WO2022193674A1 - 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用 - Google Patents

一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022193674A1
WO2022193674A1 PCT/CN2021/127803 CN2021127803W WO2022193674A1 WO 2022193674 A1 WO2022193674 A1 WO 2022193674A1 CN 2021127803 W CN2021127803 W CN 2021127803W WO 2022193674 A1 WO2022193674 A1 WO 2022193674A1
Authority
WO
WIPO (PCT)
Prior art keywords
magadiite
polypyrrole
adsorption
preparation
adsorption material
Prior art date
Application number
PCT/CN2021/127803
Other languages
English (en)
French (fr)
Inventor
戈明亮
李越颖
王旭斌
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022193674A1 publication Critical patent/WO2022193674A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Definitions

  • the invention belongs to the field of development and application of sewage treatment materials, and particularly relates to a sodalite/polypyrrole adsorption material for treating rhodamine B wastewater, and a preparation method and application thereof.
  • dye wastewater has been treated mainly by adsorption (air flotation) method, membrane separation technology, chemical oxidation, flocculation sedimentation, biological treatment and other methods at home and abroad.
  • the high efficiency of adsorption method makes it occupy an important position in wastewater treatment.
  • adsorbents specific pollutants in water can be removed, and at the same time, the adsorption method is beneficial to adsorb certain substances from high-concentration wastewater to achieve resource recovery and treatment purposes.
  • Layered silicate minerals are widely distributed in nature and have low cost. They are also important industrial mineral materials. Usually, such adsorption materials cannot achieve the ideal treatment effect and have limited adsorption capacity.
  • the layered silicate-based adsorbents prepared by inorganic, organic, acid modification and cross-linking modification are charged with particles, and have large specific surface area, certain ion exchange capacity and special nanostructure effect. , is used as an adsorbent in various fields to treat various types of wastewater.
  • Zhang et al. used the extracted EPS from Microcystis to study its effect on the adsorption of rhodamine B on kaolinite under laboratory conditions (Zhang Huiling, Shao Jihai, Kuang Xiaolin, et al.
  • modified montmorillonite particles (050823 and MMT35) had a significant effect on adsorbing two direct dyes (direct sunfast black G and direct bright red 4BE) (Hu Kangbo, Wang Yili, Li Chunrong, et al. Modified montmorillonite particles Fractal Characteristics of Adsorbed Direct Dyes[J]. Journal of Environmental Science, 2010, 30(11):2174-2183.).
  • Magadiite is a layered silicate that can easily control the synthesis process and can obtain high-purity products, and also exists in nature.
  • the laminate has excellent bulking performance, a large amount of cation exchange between the layers, a large number of structural hydroxyl groups on the laminate, good structural stability, and easy functionalization.
  • magadiite composite material becomes a kind of adsorption material with excellent performance and low price, and it is also beneficial to restore the ecological crisis caused by the large-scale mining of mines.
  • Combining sodalite with polymers to increase its stability in the environment, improve its adsorption capacity, and functionalize it for specific pollutants is conducive to the development of a new type of green dye adsorbent.
  • the purpose of the present invention is to provide a new type of dye adsorbent wollastite/polypyrrole composite material and its preparation method and the application of adsorbing rhodamine B dye in sewage.
  • the present invention provides a novel pollutant adsorbent based on the two-dimensional layered material sodalite (a new type of adsorbent sodalite/polypyrrole composite material), which makes up for the long adsorption time and economic cost of the existing adsorption process. High disadvantage.
  • the invention also provides the application of the magadiite-PPy nanocomposite adsorbent (a novel adsorbent magadiite/polypyrrole composite material) in adsorbing the rhodamine B cationic dye.
  • magadiite-PPy nanocomposite adsorbent a novel adsorbent magadiite/polypyrrole composite material
  • the novel adsorbent sodalite/polypyrrole composite material provided by the invention is an environment-friendly adsorption material based on sodalite.
  • the object of the present invention is achieved by at least one of the following technical solutions.
  • a preparation method of a sodium silicate/polypyrrole adsorption material for treating rhodamine B wastewater comprising the following steps:
  • step (2) stirring the suspension described in step (1) at 0-25° C. and an inert gas atmosphere to obtain a pyrrole-magadiite mixed suspension;
  • step (3) adding FeCl 3 solution dropwise to the pyrrole-magadiite mixed suspension described in step (2), stirring and reacting under an inert gas atmosphere to obtain a mixed solution (black suspension after magadiite and PPy composite);
  • step (3) The mixed solution in step (3) is filtered to obtain the precipitate, washed, dried, calcined, and ground into powder (black powder), to obtain the sodalite/polypyrrole adsorption material.
  • the mass ratio of the magadiite powder to the pyrrole monomer in step (1) is 1-5:1.
  • the magadiite powder accounts for 1/3, 1/2 and 2/3 of the total mass of both the magadiite and the pyrrole monomer.
  • the mass-volume ratio of the magadiite powder to water in step (1) is 0.02-0.08 g/ml.
  • the stirring treatment time in step (2) is 15-45 min.
  • the inert gas in step (2) is nitrogen.
  • the concentration of the FeCl 3 solution in step (3) is 0.1-0.5 mol/L.
  • the volume ratio of the FeCl 3 solution and the pyrrole-magadiite mixed suspension in step (3) is 1-5:1.
  • the dropping time of the FeCl 3 solution in step (3) is 15-45 min.
  • the molar ratio of the solute FeCl 3 in the FeCl 3 solution in step (3) to the pyrrole monomer in step (1) is 0.5-2:1; further preferably, the FeCl 3 solution in step (3) has a molar ratio of 0.5-2:1.
  • the molar ratio of the solute FeCl 3 to the pyrrole monomer described in step (1) is 1:1.
  • the temperature of the stirring reaction in step (3) is 0-25° C., and the time of the stirring reaction is 4-18 h.
  • the inert gas in step (3) is nitrogen.
  • the stirring reaction in step (3) is magnetic stirring.
  • the drying temperature in step (4) is 60-80 degrees Celsius, the drying time is more than 12 hours, and the drying is vacuum drying; further preferably, the drying temperature in step (4) is 60 degrees Celsius, and the drying time is 60 degrees Celsius. is 12h.
  • the filtration in step (4) is suction filtration; further preferably, the filtration is suction filtration with a circulating water pump.
  • the washing in step (4) is 2-3 times of washing with absolute ethanol and deionized water in sequence; more preferably, the washing in step (4) is 3 times of washing with absolute ethanol and deionized water in sequence .
  • the calcination process in step (4) is carried out in an inert gas environment, and the calcination temperature is 400-800°C. Further preferably, the calcination temperature in step (4) is 800°C.
  • the sodalite/polypyrrole adsorption material for treating rhodamine B wastewater prepared by the above preparation method.
  • the BET specific surface area of the adsorbent material is 20-30 m 2 /g, and the average pore size is 15-20 nm.
  • rhodamine B dyestuff/polypyrrole adsorption material for the treatment of rhodamine B wastewater in the adsorption of the rhodamine B dye in the wastewater comprises the following steps:
  • the sodalite/polypyrrole adsorption material is put into the water body to be treated containing rhodamine B dye for adsorption treatment.
  • the initial concentration of Rhodamine B dye in the water to be treated is 5-60 mg/L.
  • the pH value of the water body to be treated is 3.0-11.0.
  • the adsorption treatment time is 10-45 minutes.
  • the temperature of the adsorption treatment is 15-35 degrees Celsius.
  • the invention is based on the monomer in-situ intercalation polymerization method.
  • the pyrrole monomer is dispersed between the magadiite layers, and the pyrrole is polymerized between the magadiite layers through a chemical oxidation polymerization initiator. After high temperature calcination, the polypyrrole molecules are partially carbonized to form a loose porous structure, and a new nano composite material magadiite-PPy is obtained. This composite material is used as a new type of water adsorbent for industrial sewage and agricultural sewage purification.
  • the present invention has the following advantages and beneficial effects:
  • the pyrrole monomer is dispersed between the magadiite layers, and when the polymerization is initiated, the magadiite lamella effectively limits the polymerization speed of pyrrole, reduces particle agglomeration, and increases the specific surface area of magadiite-PPy and active adsorption sites; simultaneously.
  • the partially carbonized polypyrrole molecules after calcination form a loose and porous structure, which is beneficial to greatly improve the adsorption efficiency of the material;
  • the magadiite used is an artificially synthesized mineral clay, which is cheap in preparation cost, simple in process, green and environmentally friendly, and can be reused;
  • magadiite-PPy novel dye adsorbent magadiite/polypyrrole composite material (magadiite-PPy) provided by the present invention adsorbs Rhodamine B dye, no pretreatment is required, the adsorption capacity can reach more than 30mg/g, and the applicable temperature is wide. The adsorption time is short, and it has high efficiency; considering the preparation process, material structure performance and adsorption effect, the magadiite-PPy nanocomposite adsorbent has potential market application value.
  • Fig. 1 is the SEM image of the magadiite-PPy composite adsorbent obtained in Example 1;
  • Fig. 2 is a graph showing the variation of the adsorption capacity of MAG, PPy and the magadiite-PPy composite adsorbent obtained in Example 1 with time;
  • Fig. 3 is the SEM image of the magadiite-PPy composite adsorbent obtained in Example 2;
  • FIG. 4 is the SEM image of the magadiite-PPy composite adsorbent prepared in Example 3.
  • FIG. 4 is the SEM image of the magadiite-PPy composite adsorbent prepared in Example 3.
  • Example 5 is a SEM image of the magadiite-PPy composite adsorbent prepared in Example 4.
  • the present embodiment provides a composite modified magadiite / polypyrrole adsorbent and a preparation method thereof, comprising the following raw materials: pyrrole monomer, FeCl solution, magadiite suspension;
  • the pyrrole in this example is an analytically pure pyrrole monomer purchased from Shanghai McLean Biochemical Technology Co., Ltd.
  • the raw materials of FeCl 3 solution include ferric chloride and deionized water, and ferric chloride is purchased from Sinopharm Chemical Reagent Company, with a content of ⁇ 97.0 %, the raw material of magadiite suspension includes magadiite powder and deionized water, and the magadiite used is prepared in laboratory.
  • Step 1 Preparation of magadiite suspension:
  • magadiite white powder At room temperature, weigh 2 g of the dried magadiite white powder, add 100 mL of deionized water, sonicate for 20 min, and disperse evenly by ultrasonic to obtain a magadiite suspension;
  • Step 2 Preparation of pyrrole-magadiite mixed suspension:
  • Step 3 Preparation of In-situ Polymerization
  • Sodalite/Polypyrrole composite material Preparation of Sodalite/Polypyrrole composite material:
  • the pyrrole-magadiite mixed suspension described in step 2 was placed in an ice bath and a nitrogen atmosphere, fully stirred for 15 min, and then the FeCl solution with a concentration of 0.1 mol/ L was added dropwise to the pyrrole-magadiite mixed suspension.
  • the addition time was 15min, the volume ratio of the FeCl3 solution and the pyrrole - magadiite mixed suspension was 1:1, and the black suspension after the magadiite/polypyrrole composite was obtained after stirring and reacting at 5 °C for 8 h;
  • Step 4 Wash and dry to obtain magadiite-PPy nanocomposite adsorbent
  • magadiite/polypyrrole compounded black suspension described in step 3 was filtered, the precipitate was collected, and the precipitate was washed with deionized water and ethanol until the filtrate became colorless to obtain a black filter cake, which was dried in a vacuum environment at 60 °C for 12 h , and then placed in a tube furnace, calcined at 400° C. in an inert gas atmosphere, and ground to obtain the novel dye adsorbent magadiite/polypyrrole composite material (magadiite-PPy nanocomposite adsorbent).
  • Example 1 is the SEM image of the magadiite-PPy composite adsorbent prepared in Example 1. After compounding and calcining, a large number of pore structures appeared in the composite material.
  • the BET specific surface area of the adsorbent material was 23.969m2/g, and the average pore diameter was 17.48 nm, providing more space to accommodate dye molecules.
  • This example also provides an application of the magadiite-PPy nanocomposite adsorbent as described above for treating wastewater containing Rhodamine B, and the corresponding conditions for using the magadiite-PPy nanocomposite adsorbent in the wastewater treatment application are:
  • Fig. 2 is the variation curve of the adsorption effect of magadiite-PPy composite adsorbent on Rhodamine B with time measured in Example 1. After composite and calcined composite adsorbents, the adsorption capacity of rhodamine B reached more than 30 mg/g, which was greatly improved than that of single-component polypyrrole and sodalite adsorbents.
  • the present embodiment provides a composite modified magadiite / polypyrrole adsorbent and a preparation method thereof, comprising the following raw materials: pyrrole monomer, FeCl solution, magadiite suspension;
  • the pyrrole in this example is an analytically pure pyrrole monomer purchased from Shanghai McLean Biochemical Technology Co., Ltd.
  • the raw materials of FeCl 3 solution include ferric chloride and deionized water, and ferric chloride is purchased from Sinopharm Chemical Reagent Company, with a content of ⁇ 97.0 %, the raw material of the magadiite suspension includes magadiite powder and deionized water, the magadiite used is prepared in the laboratory, and the preparation method thereof is shown in Publication No. CN103073004A.
  • Step 1 Preparation of magadiite suspension:
  • magadiite white powder At room temperature, weigh 2 g of the dried magadiite white powder, add 50 mL of deionized water, sonicate for 20 min, and ultrasonically disperse uniformly to obtain a magadiite suspension;
  • Step 2 Preparation of pyrrole-magadiite mixed suspension:
  • Step 3 Preparation of In-situ Polymerization
  • Sodalite/Polypyrrole composite material Preparation of Sodalite/Polypyrrole composite material:
  • the pyrrole-magadiite mixed suspension described in step 2 was placed in an ice bath and a nitrogen atmosphere, fully stirred for 15 min, and then the FeCl solution with a concentration of 0.3 mol/ L was added dropwise to the pyrrole-magadiite mixed suspension.
  • the addition time was 30min, the volume ratio of the FeCl3 solution and the pyrrole-magadiite mixed suspension was 3 :1, and the black suspension after the magadiite/polypyrrole composite was obtained after stirring and reacting at 5°C for 12h;
  • Step 4 Wash and dry to obtain magadiite-PPy nanocomposite adsorbent
  • magadiite/polypyrrole compounded black suspension described in step 3 take the precipitate, wash the precipitate with deionized water and ethanol until the filtrate becomes colorless to obtain a black filter cake, which is dried under vacuum at 70 °C for 18 h , calcined at 800°C in an inert gas, and ground to obtain the novel dye adsorbent magadiite/polypyrrole composite material (magadiite-PPy nanocomposite adsorbent).
  • Fig. 3 is the SEM image of the magadiite-PPy composite adsorbent prepared in Example 2; it can be observed that the composite material after compounding and calcination is in the form of fine particles, and a large number of pore structures appear inside, which improves the specific surface area of the material, Provides more space to accommodate dye molecules.
  • This example also provides an application of the magadiite-PPy nanocomposite adsorbent as described above for treating wastewater containing Rhodamine B, and the corresponding conditions for using the magadiite-PPy nanocomposite adsorbent in the wastewater treatment application are:
  • the present embodiment provides a composite modified magadiite / polypyrrole adsorbent and a preparation method thereof, comprising the following raw materials: pyrrole monomer, FeCl solution, magadiite suspension;
  • the pyrrole in this example is an analytically pure pyrrole monomer purchased from Shanghai McLean Biochemical Technology Co., Ltd.
  • the raw materials of FeCl 3 solution include ferric chloride and deionized water, and ferric chloride is purchased from Sinopharm Chemical Reagent Company, with a content of ⁇ 97.0 %, the raw material of the magadiite suspension includes magadiite powder and deionized water, the magadiite used is prepared in the laboratory, and the preparation method thereof is shown in Publication No. CN103073004A.
  • Step 1 Preparation of magadiite suspension:
  • magadiite white powder At room temperature, weigh 5 g of the dried magadiite white powder, add 62.5 mL of deionized water, ultrasonicate for 20 min, and ultrasonically disperse evenly to obtain a magadiite suspension;
  • Step 2 Preparation of pyrrole-magadiite mixed suspension:
  • Step 3 Preparation of In-situ Polymerization
  • Sodalite/Polypyrrole composite material Preparation of Sodalite/Polypyrrole composite material:
  • the pyrrole-magadiite mixed suspension described in step 2 was placed in an ice bath and a nitrogen atmosphere, fully stirred for 45min, and then FeCl solution with a concentration of 0.5mol/ L was added dropwise to the pyrrole-magadiite mixed suspension, and the dropwise addition was controlled.
  • Time 45min, the volume ratio of the FeCl3 solution and the pyrrole - magadiite mixed suspension was 5:1, and the black suspension after the magadiite/polypyrrole composite was obtained after stirring and reacting at 5°C for 15h;
  • Step 4 Wash and dry to obtain magadiite-PPy nanocomposite adsorbent
  • magadiite/polypyrrole compounded black suspension described in step 3 take the precipitate, wash the precipitate with deionized water and ethanol until the filtrate becomes colorless to obtain a black filter cake, which is dried at 80 °C for 24 h in a vacuum environment , calcined at 600°C in an inert gas, and ground to obtain the novel dye adsorbent magadiite/polypyrrole composite material (magadiite-PPy nanocomposite adsorbent).
  • Figure 4 is the SEM image of the magadiite-PPy composite adsorbent prepared in Example 3. It can be observed that there are a large number of pores between the fine carbonized PPy, and these pores increase the contact area between the adsorbent and the dye pollutants.
  • This example also provides an application of the magadiite-PPy nanocomposite adsorbent as described above for treating wastewater containing Rhodamine B, and the corresponding conditions for using the magadiite-PPy nanocomposite adsorbent in the wastewater treatment application are:
  • magadiite-PPy adsorbent The maximum adsorption capacity of magadiite-PPy adsorbent was calculated to be about 23 mg/g.
  • the present embodiment provides a composite modified magadiite / polypyrrole adsorbent and a preparation method thereof, comprising the following raw materials: pyrrole monomer, FeCl solution, magadiite suspension;
  • the pyrrole in this example is an analytically pure pyrrole monomer purchased from Shanghai McLean Biochemical Technology Co., Ltd.
  • the raw materials of FeCl 3 solution include ferric chloride and deionized water, and ferric chloride is purchased from Sinopharm Chemical Reagent Company, with a content of ⁇ 97.0 %, the raw material of the magadiite suspension includes magadiite powder and deionized water, the magadiite used is prepared in the laboratory, and the preparation method thereof is shown in Publication No. CN103073004A.
  • Step 1 Preparation of magadiite suspension:
  • magadiite white powder At room temperature, weigh 3 g of the dried magadiite white powder, add 62.5 mL of deionized water, sonicate for 20 min, and ultrasonically disperse evenly to obtain a magadiite suspension;
  • Step 2 Preparation of pyrrole-magadiite mixed suspension:
  • Step 3 Preparation of In-situ Polymerization
  • Sodalite/Polypyrrole composite material Preparation of Sodalite/Polypyrrole composite material:
  • the pyrrole-magadiite mixed suspension described in step 2 was placed in an ice bath and a nitrogen atmosphere, fully stirred for 45min, and then FeCl solution with a concentration of 0.5mol/ L was added dropwise to the pyrrole-magadiite mixed suspension, and the dropwise addition was controlled.
  • Time 45min, the volume ratio of the FeCl3 solution and the pyrrole - magadiite mixed suspension is 5:1, and the black suspension after the magadiite/polypyrrole composite is obtained after stirring and reacting at 25 ° C for 18h;
  • Step 4 Wash and dry to obtain magadiite-PPy nanocomposite adsorbent
  • magadiite/polypyrrole compounded black suspension described in step 3 take the precipitate, wash the precipitate with deionized water and ethanol until the filtrate becomes colorless to obtain a black filter cake, which is dried at 60 °C for 24 h in a vacuum environment , calcined at 800° C. under an inert gas, and ground to obtain the novel dye adsorbent magadiite/polypyrrole composite material (magadiite-PPy nanocomposite adsorbent).
  • Figure 5 is the SEM image of the magadiite-PPy composite adsorbent prepared in Example 4. It can be observed that there are a large number of pores between the carbonized PPy in a small part, and these pores increase the contact area between the adsorbent material and the dye pollutants.
  • This example also provides an application of the magadiite-PPy nanocomposite adsorbent as described above for treating wastewater containing Rhodamine B, and the corresponding conditions for using the magadiite-PPy nanocomposite adsorbent in the wastewater treatment application are:
  • the maximum adsorption capacity of the magadiite-PPy adsorbent was calculated to be about 30 mg/g.
  • q t represents the mass of adsorbed RB per unit mass of adsorbent, mg/g
  • R represents the removal rate of RB after adsorption, %
  • C 0 and C t are the initial concentration of RB and the concentration after adsorption time t , respectively, mg/L
  • m represents the mass of the adsorbent, mg
  • V represents the volume of the RB solution, mL.
  • the reason for the continuous increase of the adsorption amount is that the RB molecules diffuse into the pore structure between the layers and combine with more active adsorption sites on the surface of the laminate.
  • the reason for the slow adsorption rate is related to the limited number of active sites of MAG and the diffusion rate of RB molecules. Based on the time cost and adsorption efficiency, 45 min should be selected as the adsorption equilibrium time, and the corresponding adsorption amount is the adsorption equilibrium adsorption amount.
  • the adsorption capacity and removal rate of RB by the MAG/PPy composite adsorbent are better than those of either MAG or PPy alone.
  • the maximum adsorption capacity of the MAG/PPy composite is 31 mg/g.
  • the surface area, pore volume, and average pore size are larger than those of MAG and PPy, and the surface has more pores and active sites.

Abstract

本发明公开了一种处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用;制备方法包括:将magadiite粉末溶液和吡咯单体混合,滴加FeCl3溶液后进行搅拌反应,反应结束后过滤取沉淀,洗涤、干燥、煅烧,研磨成粉末,得到所述麦羟硅钠石/聚吡咯吸附材料。该方法以magadiite与聚合物聚吡咯(PPy)通过离子交换,并煅烧制备多孔的magadiite-PPy纳米杂化吸附剂。所得吸附材料弥补现有吸附工艺吸附时间长、经济成本高的缺点,提供magadiite-PPy纳米复合吸附剂在吸附罗丹明B性能表现优越。本发明的吸附材料具有绿色环保、可循环利用、吸附性能好以及价格低廉等优点。

Description

一种处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用 技术领域
本发明属于污水处理材料的开发及应用领域,具体涉及一种处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用。
背景技术
水污染问题在当下是制约我国人民生活幸福感提高的主要因素。随着工业化进程的不断深入,大量从工厂、居民区、深海渔船等场所排放的污染物不断影响着生态平衡,危害人类健康,不利于环境和人类社会的可持续发展。
来自化学密集型纺织工业的废水中的污染物,尤其是水溶性染料残留物的存在可能是非常重要的环境污染源,这些污染物可以进入不同的环境当中。染料被广泛应用于食品、医药、印染和化妆品等行业,染料废水的特点有:化学需氧量 ( COD) 高,有机物含量高,可生化性差,色度高,成分复杂,毒性大,化学性质稳定等。这些显著的特征使得染料废水成为国内外难处理的工业废水之一。迄今为止,国内外主要通过吸附(气浮)法、膜分离技术、化学氧化、絮凝沉淀、生物处理等方法来治理染料废水。其中,吸附法的的高效率使得其在废水处理中占据重要地位。通过对吸附剂的选择,可以去除水中特定的污染物,同时,采用吸附法有利于从高浓度的废水中吸附某些物质达到资源回收和治理目的。
层状硅酸盐矿物在自然界中分布广泛,成本低廉,也是重要的工业矿物材料,通常这类吸附材料达不到理想的处理效果,吸附能力有限。对其进行无机、有机、酸改性、交联改性制备的层状硅酸盐基吸附材料因其颗粒物带有电荷,并具有较大的比表面积和一定的离子交换容量及特殊纳米结构效应,被作为吸附剂应用于多个领域处理各类废水。张等在实验室条件下利用提取的微囊藻EPS,研究了其对高岭土吸附罗丹明B的影响(张卉灵, 邵继海, 匡晓琳, 等. 水华蓝藻胞外聚合物对高岭土吸附罗丹明B行为的影响[J]. 净水技术, 2017, 36(10):46-51.)。蒙脱土作为一种常见的层状硅酸盐材料已被广泛研究,但由于其纯度低,片层表面基本没有结构性羟基不利于其功能化,离子交换容量低,开采带来环境污染等实际存在的缺点,没有被广泛应用于废水处理。胡等发现改性蒙脱土颗粒(050823和MMT35)吸附2种直接染料(直接耐晒黑G和直接大红4BE)的效果显著(胡康博, 王毅力, 李春荣, 等. 改性蒙脱土颗粒吸附直接染料的分形特征[J]. 环境科学学报, 2010, 30(11):2174-2183.)。近年来,一种与蒙脱土相似的层状硅酸盐在废水处理领域崭露头角。麦羟硅钠石(magadiite)是一种容易控制合成工艺,能够得到高纯度的产物的层状硅酸盐,在自然界中也存在。相比蒙脱土,其明显的优势是层板具有优异的膨化性能,层间阳离子交换量大,层板上含有大量结构性羟基,结构稳定性好,容易功能化。这些优点为magadiite复合材料成为一种性能优异、价格低廉的吸附材料提供了保证,也有利于恢复由于大量开采矿山造成的生态危机。将麦羟硅钠石与聚合物复合,增加其在环境中的稳定性、提高其吸附能力,针对特定污染物进行功能化,有利于开发一种新型绿色染料吸附剂。
技术解决方案
为了克服现有技术存在的不足,本发明的目的是提供一种新型染料吸附剂麦羟硅钠石/聚吡咯复合材料及其制备方法与吸附污水中罗丹明B染料的应用。
本发明提供了一种基于二维层状材料麦羟硅钠石的新型污染物吸附剂(新型吸附剂麦羟硅钠石/聚吡咯复合材料),弥补现有吸附工艺吸附时间长、经济成本高的缺点。
本发明还提供了magadiite-PPy纳米复合吸附剂(新型吸附剂麦羟硅钠石/聚吡咯复合材料)在吸附罗丹明B阳离子染料的应用。
本发明提供的新型吸附剂麦羟硅钠石/聚吡咯复合材料是一种基于麦羟硅钠石的环保吸附材料。
本发明的目的至少通过如下技术方案之一实现。
一种处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料的制备方法,包括如下步骤:
(1)将magadiite粉末(麦羟硅钠石,白色粉末)分散在水中,超声分散,然后加入吡咯单体,混合得到悬浮液;
(2)将步骤(1)所述悬浮液在0-25℃和惰性气体气氛的条件下进行搅拌处理,得到吡咯-magadiite混合悬浮液;
(3)将FeCl 3溶液滴加在步骤(2)所述吡咯-magadiite混合悬浮液中,惰性气体气氛的条件下搅拌反应,得到混合液(magadiite与PPy复合后的黑色悬浮液);
(4)将步骤(3)所述混合液过滤取沉淀,洗涤、干燥、煅烧,研磨成粉末(黑色粉末),得到所述麦羟硅钠石/聚吡咯吸附材料。
优选的,步骤(1)所述magadiite粉末与吡咯单体的质量比为1-5:1。
优选的,所述magadiite粉末占magadiite与吡咯单体两者总质量的1/3、1/2、2/3。
 
优选的,步骤(1)所述magadiite粉末与水的质量体积比为0.02-0.08g/ml。
优选的,步骤(2)所述搅拌处理的时间为15-45min。
优选的,步骤(2)所述惰性气体为氮气。
优选的,步骤(3)所述FeCl 3溶液的浓度为0.1-0.5mol/L。
优选的,步骤(3)所述FeCl 3溶液与吡咯-magadiite混合悬浮液的体积比为1-5:1。
优选的,步骤(3)所述FeCl 3溶液的滴加时间为15-45min。
优选的,步骤(3)所述FeCl 3溶液的溶质FeCl 3与步骤(1)所述吡咯单体的摩尔比为0.5-2:1;进一步优选的,步骤(3)所述FeCl 3溶液的溶质FeCl 3与步骤(1)所述吡咯单体的摩尔比为1:1。
优选的,步骤(3)所述搅拌反应的温度为0-25℃,搅拌反应的时间为4-18h。
优选的,步骤(3)所述惰性气体为氮气。
优选地,步骤(3)所述搅拌反应的方式为磁力搅拌。
优选的,步骤(4)所述干燥的温度为60-80℃,干燥的时间为12h以上,干燥为真空干燥;进一步优选地,步骤(4)所述干燥的温度为60摄氏度,干燥的时间为12h。
优选的,步骤(4)所述过滤为抽滤;进一步优选地,过滤为用循环水泵抽滤。
优选的,步骤(4)所述洗涤为依次用无水乙醇和去离子水洗涤2-3次;进一步优选地,步骤(4)所述洗涤为依次用无水乙醇和去离子水洗涤3次。
优选的,步骤(4)所述煅烧过程在惰性气体环境下进行,煅烧温度400-800℃。进一步优选地,步骤(4)所述煅烧温度为800℃。
上述制备方法制备的处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料。
优选的,所述吸附材料的BET比表面积为20-30m 2/g,平均孔径为15-20 nm。
上述的处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料在吸附污水中的罗丹明B染料中的应用,包括如下步骤:
将所述麦羟硅钠石/聚吡咯吸附材料投入含罗丹明B染料的待处理水体中进行吸附处理。
优选的,所述待处理水体中的罗丹明B染料的初始浓度为5-60mg/L。
优选的,所述待处理水体的pH值为3.0-11.0。
优选的,所述吸附处理的时间为10-45分钟。
优选的,所述吸附处理的温度为15-35摄氏度。
本发明基于单体原位插层聚合法,将吡咯单体分散在magadiite层间,通过化学氧化聚合引发剂,引发吡咯在magadiite层间聚合,magadiite片层与聚吡咯分子链层层交错,再经过高温煅烧,使聚吡咯分子部分碳化,形成疏松地多孔结构,得到新型纳米复合材料magadiite-PPy,将此复合材料作为新型的水吸附剂,用于工业污水、农业污水的净化处理。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明提供的制备方法,将吡咯单体分散在magadiite层间,在引发聚合时,magadiite片层有效限制了吡咯的聚合速度,减少了颗粒团聚,增大了magadiite-PPy的比表面积和活性吸附位点;同时。煅烧后的部分碳化聚吡咯分子形成了疏松多孔的结构,有利于大幅提高材料的吸附效率;
(2)本发明提供的制备方法,所使用的magadiite作为人工合成的矿物型粘土,制备成本廉价,工艺简单,绿色环保,可重复利用;
(3)本发明提供的新型染料吸附剂麦羟硅钠石/聚吡咯复合材料(magadiite-PPy)吸附罗丹明B染料时,无需预处理,吸附容量可达30mg/g以上,适用温度宽泛,吸附时间短,具有高效性;综合考虑制备工艺、材料结构性能和吸附效果,该magadiite-PPy纳米复合吸附剂具有潜在的市场应用价值。
 
附图说明
图1是实施例1制得的magadiite-PPy复合吸附剂的SEM图;
图2是MAG 、PPy和实施例1制得的magadiite-PPy复合吸附剂吸附量随时间变化图;
图3是实施例2制得的magadiite-PPy复合吸附剂的SEM图;
图4是实施例3制得的magadiite-PPy复合吸附剂的SEM图。
图5是实施例4制得的magadiite-PPy复合吸附剂的SEM图。
本发明的实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
实施例中所用magadiite,其制备方法参见公开号CN103073004A。
实施例 1
本实施例给出一种复合改性麦羟硅钠石/聚吡咯吸附剂及其制备方法,包括以下原料制成:吡咯单体、FeCl 3溶液、magadiite悬浮液;
本实例中的吡咯为购于上海麦克林生化科技公司的分析纯吡咯单体,FeCl 3溶液原料包括三氯化铁和去离子水,三氯化铁购于国药集团化学试剂公司,含量≥ 97.0%,magadiite悬浮液原料包括magadiite粉末和去离子水,所用magadiite为实验室制备。
该制备方法的步骤如下:
步骤一:magadiite悬浮液的制备:
在室温条件下,称取2g干燥后的magadiite白色粉末,加入100mL去离子水,超声20min,超声分散均匀,得到magadiite悬浮液;
步骤二:吡咯-magadiite混合悬浮液的制备:
称取质量为2g的吡咯单体,加入到步骤一所述magadiite悬浮液中,形成吡咯-magadiite混合悬浮液;
步骤三:原位聚合法制备制备麦羟硅钠石/聚吡咯复合材料:
将步骤二所述吡咯-magadiite混合悬浮液置于冰浴、氮气氛围下,充分搅拌15 min,然后把浓度为0.1mol/L的FeCl 3溶液逐滴加入到吡咯-magadiite混合悬浮液,控制滴加时间15min,所述FeCl 3溶液与吡咯-magadiite混合悬浮液的体积比为1:1,在5℃下搅拌反应8 h后得到magadiite/聚吡咯复合后的黑色悬浮液;
步骤四:洗涤干燥得到magadiite-PPy纳米复合吸附剂
将步骤三所述magadiite/聚吡咯复合后的黑色悬浮液过滤,取沉淀,用去离子水和乙醇洗涤所述沉淀至滤液变为无色,得到黑色滤饼,60℃真空环境下干燥12 h,再将其置于管式炉中,再惰性气体气氛下400℃煅烧,研磨得到所述新型染料吸附剂麦羟硅钠石/聚吡咯复合材料(magadiite-PPy纳米复合吸附剂)。
图1是实施例1制得的magadiite-PPy复合吸附剂的SEM图。经过复合、煅烧后的复合材料内部出现了大量孔洞结构,所述吸附材料的BET比表面积为23.969m2/g,平均孔径为17.48 nm,提供了更多的容纳染料分子的空间。
本实例还给出一种如上所述的magadiite-PPy纳米复合吸附剂用于处理含罗丹明B废水的应用,该废水处理应用中magadiite-PPy纳米复合吸附剂使用对应条件为:
每100mL废水中投加50mg magadiite-PPy纳米复合吸附剂;罗丹明B得初始浓度为5mg/L;所述吸附处理时间为10min;所述含染料的待处理水体的pH值为3.0;所述吸附处理的温度为15摄氏度。
图2是实施例1所测得magadiite-PPy复合吸附剂对罗丹明B吸附效果随时间的变化曲线。经过复合、煅烧后的复合吸附剂对罗丹明B的吸附量达到30mg/g以上,比单一组分的聚吡咯和麦羟硅钠石吸附剂性能大大提升。
实施例 2
本实施例给出一种复合改性麦羟硅钠石/聚吡咯吸附剂及其制备方法,包括以下原料制成:吡咯单体、FeCl 3溶液、magadiite悬浮液;
本实例中的吡咯为购于上海麦克林生化科技公司的分析纯吡咯单体,FeCl 3溶液原料包括三氯化铁和去离子水,三氯化铁购于国药集团化学试剂公司,含量≥ 97.0%,magadiite悬浮液原料包括magadiite粉末和去离子水,所用magadiite为实验室制备,其制备方法参见公开号CN103073004A。
该制备方法的步骤如下:
步骤一:magadiite悬浮液的制备:
在室温条件下,称取2g干燥后的magadiite白色粉末,加入50mL去离子水,超声20min,超声分散均匀,得到magadiite悬浮液;
步骤二:吡咯-magadiite混合悬浮液的制备:
称取质量为1g的吡咯单体,加入到步骤一所述magadiite悬浮液中,形成吡咯-magadiite混合悬浮液;
步骤三:原位聚合法制备制备麦羟硅钠石/聚吡咯复合材料:
将步骤二所述吡咯-magadiite混合悬浮液置于冰浴、氮气氛围下,充分搅拌15 min,然后把浓度为0.3mol/L的FeCl 3溶液逐滴加入到吡咯-magadiite混合悬浮液,控制滴加时间30min,所述FeCl 3溶液与吡咯-magadiite混合悬浮液的体积比为3:1,在5℃下搅拌反应12h后得到magadiite/聚吡咯复合后的黑色悬浮液;
步骤四:洗涤干燥得到magadiite-PPy纳米复合吸附剂
将步骤三所述magadiite/聚吡咯复合后的黑色悬浮液过滤,取沉淀,用去离子水和乙醇洗涤所述沉淀至滤液变为无色,得到黑色滤饼,70℃真空环境下干燥18 h,在惰性气体中800℃煅烧,研磨得到所述新型染料吸附剂麦羟硅钠石/聚吡咯复合材料(magadiite-PPy纳米复合吸附剂)。
图3是实施例2制得的magadiite-PPy复合吸附剂的SEM图;可以观察到,经过复合、煅烧后的复合材料成细小颗粒状,内部出现了大量孔洞结构,提高了材料的比表面积,提供了更多的容纳染料分子的空间。
本实例还给出一种如上所述的magadiite-PPy纳米复合吸附剂用于处理含罗丹明B废水的应用,该废水处理应用中magadiite-PPy纳米复合吸附剂使用对应条件为:
每100mL废水中投加50mg magadiite-PPy纳米复合吸附剂;罗丹明B的初始浓度为30mg/L,所述吸附处理时间为30min,所述含染料的待处理水体的pH值为7.0;所述吸附处理的温度为25摄氏度。
吸附实验结果表明,magadiite-PPy复合吸附剂对罗丹明B染料得吸附量达到29.25mg/g。经处理得罗丹明B废水由粉紫色变为澄清透明。
实施例 3
本实施例给出一种复合改性麦羟硅钠石/聚吡咯吸附剂及其制备方法,包括以下原料制成:吡咯单体、FeCl 3溶液、magadiite悬浮液;
本实例中的吡咯为购于上海麦克林生化科技公司的分析纯吡咯单体,FeCl 3溶液原料包括三氯化铁和去离子水,三氯化铁购于国药集团化学试剂公司,含量≥ 97.0%,magadiite悬浮液原料包括magadiite粉末和去离子水,所用magadiite为实验室制备,其制备方法参见公开号CN103073004A。
该制备方法的步骤如下:
步骤一:magadiite悬浮液的制备:
在室温条件下,称取5g干燥后的magadiite白色粉末,加入62.5mL去离子水,超声20min,超声分散均匀,得到magadiite悬浮液;
步骤二:吡咯-magadiite混合悬浮液的制备:
称取质量为1g的吡咯单体,加入到步骤一所述magadiite悬浮液中,形成吡咯-magadiite混合悬浮液;
步骤三:原位聚合法制备制备麦羟硅钠石/聚吡咯复合材料:
将步骤二所述吡咯-magadiite混合悬浮液置于冰浴、氮气氛围下,充分搅拌45min,然后把浓度为0.5mol/L的FeCl 3溶液逐滴加入到吡咯-magadiite混合悬浮液,控制滴加时间45min,所述FeCl 3溶液与吡咯-magadiite混合悬浮液的体积比为5:1,在5℃下搅拌反应15h后得到magadiite/聚吡咯复合后的黑色悬浮液;
步骤四:洗涤干燥得到magadiite-PPy纳米复合吸附剂
将步骤三所述magadiite/聚吡咯复合后的黑色悬浮液过滤,取沉淀,用去离子水和乙醇洗涤所述沉淀至滤液变为无色,得到黑色滤饼,80℃真空环境下干燥24 h,在惰性气体中600℃煅烧,研磨得到所述新型染料吸附剂麦羟硅钠石/聚吡咯复合材料(magadiite-PPy纳米复合吸附剂)。
图4是实施例3制得的magadiite-PPy复合吸附剂的SEM图,可以观察到细小部分碳化的PPy之间存在大量孔隙,这些孔隙增大了吸附材料与染料污染物的接触面积。
本实例还给出一种如上所述的magadiite-PPy纳米复合吸附剂用于处理含罗丹明B废水的应用,该废水处理应用中magadiite-PPy纳米复合吸附剂使用对应条件为:
每100mL废水中投加50mg magadiite-PPy纳米复合吸附剂;罗丹明B的初始浓度为60mg/L;所述吸附处理时间为45min;所述含染料的待处理水体的pH值为11.0;所述吸附处理的温度为35摄氏度。
计算得magadiite-PPy吸附剂的最大吸附量约为23mg/g。
实施例 4
本实施例给出一种复合改性麦羟硅钠石/聚吡咯吸附剂及其制备方法,包括以下原料制成:吡咯单体、FeCl 3溶液、magadiite悬浮液;
本实例中的吡咯为购于上海麦克林生化科技公司的分析纯吡咯单体,FeCl 3溶液原料包括三氯化铁和去离子水,三氯化铁购于国药集团化学试剂公司,含量≥ 97.0%,magadiite悬浮液原料包括magadiite粉末和去离子水,所用magadiite为实验室制备,其制备方法参见公开号CN103073004A。
该制备方法的步骤如下:
步骤一:magadiite悬浮液的制备:
在室温条件下,称取3g干燥后的magadiite白色粉末,加入62.5mL去离子水,超声20min,超声分散均匀,得到magadiite悬浮液;
步骤二:吡咯-magadiite混合悬浮液的制备:
称取质量为1g的吡咯单体,加入到步骤一所述magadiite悬浮液中,形成吡咯-magadiite混合悬浮液;
步骤三:原位聚合法制备制备麦羟硅钠石/聚吡咯复合材料:
将步骤二所述吡咯-magadiite混合悬浮液置于冰浴、氮气氛围下,充分搅拌45min,然后把浓度为0.5mol/L的FeCl 3溶液逐滴加入到吡咯-magadiite混合悬浮液,控制滴加时间45min,所述FeCl 3溶液与吡咯-magadiite混合悬浮液的体积比为5:1,在25℃下搅拌反应18h后得到magadiite/聚吡咯复合后的黑色悬浮液;
步骤四:洗涤干燥得到magadiite-PPy纳米复合吸附剂
将步骤三所述magadiite/聚吡咯复合后的黑色悬浮液过滤,取沉淀,用去离子水和乙醇洗涤所述沉淀至滤液变为无色,得到黑色滤饼,60℃真空环境下干燥24 h,在惰性气体下800℃煅烧,研磨得到所述新型染料吸附剂麦羟硅钠石/聚吡咯复合材料(magadiite-PPy纳米复合吸附剂)。
图5是实施例4制得的magadiite-PPy复合吸附剂的SEM图,可以观察到细小部分碳化的PPy之间存在大量孔隙,这些孔隙增大了吸附材料与染料污染物的接触面积。
本实例还给出一种如上所述的magadiite-PPy纳米复合吸附剂用于处理含罗丹明B废水的应用,该废水处理应用中magadiite-PPy纳米复合吸附剂使用对应条件为:
每100mL废水中投加50mg magadiite-PPy纳米复合吸附剂;罗丹明B的初始浓度为60mg/L;所述吸附处理时间为45min;所述含染料的待处理水体的pH值为11.0;所述吸附处理的温度为35摄氏度。
经测试计算得magadiite-PPy吸附剂的最大吸附量约为30mg/g。
性能测试实验:
在本性能测试实验中,将实施例1至4制备的magadiite-PPy纳米复合吸附剂取50mg,并分别投加至含罗丹明B浓度均为5-60mg/L的废水100ml中,调节混合液pH到3-11。震荡速度固定,开始吸附实验,并记录开始时间;15-45min后停止震荡,设定离心机转速为9000r/min,将MAG/PPy-RB混合悬浮液离心5min后,取上清液于石英比色皿中,在波长554nm下测量Abs,带入拟合方程,计算得到RB残余量,进一步计算吸附量 q t 和去除率 R,公式如下:
Figure dest_path_image001
        (5-2)
Figure 403347dest_path_image002
           (5-3)
其中, q t 代表单位质量吸附剂吸附RB的质量,mg/g; R代表吸附结束后RB的去除率,%; C 0 C t 分别为RB的初始浓度和吸附时间 t之后时的浓度,mg/L;m代表吸附剂的质量,mg;V代表RB溶液的体积,mL。
实验结果分析:
(1)如图1、图2-4的SEM图像所示, MAG/PPy复合材料的结构被成功制备出来,在MAG/PPy复合材料的微观形貌中可以发现,MAG的层空间被PPy颗粒占据,层间距有所增加,且层间的PPy颗粒的尺寸要比纯PPy要小很多,提高了吸附质与吸附剂的接触面积。
(2)吸附时间5min之后,吸附量持续上升的原因在于RB分子扩散到层间的孔隙结构,与更多层板表面上活性吸附位点相结合。在吸附进程后期,吸附速度缓慢的原因与MAG有限的活性位点数目和RB分子扩散速度相关。基于时间成本和吸附效率,应选择45min为吸附平衡时间,对应的吸附量为吸附平衡吸附量。
(3)MAG/PPy复合吸附剂对RB的吸附量和去除率要比MAG或PPy任一单独组分要好,MAG/PPy复合材料的最大吸附量为31mg/g,这是因为MAG/PPy比表面积、孔容、平均孔径都要比MAG、PPy大,表面具有更多的孔洞和活性位点。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料的制备方法,其特征在于,包括如下步骤:
    (1)将magadiite粉末分散在水中,超声分散,然后加入吡咯单体,混合得到悬浮液;
    (2)将步骤(1)所述悬浮液在0-25℃和惰性气体气氛的条件下进行搅拌处理,得到吡咯-magadiite混合悬浮液;
    (3)将FeCl 3溶液滴加在步骤(2)所述吡咯-magadiite混合悬浮液中,惰性气体气氛的条件下搅拌反应,得到混合液;
    (4)将步骤(3)所述混合液过滤取沉淀,洗涤、干燥、煅烧,研磨成粉末,得到所述麦羟硅钠石/聚吡咯吸附材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)所述magadiite粉末与吡咯单体的质量比为1-5:1;所述magadiite粉末与水的质量体积比为0.02-0.08g/ml;
    步骤(2)所述搅拌处理的时间为15-45min;所述惰性气体为氮气。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(3)所述FeCl 3溶液的浓度为0.1-0.5mol/L;所述FeCl 3溶液与吡咯-magadiite混合悬浮液的体积比为1-5:1;所述FeCl 3溶液的滴加时间为15-45min。
  4. 根据权利要求1所述的制备方法,其特征在于, 步骤(3)所述FeCl 3溶液的溶质FeCl 3与步骤(1)所述吡咯单体的摩尔比为0.5-2:1。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(3)所述搅拌反应的温度为0-25℃,搅拌反应的时间为4-18h;所述惰性气体为氮气。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(4)所述干燥的温度为60-80℃,干燥的时间为12h以上,干燥为真空干燥;所述过滤为抽滤;所述洗涤为依次用无水乙醇和去离子水洗涤2-3次,所述煅烧过程在惰性气体环境下进行,煅烧温度400-800℃。
  7. 权利要求1-6任一项所述制备方法制备的处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料。
  8. 根据权利要求7所述的处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料,其特征在于,所述吸附材料的BET比表面积为20-30m 2/g,平均孔径为15-20 nm。
  9. 权利要求7所述的处理罗丹明B废水的麦羟硅钠石/聚吡咯吸附材料在吸附污水中的罗丹明B染料中的应用,其特征在于,包括如下步骤:
    将所述麦羟硅钠石/聚吡咯吸附材料投入含罗丹明B染料的待处理水体中进行吸附处理。
  10. 根据权利要求9所述的应用,其特征在于,所述待处理水体中的罗丹明B染料的初始浓度为5-60mg/L;所述待处理水体的pH值为3.0-11.0;所述吸附处理的时间为10-45分钟;所述吸附处理的温度为15-35摄氏度。
     
PCT/CN2021/127803 2021-03-16 2021-10-31 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用 WO2022193674A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110282786.0A CN113083250A (zh) 2021-03-16 2021-03-16 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用
CN202110282786.0 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022193674A1 true WO2022193674A1 (zh) 2022-09-22

Family

ID=76668109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127803 WO2022193674A1 (zh) 2021-03-16 2021-10-31 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN113083250A (zh)
WO (1) WO2022193674A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608325A (zh) * 2022-11-09 2023-01-17 武汉理工大学三亚科教创新园 一种锂皂石-离子液体复合材料水中Cr(VI)吸附剂及其制备方法和应用
CN116173931A (zh) * 2023-02-01 2023-05-30 衡阳师范学院 一种聚吡咯-聚苯胺修饰硬硅钙石及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113083250A (zh) * 2021-03-16 2021-07-09 华南理工大学 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用
CN114308101A (zh) * 2021-12-22 2022-04-12 华南理工大学 一种麦羟硅钠石辅助合成的氮化碳纳米片光催化剂及其制备方法与应用
CN114307993A (zh) * 2022-01-15 2022-04-12 青岛农业大学海都学院 Cr(Ⅵ)吸附复合材料的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150001156A1 (en) * 2013-06-26 2015-01-01 Corning Incorporated Methods and apparatus for treatment of liquids containing contaminants using zero valent nanoparticles
CN108421536A (zh) * 2018-03-08 2018-08-21 东华理工大学 一种埃洛石纳米管/聚吡咯复合吸附剂的制备方法及应用
CN109569538A (zh) * 2018-12-15 2019-04-05 华南理工大学 一种基于麦羟硅钠石的环保吸附材料及其制备方法与在阴离子染料吸附中的应用
CN113083250A (zh) * 2021-03-16 2021-07-09 华南理工大学 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103240054B (zh) * 2012-02-07 2015-07-29 华中师范大学 富氮型磁性纳米碳吸附剂及其制备和在分析上的应用
CN107195480A (zh) * 2017-04-11 2017-09-22 国家纳米科学中心 一种柔性多孔碳材料及其制备方法与应用
CN107519846A (zh) * 2017-07-31 2017-12-29 华南理工大学 一种石墨烯/二氧化硅‑聚吡咯复合材料及其制备方法与应用
CN108063056B (zh) * 2017-12-08 2019-11-08 中北大学 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用
CN108394888A (zh) * 2018-04-09 2018-08-14 安徽大学 一种氮掺杂介孔空心碳纳米球的制备方法
CN108579664B (zh) * 2018-05-15 2019-11-15 华南理工大学 基于二维层状材料麦羟硅钠石的磁性纳米复合材料及其制备方法和应用
CN109012624A (zh) * 2018-07-14 2018-12-18 桂林理工大学 一种聚吡咯/磁性介孔硅的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150001156A1 (en) * 2013-06-26 2015-01-01 Corning Incorporated Methods and apparatus for treatment of liquids containing contaminants using zero valent nanoparticles
CN108421536A (zh) * 2018-03-08 2018-08-21 东华理工大学 一种埃洛石纳米管/聚吡咯复合吸附剂的制备方法及应用
CN109569538A (zh) * 2018-12-15 2019-04-05 华南理工大学 一种基于麦羟硅钠石的环保吸附材料及其制备方法与在阴离子染料吸附中的应用
CN113083250A (zh) * 2021-03-16 2021-07-09 华南理工大学 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG XUBIN: "Study on Preparation, Structure and Properties of Magadiite/Conductive Polymer Composite Materials", ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA DOCTORAL DISSERTATIONS/MASTER'S THESES FULL-TEXT DATABASE (MASTER), 15 February 2021 (2021-02-15), XP055967650 *
XIN SHENGCHANG; YANG NA; GAO FEI; ZHAO JING; LI LIANG; TENG CHAO: "Three-dimensional polypyrrole-derived carbon nanotube framework for dye adsorption and electrochemical supercapacitor", APPLIED SURFACE SCIENCE, ELSEVIER, AMSTERDAM , NL, vol. 414, 18 April 2017 (2017-04-18), Amsterdam , NL , pages 218 - 223, XP085010394, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2017.04.109 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608325A (zh) * 2022-11-09 2023-01-17 武汉理工大学三亚科教创新园 一种锂皂石-离子液体复合材料水中Cr(VI)吸附剂及其制备方法和应用
CN115608325B (zh) * 2022-11-09 2024-02-02 武汉理工大学三亚科教创新园 一种锂皂石-离子液体复合材料水中Cr(VI)吸附剂及其制备方法和应用
CN116173931A (zh) * 2023-02-01 2023-05-30 衡阳师范学院 一种聚吡咯-聚苯胺修饰硬硅钙石及其制备方法与应用

Also Published As

Publication number Publication date
CN113083250A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022193674A1 (zh) 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用
Chen et al. A novel Fe3+-stabilized magnetic polydopamine composite for enhanced selective adsorption and separation of Methylene blue from complex wastewater
Luo et al. Non-toxic chitosan-based hydrogel with strong adsorption and sensitive detection abilities for tetracycline
El-Gamal et al. Removal of methyl orange and bromophenol blue dyes from aqueous solution using Sorel’s cement nanoparticles
CN106975443B (zh) 一种磁改性膨润土吸附剂的制备方法及应用
CN101298038B (zh) 一种用于废水处理的凝胶吸附剂
Wang et al. In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite
CN104258816B (zh) 一种用于废水处理的磁性剥离型蒙脱土纳米复合材料的制备方法
CN110280209B (zh) 一种水体磷吸附材料及其制备、应用方法
Jin et al. Efficient adsorption of Congo red by MIL-53 (Fe)/chitosan composite hydrogel spheres
Jiang et al. Facile preparation of Fe2O3 Al2O3 composite with excellent adsorption properties towards Congo red
CN114832784A (zh) 一种磷酸修饰的二氧化硅微球及其制备方法和应用
CN106423098B (zh) 一种改性聚苯胺吸附剂及其制备方法和应用
CN101310853A (zh) 钙基吸附材料及其制备方法
CN101318122B (zh) 阴离子表面活性剂-硫酸钡复合吸附材料及其制备方法
Yu et al. Synthesis of Ag–SiO2–APTES Nanocomposites by blending poly (Vinylidene Fluoride) Membrane with potential applications on dye wastewater treatment
Liu et al. Post-synthetic functionalization of UiO-66-NH2 by polyacrylamide and polyvinylimidazolium salt brushes via ATRP and adsorption behavior
CN101249415A (zh) 钡基吸附材料及其制备方法
CN110433778A (zh) 聚苯胺/氧化石墨相氮化碳复合材料的制备方法及应用
CN107890849B (zh) 一种磁改性黄土吸附剂的制备方法及其应用
Xiao et al. Preparation of mesoporous silica nanoparticles modified by urushiol and their adsorption on malachite green
CN112520860B (zh) 天然吸附材料负载微生物的生态修复剂及其制备方法
CN102671617B (zh) 一种用于吸附难降解有机污染物的材料的制备方法
CN108421535B (zh) 一种纤维素/水辉石杂化复合材料净化含酚有机废水的方法
Wang et al. Synchronously construction of hierarchical porous channels and cationic surface charge on lanthanum-hydrogel for rapid phosphorus removal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE