaction cell 113 Reagent container 114 Shield part 115 Control part 116 Nozzle 117 Liquid level sensor 118 Arm 119 Dispensing mechanism motor 120 Light source 121 Specimen dispensing position 122 Reagent dispensing position 123 Input unit 124 Display unit 201 Input/storage unit 202 ISE unit 203 Specimen transportation unit 204 Colorimetry Analysis unit 303 Reaction chamber 304 Diffraction grating 305 Photodetector 306 Absorbance calculation unit 307 Current detection unit 308 Current adjustment unit

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本発明の目的は、光源の長寿命化を図りつつ、測定前に光量を短時間で安定させられる自動分析装置を提供することにある。そのために、本発明の自動分析装置は、波長の異なる2つ以上のLED素子を有する光源と、反応容器に照射されたた光に基づいて分析を行う分析部と、前記LED素子ごとに供給する電流量を調整する電流調整部と、を備え、前記電流調整部は、非分析状態における前記LED素子ごとの電流量を、分析状態での電流量に対して個別に減少させた値とする。

Description

自動分析装置
 本発明は、自動分析装置に関する。
 血液等の検体を分析する自動分析装置において、光源は分析性能を左右する重要な部品の一つである。光源から出た光は、試薬と検体を混合した反応液を通過し、分光器によって特定数の波長に分光され、検出器によって検出する。従来は光源にハロゲンランプが用いられてきたが、新しい光源としてLEDを使用した自動分析装置が提案されている。例えば、特許文献1には、測定(分析)時に、波長の異なる複数のLED光源を順番に周期的に発光させることや、スタンバイ状態などの非測定時にも、複数のLED光源を順番に周期的に発光させて光量のばらつきを排除すること、が開示されている(段落0093等)。また、この特許文献1には、波長の短いLED光源は、光量が安定するまでに要する時間が他の波長のLED光源と比べて短いため、非測定時には発光させないこと、も開示されている(段落0094等)。
特開2017-156105号公報
 特許文献1に記載の技術は、測定時も非測定時も、複数の光源を基本的に同じ制御で発行させているため、非測定時に光源に供給される電流量が過多となり光源の寿命が短くなる可能性がある。また、特許文献1に記載の技術は、非測定時に一部の光源を完全にオフしてしまうので、非測定時から測定時に移る際に光源の安定化が間に合わず、測定結果に影響を与えてしまう可能性がある。
 本発明の目的は、光源の長寿命化を図りつつ、測定前に光量を短時間で安定させられる自動分析装置を提供することである。
 前記目的を達成するために、本発明は、自動分析装置において、波長の異なる2つ以上のLED素子を有する光源と、反応容器に照射されたた光に基づいて分析を行う分析部と、前記LED素子ごとに供給する電流量を調整する電流調整部と、を備え、前記電流調整部は、非分析状態における前記LED素子ごとの電流量を、分析状態での電流量に対して個別に減少させた値とする。
 本発明によれば、光源の長寿命化を図りつつ、測定前に光量を短時間で安定させられる自動分析装置を提供できる。
実施形態に係る自動分析装置の全体構成図。 実施形態に係る自動分析装置のモジュール接続例を示す図。 実施形態に係る自動分析装置に用いられる光学系とその周辺に配置される装置を示す図。 実施例1に係る電流調整部が分析開始以降に光源へ供給する電流値の推移を示すグラフ。 実施例1に係る自動分析装置の起動時からラックレセプションモード遷移時までの処理を示すフローチャート。 実施例1に係る自動分析装置の分析終了直後のラックレセプションモードにおける処理を示すフローチャート。 実施例1に係る自動分析装置の電源がOFFの状態から電流調整部が光源へ供給する電流値の推移を示すグラフ。 実施例1に係る自動分析装置の電源がOFFの状態からの光量の推移を示すグラフ。 実施例1における光量監視の処理を示すフローチャート。 実施例2に係る電流調整部が光源へ供給する電流値の推移を示すグラフ。 実施例2に係る電流調整部がLED素子A,Bへ供給する電流値の推移を示すグラフ。
 以下、本発明の実施形態に係る自動分析装置100の構成及び動作について、図1~図3を用いて説明する。自動分析装置100は、以下に示すように、生化学反応を利用した比色分析を行う。
 最初に、図1を用いて、本実施形態の自動分析装置100の全体構成を説明する。図1は、実施形態に係る自動分析装置100の全体構成図である。自動分析装置100は、搬送ライン101、ローター102、試薬ディスク103、反応ディスク104、分注機構105、攪拌機構106、分光器107、反応セル洗浄機構108、ノズル洗浄機構109、制御部115、入力部123、表示部124等から構成される。
 搬送ライン101は、検体を入れた検体容器110を保持する検体ラック111を、検体分注位置121まで必要量だけ移送する。分注機構105は、検体分注位置121で検体容器110から反応セル112(反応容器)へ検体を分注する。搬送ライン101は更に、ローター102と接続されている。ローター102を回転させることにより、他の搬送ライン101との間で検体ラック111のやり取りが行われる。
 試薬ディスク103は、試薬を入れた試薬容器113を保持し、分注機構105が分注動作を行えるポジションまで試薬容器113を回転移送する。分注機構105は、試薬分注位置122で試薬容器113から反応セル112へ試薬を分注する。なお、試薬は、比色分析に必要な量だけ反応セル112へ分注され、分析対象となる検体中の成分と反応する。
 反応ディスク104は、反応セル112を保持し、比色分析を行う分光器107、攪拌機構106、反応セル洗浄機構108等がそれぞれ動作する位置を示す動作ポジションまで各動作の対象となる反応セル112を回転移送する。なお、反応セル112は、水などの恒温媒体によって保温される。これにより、検体と試薬との混合物である反応液において、検体中の成分と試薬の化学反応が促進される。
 分注機構105は、比色分析を行う検体を検体容器110から吸引し、反応セル112に吐出する。分注機構105は、分析対象に応じた試薬を試薬容器113から吸引し、反応セル112に吐出する。分注機構105は、アーム118、ノズル116、分注機構用モーター119を備える。アーム118は、ノズル116と液面センサ117を保持する。ノズル116は、液面センサ117に接続されている。液面センサ117は、静電容量変化により液体の有無を検出する。分注機構105が分注動作を行うポジションの近傍には、シールド部114が設置される。分注機構用モーター119は、分注機構105を上下方向、または回転方向に移動させる。
 攪拌機構106は、検体容器110から反応セル112に吐出された検体中の分析対象成分と、試薬容器113から反応セル112に吐出された試薬の反応を促進するために、反応セル112中の反応液を攪拌する。
 光源120は、攪拌機構106により攪拌され化学反応した反応液に出力光を照射する。分光器107は、反応液を通過した透過光を分光する。分光された透過光に基づいて、吸光度測定による比色分析が行われる。
 反応セル洗浄機構108は、比色分析が終了した反応セル112から反応液の吸引を行い、洗剤などを吐出し、反応セル112の洗浄を行う。
 ノズル洗浄機構109は、検体又は試薬を分注した分注機構105のノズル116の先端を洗浄する。これにより、ノズル116に付着した残留物が取り除かれ、次の分析対象に影響を及ぼさない。制御部115は、プロセッサ、メモリ等から構成され、各機構及び装置等を制御する。
 入力部123は、キーボード、マウス、タッチパネル等から構成され、ユーザからの指示を制御部115に入力する。表示部124は、LCD(Liquid Crystal Display)等から構成され、操作画面等を表示する。
 次に、図2を用いて、本実施形態の自動分析装置100のモジュール接続例を説明する。図2は、実施形態に係る自動分析装置100のモジュール接続例を示す図である。自動分析装置100は、投入・収納部201、ISE部202(電解質測定部)、検体搬送部203、比色分析部204を備える。
 投入・収納部201は、検体ラック111を投入及び収納するために用いられる。投入・収納部201へ投入された検体ラック111は、検体搬送部203へ移動される。
 この後、検体ラック111は、ローター102(図2で不図示)を経由して、ISE部202へ搬送される。ISE部202では、光源120を使用しない項目のみが測定される。測定後、検体ラック111は、ローター102を経由して、検体搬送部203へ戻される。検体搬送部203へ戻された検体ラック111は、比色分析部204の検体分注位置121まで搬送される。
 反応セル112が洗浄され、セルブランク測定が実行された後、分注機構105は分注動作を行う。その後、比色分析部204は、光源120を使用して比色分析を行う。セルブランク測定の詳細は、図3を用いて後述する。
 次に、図3を用いて、本実施形態の自動分析装置100に用いられる光学系とその周辺に配置される装置を説明する。図3は、実施形態に係る自動分析装置100に用いられる光学系とその周辺に配置される装置を示す図である。
 まず、光源120は、波長の異なる2以上のLED素子から構成される。生化学自動分析は、複数の測定項目が存在し、それぞれの測定項目で使用する光の波長が異なり、340~800nmの範囲で12波長の光を測定に用いる。従来用いられてきたハロゲンランプは1つのユニットで12波長の光を出力することができたが、LED素子ではそれぞれ別の波長の光を出力できる2以上のLED素子を用いる必要がある。それぞれのLED素子へ供給される電流値は個別に設定される。
 光源120からの光は、反応ディスク104の動作中に、光源120と回折格子304間の測光位置を通過する反応セル112に照射される。反応セル112内の混合液では、被検試料の測定項目成分と試薬とが反応して、その測定項目成分の濃度に比例して測光対象物質が生成または消費される。なお、反応槽303と反応セル112の間には、反応槽水(恒温媒体)がある。
 混合液に照射された光のうち、測光対象物質に応じた吸収領域の波長の光は測光対象物質に吸収される。反応液を透過した光は、凹状の回折格子304に入射する。回折格子304は、入射光を波長ごとに分光し、分光された光を光検知器305に出力する。光検知器305は、光量を電気信号に変換し、その電気信号を吸光度算出部306に出力する。吸光度算出部306は、光検知器305から出力された電気信号に基づいて吸光度を算出し、算出した吸光度を制御部115へ出力する。制御部115は、吸光度算出部306から出力された吸光度に基づいて比色分析を行う。
 比色分析を実施する際は、全ての反応セル112に対し、セルブランク水を分注し、340~800nmの各波長の光の吸光度を測定する(セルブランク測定)。制御部115は、この測定結果をセルブランク値として保持(記憶)する。制御部115は、セルブランク値と分析対象の混合液の吸光度を比較して吸光度を補正し、補正した吸光度を測定データとしてユーザーインターフェース(表示部124に表示された画面等)に出力する。
 電流検出部307は、光源120に流れる電流を監視(測定)する。電流調整部308は、分析に影響しないタイミングで、光源120に供給する電流量を低下させる、または光源120の電源をOFFにする回路を有する。
 ここで、光源120の電源をOFFの状態から分析時の測定光量に復帰させる場合、光量が安定するまで約5分程度の時間がかかることが自動分析装置では大きな課題となる。よって、本実施形態の自動分析装置100は、電流調整部308で光源120に供給する電流を調整し、完全にOFFにせずに低電流を供給する制御やパルス制御を継続することで、分析時の測定光量にすぐに移行できるようなアイドル状態を維持する機能を有する。
  実施例1は、光源120がアイドル状態の際に、電流調整部308が低電流を供給する(分析状態での電流量に対して減少した値とする)制御を行う例である。図4は、実施例1に係る電流調整部308が分析開始以降に光源120へ供給する電流値の推移を示すグラフである。
 図4に示すように、まず時刻Tから時刻Tの間、自動分析装置100は測定状態(測定モード)であり、時刻Tからラックレセプションモードに遷移する。
 ここで、本実施例では、待機状態であるスタンバイモードとして、第1スタンバイモードと、第1スタンバイモードより短い時間で分析状態に移行可能な第2スタンバイモードと、が存在する。第1スタンバイモードは、分注機構105だけでなく、洗浄機構および反応ディスク104も停止する、スリープモードである。第2スタンバイモードは、分注機構105は停止するものの、洗浄機構および反応ディスク104は停止しない、ラックレセプションモードである。したがって、ラックレセプションモードでは、ユーザから測定依頼を受けた際に、分析前準備動作を省略して測定に移ることができる。
 また、本実施例では、光源120として2つのLED素子が使用される。LED素子Aは、LED素子Bより、電源OFFの状態から測定時電流値(第1電流値)を供給した際に、測定時の光量で安定化するまでの時間が長い。例えば、LED素子Aは可視光線であり、LED素子BはLED素子Aより波長の短い紫外線であるとする。したがって、時刻T1において自動分析装置100がラックレセプションモード(第2スタンバイモード)に遷移する際に、LED素子Aの測定時電流値IA1からアイドル状態の電流値(第4電流値)IA2への減少割合を、LED素子Bにおける測定時電流値IB1からアイドル状態の電流値(第4電流値)IB1への減少割合よりも小さく設定する。これにより、測定モードに遷移する際に、安定化時間が異なる2種類のLED素子を同じタイミングで安定化させることができる。
 次に、時刻Tで自動分析装置100は分析動作を停止させ、スリープモード(第1スタンバイモード)へ遷移する。この際にそれぞれのLED素子へ供給する電流値をスリープモードで使用するアイドル電流値(第2電流値)IA3、IB3へ変化させる。このIA3、IB3の値は、IA2、IB2よりも測定時電流値IA1、IB1からの減少割合が大きく設定されている。スリープモードは、前述の通り自動分析装置100の測定動作が停止しているため、ユーザによる実行指示から測定状態まで移行する時間がラックレセプションモードよりも長くかかる。その結果、スリープモードでは、光源120を安定化させるまでの時間的余裕がラックレセプションモードよりも長く取れるため、電流値の減少割合を大きく設定し、待機状態でのLED素子の消費電力や寿命への負荷を低減させることができる。このような制御により、本実施例の自動分析装置100では、測定前に光量を短時間で安定化させつつ、光源120の長寿命化を図ることが可能である。
 次に、図5を用いて、本実施例の自動分析装置100の起動時における処理を説明する。図5は、実施例1に係る自動分析装置100の起動時からラックレセプションモード遷移時までの処理を示すフローチャートである。
 まず、ユーザが自動分析装置100を立ち上げると(自動分析装置100の電源がONされると)、制御部115は、イニシャライズモードを実行し(ステップS500)、同時に光源120を起動する(ステップS510)。イニシャライズモードは必要最小限の初期化および測定の準備を行うものであり、イニシャライズモードにおける動作の中には分注機構105のリセット動作、セルブランク測定などが含まれる。このイニシャライズモード時には、制御部115が、測定時に用いる量の電流を流す(測定時電流値を供給する)ことで、光源120を点灯させる。測定を行わないイニシャライズモード時においても、測定モード時と同レベルの電流量で光源120が点灯されるので、LED素子が温められ、イニシャライズモードの間に光量を安定させることができる。この際に、測定時の光量に到達しているか否かの監視が行われる(ステップS511)。光量監視の詳細な処理に関しては後述する。測定時の光量に到達すると、イニシャライズモードが終了する。
 イニシャライズモードの終了後、分析依頼などがない場合、制御部115はスリープモードに遷移させ(ステップS501)、同時に光源120をアイドル状態に移行させる(ステップS512)。アイドル状態(非分析状態)において、電流調整部308は、LED素子ごとの電流量を、測定時(分析状態)での電流量に対して個別に減少させた値とする。具体的には、電流調整部308が、波長の短いLED素子Bの電流量の減少割合を、波長の長いLED素子Aの電流量の減少割合よりも大きくする。
 次に、ユーザは、入力部123を用いて分析依頼(測定の実行指示)を入力する。制御部115は、ユーザからの分析依頼に応答して、比色分析前動作を開始し(ステップS502)、光源120に対して、測定時電流値を超える電流を供給する(ステップS513)。分析前動作では、ラック搬送、セルブランク測定などが行われる。制御部115は、測定時電流値を超える電流を供給してから一定時間(例えば60秒程度)が経過すると、電流量を測定時電流値まで減少させ(ステップS514)、再び、測定時の光量に到達しているか否かの監視を行う(ステップS515)。測定時の光量に到達すると、光源120は測定状態へ移行し(ステップS516)、制御部115は、分析動作(測定モード)を開始する(ステップS503)。測定モードでは、比色分析部204が、反応セル112に照射された光に基づいて分析(測定)を行う。分析が終了すると(ステップS504)、制御部115は、ラックレセプションモードが設定されているか否かを判定し(ステップS520)、設定されている場合、自動分析装置100をラックレセプションモードへ遷移させる。ここで、ラックレセプションモードは、通常のスタンバイモード(スリープモード)と比べてモード中の分析依頼から分析状態まで移行させる時間が短く、光源120を安定化させるまでの時間的余裕は短いため、光源120へ供給する電流量の減少割合は、通常のアイドル状態よりも小さく設定される。
 次に、図6を用いて、本実施例の自動分析装置100の分析終了直後に行われるラックレセプションモードにおける処理を説明する。図6は、実施例1に係る自動分析装置100の分析終了直後のラックレセプションモードにおける処理を示すフローチャートである。なお、ユーザは、ラックレセプションモードの有効/無効を選択できる。
 まず、制御部115は、自動分析装置100をラックレセプションモードに遷移させ(ステップS600)、光源120もアイドル状態へ移行させる(ステップS610)。ラックレセプションモード中にユーザから分析依頼があった場合、制御部115は、自動分析装置100に分析前動作を開始させ(ステップS601)、光源120に測定時電流値を供給する(ステップS611)。その後、制御部115は、光源120からの光が測定時の光量に達しているか否かを監視する(ステップS612)。光源120からの光が測定時の光量に達している場合、制御部115は、光源120を測定状態に移行させ(ステップS613)、自動分析装置100に分析動作を開始させる(ステップS602)。その後、分析が終了すると(ステップS603)、制御部115は、測定モードから再びラックレプションモードへ遷移させる(ステップS600)。
 次に、図7Aを用いて、本実施例の自動分析装置100の光源120に供給される電流量の全体的な推移について具体的に説明する。図7Aは、実施例1に係る自動分析装置100の電源がOFFの状態から電流調整部308が光源120へ供給する電流値の推移を示すグラフである。図7Aにおいて、縦軸は光源120に供給される電流Iを示し、横軸は時間Tを示す。また、図7Aにおいて、実線は、本実施例のように測定開始前に光源を予めアイドル状態とした場合の推移を示し、破線は、比較例として測定開始まで光源の電源をOFFとしていた場合の推移を示す。
 図7Aに示すように、自動分析装置100の電源をONとした時刻を時刻t0とする。イニシャライズモードが始まる時刻t1で、電流調整部308は、光源120に供給する電流量を、測定時電流値(第1電流値)i1とする。その後、イニシャライズモードが終了する時刻t2で、電流調整部308は、アイドル状態で用いる第2電流値i2まで電流量を減少させる。電流量の減少割合は、LED素子ごとに異なるように設定しても良い(例えばLED素子Aは50%減、LED素子Bは30%減)。時刻t2から時刻t3まではスリープモードに相当するが、スリープモードの継続期間は自動分析装置100の使用状況によって異なる。なお、スリープモードの期間中は、光源120へ供給される電流量がアイドル状態の第2電流値i2が維持される。
 その後、分析前動作が開始される時刻t3で、電流調整部308は、光源120に供給する電流量を、測定時電流値よりも高い電流値(第3電流値)i3とする。これにより、LED素子の温度が上昇し、光量の安定化までの時間が短縮する。さらに、時刻t4で、電流調整部308は、電流量を測定時電流値i1まで減少させ、分析動作が行われている間その値を維持する。そして、時刻t5で、分析動作が終了し、自動分析装置100はラックレセプションモードへ遷移し、光源120もアイドル状態へ移行する。前述した通り、分析直後のラックレセプションモードは、通常のスタンバイモード(スリープモード)よりも短い時間で分析状態に移行可能とするため、通常のアイドル状態よりも高い電流値(第4電流値)i4が光源120に供給される。
 ラックレセプションモードに遷移した後、ユーザによって予め指定された時間以内のある時刻(図7Aでは時刻t6)に次の分析依頼がされた場合、自動分析装置100は速やかに測定モードに遷移する。それに伴って光源120に供給される電流値も測定時電流値i1へ変更される。一方、ラックレセプションモードに遷移した後、ユーザによって予め指定された時間以内に次の分析依頼がされなかった場合、自動分析装置100は通常のスタンバイモード(スリープモード)に遷移し、それに伴って電流値もアイドル状態の第2電流値i2へ変更される。
 次に、図7Bを用いて、本実施例の自動分析装置100の光源120の光量の全体的な推移について具体的に説明する。図7Bは、実施例1に係る自動分析装置100の電源がOFFの状態からの光量の推移を示すグラフである。図7Bにおいて、縦軸は光検知器305で測定される光源120からの光量Lを示し、横軸は時間Tを示す。また、図7Bにおいて、実線は、本実施例のように測定開始前に光源を予めアイドル状態とした場合の推移を示し、破線は、比較例として測定開始まで光源の電源をOFFとしていた場合の推移を示す。
 図7Bに示すように、測定時電流値i1が供給される時刻t1において、光源120の光量は徐々に上昇していき、やがて測定時の光量であるl1に到達する。その後、イニシャライズモードが終了する時刻t2で、第2電流値i2まで供給電流値が減少すると、光量もl2まで減少する。この光量は、ユーザからの分析依頼によってスタンバイモードから測定モードに遷移するまで維持される。次に、測定状態に移行する時刻t3で、測定時電流値よりも大きな第3電流値i3が光源120に供給され、光量はl3まで上昇する。前述の通り、一時的に測定時電流値i1を超える電流量を供給することで光量の安定化が図られている。その後、時刻t4で、電流値が測定時電流値i1まで減少し、光量もl1へ変化し、分析動作中はこの光量が維持される。分析動作が終了する時刻t5にラックレセプションモードが設定されていると、供給電流値が第4電流値i4まで減少し、光量がl4まで減少する。
 一方、比較例として、時刻t3で分析依頼がされてはじめて測定時電流値i1の電流量が供給された場合、本実施例の場合と比べ、測定時の光量l3に至るまでに長い時間がかかっており、分析動作に移行するまでに光量を安定させることができない。
 次に、図8を用いて、本実施例に係る自動分析装置100の光量監視について説明する。図8は、実施例1における光量監視の処理を示すフローチャートである。
 測定時電流値が供給されてから光源120の光量が安定するまでの時間は、測定時電流が供給される直前に光源120がアイドル状態であったか否かで異なるだけでなく、光源120の個体差や使用状況により、バラつきがある。よって、本実施例の制御部115は、電流検出部307および吸光度算出部306を制御して、光源120からの光量が安定しているか否かを確認する機能を備えている。
 具体的には、電流検出部307が、光源120の電流値を検出することで電流をモニタリングし、吸光度算出部306が、反応セル112を透過した光に基づいて吸光度を算出することで吸光度をモニタリングする。そして、制御部115は、電流検出部307で検出された電流値と、吸光度算出部306で算出された吸光度を用いて、光量の安定化に異常があるかを監視する。
 図8に示すように、光源120へ測定時電流値が供給される際、電流検出部307は、電流をモニタリングし、吸光度算出部306は、全波長の吸光度をモニタリングする。電流検出部307によって検出された光源120の電流値と、吸光度算出部306によって算出された吸光度と、は制御部115へ送られる。
 制御部115は、電流のモニタリング値が電流調整部308の設定値に対して一定範囲内(例えば設定電流値の±1%以内)であり、かつ、吸光度のモニタリング値と前回値との差分が一定範囲内である、か否かを判断する(ステップS801-1)。ここで、吸光度のモニタリング値と比較される前回値は、測定時電流値からその他の電流値に移行する前に算出された吸光度の最新の値が用いられる。例えば、イニシャライズモードの際に行われる光量監視(図5のステップS511)では、自動分析装置100の電源がOFFにされる前に算出されたセルブランク値の最後の値が、前回値とされる。
 ステップS801-1において、電流のモニタリング値と吸光度のモニタリング値がいずれも条件を満たした場合、制御部115は、セルブランク中の全波長の吸光度の標準偏差が一定範囲内か否かを判断する(ステップS802)。
 ステップS802において、セルブランク中の全波長の吸光度の標準偏差が一定範囲内である場合、吸光度のばらつきが少ないため、制御部115は、自動分析装置100がイニシャライズモードであったときにはイニシャライズモードを終了し、スリープモードへ遷移する。また、制御部115は、自動分析装置100が分析前動作中であったときには分析前動作を終了し、分析動作を開始する。
 一方、ステップS801-1において、電流のモニタリング値か吸光度のモニタリング値のいずれかが条件を満たさない場合、または、ステップS802において、セルブランク中の全波長の吸光度の標準偏差が一定範囲内でない場合、制御部115は、測定時電流値を供給してから一定時間が経過したか否かを判断する(ステップS801-2)。なお、イニシャライズモードでは、光量が安定するまでの時間が、アイドル状態から測定状態に移行するときと比べて長くなるため、ステップS801-2での判断の閾値となる一定時間も、他のときと比べて長く設定される。
 ステップS801-1の条件を満たさない場合、制御部115は、ステップS800に戻り、電流のモニタリングと吸光度のモニタリングが継続される。
 一方、ステップS801-1の条件を満たす場合、制御部115は、光源の安定化に異常があるとして、表示部124にシステムアラームを表示する(ステップS801-3)。
 次に、本実施例に係る自動分析装置100の寿命監視について説明する。光源120の寿命は、図7Aにおける測定時電流値i1で点灯させた場合の合計期間に基づいて計算される。しかし、光源120へ供給される電流値は常に測定時電流値i1とは限らず、光源120がOFFのときや、アイドル状態で電流供給割合が減少しているときの点灯期間を考慮するのが望ましい。そこで、本実施例の制御部115は、測定状態よりも減少させた値の電流量を光源120へ供給した期間およびその減少割合を考慮し、合計点灯期間を補正する。このため、制御部115は、光源120へ電流を供給している時間や電流量を記録する。例えば、光源120が、アイドル状態にあって、供給される電流量が50%減少している場合、制御部115は、その減少割合を考慮して、実際の点灯期間の50%を補正後の点灯期間として記録する。そして、制御部115は、記録した点灯期間に基づいて光源120の寿命を予測し、光源交換時期を表示部124に表示することで、ユーザにとって、作業が難しい光源120の交換サービスの提供タイミングを把握することが可能となる。
  実施例2は、光源120がアイドル状態の際に、電流調整部308がパルス(測定時電流値とOFF時電流値とを交互に繰り返す)制御を行う例である。図9Aは、実施例2に係る電流調整部308が光源120へ供給する電流値の推移を示すグラフである。図9Aにおいて、縦軸は光源120に供給される電流Iを示し、横軸は時間Tを示す。
 図9Aに示すように、自動分析装置100の電源がONとされた時刻を時刻t0とする。時刻t0から時刻t1の間は、光源120がOFFの状態であり、そのとき光源120へ供給される電流値をOFF時電流値i0とする。イニシャライズモードが始まる時刻t1で、電流調整部308は、光源120に測定時電流値i1を供給する。
 その後、イニシャライズモードが終了する時刻t2で、制御部115は、光源120をアイドル状態へ移行させる。光源120がアイドル状態のとき、電流調整部308は、光源120へ供給する電流値について、OFF時電流値i0と測定時電流値i1を交互に切り替え、パルス制御を行う。前述の通り、光源120を完全にOFFの状態から復帰させる場合、5分以上の時間がかかる。このため、本実施例のように、パルス制御によって完全OFFの状態を作らないことで、復帰時間を短くことが可能である。また、LED素子の寿命は、稼働時の温度によって左右され、温度が低いほど寿命が延びる特徴がある。したがって、測定時電流値を供給し続けるよりも、パルス制御とする方が、光源120のOFF時間が増えるため、温度が下がり、光源120の長寿命化が可能となる。さらに、ONの継続時間とOFFの継続時間が同じパルス制御と比べて、OFFの継続時間がONの継続時間よりも長いパルス制御の方が、温度がより下がるため、光源120をさらに長寿命化できる。
 また、OFF時間とON時間が同じパルス制御でも、パルスの周期が長いほど、光源120の長寿命化が可能である。しかし、パルスの周期が長いと、光源120の光量が安定化するまでの時間が長くなってしまう。そこで、本実施例では、パルス制御の周期TIが、分析時までに光量の安定化が間に合う値であって、かつ、光源120の寿命が可能な限り長くできる値に設定される。
 時刻t2から時刻t3の間、自動分析装置100はスリープモードであり、電流調整部308はパルス制御を維持する。次に、時刻t3で、自動分析装置100は測定モードに遷移する。このとき、電流調整部308は、パルス制御を終了し、測定時電流値i1を光源120に供給する。さらに、時刻t3から時刻t4の間、自動分析装置100は測定モードであり、電流調整部308は光源120に供給する電流値を測定時電流値i1のまま維持する。
 そして、測定モードが終了する時刻t4で、ラックレセプションモードが設定されていると、制御部115はラックレセプションモードに遷移させ、電流調整部308は周期TIIでパルス制御を開始する。前述の通りラックレセプションモードでは、モード中の分析依頼から測定モードに遷移するまでの時間が、スリープモードの場合よりも短い。したがって、周期TIIはTIよりも短い値に設定される。なお、ラックレセプションモードとスリープモードとで、パルスの周期を変える代わりに、パルスのOFFの継続時間を変えても良い。
 次に、時刻t4から時刻t5の間、自動分析装置100はラックレセプションモードであり、電流調整部308はパルス制御を維持する。ラックレセプションモードから測定モードに遷移する時刻t5で、電流調整部308はパルス制御を終了し、光源120に測定時電流値i1を供給する。
 このようなパルス制御を行うことで、本実施例によっても、光源120の安定化時間の短縮と、光源120の長寿命化と、の両立を図ることができる。また、本実施例の制御も、実施例1の制御と同様に、測定時には光源120を周期的に発光させることなく連続的に発光させているので、反応ディスクを回転させて多量の検体を処理する後分光方式の自動分析装置のような、測光時間の短い自動分析装置にも適用することが可能である。
 次に、図9Bを用いて、光源120を構成するLED素子ごとに異なるパルス制御を行う例について説明する。図9Bは、実施例2に係る電流調整部308がLED素子A,Bへ供給する電流値の推移を示すグラフである。図9Bにおいて、縦軸は光源120に供給される電流Iを示し、横軸は時間Tを示す。
 光源120は、2つのLED素子が存在し、LED素子AはLED素子Bより、電源OFFの状態から測定時電流値を供給した際に、測定時の光量で安定化するまでの時間が長いものとする。IA1は電流調整部308がLEDD素子Aに供給する電流値であり、IB1は電流調整部308がLED素子Bに供給する電流値である。光源120がアイドル状態のとき、電流調整部308はLED素子AとLED素子Bそれぞれに供給する電流をパルス制御する。LED素子Aに対して行われるパルス制御の周期をTA、LED素子Bに対して行われるパルス制御の周期をTBとする。前述の通り、LED素子AはLED素子Bより安定化時間が長い。したがって周期TAは周期TBより短い値に設定される。このようなパルス制御を行うことで、安定化時間の異なる2つのLED素子を同時に安定化させることができる。
 以上説明したように、本実施形態によれば、光源の長寿命化を図りつつ、分析時の光量の安定化の時間を短くすることが可能である。さらに光量を監視する機能によって、異常な光量による測定を防止することができる。また、使用状況における光源寿命を監視することで、最適な交換サービスを提供することができる。
 本発明は、前述の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
101…搬送ライン、102…ローター、103…試薬ディスク、104…反応ディスク、105…分注機構、106…攪拌機構、107…分光器、108…反応セル洗浄機構、109…ノズル洗浄機構、110…検体容器、111…検体ラック、112…反応セル、113…試薬容器、114…シールド部、115…制御部、116…ノズル、117…液面センサ、118…アーム、119…分注機構用モーター、120…光源、121…検体分注位置、122…試薬分注位置、123…入力部、124…表示部、201…投入・収納部、202…ISE部、203…検体搬送部、204…比色分析部、303…反応槽、304…回折格子、305…光検知器、306…吸光度算出部、307…電流検出部、308…電流調整部

Claims (13)

  1. 波長の異なる2つ以上のLED素子を有する光源と、
    反応容器に照射された光に基づいて分析を行う分析部と、
    前記LED素子ごとに供給する電流量を調整する電流調整部と、を備え、
    前記電流調整部は、非分析状態における前記LED素子ごとの電流量を、分析状態での電流量に対して個別に減少させた値とする自動分析装置。
  2. 請求項1に記載の自動分析装置において、
    前記電流調整部は、波長の短い前記LED素子の電流量の減少割合を、波長の長い前記LED素子の電流量の減少割合よりも大きくすることを特徴とする自動分析装置。
  3. 請求項1に記載の自動分析装置において、
    非分析状態のモードとして、第1スタンバイモードと、前記第1スタンバイモードより短い時間で分析状態に移行可能な第2スタンバイモードと、を有し、
    前記電流調整部は、前記第2スタンバイモードにおける前記LED素子の電流量の減少割合を、前記第1スタンバイモードにおける前記LED素子の電流量の減少割合よりも小さくすることを特徴とする自動分析装置。
  4. 請求項3に記載の自動分析装置において、
    前記反応容器の洗浄を行う洗浄機構と、前記反応容器を保持して所定の位置まで移動させる反応ディスクと、検体または試薬を分注する分注機構と、を備え、
    前記第1スタンバイモードは、前記分注機構だけでなく、前記洗浄機構および前記反応ディスクも停止するモードであり、
    前記第2スタンバイモードは、前記分注機構は停止するものの、前記洗浄機構および前記反応ディスクは停止しないモードであることを特徴とする自動分析装置。
  5. 請求項1に記載の自動分析装置において、
    自動分析装置の電源がONになると、イニシャライズモードが実行された後、スタンバイモードを経て分析状態に至るものであって、
    前記電流調整部は、前記イニシャライズモードにおける前記LED素子の電流量を、前記スタンバイモードにおける前記LED素子の電流量より大きくすることを特徴とする自動分析装置。
  6. 請求項5に記載の自動分析装置において、
    前記電流調整部は、前記イニシャライズモードにおける前記LED素子の電流量を、分析状態での電流量とすることを特徴とする自動分析装置。
  7. 請求項5に記載の自動分析装置において、
    前記電流調整部は、前記スタンバイモードから分析状態に至る途中で、前記LED素子の電流量を、一時的に、分析状態よりも大きな電流量とすることを特徴とする自動分析装置。
  8. 請求項1に記載の自動分析装置において、
    前記光源の電流値を検出する電流検出部と、
    前記反応容器を透過した光に基づいて吸光度を算出する吸光度算出部と、
    前記電流検出部で検出された電流値と、前記吸光度算出部で算出された吸光度を用いて、光量の安定化に異常があるかを監視する制御部と、を備えたことを特徴とする自動分析装置。
  9. 請求項8に記載の自動分析装置において、
    前記制御部は、分析状態での電流量を供給してから一定時間が経過しても、前記電流検出部で検出された電流値が前記電流調整部の設定値に対して一定範囲内でない場合、または、前記吸光度算出部で算出された吸光度の前回値との差分が一定範囲内でない場合、光量の安定化に異常があるとしてアラームを出力することを特徴とする自動分析装置。
  10. 請求項8に記載の自動分析装置において、
    前記制御部は、分析状態での電流量を供給してから一定時間が経過しても、前記吸光度算出部で算出された吸光度の標準偏差が一定範囲内でない場合、光量の安定化に異常があるとしてアラームを出力することを特徴とする自動分析装置。
  11. 請求項1に記載の自動分析装置において、
    分析状態よりも減少させた値の電流量を前記LED素子に供給した期間およびその減少割合を考慮して、前記光源の交換時期を予測する制御部と、
    前記制御部で予測された前記光源の交換時期を表示する表示部と、を備えたことを特徴とする自動分析装置。
  12. 波長の異なる2つ以上のLED素子を有する光源と、
    反応容器に照射された光に基づいて分析を行う分析部と、
    前記LED素子ごとに供給する電流量を調整する電流調整部と、を備え、
    前記電流調整部は、非分析状態には、パルスで電流を供給するものであって、波長の短い前記LED素子の場合、波長の長い前記LED素子の場合と比べて、OFFの継続時間を長くする自動分析装置。
  13. 請求項12に記載の自動分析装置において、
    非分析状態のモードとして、第1スタンバイモードと、前記第1スタンバイモードより短い時間で分析状態に移行可能な第2スタンバイモードと、を有し、
    前記電流調整部は、前記第2スタンバイモードにおけるパルスのOFFの継続時間を、前記第1スタンバイモードにおけるパルスのOFFの継続時間よりも短くすることを特徴とする自動分析装置。
PCT/JP2022/008632 2021-03-16 2022-03-01 自動分析装置 WO2022196346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/276,101 US20240103027A1 (en) 2021-03-16 2022-03-01 Automatic analyzer
CN202280014776.1A CN116848416A (zh) 2021-03-16 2022-03-01 自动分析装置
JP2023506947A JPWO2022196346A1 (ja) 2021-03-16 2022-03-01
EP22771100.9A EP4310509A1 (en) 2021-03-16 2022-03-01 Automatic analysis device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021042213 2021-03-16
JP2021-042213 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196346A1 true WO2022196346A1 (ja) 2022-09-22

Family

ID=83321494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008632 WO2022196346A1 (ja) 2021-03-16 2022-03-01 自動分析装置

Country Status (5)

Country Link
US (1) US20240103027A1 (ja)
EP (1) EP4310509A1 (ja)
JP (1) JPWO2022196346A1 (ja)
CN (1) CN116848416A (ja)
WO (1) WO2022196346A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075511A1 (ja) * 2022-10-07 2024-04-11 株式会社日立ハイテク 自動分析装置
WO2024202894A1 (ja) * 2023-03-27 2024-10-03 株式会社日立ハイテク 分析装置、判定方法、及び予測方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127583A (ja) * 2005-11-07 2007-05-24 Toshiba Corp 自動分析装置
JP2007171186A (ja) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc 試料検出システム
JP2011237384A (ja) * 2010-05-13 2011-11-24 Hitachi High-Technologies Corp 分析用光学系及びその光学系を用いた分析装置
JP2015010986A (ja) * 2013-07-01 2015-01-19 株式会社日立ハイテクノロジーズ 自動分析装置
WO2019204841A1 (de) * 2018-04-23 2019-10-31 Meon Medical Solutions Gmbh & Co Kg Automatischer analysator und optisches messverfahren zur gewinnung von messsignalen von flüssigen medien
JP2020503508A (ja) * 2016-12-21 2020-01-30 バイエル・ファルマ・アクティエンゲゼルシャフト 高時間分解能のハイスループットスクリーニングの測定を行う方法およびシステム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127583A (ja) * 2005-11-07 2007-05-24 Toshiba Corp 自動分析装置
JP2007171186A (ja) * 2005-12-22 2007-07-05 Palo Alto Research Center Inc 試料検出システム
JP2011237384A (ja) * 2010-05-13 2011-11-24 Hitachi High-Technologies Corp 分析用光学系及びその光学系を用いた分析装置
JP2015010986A (ja) * 2013-07-01 2015-01-19 株式会社日立ハイテクノロジーズ 自動分析装置
JP2020503508A (ja) * 2016-12-21 2020-01-30 バイエル・ファルマ・アクティエンゲゼルシャフト 高時間分解能のハイスループットスクリーニングの測定を行う方法およびシステム
WO2019204841A1 (de) * 2018-04-23 2019-10-31 Meon Medical Solutions Gmbh & Co Kg Automatischer analysator und optisches messverfahren zur gewinnung von messsignalen von flüssigen medien

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075511A1 (ja) * 2022-10-07 2024-04-11 株式会社日立ハイテク 自動分析装置
WO2024202894A1 (ja) * 2023-03-27 2024-10-03 株式会社日立ハイテク 分析装置、判定方法、及び予測方法

Also Published As

Publication number Publication date
CN116848416A (zh) 2023-10-03
EP4310509A1 (en) 2024-01-24
JPWO2022196346A1 (ja) 2022-09-22
US20240103027A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
WO2022196346A1 (ja) 自動分析装置
US20240272186A1 (en) Automatic analyzer
JP4538423B2 (ja) 自動分析装置
JP5777747B2 (ja) 自動分析装置
US8460935B2 (en) Sample analyzer, sample analyzing method, and computer program product
JP2005214683A (ja) 自動分析装置
US20090035182A1 (en) Automatic analyzer
JP6247935B2 (ja) 自動分析装置
US8476073B2 (en) Automatic analyzing apparatus and quality control method for analysis supporting liquid in the same
JP2007127583A (ja) 自動分析装置
JP6543532B2 (ja) 自動分析装置
JP6766155B2 (ja) 自動分析装置
JP6279234B2 (ja) 自動分析装置
CN113287022B (zh) 自动分析装置、自动分析系统及样品的自动分析方法
JP2009092600A (ja) 光源装置および自動分析装置
EP3767301A1 (en) Automatic analysis device
US11828765B2 (en) Automatic analysis apparatus and method of controlling automatic analysis apparatus
JP6564864B2 (ja) 自動分析装置及び自動分析システム
JP7459095B2 (ja) 自動分析装置、および自動分析装置の運転方法
WO2024075511A1 (ja) 自動分析装置
JP2022164188A (ja) 自動分析装置
JP2012173067A (ja) 自動分析装置
JPH08278252A (ja) 自動化学分析装置
JP3445369B2 (ja) 自動分析装置
JP4884275B2 (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771100

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280014776.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023506947

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022771100

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771100

Country of ref document: EP

Effective date: 20231016