CN108063056B - 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用 - Google Patents

多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108063056B
CN108063056B CN201711298777.0A CN201711298777A CN108063056B CN 108063056 B CN108063056 B CN 108063056B CN 201711298777 A CN201711298777 A CN 201711298777A CN 108063056 B CN108063056 B CN 108063056B
Authority
CN
China
Prior art keywords
carbon
parts
nano tube
carbon nano
tube compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711298777.0A
Other languages
English (en)
Other versions
CN108063056A (zh
Inventor
王延忠
王慧奇
陈优
王东华
李莹
刘炜
薛超瑞
董英鸽
杨金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201711298777.0A priority Critical patent/CN108063056B/zh
Publication of CN108063056A publication Critical patent/CN108063056A/zh
Application granted granted Critical
Publication of CN108063056B publication Critical patent/CN108063056B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种多孔氮掺杂碳/碳纳米管复合材料及其制备方法和及其在超级电容器的应用。该方法的工艺过程:(1)利用甲基橙、氯化铁和吡咯制备聚吡咯纳米管为基体,在聚吡咯纳米管表面原位反应形成一层金属有机框架材料(沸石咪唑类骨架材料8,简称为ZIF‑8);(2)将前驱体粉末在氮气或氩气保护气氛下,700~1000 oC碳化1~3 h;(3)将得到复合材料用稀盐酸浸泡5~24 h,过滤,干燥,获得多孔氮掺杂碳/碳纳米管复合材料。通过调整工艺参数可获得高比表面积的多孔氮掺杂碳/碳纳米管复合材料。本发明工艺简单,成本低廉,易于产业化生产。

Description

多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用
技术领域
本发明涉及一种多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用,属于新能源材料技术领域。
背景技术
碳纳米管( CNTs) 具有独特的中空结构、良好的导电性和化学稳定性、适合电解质离子迁移的孔隙和交互缠绕可形成纳米尺度的网络结构等优点,因此其作为电极材料可以显著提高超级电容器的功率特性,被认为是理想的超级电容器电极材料。
超级电容器,又称为电化学电容器,它是一种介于传统电容器和电池之间的新型储能元件,与传统电容器相比具有更高比电容量和能量密度,与电池相比则具有更高的功率密度。由于超级电容器具有充放电速度快、对环境无污染和循环寿命长等优点,在风力发电、电动汽车、信息通讯、航空航天等领域具有广泛的应用前景,被认为是一种理想的绿色储能装置。电极材料是超级电容器的重要组成部分,是影响超级电容器电容性能和生产成本的关键因素。因此,研究开发高性能、低成本的电极材料是超级电容器研究工作的重要内容。
由于碳纳米管(CNTs)具有较小的比表面积(<400 m2 g-1)和比电容(<40 F g-1),从而限制了其在超级电容器中的应用。为了提高CNTs的电容性能,研究人员主要采用CNTs与其他电极材料复合的方法提高其电容性能,如与金属氧化物、硫化物、导电聚合物、活性炭和石墨烯等复合(应用化学,2011,28(5):489-500)。在这些复合材料中,通常都是首先采用化学气相沉积的方法制备CNTs,然后以CNTs为基体生长氧化物、硫化物,或与导电聚合物和石墨烯复合,制备工艺复杂、成本高,不利于商业化应用。
发明内容
本发明旨在提供一种多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用,该复合材料组装的超级电容器具有良好能量密度和功率密度。
本发明提供了一种多孔氮掺杂碳/碳纳米管复合材料,以聚吡咯纳米管为基体,原位生长一层多孔的金属有机框架材料(沸石咪唑类骨架材料8,简称ZIF-8),在氮气或氩气气氛下,700~1000oC碳化后,聚吡咯管转化为氮掺杂碳纳米管,而附着在聚吡咯管表面的ZIF-8转化成氮掺杂多孔碳颗粒,从而获得多孔氮掺杂碳/碳纳米管复合材料。
原料的质量配比为:
聚吡咯纳米管: 50~200份
聚乙烯吡咯烷酮(简称为PVP):100~300份
氯化锌:600~900份
2-甲基咪唑:1000~3000份
在本发明的复合材料中,碳纳米管承担电子传导和电解质离子扩散通道的作用,而多孔碳承担储存电荷的作用。氮掺杂具有赝电容特性,提高复合材料的导电性和亲水性能的作用。
本发明提供了一种多孔氮掺杂碳/碳纳米管复合材料的制备方法,包括以下步骤:
(1)利用甲基橙、氯化铁和吡咯单体反应制备聚吡咯纳米管;
(2)将聚吡咯纳米管分散在去离子水中,聚乙烯吡咯烷酮(PVP)为分散剂,加入硝酸锌,超声30~60 min,然后加入2-甲基咪唑,机械搅拌2~24 h,过滤、洗涤后,高温碳化分解,用稀盐酸除去杂质,获得多孔氮掺杂碳/碳纳米管复合材料。
上述制备方法中,通过控制聚吡咯纳米管的加入量和反应时间,可以调控复合材料的比表面积和显微结构。
上述制备方法具体包括以下步骤:
(1)称取200~400份甲基橙、2000~3000份氯化铁和0.5~1.5份吡咯,机械搅拌2~24h,过滤、洗涤和干燥,制备得到聚吡咯纳米管;
(2)取50~200份聚吡咯纳米管分散在去离子水中,加入100~300份PVP分散剂和600~900份氯化锌超声30~60 min得到混合溶液,然后加入1000~3000份2-甲基咪唑于上述混合溶液中,反应2~24h,过滤、洗涤和干燥,得到聚吡咯纳米管/ZIF-8复合物;
(3)将聚吡咯纳米管/ZIF-8复合物转移到陶瓷坩埚,置于管式炉中,在氮气或氩气保护下,700℃~1000℃碳化1~3 h;
(4)将所得碳材料浸泡在 0.5~3 M HCl溶液中5~24 h,过滤,80~120℃干燥,得多孔氮掺杂碳/碳纳米管复合材料。
本发明提供了上述多孔氮掺杂碳/碳纳米管复合材料在超级电容器中的应用。以该复合材料作为超级电容器的电极材料,在6 M KOH电解液中比电容为184~230 F g-1 (电流密度为1 A g-1);在电流密度5 A g-1下,经3000循环后,比电容保有率为90~98 %。
本发明的有益效果:
本发明的有益效果是:利用价格低廉的原料,一步法制备高比表面积氮掺杂碳/碳纳米管复合材料,比表面积达到500~923.21 m2g-1,比电容达到了184~230 F g-1 (电流密度为1 A g-1)。同时本发明工艺简单,成本低廉,适于工业运用。
附图说明
图 1 为实施例2氮掺杂碳/碳纳米管复合材料的XRD衍射图;
图 2 为实施例2氮掺杂碳/碳纳米管复合材料的N2吸附-脱附曲线图;
图 3 为实施例2氮掺杂碳/碳纳米管复合材料的扫描电镜照片;
图 4 为实施例2氮掺杂碳/碳纳米管复合材料的X射线荧光光谱图;
图 5为实施例2氮掺杂碳/碳纳米管复合材料的比电容-电流密度曲线图。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
称取2000份FeCl3·6H2O和300份甲基橙溶解160 份 H2O中,然后加入0.7份吡咯单体,反应24 h,过滤、洗涤和干燥,得到聚吡咯纳米管。称取900份 Zn(NO3)2·6H2O溶解于30份 H2O,加入150 份聚吡咯纳米管和100 份 PVP,超声分散30 min,得混合溶液A;称取2000份2-甲基咪唑溶解于30 份 H2O,然后将该溶液缓慢加入溶液A中,磁力搅拌2 h,过滤、洗涤和干燥,得到聚吡咯纳米管/ZIF-8;将聚吡咯纳米管/ZIF-8转移到陶瓷坩埚中,置于管式炉,在N2保护下,700℃碳化3 h;将所得碳材料浸泡在 1 M HCl溶液中10 h,过滤,得多孔氮掺杂碳/碳纳米管复合材料。该材料比表面积为527 m2g-1。经检测,以该复合材料作为超级电容器的电极材料,在6 M KOH电解液中比电容为184 F g-1 (电流密度为1 A g-1);在电流密度5 A g-1下,经3000循环后,比电容保有率为87%。
实施例2
称取2800份 FeCl3·6H2O和350份甲基橙溶解150份 H2O中,然后加入0.5份吡咯单体,反应12 h,过滤、洗剂和干燥,得到聚吡咯纳米管。称取800份 Zn(NO3)2·6H2O溶解于30份 H2O,加入100 份聚吡咯纳米管和100 份 PVP,超声分散60 min,得混合溶液A;称取2000份 2-甲基咪唑溶解于30 份 H2O,然后将该溶液缓慢加入溶液A中,磁力搅拌4 h,过滤、洗涤和干燥,得到聚吡咯纳米管/ZIF-8;将聚吡咯纳米管/ZIF-8转移到陶瓷坩埚中,置于管式炉,在N2保护下,800℃碳化2 h;将所得碳材料浸泡在 3 M HCl溶液中12 h,过滤,得多孔氮掺杂碳/碳纳米管复合材料。
SEM图表明该材料形成了多孔碳颗粒包裹碳纳米管的复合结构,XPS结果表明复合材料中含有大量氮元素。该材料的比表面积达到了789 m2g-1。经检测,以该复合材料作为超级电容器的电极材料,在6 M KOH电解液中比电容为205 F g-1 (电流密度为1 A g-1);在电流密度5 A g-1下,经3000循环后,比电容保有率为96%。
实施例3
称取3000份 FeCl3·6H2O和250份甲基橙溶解200 mL H2O中,然后加入1份吡咯单体,反应12 h,过滤、洗剂和干燥,得到聚吡咯纳米管。称取800份 Zn(NO3)2·6H2O溶解于00份 H2O,加入50 份聚吡咯纳米管和100 份PVP,超声分散30 min,得混合溶液A;称取2500份2-甲基咪唑溶解于30 份 H2O,然后将该溶液缓慢加入溶液A中,磁力搅拌12 h,过滤、洗剂和干燥,得到聚吡咯纳米管/ZIF-8;将聚吡咯纳米管/ZIF-8转移到陶瓷坩埚中,置于管式炉,在N2保护下,900℃碳化1 h;将所得碳材料浸泡在 2 M HCl溶液中24 h,过滤,得多孔氮掺杂碳/碳纳米管复合材料。
该材料比表面积为632 m2g-1。经检测,以该复合材料作为超级电容器的电极材料,在6 M KOH电解液中比电容为190 F g-1 (电流密度为1 A g-1);在电流密度5 A g-1下,经3000循环后,比电容保有率为98%。
实施例4
称取2500份 FeCl3·6H2O和400份甲基橙溶解160 份 H2O中,然后加入0.8份吡咯单体,反应24 h,过滤、洗剂和干燥,得到聚吡咯纳米管。称取1000份 Zn(NO3)2·6H2O溶解于30 份 H2O,加入100 份聚吡咯纳米管和200 mg PVP,超声分散60 min,得混合溶液A;称取2000份 2-甲基咪唑溶解于30 份 H2O,然后将该溶液缓慢加入溶液A中,磁力搅拌24 h,过滤、洗涤和干燥,得到聚吡咯纳米管/ZIF-8;将聚吡咯纳米管/ZIF-8转移到陶瓷坩埚中,置于管式炉,在N2保护下,1000℃碳化3 h;将所得碳材料浸泡在 1 M HCl溶液中10 h,过滤,得多孔氮掺杂碳/碳纳米管复合材料。该材料比表面积为536 m2g-1。经检测,以该复合材料作为超级电容器的电极材料,在6 M KOH电解液中比电容为223 F g-1 (电流密度为1 A g-1);在电流密度5 A g-1下,经3000循环后,比电容保有率为95%。
实施例5
称取2800份 FeCl3·6H2O和340份甲基橙溶解160份 H2O中,然后加入0.6份吡咯单体,反应24 h,过滤、洗剂和干燥,得到聚吡咯纳米管。称取700份 Zn(NO3)2·6H2O溶解于30份 H2O,加入150 份聚吡咯纳米管和100份 PVP,超声分散30 min,得混合溶液A;称取2000份 2-甲基咪唑溶解于30 份 H2O,然后将该溶液缓慢加入溶液A中,磁力搅拌2 h,过滤、洗涤和干燥,得到聚吡咯纳米管/ZIF-8;将聚吡咯纳米管/ZIF-8转移到陶瓷坩埚中,置于管式炉,在Ar保护下,800℃碳化2 h;将所得碳材料浸泡在 1 M HCl溶液中10 h,过滤,得多孔氮掺杂碳/碳纳米管复合材料。该材料比表面积为 923 m2g-1。经检测,以该复合材料作为超级电容器的电极材料,在6 M KOH电解液中比电容为230 F g-1 (电流密度为1 A g-1);在电流密度5 A g-1下,经3000循环后,比电容保有率为92%。

Claims (5)

1.一种多孔氮掺杂碳/碳纳米管复合材料,其特征在于:以聚吡咯纳米管为基体,原位生长一层多孔的金属有机框架材料,在氮气或氩气气氛下700~1000 oC碳化后,聚吡咯管转化为氮掺杂碳纳米管,而附着在聚吡咯管表面的金属有机框架材料转化成氮掺杂多孔碳颗粒,从而获得多孔氮掺杂碳/碳纳米管复合材料;所述金属有机框架材料是ZIF-8;
原料的质量配比为:
聚吡咯纳米管: 50~200份
聚乙烯吡咯烷酮:100~300份
硝酸锌:600~900份
2-甲基咪唑:1000~3000份;
所述的多孔氮掺杂碳/碳纳米管复合材料的制备方法,包括以下步骤:
(1)利用甲基橙、氯化铁和吡咯单体反应制备聚吡咯纳米管;
(2)将聚吡咯纳米管分散在去离子水中,聚乙烯吡咯烷酮为分散剂,加入硝酸锌,超声30~60 min,然后加入2-甲基咪唑,机械搅拌2~24 h,过滤、洗涤后,高温碳化分解,用稀盐酸除去杂质,获得多孔氮掺杂碳/碳纳米管复合材料。
2.根据权利要求1所述的多孔氮掺杂碳/碳纳米管复合材料,其特征在于:通过控制聚吡咯纳米管的加入量和反应时间,调控复合材料的比表面积和显微结构。
3.根据权利要求1所述的多孔氮掺杂碳/碳纳米管复合材料,其特征在于:制备方法包括以下步骤:
(1)称取200~400份甲基橙、2000~3000份氯化铁和0.5~1.5份吡咯,机械搅拌2~24 h,过滤、洗涤和干燥,制备得到聚吡咯纳米管;
(2)取50~200份聚吡咯纳米管分散在去离子水中,加入100~300份聚乙烯吡咯烷酮分散剂和600~900份硝酸锌超声30~60 min,然后加入1000~3000份2-甲基咪唑,反应2~24h,过滤、洗涤和干燥,得到聚吡咯纳米管/ZIF-8复合物;
(3)将聚吡咯纳米管/ZIF-8复合物转移到陶瓷坩埚,置于管式炉中,在氮气或氩气保护下,700~1000℃碳化1~3 h;
(4)将所得碳材料浸泡在 0.5~3 M HCl溶液中5~24 h,过滤,80~120℃干燥,得多孔氮掺杂碳/碳纳米管复合材料。
4.一种权利要求1所述的多孔氮掺杂碳/碳纳米管复合材料在超级电容器中的应用。
5.根据权利要求4所述的应用,其特征在于:以该复合材料作为超级电容器的电极材料,在电流密度为1 A g-1、6 M KOH电解液中比电容为184~230 F g-1;在电流密度5 A g-1下,经3000次循环后,比电容保有率为90~98%。
CN201711298777.0A 2017-12-08 2017-12-08 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用 Active CN108063056B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711298777.0A CN108063056B (zh) 2017-12-08 2017-12-08 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711298777.0A CN108063056B (zh) 2017-12-08 2017-12-08 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108063056A CN108063056A (zh) 2018-05-22
CN108063056B true CN108063056B (zh) 2019-11-08

Family

ID=62135485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711298777.0A Active CN108063056B (zh) 2017-12-08 2017-12-08 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108063056B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166682B (zh) * 2018-08-30 2020-04-28 深圳大学 一种磁性多孔碳材料及其制备方法
CN109216033B (zh) * 2018-09-04 2020-08-14 渤海大学 一种量子点敏化太阳能电池用对电极材料的制备方法
CN109486210B (zh) * 2018-11-01 2021-02-19 安阳师范学院 高分散石墨烯负载Zn基金属有机骨架复合材料的制备方法
CN109659158B (zh) * 2018-12-07 2021-08-13 武汉工程大学 一种氮掺杂碳纳米管/四氧化三钴复合气凝胶及其制备方法和应用
CN109675632A (zh) * 2018-12-28 2019-04-26 西安交通大学 一种碳基zif复合催化剂及其制备方法和在电催化还原二氧化碳反应中的应用
CN110400702A (zh) * 2019-04-15 2019-11-01 南京工业大学 一种超小的二氧化钛颗粒和碳的复合材料及其应用
CN110451615B (zh) * 2019-07-31 2020-10-30 河海大学 一种金属-有机框架碳纳米管杂化脱盐电极的制备方法
CN110571440B (zh) * 2019-08-14 2022-01-25 电子科技大学 一种FeN4-CNT氧还原催化剂的制备方法
CN111229284B (zh) * 2020-03-12 2022-07-12 中国科学院兰州化学物理研究所 一种铁酸镁-氮掺杂碳复合物催化剂的制备方法
CN111675208B (zh) * 2020-06-08 2023-02-03 齐鲁工业大学 一种硫-氮掺杂空心碳纳米管复合材料及其制备方法和应用
CN111646508B (zh) * 2020-06-08 2023-09-26 齐鲁工业大学 一种四硫化钒-氮掺杂碳管复合材料及其制备方法和应用
CN112165845A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种负载mof衍生碳的自支撑全碳电极的无毒制备方法
CN113083250A (zh) * 2021-03-16 2021-07-09 华南理工大学 一种处理罗丹明b废水的麦羟硅钠石/聚吡咯吸附材料及其制备方法与应用
CN114180620B (zh) * 2021-11-30 2023-07-28 陕西科技大学 一种聚吡咯为模板制备二氧化钛/碳负极的制备方法
CN115057430B (zh) * 2022-05-18 2024-02-20 河南师范大学 一种铁掺杂多孔碳纳米管电极材料的制备方法及其应用
CN115240989A (zh) * 2022-08-31 2022-10-25 亳州市亚珠新材料有限公司 具有超高比电容的碳基电极材料及其制备方法
CN116239180A (zh) * 2023-03-14 2023-06-09 河南工业大学 一种铁磁性多孔碳材料去除黄曲霉毒素b1的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449403A (zh) * 2013-08-26 2013-12-18 中国科学院上海硅酸盐研究所 氮掺杂多壁碳纳米管的制备方法
CN105314614A (zh) * 2014-06-04 2016-02-10 北京化工大学 一种氮掺杂多孔碳纳米管材料、制备方法及其在超级电容器电极的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9779883B2 (en) * 2011-09-07 2017-10-03 Nanotek Instruments, Inc. Partially surface-mediated lithium ion-exchanging cells and method for operating same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449403A (zh) * 2013-08-26 2013-12-18 中国科学院上海硅酸盐研究所 氮掺杂多壁碳纳米管的制备方法
CN105314614A (zh) * 2014-06-04 2016-02-10 北京化工大学 一种氮掺杂多孔碳纳米管材料、制备方法及其在超级电容器电极的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N-doped carbon nanotubes from functional tubular polypyrrole: A highly efficient electrocatalyst for oxygen reduction reaction;Qian Liu;《Electrochemistry Communications》;20130922;第36卷;文章第57-58页 *
ZIF-8 derived nitrogen-doped porous carbon/carbon nanotube composite for high performance supercapacitor;Li Wan;《Carbon》;20170605;第121卷;文章第330-331页 *

Also Published As

Publication number Publication date
CN108063056A (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
CN108063056B (zh) 多孔氮掺杂碳/碳纳米管复合材料及其制备方法和应用
Zhang et al. Metal–organic framework-assisted synthesis of compact Fe 2 O 3 nanotubes in Co 3 O 4 host with enhanced lithium storage properties
Dahal et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors
Zhu et al. Ultrathin‐nanosheet‐induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes
Han et al. Rationally designed carbon-coated Fe 3 O 4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries
Zhou et al. Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors
Zhao et al. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance electrochemical capacitors
Lo et al. Synthesis of Ni (OH) 2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors
Yu et al. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V2CTx MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor
Sarkar et al. Novel hydrothermal synthesis of CoS2/MWCNT nanohybrid electrode for supercapacitor: a systematic investigation on the influence of MWCNT
Shen et al. Recent progress in binder‐free electrodes synthesis for electrochemical energy storage application
Mateen et al. Metal-organic framework-derived walnut-like hierarchical Co-O-nanosheets as an advanced binder-free electrode material for flexible supercapacitor
Du et al. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery
Vadiyar et al. Highly porous silver dendrites on carbon nanotube wrapped copper cobaltite nano-flowers for boosting energy density and cycle stability of asymmetric supercapattery
Jia et al. Synthesis of porous Co3O4/Reduced graphene oxide by a two-step method for supercapacitors with excellent electrochemical performance
Jia et al. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes
CN106783201B (zh) 一种硫化钼/三氧化二铁复合材料及其制备方法和应用
Gan et al. Zeolitic imidazolate framework-8-derived N-doped porous carbon coated olive-shaped FeOx nanoparticles for lithium storage
Li et al. Coral-like CoMoO4 hierarchical structure uniformly encapsulated by graphene-like N-doped carbon network as an anode for high-performance lithium-ion batteries
Liu et al. Enhanced diffusion kinetics of Li ions in double-shell hollow carbon fibers
Yuan et al. Controllable synthesis of layered Co–Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors
Pallavolu et al. A novel hybridized needle-like Co3O4/N-CNO composite for superior energy storage asymmetric supercapacitors
Yao et al. Synthesis and electrochemical properties of α-Fe2O3 porous microrods as anode for lithium-ion batteries
Zhang et al. NiCo-MOF directed NiCoP and coconut shell derived porous carbon as high-performance supercapacitor electrodes
Tamang et al. Morphology controlling of manganese-cobalt-sulfide nanoflake arrays using polyvinylpyrrolidone capping agent to enhance the performance of hybrid supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant