WO2022190964A1 - 感放射線性樹脂組成物及びパターン形成方法 - Google Patents

感放射線性樹脂組成物及びパターン形成方法 Download PDF

Info

Publication number
WO2022190964A1
WO2022190964A1 PCT/JP2022/008604 JP2022008604W WO2022190964A1 WO 2022190964 A1 WO2022190964 A1 WO 2022190964A1 JP 2022008604 W JP2022008604 W JP 2022008604W WO 2022190964 A1 WO2022190964 A1 WO 2022190964A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
radiation
formula
acid
Prior art date
Application number
PCT/JP2022/008604
Other languages
English (en)
French (fr)
Inventor
龍一 根本
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2023505326A priority Critical patent/JPWO2022190964A1/ja
Publication of WO2022190964A1 publication Critical patent/WO2022190964A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a pattern forming method.
  • Photolithography technology that uses resist compositions is used to form fine circuits in semiconductor devices.
  • an acid is generated by exposing the film of the resist composition to radiation through a mask pattern, and the acid is used as a catalyst to react with the resin in the exposed area and the unexposed area.
  • a resist pattern is formed on a substrate by creating a difference in solubility in an organic developer.
  • Patent Document 1 an acid generator having an acid-dissociable group in its anionic structure has been studied.
  • LWR Line Width Roughness
  • CDU Critical Dimension Uniformity
  • An object of the present invention is to provide a radiation-sensitive resin composition and a pattern forming method capable of forming a resist film capable of exhibiting sufficient levels of sensitivity, LWR performance, CDU performance, and pattern rectangularity.
  • R 1 is a fluorine atom or a monovalent fluorinated hydrocarbon group having 1 to 10 carbon atoms.
  • R 2 , R 3 and R 4 are each independently a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 10 carbon atoms or a monovalent fluorinated hydrocarbon group having 1 to 10 carbon atoms.
  • m is an integer of 0 to 7, and when m is 2 or more, a plurality of R 3 and R 4 are the same or different.
  • a 1 is a single bond or a divalent cyclic organic group having 3 to 30 ring members.
  • a 2 is a divalent chain hydrocarbon group having 1 to 10 carbon atoms or a divalent cyclic organic group having 3 to 30 ring members.
  • L is a divalent linkage selected from -O-, -CO-, -COO-, -OCO-, -O-CO-O-, -S-, -SO 2 -, -CONH- and -NHCO- is the base.
  • n is an integer of 0 to 2, and when n is 2 , a plurality of A2's and L's are the same or different.
  • R 5 is an acid dissociable group represented by formula (1-1) or formula (1-2) below.
  • Z + is a monovalent radiation-sensitive onium cation.
  • R 1A is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 1B and R 1C each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms. It is a hydrocarbon group, or represents a divalent cyclic organic group having 3 to 20 ring members formed by combining these groups together with the carbon atoms to which they are bonded.
  • * represents R in the above formula (1) The site that binds to the oxygen atom adjacent to 5 is shown.
  • Y is -O- or -S-.
  • R 2A is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 2B is a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 2A and R 2B are It represents a divalent cyclic organic group having 4 to 20 ring members which is composed together with the atomic chain to which they are combined. * indicates a site that binds to an oxygen atom adjacent to R5 in the above formula ( 1 ).
  • the van der Waals volume change rate of the anion structure of the onium salt compound represented by the above formula (1) before and after the cleavage of the acid dissociable group represented by the following formula (i) is 32. % or more and 67% or less. (W1-W2)/(W1) x 100 (%) (i) (In the above formula (i), W1 represents the van der Waals volume of the anion structure of the onium salt compound represented by the above formula (1), and W2 is the anion by the acid generated by the irradiation of actinic rays or radiation. represents the van der Waals volume of the structure after the acid-labile group of the structure is cleaved.)
  • the radiation-sensitive resin composition is an onium salt compound represented by the above formula (1) as a radiation-sensitive acid generator and satisfying the above conditions (i) and (ii) (hereinafter also referred to as "compound (1)" ), excellent sensitivity, LWR performance, CDU performance, and pattern rectangularity can be exhibited in forming a resist pattern.
  • compound (1) an onium salt compound represented by the above formula (1) as a radiation-sensitive acid generator and satisfying the above conditions (i) and (ii) (hereinafter also referred to as "compound (1)” ), excellent sensitivity, LWR performance, CDU performance, and pattern rectangularity can be exhibited in forming a resist pattern.
  • An onium salt compound having an acid-dissociable group in its anion structure acts as a radiation-sensitive photoacid generator, and in exposed areas, the acid-dissociable group is cleaved to improve solubility in an alkaline developer, resulting in sensitivity, LWR, The CDU performance is improved, and since the acid dissociable group does not change in the unexposed area, the hydrophobicity is maintained to prevent unnecessary elution, thereby improving the pattern rectangularity. If the van der Waals volume change before and after the cleavage of the acid-labile group is too large, the acid diffusion length of the deprotected product will vary greatly, possibly deteriorating the LWR and CDU performance.
  • the radiation-sensitive resin composition has a photodegradable base, the difference in solubility between the exposed area and the unexposed area of compound (1) becomes more pronounced. It becomes possible to form a resist film having even better properties.
  • the step of directly or indirectly applying the radiation-sensitive resin composition onto a substrate to form a resist film the step of directly or indirectly applying the radiation-sensitive resin composition onto a substrate to form a resist film; exposing the resist film; and developing the exposed resist film with a developer.
  • the pattern forming method uses the radiation-sensitive resin composition capable of forming a resist film having excellent sensitivity, LWR performance, CDU performance, and pattern rectangularity, it is possible to efficiently form a high-quality resist pattern. can be done.
  • the radiation-sensitive resin composition (hereinafter also simply referred to as "composition") according to the present embodiment contains compound (1), a resin containing a structural unit having an acid-labile group, a photodegradable base, and a solvent. .
  • the above composition may contain other optional components as long as they do not impair the effects of the present invention.
  • the radiation-sensitive resin composition contains the compound (1) as a radiation-sensitive acid generator and further contains a photodegradable base, so that the resist film of the radiation-sensitive resin composition has a high level of sensitivity, LWR Performance, CDU performance, and pattern rectangularity can be given.
  • Compound (1) is an onium salt compound represented by the above formula (1) and satisfying the following conditions (i) and (ii), and functions as a radiation-sensitive acid generator that generates an acid upon exposure to radiation.
  • the composition may contain one type of compound (1), or may contain multiple types of compound (1).
  • Examples of monovalent fluorinated hydrocarbon groups having 1 to 10 carbon atoms represented by R 1 , R 2 , R 3 and R 4 include monovalent fluorinated linear hydrocarbon groups having 1 to 10 carbon atoms, Examples thereof include monovalent fluorinated alicyclic hydrocarbon groups having 3 to 10 carbon atoms.
  • Examples of the monovalent fluorinated chain hydrocarbon group having 1 to 10 carbon atoms include trifluoromethyl group, 2,2,2-trifluoroethyl group, pentafluoroethyl group, 2,2,3,3, 3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoropropyl group, heptafluoro n-propyl group, heptafluoro i-propyl group, nonafluoro n-butyl group, nonafluoro i-butyl group, nonafluoro t-butyl group, 2,2,3,3,4,4,5,5-octafluoro n-pentyl group, tridecafluoro n-hexyl group, 5,5,5-trifluoro-1,1- a fluorinated alkyl group such as a diethylpentyl group; fluorinated alkenyl groups such as a trifluoroetheny
  • Examples of the monovalent fluorinated alicyclic hydrocarbon group having 3 to 10 carbon atoms include a fluorocyclopentyl group, a difluorocyclopentyl group, a nonafluorocyclopentyl group, a fluorocyclohexyl group, a difluorocyclohexyl group, an undecafluorocyclohexylmethyl group, fluorinated cycloalkyl groups such as a fluoronorbornyl group, a fluoroadamantyl group, a fluorobornyl group, a fluoroisobornyl group, and a fluorotricyclodecyl group; and fluorinated cycloalkenyl groups such as a fluorocyclopentenyl group and a nonafluorocyclohexenyl group.
  • the fluorinated hydrocarbon group is preferably a monovalent fluorinated chain hydrocarbon group having 1 to 8 carbon atoms, more preferably a monovalent fluorinated chain hydrocarbon group having 1 to 4 carbon atoms.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 2 , R 3 and R 4 includes, for example, a monovalent chain hydrocarbon group having 1 to 10 carbon atoms, 1 of 3 to 10 carbon atoms, alicyclic hydrocarbon groups, monovalent aromatic hydrocarbon groups having 6 to 10 carbon atoms, and the like.
  • R 1 is preferably a fluorine atom from the viewpoint of the acidity of the generated acid
  • R 2 is preferably a fluorine atom, a trifluoromethyl group or a hydrogen atom
  • R 3 and R 4 are each independently preferably a hydrogen atom, a fluorine atom or a trifluoromethyl group.
  • m is preferably 0 to 8, more preferably 0 to 2, and particularly preferably 0 or 1.
  • the divalent cyclic organic group having 3 to 20 ring members represented by A 1 and A 2 is not particularly limited as long as it is a group obtained by removing two hydrogen atoms from a cyclic structure having the above number of ring members.
  • the cyclic structure include an alicyclic structure having 3 to 20 carbon atoms, an aromatic ring structure having 6 to 20 carbon atoms, a cyclic ether structure having 3 to 20 ring members, a lactone structure, a cyclic carbonate structure, a sultone structure, a thioxane structure, and the like.
  • cyclic structures may be substituted with monovalent organic groups such as alkoxy groups and alkoxycarbonyl groups, halogen atoms, hydroxy groups, cyano groups and the like.
  • organic group is a group having at least one carbon atom.
  • Examples of the alicyclic structure having 3 to 20 carbon atoms include an alicyclic monocyclic structure having 3 to 20 carbon atoms and an alicyclic polycyclic structure having 6 to 20 carbon atoms.
  • the alicyclic monocyclic structure having 3 to 20 carbon atoms and the alicyclic polycyclic structure having 6 to 20 carbon atoms may be either a saturated hydrocarbon structure or an unsaturated hydrocarbon structure.
  • the alicyclic polycyclic structure may be either a bridged alicyclic hydrocarbon structure or a condensed alicyclic hydrocarbon structure.
  • the bridged alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic ring are linked by a bond chain containing one or more carbon atoms.
  • a condensed alicyclic hydrocarbon structure refers to a polycyclic alicyclic hydrocarbon structure in which a plurality of alicyclic rings share a side (a bond between two adjacent carbon atoms).
  • preferred saturated hydrocarbon structures include cyclopentane, cyclohexane, cycloheptane, and cyclooctane
  • preferred unsaturated hydrocarbon structures include cyclopentene, cyclohexene, cycloheptene, cyclooctene, and cyclodecene
  • the alicyclic polycyclic structure is preferably a bridged alicyclic saturated hydrocarbon structure, such as bicyclo[2.2.1]heptane (norbornane), bicyclo[2.2.2]octane, tricyclo[3.3 .1.1 3,7 ]decane (adamantane) and the like are preferred.
  • Examples of the aromatic ring structure having 6 to 20 carbon atoms include benzene, naphthalene, anthracene, indene, and fluorene.
  • the divalent chain hydrocarbon group having 1 to 10 carbon atoms represented by A 2 includes a linear or branched saturated hydrocarbon group, or a linear or branched unsaturated hydrocarbon group.
  • a 1 is preferably a single bond
  • a 2 is preferably a methylene group, an adamantanediyl group, a phenylene group, a fluorophenylene group, or the like.
  • n is preferably 0 or 1.
  • R 5 is a group represented by the above formula (1-1) or a group represented by the above formula (1-2), and is an acid dissociable group.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms in R 1A , R 1B and R 1C in the above formula (1-1) and R 2A and R 2B in the above formula (1-2) examples include monovalent chain hydrocarbon groups of 1 to 20, monovalent alicyclic hydrocarbon groups of 3 to 20 carbon atoms, and monovalent aromatic hydrocarbon groups of 6 to 20 carbon atoms.
  • the bivalent cyclic organic group having 3 to 20 ring members composed of R 1B and R 1C together with the carbon atom to which they are bonded is represented by A 1 and A 2 and the groups exemplified as the divalent cyclic organic groups having 3 to 20 carbon atoms.
  • the divalent cyclic organic group having 4 to 20 ring members formed by combining R 2A and R 2B together with the atomic chain to which they are bonded includes a cyclic ether structure and a cyclic thioether structure. , a group obtained by removing two hydrogen atoms from a cyclic structure such as a thioxane structure.
  • R 1A and * are the same as in formula (1-1) above.
  • R 1B is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 1C1 is a Represents a linear or branched hydrocarbon group, wherein R 1D is a hydrogen atom, a halogen atom, a hydroxy group, a cyano group, a hydrocarbon group having 1 to 10 carbon atoms, or the following formula (1-A) or represents a group represented by formula (1-B), p1 represents an integer of 0 to 5, and p2 represents an integer of 0 to 5.
  • L 1 is -O-, -CO-, -COO-, -OCO-, -O-CO-O-, -S-, -SO 2 -, -CONH- and -NHCO-
  • R 1E is a hydrocarbon group having 1 to 10 carbon atoms, a fluorinated hydrocarbon group having 1 to 10 carbon atoms, a lactone group, a sultone group, or a cyclic carbonate is the base.
  • Y 1 and Y 2 are each independently -O- or -S-.
  • R 1F is a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 1G is a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • R 1F and R 1G are It represents a divalent cyclic organic group having 4 to 20 ring members which is composed together with the atomic chain to which they are combined. ** indicates a site that binds to the cyclic structure of the above formulas (1-1-1) to (1-1-7).
  • R 2A is the same as the above formula (1-2).
  • the monovalent radiation-sensitive onium cation represented by Z + includes, for example, S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb , Te, and Bi, and examples thereof include sulfonium cations, tetrahydrothiophenium cations, iodonium cations, phosphonium cations, diazonium cations, and pyridinium cations. Among them, a sulfonium cation or an iodonium cation is preferred. Sulfonium cations or iodonium cations are preferably represented by the following formulas (X-1) to (X-6).
  • R a1 , R a2 and R a3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, alkoxy group or alkoxycarbonyl oxy group, substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 12 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, hydroxy group, halogen atom, —OSO 2 —R P , —SO 2 —R Q or —S—R T , or represents a ring structure composed of two or more of these groups combined together.
  • the ring structure may contain a heteroatom such as O or S between the carbon-carbon bonds forming the skeleton.
  • R P , R Q and R T are each independently a substituted or unsubstituted linear or branched C 1-12 alkyl group, a substituted or unsubstituted C 5-25 alicyclic It is a hydrocarbon group or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • k1, k2 and k3 are each independently an integer from 0 to 5; When R a1 to R a3 and R P , R Q and R T are each plural, R a1 to R a3 and R P , R Q and R T may be the same or different.
  • R b1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
  • nk is 0 or 1; When nk is 0, k4 is an integer of 0-4, and when nk is 1, k4 is an integer of 0-7.
  • R b1 When there are a plurality of R b1 , the plurality of R b1 may be the same or different, and the plurality of R b1 may represent a ring structure formed by being combined with each other.
  • R b2 is a substituted or unsubstituted C 1-7 linear or branched alkyl group or a substituted or unsubstituted C 6 or 7 aromatic hydrocarbon group.
  • LC is a single bond or a divalent linking group.
  • k5 is an integer from 0 to 4;
  • the plurality of Rb2 's may be the same or different, and the plurality of Rb2 's may represent a ring structure formed by being combined with each other.
  • q is an integer from 0 to 3;
  • the ring structure containing S + may contain a heteroatom such as O or S between the carbon-carbon bonds forming the skeleton.
  • R c1 , R c2 and R c3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group.
  • R g1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
  • nk is 0 or 1; When nk2 is 0, k10 is an integer of 0-4, and when nk2 is 1, k10 is an integer of 0-7.
  • R g1 When there are a plurality of R g1 , the plurality of R g1 may be the same or different, and the plurality of R g1 may represent a ring structure formed by being combined with each other.
  • R g2 and R g3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, an alkoxy group or an alkoxycarbonyloxy group, a substituted or unsubstituted C 3 -12 monocyclic or polycyclic cycloalkyl groups, substituted or unsubstituted C6-12 aromatic hydrocarbon groups, hydroxy groups, halogen atoms, or these groups combined together Represents a ring structure.
  • k11 and k12 are each independently an integer of 0-4. When each of R g2 and R g3 is plural, the plural R g2 and R g3 may be the same or different.
  • R d1 and R d2 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, alkoxy group or alkoxycarbonyl group, substituted or an unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, a halogen atom, a halogenated alkyl group having 1 to 4 carbon atoms, a nitro group, or two or more of these groups combined with each other Represents the ring structure that is composed.
  • k6 and k7 are each independently an integer from 0 to 5; When each of R d1 and R d2 is plural, the plural R d1 and R d2 may be the same or different.
  • R e1 and R e2 are each independently a halogen atom, a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted is an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • k8 and k9 are each independently an integer of 0-4.
  • radiation-sensitive onium cations include, but are not limited to, the structures of the following formulas.
  • the lower limit of the van der Waals volume change rate of the anion structure in the structure before and after the cleavage of the acid dissociable group represented by the above formula (i) is 32%, preferably 38%, More preferably 40%, particularly preferably 45%.
  • the upper limit of the rate of change is 67%, preferably 65%, more preferably 62%, and particularly preferably 60%.
  • the anion structure of compound (1) and the van der Waals volume of the structure after the acid dissociable group of the anion structure is cleaved by the acid generated by irradiation with actinic rays or radiation are obtained by calculation, respectively. Specifically, it is calculated using RDKit, an open source chemoinformatics software.
  • Compound (1) has a change in ClogP value (absolute value of difference in ClogP value) of 3.00 or less in the structure before and after cleavage of the acid-labile group represented by the above formula (ii), preferably 2. It is 50 or less, more preferably 2.00 or less.
  • the change in ClogP value is small, the solubility variation during development is small, and a radiation-sensitive resin composition with sufficiently small LWR and CDU can be obtained.
  • the ClogP value is obtained by calculation, and specifically, it is calculated using Chemdraw (manufactured by CambridgeSoft, Ver. 12).
  • the compound (1) include onium salt compounds represented by the following formulas (B-1) to (B-22) (hereinafter, represented by the following formulas (B-1) to (B-22) onium salt compounds are also referred to as “compounds (B-1) to (B-22)”).
  • the lower limit of the content of the compound (1) (the total thereof when multiple types of compounds (1) are included) is preferably 0.02 parts by mass, more preferably 0.1 parts by mass, with respect to 100 parts by mass of the resin described later. It is preferably 1 part by mass, more preferably 5 parts by mass.
  • the upper limit of the content is preferably 50 parts by mass, more preferably 40 parts by mass or less, and even more preferably 30 parts by mass or less.
  • the content of compound (1) is appropriately selected according to the type of resin used, exposure conditions, required sensitivity, and the like. As a result, excellent sensitivity, LWR performance, CDU performance, and pattern rectangularity can be exhibited when forming a resist pattern.
  • the resin is an assembly of polymers having a structural unit containing an acid-labile group (hereinafter also referred to as “structural unit (I)”) (hereinafter also referred to as “base resin”).
  • structural unit (I) an acid-labile group
  • base resin base resin
  • the term “acid-dissociable group” refers to a group that substitutes a hydrogen atom of a carboxy group, a phenolic hydroxyl group, an alcoholic hydroxyl group, a sulfo group, or the like, and is dissociated by the action of an acid.
  • the radiation-sensitive resin composition has excellent pattern formability because the resin has the structural unit (I).
  • the base resin preferably has a structural unit (II) containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure, which will be described later. ) and (II) may have other structural units. Each structural unit will be described below.
  • Structural unit (I) is a structural unit containing an acid-labile group.
  • the structural unit (I) is not particularly limited as long as it contains an acid-dissociable group.
  • a structural unit having a tertiary alkyl ester moiety a structure in which a hydrogen atom of a phenolic hydroxyl group is substituted with a tertiary alkyl group and a structural unit having an acetal bond.
  • a structural unit represented by the following formula (2) hereinafter referred to as "structure Unit (I-1)
  • structure Unit (I-1) is preferred.
  • R6 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 7 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 8 and R 9 are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or R 8 and R 9 is a divalent alicyclic group having 3 to 20 carbon atoms combined with each other and composed together with the carbon atoms to which they are attached.
  • R 6 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that gives the structural unit (I-1).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 7 include a chain hydrocarbon group having 1 to 10 carbon atoms and a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. groups, monovalent aromatic hydrocarbon groups having 6 to 20 carbon atoms, and the like.
  • the chain hydrocarbon group having 1 to 10 carbon atoms represented by R 7 to R 9 includes a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms, or a linear or branched hydrocarbon group having 1 to 10 carbon atoms.
  • a branched chain unsaturated hydrocarbon group is mentioned.
  • the structures shown as the alicyclic structures having 3 to 20 carbon atoms in A 1 and A 2 in the above formula (1) A group obtained by removing one hydrogen atom from is preferably employed.
  • the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 7 can be selected from the structures shown as the aromatic ring structures having 6 to 20 carbon atoms in A 1 and A 2 in the above formula (1).
  • a group having one hydrogen atom removed can be preferably employed.
  • R 7 above is preferably a linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms or an alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the divalent alicyclic group having 3 to 20 carbon atoms in which the above R 8 and R 9 are combined together and formed together with the carbon atoms to which they are bonded is the monocyclic or polycyclic alicyclic hydrocarbon having the above carbon number. is not particularly limited as long as it is a group obtained by removing two hydrogen atoms from the same carbon atoms constituting the carbocyclic ring of .
  • Either a monocyclic hydrocarbon group or a polycyclic hydrocarbon group may be used, and the polycyclic hydrocarbon group may be either a bridged alicyclic hydrocarbon group or a condensed alicyclic hydrocarbon group. It may be either a hydrogen group or an unsaturated hydrocarbon group.
  • the condensed alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which a plurality of alicyclic rings share a side (a bond between two adjacent carbon atoms).
  • the saturated hydrocarbon group is preferably a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group, a cyclooctanediyl group, or the like
  • the unsaturated hydrocarbon group is a cyclopentenediyl group.
  • cyclohexenediyl group, cycloheptenediyl group, cyclooctenediyl group, cyclodecenediyl group and the like are preferable.
  • the polycyclic alicyclic hydrocarbon group is preferably a bridged alicyclic saturated hydrocarbon group, such as a bicyclo[2.2.1]heptane-2,2-diyl group (norbornane-2,2-diyl group ), bicyclo[2.2.2]octane-2,2-diyl group, tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group (adamantane-2,2-diyl group) etc. are preferred.
  • a bridged alicyclic saturated hydrocarbon group such as a bicyclo[2.2.1]heptane-2,2-diyl group (norbornane-2,2-diyl group ), bicyclo[2.2.2]octane-2,2-diyl group, tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group (adamantane-2,2-diyl group) etc.
  • R 7 is an alkyl group having 1 to 4 carbon atoms
  • R 8 and R 9 are combined with each other and the alicyclic structure composed together with the carbon atom to which they are attached is a polycyclic or monocyclic cycloalkane.
  • a structure is preferred.
  • structural unit (I-1) for example, structural units represented by the following formulas (2-1) to (2-6) (hereinafter referred to as “structural units (I-1-1) to (I-1- 6)”) and the like.
  • R 6 to R 9 have the same meanings as in formula (2) above.
  • i and j are each independently an integer of 1 to 4;
  • k and l are 0 or 1;
  • R7 is preferably a methyl group, an ethyl group or an isopropyl group.
  • R 8 and R 9 are preferably a methyl group or an ethyl group.
  • the base resin may contain one or a combination of two or more structural units (I).
  • the content ratio of the structural unit (I) (the total content ratio when multiple types are included) is preferably 10 mol% or more, more preferably 20 mol% or more, and 30 mol of the total structural units constituting the base resin. % or more is more preferable, and 35 mol % or more is particularly preferable. Also, it is preferably 80 mol % or less, more preferably 75 mol % or less, even more preferably 70 mol % or less, and particularly preferably 65 mol % or less.
  • Structural unit (II) is a structural unit containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure.
  • the base resin can adjust the solubility in the developer, and as a result, the radiation-sensitive resin composition improves lithography performance such as resolution. be able to.
  • the adhesion between the resist pattern formed from the base resin and the substrate can be improved.
  • Structural units (II) include, for example, structural units represented by the following formulas (3-1) to (3-10).
  • R L1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R L2 to R L5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cyano group, a trifluoromethyl group, a methoxy group, a methoxycarbonyl group, a hydroxy group, a hydroxymethyl group, or a dimethylamino group; be.
  • R L4 and R L5 may be a divalent alicyclic group having 3 to 8 carbon atoms combined with each other and composed together with the carbon atoms to which they are attached.
  • L2 is a single bond or a divalent linking group.
  • X is an oxygen atom or a methylene group.
  • p is an integer from 0 to 3; q is an integer of 1-3.
  • the divalent alicyclic group having 3 to 8 carbon atoms formed by combining the above R L4 and R L5 together with the carbon atoms to which they are bonded is represented by R 8 and R 9 in the above formula (2).
  • One or more hydrogen atoms on this alicyclic group may be replaced with a hydroxy group.
  • Examples of the divalent linking group represented by L 2 include a divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms, and a divalent alicyclic carbonized group having 4 to 12 carbon atoms.
  • a hydrogen group, or a group composed of one or more of these hydrocarbon groups and at least one group selected from -CO-, -O-, -NH- and -S- may be mentioned.
  • a structural unit containing a lactone structure is preferable, a structural unit containing a norbornanelactone structure is more preferable, and a structural unit derived from norbornanelactone-yl (meth)acrylate is even more preferable.
  • the content of the structural unit (II) is preferably 20 mol% or more, more preferably 30 mol% or more, and even more preferably 35 mol% or more, relative to the total structural units constituting the base resin. Also, it is preferably 75 mol % or less, more preferably 70 mol % or less, and even more preferably 65 mol % or less.
  • the radiation-sensitive resin composition can further improve the lithography performance such as resolution and the adhesion of the formed resist pattern to the substrate. .
  • the base resin optionally has other structural units in addition to the structural units (I) and (II).
  • Examples of other structural units above include structural units (III) containing a polar group (excluding structural units (II)).
  • the base resin can adjust the solubility in the developer, and as a result, the lithography performance such as the resolution of the radiation-sensitive resin composition can be improved. can be done.
  • the polar group include a hydroxy group, a carboxyl group, a cyano group, a nitro group, a sulfonamide group and the like. Among these, a hydroxy group and a carboxy group are preferred, and a hydroxy group is more preferred.
  • Structural units (III) include, for example, structural units represented by the following formula.
  • RA is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the content of the structural unit (III) is preferably 5 mol% or more, and 8 mol, based on the total structural units constituting the base resin. % or more is more preferable, and 10 mol % or more is even more preferable. Also, it is preferably 40 mol % or less, more preferably 35 mol % or less, and even more preferably 30 mol % or less.
  • Structural unit (IV) In the base resin, as other structural units, in addition to the structural unit (III) having a polar group, a structural unit derived from hydroxystyrene or a structural unit having a phenolic hydroxyl group (hereinafter both are collectively referred to as "structural unit (IV )”). Structural unit (IV) contributes to improvement of etching resistance and improvement of developer solubility difference (dissolution contrast) between exposed and unexposed areas. In particular, it can be suitably applied to pattern formation using exposure to radiation with a wavelength of 50 nm or less, such as electron beams and EUV. In this case, the resin preferably has the structural unit (I) together with the structural unit (IV).
  • the phenolic hydroxyl group is protected by a protective group such as an alkali-dissociable group, and then polymerized, followed by hydrolysis and deprotection to obtain the structural unit (IV).
  • a protective group such as an alkali-dissociable group
  • the structural unit that gives the structural unit (IV) by hydrolysis is preferably represented by the following formulas (4-1) and (4-2).
  • R 11 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 12 is a monovalent hydrocarbon group having 1 to 20 carbon atoms or an alkoxy group. Examples of monovalent hydrocarbon groups having 1 to 20 carbon atoms for R 12 include monovalent hydrocarbon groups having 1 to 20 carbon atoms for R 8 in structural unit (I). Alkoxy groups include, for example, methoxy, ethoxy and tert-butoxy groups.
  • R 12 above is preferably an alkyl group or an alkoxy group, more preferably a methyl group or a tert-butoxy group.
  • the content of the structural unit (IV) is preferably 10 mol% or more, more preferably 20 mol% or more, relative to the total structural units constituting the resin. Moreover, 70 mol% or less is preferable, and 60 mol% or less is more preferable.
  • the base resin can be synthesized, for example, by polymerizing monomers that give each structural unit using a radical polymerization initiator or the like in an appropriate solvent.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2-cyclopropylpropyl pionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2'-azobis isobutyrate; benzoyl peroxide, t-butyl hydroperoxide, Examples include peroxide-based radical initiators such as cumene hydroperoxide. Among these, AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred. These radical initiators can be used individually by 1 type or in mixture of 2 or more types.
  • Solvents used in the above polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; Cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin, norbornane; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene and cumene; Halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; saturated carboxylic acid esters such as ethyl acetate, n-butyl acetate, i-butyl acetate and methyl propionate; Ketones such as acetone, methyl ethyl ketone, 4-methyl
  • the reaction temperature in the above polymerization is usually 40°C to 150°C, preferably 50°C to 120°C.
  • the reaction time is generally 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the molecular weight of the base resin is not particularly limited, but the lower limit of the polystyrene equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) is preferably 1,000, more preferably 2,000, and more preferably 3,000. Preferably, 4,000 is particularly preferred.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, still more preferably 15,000, and particularly preferably 12,000. If the Mw of the base resin is less than the above lower limit, the resulting resist film may have reduced heat resistance. When the Mw of the base resin exceeds the above upper limit, the developability of the resist film may deteriorate.
  • the ratio (Mw/Mn) of Mw to the polystyrene equivalent number average molecular weight (Mn) of the base resin measured by GPC is usually 1 or more and 5 or less, preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
  • the Mw and Mn of the resin herein are values measured using gel permeation chromatography (GPC) under the following conditions.
  • the content of the base resin is preferably 70% by mass or more, more preferably 80% by mass or more, and even more preferably 85% by mass or more, relative to the total solid content of the radiation-sensitive resin composition.
  • the radiation-sensitive resin composition of the present embodiment may contain, as another resin, a resin having a higher mass content of fluorine atoms than the base resin (hereinafter also referred to as "high fluorine content resin"). good.
  • high fluorine content resin a resin having a higher mass content of fluorine atoms than the base resin.
  • structural unit (V) As the high fluorine content resin, for example, it is preferable to have a structural unit represented by the following formula (5) (hereinafter also referred to as “structural unit (V)”), and if necessary, the structural unit in the base resin It may have (I) or structural unit (III).
  • R 13 is a hydrogen atom, a methyl group or a trifluoromethyl group.
  • G L is a single bond, an oxygen atom, a sulfur atom, -COO-, -SO 2 ONH-, -CONH- or -OCONH-.
  • R 14 is a monovalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms or a monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • R 13 is preferably a hydrogen atom and a methyl group, more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that provides the structural unit (V).
  • GL is preferably a single bond or -COO-, more preferably -COO-, from the viewpoint of copolymerizability of the monomer providing the structural unit (V).
  • R 14 As the monovalent fluorinated chain hydrocarbon group having 1 to 20 carbon atoms represented by R 14 , some or all of the hydrogen atoms possessed by a linear or branched alkyl group having 1 to 20 carbon atoms are fluorine Those substituted by atoms are included.
  • the monovalent fluorinated alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 14 includes a part of the hydrogen atoms of a monocyclic or polycyclic hydrocarbon group having 3 to 20 carbon atoms, or Those completely substituted with fluorine atoms are included.
  • R 14 above is preferably a fluorinated chain hydrocarbon group, more preferably a fluorinated alkyl group, 2,2,2-trifluoroethyl group, 1,1,1,3,3,3-hexafluoropropyl and 5,5,5-trifluoro-1,1-diethylpentyl groups are more preferred.
  • the content of the structural unit (V) is preferably 30 mol% or more, preferably 40 mol%, based on the total structural units constituting the high fluorine content resin. 45 mol % or more is more preferable, and 50 mol % or more is particularly preferable. Also, it is preferably 95 mol % or less, more preferably 90 mol % or less, and even more preferably 85 mol % or less.
  • the high fluorine content resin has a fluorine atom-containing structural unit (hereinafter also referred to as structural unit (VI)) represented by the following formula (f-2) together with or in place of the structural unit (V). ). Since the high fluorine content resin has the structural unit (f-2), the solubility in an alkaline developer is improved, and the occurrence of development defects can be suppressed.
  • structural unit (VI) fluorine atom-containing structural unit represented by the following formula (f-2)
  • Structural unit (VI) has (x) an alkali-soluble group and (y) a group that dissociates under the action of an alkali to increase solubility in an alkali developing solution (hereinafter also simply referred to as an "alkali-dissociable group"). ) is roughly divided into two cases. Common to both (x) and (y), in the above formula (f-2), R 1 C is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R D is a single bond, a (s+1) -valent hydrocarbon group having 1 to 20 carbon atoms, an oxygen atom, a sulfur atom, -NR dd -, a carbonyl group, -COO- or It is a structure in which -CONH- is bonded, or a structure in which some of the hydrogen atoms of this hydrocarbon group are replaced with an organic group having a heteroatom.
  • R dd is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. s is an integer from 1 to 3;
  • R F is a hydrogen atom and A 1 is an oxygen atom, —COO-* or —SO 2 O-*. * indicates the site that binds to RF.
  • W 1 is a single bond, a hydrocarbon group having 1 to 20 carbon atoms or a divalent fluorinated hydrocarbon group.
  • a 1 is an oxygen atom
  • W 1 is a fluorinated hydrocarbon group having a fluorine atom or a fluoroalkyl group at the carbon atom to which A 1 is bonded.
  • R E is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • a plurality of R E , W 1 , A 1 and R F may be the same or different.
  • the affinity for an alkaline developer can be increased and development defects can be suppressed.
  • Structural unit (VI) having an alkali-soluble group when A 1 is an oxygen atom and W 1 is a 1,1,1,3,3,3-hexafluoro-2,2-methanediyl group is particularly preferred.
  • R F is a monovalent organic group having 1 to 30 carbon atoms
  • a 1 is an oxygen atom, -NR aa -, -COO-* or —SO 2 O—*.
  • R aa is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms. * indicates the site that binds to RF.
  • W 1 is a single bond or a divalent fluorinated hydrocarbon group having 1 to 20 carbon atoms.
  • R E is a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • W 1 or R F has a fluorine atom on the carbon atom bonded to A 1 or on the adjacent carbon atom.
  • a 1 is an oxygen atom
  • W 1 and R E are single bonds
  • R D is a hydrocarbon group having 1 to 20 carbon atoms and a carbonyl group is attached to the end of the R E side
  • R F is an organic group having a fluorine atom.
  • s is 2 or 3
  • a plurality of R E , W 1 , A 1 and R F may be the same or different.
  • Structural units (VI) having an alkali-dissociable group are particularly preferably those in which A 1 is —COO-* and R F or W 1 or both of them have a fluorine atom.
  • R C is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that gives the structural unit (VI).
  • R E is a divalent organic group
  • a group having a lactone structure is preferred, a group having a polycyclic lactone structure is more preferred, and a group having a norbornane lactone structure is more preferred.
  • the content of the structural unit (VI) is preferably 40 mol% or more, preferably 50 mol%, based on the total structural units constituting the high fluorine content resin.
  • the above is more preferable, and 60 mol % or more is even more preferable. Also, it is preferably 95 mol % or less, more preferably 90 mol % or less, and even more preferably 85 mol % or less.
  • the high fluorine content resin may contain a structural unit having an alicyclic structure represented by the following formula (6) as a structural unit other than the structural units listed above.
  • R 1 ⁇ is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 2 ⁇ is a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 2 ⁇ is a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms in R 3 of the above formula (1).
  • a cyclic hydrocarbon group can be preferably employed.
  • the content of the structural unit having the alicyclic structure is 10 mol% or more with respect to the total structural units constituting the high fluorine content resin. is preferred, 20 mol % or more is more preferred, and 30 mol % or more is even more preferred. Moreover, it is preferably 70 mol % or less, more preferably 60 mol % or less, and even more preferably 50 mol % or less.
  • the lower limit of Mw of the high fluorine content resin is preferably 1,000, more preferably 2,000, even more preferably 3,000, and particularly preferably 5,000.
  • the upper limit of Mw is preferably 50,000, more preferably 30,000, even more preferably 20,000, and particularly preferably 15,000.
  • the Mw/Mn of the high fluorine content resin is usually 1 or more, more preferably 1.1 or more. Moreover, it is usually 5 or less, preferably 3 or less, more preferably 2 or less, and still more preferably 1.9 or less.
  • the content of the high fluorine content resin is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, still more preferably 1 part by mass or more, and 1.5 parts by mass with respect to 100 parts by mass of the base resin. Part by mass or more is particularly preferred. Also, it is preferably 15 parts by mass or less, more preferably 10 parts by mass or less, even more preferably 8 parts by mass or less, and particularly preferably 5 parts by mass or less.
  • the radiation-sensitive resin composition may contain one or more high fluorine content resins.
  • the high fluorine content resin can be synthesized by a method similar to the method for synthesizing the base resin described above.
  • the radiation-sensitive resin composition of the present invention contains a photodegradable base as an acid diffusion controller.
  • the acid diffusion control agent has the effect of controlling the diffusion phenomenon in the resist film of the acid generated from the compound (1) upon exposure and suppressing unfavorable chemical reactions in the unexposed areas.
  • the storage stability of the resulting radiation-sensitive resin composition is improved.
  • the resolution of the resist pattern is further improved, and the line width change of the resist pattern due to the fluctuation of the holding time from exposure to development can be suppressed, and a radiation-sensitive resin composition excellent in process stability is obtained. be done.
  • a photodegradable base is an onium salt compound that generates a weak acid upon exposure to light, and the generated acid is a weak acid that does not induce dissociation of the acid-dissociable groups in the resin under normal conditions.
  • "normal conditions” refer to conditions of post-exposure baking at 110°C for 60 seconds.
  • the photodegradable base has basicity in the unexposed area and acts as an acid diffusion control agent, but in the exposed area, a weak acid is generated from the protons generated by the decomposition of the radiation-sensitive onium cation and the anion of the weak acid. Therefore, the acid diffusion controllability is lowered. Therefore, the acid generated in the exposed area works efficiently to dissociate the acid dissociable groups of the resin and the compound (1), and the acid does not diffuse in the unexposed area and the resin and the compound (1) do not change. The difference in solubility between the unexposed portion and the unexposed portion becomes more pronounced, and the obtained resist film has further excellent LWR performance, CDU performance and pattern rectangularity.
  • photodegradable bases examples include sulfonium salt compounds represented by the following formula (7-1) and iodonium salt compounds represented by the following formula (7-2).
  • J + is a sulfonium cation and U + is an iodonium cation.
  • E - and Q - are each independently anions represented by OH - , R ⁇ -COO - and R ⁇ -SO 3 - .
  • the cationic portion and the anionic portion may be bonded not only by ionic bonds but also by coordinate bonds or covalent bonds.
  • R ⁇ is an alkyl group, an aryl group or an aralkyl group.
  • a hydrogen atom of an aromatic ring of an aryl group or an aralkyl group represented by R ⁇ is substituted with a hydroxy group, a fluorine atom-substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms.
  • the sulfonium cation represented by J + above includes sulfonium cations represented by the above formulas (X-1) to (X-4).
  • Examples of the iodonium cation represented by U + above include iodonium cations represented by the above formulas (X-5) to (X-6).
  • Examples of the photodegradable base include compounds represented by the following formula.
  • the photodisintegrating base is preferably a sulfonium salt, more preferably a triarylsulfonium salt, and more preferably triphenylsulfonium salicylate and triphenylsulfonium 10-camphorsulfonate.
  • the lower limit of the content of the photodisintegrating base is preferably 3 parts by mass, more preferably 4 parts by mass, and 5 parts by mass with respect to a total of 100 parts by mass of the radiation-sensitive acid generator (including compound (1)). is more preferred.
  • the upper limit of the content is preferably 80 parts by mass, more preferably 70 parts by mass, and even more preferably 50 parts by mass.
  • the radiation-sensitive resin composition may contain one or more photodegradable bases.
  • the radiation-sensitive resin composition according to this embodiment contains a solvent.
  • the solvent is not particularly limited as long as it can dissolve or disperse at least the compound (1), the resin, and optionally the radiation-sensitive acid generator and the like.
  • solvents examples include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, and hydrocarbon-based solvents.
  • alcohol solvents include Carbon such as iso-propanol, 4-methyl-2-pentanol, 3-methoxybutanol, n-hexanol, 2-ethylhexanol, furfuryl alcohol, cyclohexanol, 3,3,5-trimethylcyclohexanol, diacetone alcohol Monoalcoholic solvents of numbers 1 to 18; C2-C18 poly(ethylene glycol, 1,2-propylene glycol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, etc.) a alcohol-based solvent; A polyhydric alcohol partial ether solvent obtained by etherifying a part of the hydroxy groups of the above polyhydric alcohol solvent may be used.
  • ether solvents examples include Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether); Examples thereof include polyhydric alcohol ether solvents obtained by etherifying the hydroxy groups of the above polyhydric alcohol solvents.
  • ketone solvents include linear ketone solvents such as acetone, butanone, and methyl-iso-butyl ketone: Cyclic ketone solvents such as cyclopentanone, cyclohexanone, and methylcyclohexanone: 2,4-pentanedione, acetonylacetone, acetophenone and the like.
  • amide solvents include cyclic amide solvents such as N,N'-dimethylimidazolidinone and N-methylpyrrolidone; Chain amide solvents such as N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, and the like.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol partial ether acetate solvents such as diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate; Lactone solvents such as ⁇ -butyrolactone and valerolactone; Carbonate solvents such as diethyl carbonate, ethylene carbonate, propylene carbonate; Polyvalent carboxylic acid diester solvents such as propylene glycol diacetate, methoxytriglycol acetate, diethyl oxalate, ethyl acetoacetate, ethyl lactate and diethyl phthalate can be used.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, di-iso-propylbenzene, n-amylnaphthalene, and the like are included.
  • ester-based solvents and ketone-based solvents are preferred, polyhydric alcohol partial ether acetate-based solvents, cyclic ketone-based solvents, and lactone-based solvents are more preferred, and propylene glycol monomethyl ether acetate, cyclohexanone, and ⁇ -butyrolactone are even more preferred.
  • the radiation-sensitive resin composition may contain one or more solvents.
  • the radiation-sensitive resin composition may contain other optional components in addition to the components described above.
  • additional optional components include radiation-sensitive photoacid generators other than compound (1), acid diffusion controllers other than photodegradable bases, cross-linking agents, uneven distribution promoters, surfactants, and alicyclic Skeleton-containing compounds, sensitizers and the like can be mentioned. These other optional components may be used alone or in combination of two or more.
  • Examples of acid diffusion control agents other than photodegradable bases include compounds represented by the following formula (8) (hereinafter also referred to as "nitrogen-containing compound (I)”), compounds having two nitrogen atoms in the same molecule. (hereinafter also referred to as “nitrogen-containing compound (II)”), compounds having three nitrogen atoms (hereinafter also referred to as “nitrogen-containing compound (III)”), amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds etc.
  • R 22 , R 23 and R 24 each independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or It is a substituted or unsubstituted aralkyl group.
  • nitrogen-containing compound (I) examples include monoalkylamines such as n-hexylamine; dialkylamines such as di-n-butylamine; trialkylamines such as triethylamine; and aromatic amines such as aniline. be done.
  • nitrogen-containing compound (II) examples include ethylenediamine and N,N,N',N'-tetramethylethylenediamine.
  • nitrogen-containing compound (III) examples include polyamine compounds such as polyethyleneimine and polyallylamine; polymers such as dimethylaminoethylacrylamide.
  • amide group-containing compounds include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone, and the like. be done.
  • Urea compounds include, for example, urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, and tributylthiourea.
  • nitrogen-containing heterocyclic compounds examples include pyridines such as pyridine and 2-methylpyridine; morpholines such as N-propylmorpholine and N-(undecylcarbonyloxyethyl)morpholine; pyrazine and pyrazole.
  • a compound having an acid dissociable group can also be used as the nitrogen-containing organic compound.
  • Nitrogen-containing organic compounds having such an acid-labile group include, for example, Nt-butoxycarbonylpiperidine, Nt-butoxycarbonylimidazole, Nt-butoxycarbonylbenzimidazole, Nt-butoxycarbonyl-2 -Phenylbenzimidazole, N-(t-butoxycarbonyl)di-n-octylamine, N-(t-butoxycarbonyl)diethanolamine, N-(t-butoxycarbonyl)dicyclohexylamine, N-(t-butoxycarbonyl)diphenylamine , Nt-butoxycarbonyl-4-hydroxypiperidine, Nt-butoxycarbonyl-4-acetoxypiperidine, Nt-amyloxycarbonyl-4-hydroxypiperidine and the like.
  • the radiation-sensitive resin composition can be prepared, for example, by mixing the compound (1), a resin, a photodegradable base, and, if necessary, a high-fluorine-containing resin and the like, and a solvent in a predetermined ratio. After mixing, the radiation-sensitive resin composition is preferably filtered through a filter having a pore size of about 0.05 ⁇ m to 0.20 ⁇ m.
  • the solid content concentration of the radiation-sensitive resin composition is usually 0.1% by mass to 50% by mass, preferably 0.5% by mass to 30% by mass, more preferably 1% by mass to 20% by mass.
  • a pattern forming method comprises: A step (1) of directly or indirectly coating the radiation-sensitive resin composition on a substrate to form a resist film (hereinafter also referred to as a “resist film forming step”); Step (2) of exposing the resist film (hereinafter also referred to as “exposure step”); and a step (3) of developing the exposed resist film (hereinafter also referred to as “development step”).
  • the radiation-sensitive resin composition capable of forming a resist film having excellent sensitivity, LWR performance, CDU performance, pattern rectangularity, and etching resistance in the exposure process is used, high quality is obtained. can form a resist pattern.
  • Each step will be described below.
  • a resist film is formed from the radiation-sensitive resin composition.
  • the substrate on which the resist film is formed include conventionally known substrates such as silicon wafers, silicon dioxide, and aluminum-coated wafers. Further, for example, an organic or inorganic antireflection film disclosed in JP-B-6-12452, JP-A-59-93448, etc. may be formed on the substrate. Examples of coating methods include spin coating, casting coating, and roll coating. After coating, if necessary, prebaking (PB) may be performed in order to volatilize the solvent in the coating film.
  • the PB temperature is usually 60°C to 140°C, preferably 80°C to 120°C.
  • the PB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
  • the thickness of the resist film to be formed is preferably 10 nm to 1,000 nm, more preferably 10 nm to 500 nm.
  • an immersion protective film that is insoluble in the immersion liquid may be provided.
  • a solvent peelable protective film that is peeled off with a solvent before the development process see, for example, JP-A-2006-227632
  • a developer peelable protective film that is peeled off at the same time as development in the development process For example, see WO2005-069076 and WO2006-035790
  • the exposure step which is the next step, is performed with radiation having a wavelength of 50 nm or less
  • the resist film formed in the resist film forming step (step (1) above) is coated through a photomask (in some cases, through an immersion medium such as water). , emit radiation and expose. Radiation used for exposure depends on the line width of the desired pattern. A charged particle beam and the like can be mentioned. Among these, far ultraviolet rays, electron beams, and EUV are preferred, and ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), electron beams, and EUV are more preferred. The following electron beams and EUV are more preferable.
  • the immersion liquid used When exposure is performed by immersion exposure, examples of the immersion liquid used include water and fluorine-based inert liquids.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a temperature coefficient of refractive index as small as possible so as to minimize distortion of the optical image projected onto the film.
  • excimer laser light wavelength: 193 nm
  • water it is preferable to use water from the viewpoints of availability and ease of handling in addition to the above viewpoints.
  • an additive that reduces the surface tension of water and increases surface activity may be added in a small proportion. This additive preferably does not dissolve the resist film on the wafer and has negligible effect on the optical coating on the bottom surface of the lens. Distilled water is preferred as the water used.
  • a post-exposure bake is performed to accelerate the dissociation of the acid-dissociable groups of the resin or the like by the acid generated from the radiation-sensitive acid generator upon exposure in the exposed portions of the resist film.
  • This PEB causes a difference in solubility in a developer between the exposed area and the unexposed area.
  • the PEB temperature is usually 50°C to 180°C, preferably 80°C to 130°C.
  • the PEB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
  • step (3) above the resist film exposed in the exposure step (step (2) above) is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with a rinsing liquid such as water or alcohol and dry.
  • a rinsing liquid such as water or alcohol
  • TMAH tetramethylammonium hydroxide
  • a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
  • organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, or solvents containing organic solvents can be used.
  • the organic solvent include one or more of the solvents listed above as the solvent for the radiation-sensitive resin composition.
  • ether-based solvents, ester-based solvents, and ketone-based solvents are preferred.
  • the ether solvent a glycol ether solvent is preferable, and ethylene glycol monomethyl ether and propylene glycol monomethyl ether are more preferable.
  • ester solvent an acetate solvent is preferable, and n-butyl acetate and amyl acetate are more preferable.
  • ketone solvent a chain ketone is preferred, and 2-heptanone is more preferred.
  • the content of the organic solvent in the developer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • Components other than the organic solvent in the developer include, for example, water and silicon oil.
  • the developer may be either an alkaline developer or an organic solvent developer. It can be appropriately selected depending on whether the desired positive pattern or negative pattern is desired.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developer for a certain period of time (dip method), and a method of developing by standing still for a certain period of time while the developer is heaped up on the surface of the substrate by surface tension (puddle method).
  • dip method a method of immersing the substrate in a tank filled with a developer for a certain period of time
  • puddle method a method of developing by standing still for a certain period of time while the developer is heaped up on the surface of the substrate by surface tension
  • spray method a method in which the developer is sprayed onto the surface of the substrate
  • dynamic dispensing method a method in which the developer is continuously applied while scanning the developer dispensing nozzle at a constant speed on the substrate rotating at a constant speed
  • Mw and Mn of the polymer were measured under the conditions described above. Further, the degree of dispersion (Mw/Mn) was calculated from the measurement results of Mw and Mn.
  • 13 C-NMR analysis 13 C-NMR analysis of the polymer was performed using a nuclear magnetic resonance apparatus (“JNM-Delta400” manufactured by JEOL Ltd.).
  • the polymerization solution was cooled with water to 30° C. or lower.
  • the cooled polymerization solution was poured into methanol (2,000 parts by mass), and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with methanol, filtered, and dried at 50° C. for 24 hours to obtain a white powdery resin (A-1) (yield: 83%).
  • Resin (A-1) had Mw of 8,800 and Mw/Mn of 1.50.
  • the content ratio of each structural unit derived from (M-1), (M-2) and (M-13) is 41.3 mol% and 13.8 mol%, respectively. and 44.9 mol%.
  • the polymerization solution was cooled with water to 30° C. or lower.
  • the cooled polymerization solution was poured into hexane (2,000 parts by mass), and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with hexane, filtered, and dissolved in 1-methoxy-2-propanol (300 parts by mass).
  • methanol 500 parts by mass
  • triethylamine 50 parts by mass
  • ultrapure water 10 parts by mass
  • Resin (A-12) had an Mw of 5,200 and an Mw/Mn of 1.60. Further, as a result of 13C-NMR analysis, the content ratios of structural units derived from (M-1) and (M-18) were 51.3 mol% and 48.7 mol%, respectively.
  • the polymerization solution was cooled with water to 30° C. or lower.
  • the operation of adding hexane (100 parts by mass) and stirring to recover the acetonitrile layer was repeated three times.
  • the high fluorine content resin (E-1) had Mw of 6,000 and Mw/Mn of 1.62.
  • the contents of the structural units derived from (M-1) and (M-20) were 19.9 mol % and 80.1 mol %, respectively.
  • a sulfonic acid sodium salt compound was obtained by extracting with acetonitrile and distilling off the solvent. 20.0 mmol of triphenylsulfonium bromide was added to the above sulfonic acid sodium salt compound, and a mixed solution of water:dichloromethane (1:3 (mass ratio)) was added to obtain a 0.5M solution. After vigorously stirring at room temperature for 3 hours, dichloromethane was added for extraction, and the organic layer was separated. After drying the obtained organic layer with sodium sulfate, the solvent is distilled off and the compound (B-1) represented by the above formula (B-1) is obtained in a good yield by purifying by column chromatography. Obtained.
  • a sulfonic acid sodium salt compound was obtained by extracting with acetonitrile and distilling off the solvent. 20.0 mmol of triphenylsulfonium bromide was added to the above sulfonic acid sodium salt compound, and a mixed solution of water:dichloromethane (1:3 (mass ratio)) was added to obtain a 0.5 M solution. After vigorously stirring at room temperature for 3 hours, dichloromethane was added for extraction, and the organic layer was separated. After drying the resulting organic layer with sodium sulfate, the solvent was distilled off and the residue was purified by column chromatography to obtain an onium salt in good yield.
  • Cyclohexanone-4-carboxylic acid 20.0 mmol, 7-hydroxyhexahydro-3,5-methanocyclopenta[c][1,2]oxathiol-1,1-dioxide 30.0 mmol, and dicyclohexylcarbodiimide 30 were added to a reaction vessel. 0 mmol and 50 g of methylene chloride were added and stirred at room temperature for 10 hours. Thereafter, water was added for dilution, and then methylene chloride was added for extraction to separate the organic layer. The resulting organic layer was washed with a saturated aqueous sodium chloride solution and then with water. After drying with sodium sulfate, the solvent was distilled off and the product was purified by column chromatography to obtain an ester in good yield.
  • a sulfonic acid sodium salt compound was obtained by extracting with acetonitrile and distilling off the solvent. 20.0 mmol of triphenylsulfonium bromide was added to the above sulfonic acid sodium salt compound, and a mixed solution of water:dichloromethane (1:3 (mass ratio)) was added to obtain a 0.5 M solution. After vigorously stirring at room temperature for 3 hours, dichloromethane was added for extraction, and the organic layer was separated. After drying the resulting organic layer with sodium sulfate, the solvent was distilled off and the residue was purified by column chromatography to obtain an onium salt in good yield.
  • [[C] acid diffusion control agent] C-1 to C-8 compounds represented by the following formulas (C-1) to (C-8) (hereinafter, the compounds represented by the formulas (C-1) to (C-8) are respectively referred to as “compounds (C-1)” to “compound (C-8)”.)
  • Example 1 [A] 100 parts by mass of (A-1) as a resin, [B] 12.0 parts by mass of (B-1) as a radiation-sensitive acid generator, [C] (C-1) as an acid diffusion control agent ) 5.0 parts by mass, [E] 3.0 parts by mass (E-1) as a high fluorine content resin (solid content), and [D] (D-1) / (D-2) as a solvent
  • a radiation-sensitive resin composition (J-1) was prepared by mixing 3,230 parts by mass of a mixed solvent of /(D-3) and filtering through a membrane filter having a pore size of 0.2 ⁇ m.
  • a spin coater (“CLEAN TRACK ACT12" available from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower antireflection film ("ARC66" available from Bulwer Science).
  • a lower antireflection film having an average thickness of 100 nm was formed by heating at 205° C. for 60 seconds.
  • the positive radiation-sensitive resin composition for ArF exposure prepared above was applied onto the lower antireflection film using the spin coater, and PB (pre-baking) was performed at 100° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 90 nm was formed.
  • TWINSCAN XT-1900i ArF excimer laser liquid immersion exposure apparatus
  • the exposure dose for forming a 40 nm line-and-space pattern is defined as the optimum exposure dose, and this optimum exposure dose is defined as sensitivity (mJ/cm 2 ). did. The sensitivity was evaluated as "good” when it was 25 mJ/cm 2 or less, and as “bad” when it exceeded 25 mJ/cm 2 .
  • LWR performance A 40 nm line-and-space resist pattern was formed by irradiating with the optimum exposure amount determined by the above sensitivity evaluation. The formed resist pattern was observed from above the pattern using the scanning electron microscope. Line width variation was measured at a total of 500 points, a 3 sigma value was obtained from the distribution of the measured values, and this 3 sigma value was defined as LWR (nm). LWR indicates that the smaller the value, the smaller the roughness of the line and the better. The LWR performance was evaluated as "good” when less than 2.5 nm and "poor” when greater than 2.5 nm.
  • a 40 nm line-and-space resist pattern formed by irradiating the optimum exposure dose determined in the evaluation of sensitivity was observed using the scanning electron microscope, and the cross-sectional shape of the line-and-space pattern was evaluated.
  • the rectangularity of the resist pattern is "A" (very good) if the ratio of the length of the lower side to the length of the upper side in the cross-sectional shape is 1 or more and 1.05 or less, and if it is more than 1.05 and 1.10 or less. If it is more than 1.10, it is evaluated as "B" (good), and if it exceeds 1.10, it is evaluated as "C" (bad).
  • the radiation-sensitive resin compositions of Examples had good sensitivity, LWR performance and pattern rectangularity when used for ArF exposure.
  • the characteristics were inferior to those of the examples. Therefore, when the radiation-sensitive resin composition of the example is used for ArF exposure, a resist pattern having high sensitivity, good LWR performance, and excellent rectangularity can be formed.
  • Example 49 [Preparation of positive radiation-sensitive resin composition for extreme ultraviolet (EUV) exposure] [Example 49] [A] 100 parts by mass of (A-12) as a resin, [B] 15.0 parts by mass of (B-6) as a radiation-sensitive acid generator, [C] (C-1 as an acid diffusion control agent ) 8.0 parts by mass, [E] 3.0 parts by mass (E-5) as a high fluorine content resin (solid content), and [D] (D-1) / (D-4) as a solvent A radiation-sensitive resin composition (J-49) was prepared by mixing 6,110 parts by mass of the mixed solvent and filtering through a membrane filter with a pore size of 0.2 ⁇ m.
  • EUV extreme ultraviolet
  • a spin coater (“CLEAN TRACK ACT12" available from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower antireflection film ("ARC66" available from Bulwer Science).
  • a lower antireflection film having an average thickness of 105 nm was formed by heating at 205° C. for 60 seconds.
  • the positive radiation-sensitive resin composition for EUV exposure prepared above was applied onto this lower antireflection film using the above spin coater, and PB was performed at 130° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 55 nm was formed.
  • the exposure dose for forming a 32 nm line-and-space pattern is defined as the optimum exposure dose, and this optimum exposure dose is defined as sensitivity (mJ/cm 2 ). did. The sensitivity was evaluated as "good” when it was 25 mJ/cm 2 or less, and as “bad” when it exceeded 25 mJ/cm 2 .
  • LWR performance A resist pattern was formed by adjusting the mask size so as to form a 32 nm line-and-space pattern by irradiating with the optimum exposure amount determined by the evaluation of sensitivity. The formed resist pattern was observed from above the pattern using the scanning electron microscope. Line width variation was measured at a total of 500 points, a 3 sigma value was obtained from the distribution of the measured values, and this 3 sigma value was defined as LWR (nm). LWR indicates that the smaller the value, the smaller the jolting of the line and the better. The LWR performance was evaluated as "good” when less than 2.5 nm and "poor” when greater than 2.5 nm.
  • a spin coater (“CLEAN TRACK ACT 12" from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower anti-reflection film ("ARC66" from Bulwer Science).
  • a lower antireflection film having an average thickness of 100 nm was formed by heating at 205° C. for 60 seconds.
  • the negative type radiation-sensitive resin composition for ArF exposure (J-62) prepared above was applied onto this lower antireflection film using the above spin coater, and PB (pre-baking) was performed at 100° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 90 nm was formed.
  • PEB post-exposure bake
  • CDU performance of the resist pattern formed using the above negative radiation-sensitive resin composition for ArF exposure was evaluated according to the following method.
  • CDU performance A total of 1,800 lengths of a 40 nm hole, 105 nm pitch resist pattern were measured at arbitrary points from the top of the pattern using the scanning electron microscope. The dimensional variation (3 ⁇ ) was determined and defined as the CDU performance (nm). CDU indicates that the smaller the value, the smaller the dispersion of the hole diameter in the long period and the better.
  • the resist pattern using the above negative radiation-sensitive resin composition for ArF exposure was evaluated as described above.
  • the radiation-sensitive resin composition of Example 62 formed a negative resist pattern by ArF exposure. CDU performance was good in both cases.
  • a spin coater (“CLEAN TRACK ACT 12" from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower anti-reflection film ("ARC66" from Bulwer Science).
  • a lower antireflection film having an average thickness of 105 nm was formed by heating at 205° C. for 60 seconds.
  • the negative type radiation-sensitive resin composition for EUV exposure (J-63) prepared above was applied onto this lower antireflection film using the above spin coater, and PB was performed at 130° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 55 nm was formed.
  • the resist pattern using the negative radiation-sensitive resin composition for EUV exposure was evaluated in the same manner as the resist pattern using the negative radiation-sensitive resin composition for ArF exposure.
  • the radiation-sensitive resin composition of Example 63 exhibited good sensitivity and CDU performance even when a negative resist pattern was formed by EUV exposure.
  • a resist pattern having good sensitivity to exposure light and excellent LWR performance, CDU performance and pattern rectangularity can be formed. Therefore, these materials can be suitably used in the processing of semiconductor devices, which are expected to further miniaturize in the future.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)

Abstract

感度やLWR性能、CDU性能、パターン矩形性を十分なレベルで発揮し得るレジスト膜を形成可能な感放射線性樹脂組成物及びパターン形成方法を提供する。下記条件(i)及び(ii)を満たす特定構造の酸解離性基含有オニウム塩化合物と、酸解離性基を有する構造単位を含む樹脂と、光崩壊性塩基と、溶剤とを含む感放射線性樹脂組成物。 条件(i):上記オニウム塩化合物のアニオン構造の、下記式(i)で表される酸解離性基開裂前後の構造のファンデルワールス体積の変化率が、32%以上67%以下である。 (W1-W2)/(W1)×100(%) ・・・(i) (上記式(i)中、W1は、上記オニウム塩化合物のアニオン構造のファンデルワールス体積を表し、W2は、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のファンデルワールス体積を表す。) 条件(ii):上記オニウム塩化合物のアニオン構造の、下記式(ii)で表される酸解離性基開裂前後の構造のClogP値の差が、3.00以下である。 (P1-P2) ・・・(ii) (上記式(ii)中、P1は、上記オニウム塩化合物のアニオン構造のClogP値を表し、P2は、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のClogP値を表す。)

Description

感放射線性樹脂組成物及びパターン形成方法
 本発明は、感放射線性樹脂組成物及びパターン形成方法に関する。
 半導体素子における微細な回路形成にレジスト組成物を用いるフォトリソグラフィー技術が利用されている。代表的な手順として、例えば、レジスト組成物の被膜に対するマスクパターンを介した放射線照射による露光で酸を発生させ、その酸を触媒とする反応により露光部と未露光部とにおいて樹脂のアルカリ系や有機系の現像液に対する溶解度の差を生じさせることで、基板上にレジストパターンを形成する。
 上記フォトリソグラフィー技術ではArFエキシマレーザー等の短波長の放射線を利用したり、さらに露光装置のレンズとレジスト膜との間の空間を液状媒体で満たした状態で露光を行う液浸露光法(リキッドイマージョンリソグラフィー)を用いたりしてパターン微細化を推進している。次世代技術として、電子線、X線及びEUV(極端紫外線)等のより短波長の放射線を用いたリソグラフィーも検討されつつある。
 さらなる技術進展に向けた取り組みが進む中、レジスト組成物の主要成分である光酸発生剤についても感度や解像度等の向上についての試みが進められている。例えば、リソグラフィー特性に優れたレジスト組成物を得る目的で、アニオン構造に酸解離性基を有する酸発生剤が検討されている(特許文献1)。
特許第5814072号
 こうした次世代技術への取り組みの中でも、感度やレジストパターンの線幅のバラつきを示すLWR(Line Width Roughness)性能、ライン幅やホール径の均一性の指標であるクリティカルディメンションユニフォーミティー(CDU)性能、レジストパターンの断面形状の矩形性を示すパターン矩形性等の点で従来と同等以上のレジスト諸性能が要求される。
 本発明は、感度やLWR性能、CDU性能、パターン矩形性を十分なレベルで発揮し得るレジスト膜を形成可能な感放射線性樹脂組成物及びパターン形成方法を提供することを目的とする。
 本発明者らは、本課題を解決すべく鋭意検討を重ねた結果、下記構成を採用することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、一実施形態において、
 下記式(1)で表され、かつ下記条件(i)及び(ii)を満たすオニウム塩化合物と、
 酸解離性基を有する構造単位を含む樹脂と、
 光崩壊性塩基と、
 溶剤と
 を含む感放射線性樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000005
(上記式(1)中、
 Rは、フッ素原子又は炭素数1~10の1価のフッ素化炭化水素基である。
 R、R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~10の炭化水素基又は炭素数1~10の1価のフッ素化炭化水素基である。
 mは0~7の整数であり、mが2以上である場合、複数のR及びRは互いに同一又は異なる。
 Aは、単結合又は環員数3~30の2価の環状有機基である。
 Aは、炭素数1~10の2価の鎖状炭化水素基又は環員数数3~30の2価の環状有機基である。
 Lは、-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-S-、-SO-、-CONH-及び-NHCO-から選ばれる2価の連結基である。
 nは0~2の整数であり、nが2である場合、複数のA及びLは互いに同一又は異なる。
 Rは、下記式(1-1)又は下記式(1-2)で表される酸解離性基である。
 Zは、1価の感放射線性オニウムカチオンである。)
Figure JPOXMLDOC01-appb-C000006
(上記式(1-1)中、R1Aは、炭素数1~20の1価の炭化水素基である。R1B及びR1Cは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の2価の環状有機基を表す。*は、上記式(1)のRに隣接している酸素原子と結合する部位を示す。
 上記式(1-2)中、Yは-O-又は-S-である。R2Aは、水素原子若しくは炭素数1~20の1価の炭化水素基であり、R2Bは、炭素数1~20の1価の炭化水素基であるか、又はR2A及びR2Bが互いに合わせられこれらが結合する原子鎖と共に構成される環員数4~20の2価の環状有機基を表す。*は、上記式(1)のRに隣接している酸素原子と結合する部位を示す。)
条件(i):上記式(1)で表されるオニウム塩化合物のアニオン構造の、下記式(i)で表される酸解離性基開裂前後の構造のファンデルワールス体積の変化率が、32%以上67%以下である。
 
(W1-W2)/(W1)×100(%)  ・・・(i)
 
(上記式(i)中、W1は、上記式(1)で表されるオニウム塩化合物のアニオン構造のファンデルワールス体積を表し、W2は、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のファンデルワールス体積を表す。)
条件(ii):上記式(1)で表されるオニウム塩化合物のアニオン構造の、下記式(ii)で表される酸解離性基開裂前後の構造のClogP値の差が、3.00以下である。
 
(P1-P2) ・・・(ii)
 
(上記式(ii)中、P1は、上記式(1)で表されるオニウム塩化合物のアニオン構造のClogP値を表し、P2は、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のClogP値を表す。)
 当該感放射線性樹脂組成物は、感放射線性酸発生剤として上記式(1)で表され、かつ上記条件(i)及び(ii)を満たすオニウム塩化合物(以下、「化合物(1)」ともいう。)を含むことにより、レジストパターン形成の際に優れた感度やLWR性能、CDU性能、パターン矩形性を発揮することができる。この理由としては、いかなる理論にも束縛されないものの、以下のように推察される。アニオン構造に酸解離性基を有するオニウム塩化合物は、感放射線性光酸発生剤として働き、露光部では酸解離性基が開裂することによりアルカリ現像液に対する溶解性が向上して感度やLWR、CDU性能が向上し、未露光部では酸解離性基は変化しないため疎水性を保って余計な溶出を妨げるためパターン矩形性が向上する。酸解離性基の開裂前後のファンデルワールス体積変化が大きすぎると、脱保護体の酸拡散長のバラつきが大きくなり、LWR、CDU性能が悪化するおそれがある。また逆に体積変化が小さすぎると、酸解離性基の開裂による効果が発現しにくくなる。さらに、酸解離性基の開裂前後の極性変化が大きすぎると、現像液への溶解性にバラつきが生じ、LWR、CDU性能が悪化するおそれがある。
 加えて、当該感放射線性樹脂組成物は、光崩壊性塩基を有することで、化合物(1)の露光部と未露光部との溶解性の差がより顕著になるため、LWR性能、パターン矩形性がさらに優れたレジスト膜を形成可能なものとなる。
 本発明は、別の実施形態において、当該感放射線性樹脂組成物を基板上に直接又は間接に塗布してレジスト膜を形成する工程と、
 上記レジスト膜を露光する工程と、
 露光された上記レジスト膜を現像液で現像する工程と
 を含むパターン形成方法に関する。
 当該パターン形成方法では、感度、LWR性能、CDU性能、パターン矩形性に優れるレジスト膜を形成可能な上記感放射線性樹脂組成物を用いているので、高品位のレジストパターンを効率的に形成することができる。
 以下、本発明の実施形態について、詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。
 <感放射線性樹脂組成物>
 本実施形態に係る感放射線性樹脂組成物(以下、単に「組成物」ともいう。)は、化合物(1)、酸解離性基を有する構造単位を含む樹脂、光崩壊性塩基及び溶剤を含む。上記組成物は、本発明の効果を損なわない限り、他の任意成分を含んでいてもよい。感放射線性樹脂組成物は、感放射線性酸発生剤として化合物(1)を含み、さらに光崩壊性塩基を含むことにより、当該感放射線性樹脂組成物のレジスト膜に高いレベルでの感度、LWR性能、CDU性能、パターン矩形性を付与することができる。
 (化合物(1))
 化合物(1)は、上記式(1)で表され、かつ下記条件(i)及び(ii)を満たすオニウム塩化合物で、放射線の照射により酸を発生させる感放射線性酸発生剤として機能する。当該組成物は、1種の化合物(1)を含んでいてもよく、複数種の化合物(1)を含んでいてもよい。
 R、R、R及びRで表される炭素数1~10の1価のフッ素化炭化水素基としては、例えば炭素数1~10の1価のフッ素化鎖状炭化水素基、炭素数3~10の1価のフッ素化脂環式炭化水素基等が挙げられる。
 上記炭素数1~10の1価のフッ素化鎖状炭化水素基としては、例えば
 トリフルオロメチル基、2,2,2-トリフルオロエチル基、ペンタフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロプロピル基、ヘプタフルオロn-プロピル基、ヘプタフルオロi-プロピル基、ノナフルオロn-ブチル基、ノナフルオロi-ブチル基、ノナフルオロt-ブチル基、2,2,3,3,4,4,5,5-オクタフルオロn-ペンチル基、トリデカフルオロn-ヘキシル基、5,5,5-トリフルオロ-1,1-ジエチルペンチル基等のフッ素化アルキル基;
 トリフルオロエテニル基、ペンタフルオロプロペニル基等のフッ素化アルケニル基;
 フルオロエチニル基、トリフルオロプロピニル基等のフッ素化アルキニル基などが挙げられる。
 上記炭素数3~10の1価のフッ素化脂環式炭化水素基としては、例えば
 フルオロシクロペンチル基、ジフルオロシクロペンチル基、ノナフルオロシクロペンチル基、フルオロシクロヘキシル基、ジフルオロシクロヘキシル基、ウンデカフルオロシクロヘキシルメチル基、フルオロノルボルニル基、フルオロアダマンチル基、フルオロボルニル基、フルオロイソボルニル基、フルオロトリシクロデシル基等のフッ素化シクロアルキル基;
 フルオロシクロペンテニル基、ノナフルオロシクロヘキセニル基等のフッ素化シクロアルケニル基などが挙げられる。
 上記フッ素化炭化水素基としては、上記炭素数1~8の1価のフッ素化鎖状炭化水素基が好ましく、炭素数1~4の1価のフッ素化鎖状炭化水素基がより好ましい。
 R、R及びRで表される炭素数1~10の1価の炭化水素基としては、例えば炭素数1~10の1価の鎖状炭化水素基、炭素数3~10の1価の脂環式炭化水素基、炭素数6~10の1価の芳香族炭化水素基等が挙げられる。
 Rは、発生酸の酸性度の点からフッ素原子が好ましく、Rは、フッ素原子、トリフルオロメチル基又は水素原子が好ましい。
 R及びRは、それぞれ独立に、水素原子、フッ素原子又はトリフルオロメチル基が好ましい。
 mは0~8であることが好ましく、0~2であることがより好ましく、0又は1であることが特に好ましい。
 A及びAで表される環員数3~20の2価の環状有機基は、上記環員数の環状構造から2個の水素原子を除いた基であれば特に限定されない。上記環状構造としては、炭素数3~20の脂環構造、炭素数6~20の芳香環構造、環員数3~20の環状エーテル構造、ラクトン構造、環状カーボネート構造、スルトン構造、チオキサン構造等をあげることができる。これらの環状構造は、アルコキシ基、アルコキシカルボニル基等の1価の有機基や、ハロゲン原子、ヒドロキシ基、シアノ基等で置換されていてもよい。なお、「有機基」とは、少なくとも1個の炭素原子を有する基である。
 上記炭素数3~20の脂環構造としては、炭素数3~20の脂環式単環構造、炭素数6~20の脂環式多環構造が挙げられる。炭素数3~20の脂環式単環構造及び炭素数6~20の脂環式多環構造は、飽和炭化水素構造及び不飽和炭化水素構造のいずれでもよい。脂環式多環構造としては、有橋脂環式炭化水素構造及び縮合脂環式炭化水素構造のいずれでもよい。なお、有橋脂環式炭化水素基とは、脂環を構成する炭素原子のうち互いに隣接しない2つの炭素原子間が1つ以上の炭素原子を含む結合連鎖で結合された多環性の脂環式炭化水素基をいう。縮合脂環式炭化水素構造とは、複数の脂環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環性の脂環式炭化水素構造をいう。
 脂環式単環構造のうち飽和炭化水素構造としては、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等が好ましく、不飽和炭化水素構造としてはシクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン等が好ましい。脂環式多環構造としては、有橋脂環式飽和炭化水素構造が好ましく、例えばビシクロ[2.2.1]ヘプタン(ノルボルナン)、ビシクロ[2.2.2]オクタン、トリシクロ[3.3.1.13,7]デカン(アダマンタン)等が好ましい。
 上記炭素数6~20の芳香環構造としては、ベンゼン、ナフタレン、アントラセン、インデン、フルオレン等が挙げられる。
 Aで表される炭素数1~10の2価の鎖状炭化水素基としては、直鎖若しくは分岐鎖飽和炭化水素基、又は直鎖若しくは分岐鎖不飽和炭化水素基が挙げられる。
 Aは単結合が好ましく、Aは、メチレン基、アダマンタンジイル基、フェニレン基、フルオロフェニレン基等が好ましい。
 また、nは0又は1が好ましい。
 Rは、上記式(1-1)で表される基又は上記式(1-2)で表される基であり、酸解離性基である。
 上記式(1-1)中のR1A、R1B及びR1C並びに上記式(1-2)中のR2A及びR2Bにおける炭素数1~20の1価の炭化水素基としては、炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記式(1-1)中、R1B及びR1Cが互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の2価の環状有機基としては、A及びAで表される炭素数3~20の2価の環状有機基として例示した基が挙げられる。
 上記式(1-2)中、R2A及びR2Bが互いに合わせられこれらが結合する原子鎖と共に構成される環員数4~20の2価の環状有機基としては、環状エーテル構造、環状チオエーテル構造、チオキサン構造等の環状構造から2個の水素原子を除いた基が挙げられる。
 上記式(1-1)で表される基の具体例としては、例えば、下記式(1-1-1)~(1-1-8)の構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(上記式中、R1A及び*は、上記式(1-1)に同じ。R1Bは、炭素数1~20の1価の炭化水素基である。R1C1は、炭素数1~20の直鎖状又は分岐鎖状の炭化水素基を表す。R1Dは、水素原子、ハロゲン原子、ヒドロキシ基、シアノ基、炭素数1~10の炭化水素基、又は下記式(1-A)若しくは下記式(1-B)で表される基を表す。p1は0~5の整数を表す。p2は0~5の整数を示す。)
Figure JPOXMLDOC01-appb-C000008
(上記式(1-A)中、Lは、-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-S-、-SO-、-CONH-及び-NHCO-から選ばれる2価の連結基である。R1Eは、炭素数1~10の炭化水素基、炭素数1~10のフッ素化炭化水素基、ラクトン基、スルトン基、又は環状カーボネート基である。
 上記式(1-B)中、Y及びYは、それぞれ独立に、-O-又は-S-である。R1Fは、水素原子若しくは炭素数1~20の1価の炭化水素基であり、R1Gは、炭素数1~20の1価の炭化水素基であるか、又はR1F及びR1Gが互いに合わせられこれらが結合する原子鎖と共に構成される環員数4~20の2価の環状有機基を表す。
 **は、上記式(1-1-1)~上記式(1-1-7)の環状構造と結合する部位を示す。)
 上記式(1-2)で表される基の具体例としては、例えば、下記式(1-2-1)~(1-2-4)の構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(上記式中、R2Aは、上記式(1-2)に同じ。)
 上記式(1)中、上記Zで表される1価の感放射線性オニウムカチオンとしては、例えば、S、I、O、N、P、Cl、Br、F、As、Se、Sn、Sb、Te、Bi等の元素を含む放射線分解性オニウムカチオンが挙げられ、例えばスルホニウムカチオン、テトラヒドロチオフェニウムカチオン、ヨードニウムカチオン、ホスホニウムカチオン、ジアゾニウムカチオン、ピリジニウムカチオン等が挙げられる。中でも、スルホニウムカチオン又はヨードニウムカチオンが好ましい。スルホニウムカチオン又はヨードニウムカチオンは、好ましくは下記式(X-1)~(X-6)で表される。
Figure JPOXMLDOC01-appb-C000010
 上記式(X-1)中、Ra1、Ra2及びRa3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニルオキシ基、置換若しくは非置換の炭素数3~12の単環若しくは多環のシクロアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ヒドロキシ基、ハロゲン原子、-OSO-R、-SO-R若しくは-S-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。当該環構造は骨格を形成する炭素-炭素結合間にOやS等のヘテロ原子を含んでいてもよい。R、R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k1、k2及びk3は、それぞれ独立して0~5の整数である。Ra1~Ra3並びにR、R及びRがそれぞれ複数の場合、複数のRa1~Ra3並びにR、R及びRはそれぞれ同一でも異なっていてもよい。
 上記式(X-2)中、Rb1は、置換若しくは非置換の炭素数1~20の直鎖状若しくは分岐状のアルキル基若しくはアルコキシ基、置換若しくは非置換の炭素数2~8のアシル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基、又はヒドロキシ基である。nは0又は1である。nが0のとき、k4は0~4の整数であり、nが1のとき、k4は0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を表してもよい。Rb2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。Lは単結合又は2価の連結基である。k5は、0~4の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を表してもよい。qは、0~3の整数である。式中、Sを含む環構造は骨格を形成する炭素-炭素結合間にOやS等のヘテロ原子を含んでいてもよい。
 上記式(X-3)中、Rc1、Rc2及びRc3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基である。
 上記式(X-4)中、Rg1は、置換若しくは非置換の炭素数1~20の直鎖状若しくは分岐状のアルキル基若しくはアルコキシ基、置換若しくは非置換の炭素数2~8のアシル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基、又はヒドロキシ基である。nは0又は1である。nk2が0のとき、k10は0~4の整数であり、nk2が1のとき、k10は0~7の整数である。Rg1が複数の場合、複数のRg1は同一でも異なっていてもよく、また、複数のRg1は、互いに合わせられ構成される環構造を表してもよい。Rg2は及びRg3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニルオキシ基、置換若しくは非置換の炭素数3~12の単環若しくは多環のシクロアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ヒドロキシ基、ハロゲン原子であるか、又はこれらの基が互いに合わせられ構成される環構造を表す。k11及びk12は、それぞれ独立して0~4の整数である。Rg2は及びRg3がそれぞれ複数の場合、複数のRg2は及びRg3はそれぞれ同一でも異なっていてもよい。
 上記式(X-5)中、Rd1及びRd2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、ニトロ基であるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。k6及びk7は、それぞれ独立して0~5の整数である。Rd1及びRd2がそれぞれ複数の場合、複数のRd1及びRd2はそれぞれ同一でも異なっていてもよい。
 上記式(X-6)中、Re1及びRe2は、それぞれ独立して、ハロゲン原子、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k8及びk9は、それぞれ独立して0~4の整数である。
 感放射線性オニウムカチオンの具体例としては、限定されないものの、例えば下記式の構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 化合物(1)は、上記式(i)で表される酸解離性基開裂前後の構造におけるアニオン構造のファンデルワールス体積の変化率の下限は、32%であり、好ましくは38%であり、さらに好ましくは40%であり、特に好ましくは45%である。上記変化率の上限は、67%であり、好ましくは65%であり、さらに好ましくは62%であり、特に好ましくは60%である。ファンデルワールス体積の変化率がこの範囲にあると、十分に小さなLWR、CDUが得られ、感度とリソグラフィー性能のバランスが良い感放射線性樹脂組成物が得られる。なお、化合物(1)のアニオン構造と、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のファンデルワールス体積は、それぞれ算出により求められ、具体的には、オープンソースのケモインフォマティクスソフトウェアであるRDKitを用いて算出される。
 また化合物(1)は、上記式(ii)で表される酸解離性基開裂前後の構造におけるClogP値の変化(ClogP値の差の絶対値)が3.00以下であり、好ましくは2.50以下であり、さらに好ましくは2.00以下である。ClogP値の変化が小さいと、現像時の溶解性バラつきが小さくなり、LWR、CDUが十分に小さい感放射線性樹脂組成物が得られる。なお、ClogP値は算出により求められ、具体的には、Chemdraw(CambridgeSoft製、Ver.12)を用いて算出される。
 化合物(1)の具体例としては、例えば下記式(B-1)~(B-22)で表されるオニウム塩化合物(以下、下記式(B-1)~(B-22)で表されるオニウム塩化合物を「化合物(B-1)~化合物(B-22)」ともいう。)等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 化合物(1)の含有量(複数種の化合物(1)を含む場合はそれらの合計)の下限は、後述の樹脂100質量部に対し0.02質量部が好ましく、0.1質量部がより好ましく、1質量部がさらに好ましく、5質量部が特に好ましい。上記含有量の上限は50質量部が好ましく、40質量部以下がより好ましく、30質量部以下がさらに好ましい。化合物(1)の含有量は、使用する樹脂の種類、露光条件や求められる感度等に応じて適宜選択される。これによりレジストパターン形成の際に優れた感度やLWR性能、CDU性能、パターン矩形性を発揮することができる。
 (樹脂)
 樹脂は、酸解離性基を含む構造単位(以下、「構造単位(I)」ともいう)を有する重合体の集合体である(以下、この樹脂を「ベース樹脂」ともいう。)。「酸解離性基」とは、カルボキシ基、フェノール性水酸基、アルコール性水酸基、スルホ基等が有する水素原子を置換する基であって、酸の作用により解離する基をいう。当該感放射線性樹脂組成物は、樹脂が構造単位(I)を有することで、パターン形成性に優れる。
 ベース樹脂は、構造単位(I)以外にも、後述するラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位(II)を有することが好ましく、構造単位(I)及び(II)以外のその他の構造単位を有していてもよい。以下、各構造単位について説明する。
[構造単位(I)]
 構造単位(I)は、酸解離性基を含む構造単位である。構造単位(I)としては、酸解離性基を含む限り特に限定されず、例えば、第三級アルキルエステル部分を有する構造単位、フェノール性水酸基の水素原子が第三級アルキル基で置換された構造を有する構造単位、アセタール結合を有する構造単位等が挙げられるが、当該感放射線性樹脂組成物のパターン形成性の向上の観点から、下記式(2)で表される構造単位(以下、「構造単位(I-1)」ともいう)が好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(2)中、Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは、炭素数1~20の1価の炭化水素基である。R及びRは、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はR及びRが互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基である。
 上記Rとしては、構造単位(I-1)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記Rで表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~10の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記R~Rで表される炭素数1~10の鎖状炭化水素基としては、炭素数1~10の直鎖若しくは分岐鎖飽和炭化水素基、又は炭素数1~10の直鎖若しくは分岐鎖不飽和炭化水素基が挙げられる。
 上記R~Rで表される炭素数3~20の脂環式炭化水素基としては、上記式(1)のA及びAにおける炭素数3~20の脂環構造として示した構造から水素原子1つを除いた基を好適に採用することができる。
 上記Rで表される炭素数6~20の1価の芳香族炭化水素基としては、上記式(1)のA及びAにおける炭素数6~20の芳香環構造として示した構造から水素原子1つを除いた基を好適に採用することができる。
 上記Rとしては、炭素数1~10の直鎖又は分岐鎖飽和炭化水素基、炭素数3~20の脂環式炭化水素基が好ましい。
 上記R及びRが互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基は、上記炭素数の単環又は多環の脂環式炭化水素の炭素環を構成する同一炭素原子から2個の水素原子を除いた基であれば特に限定されない。単環式炭化水素基及び多環式炭化水素基のいずれでもよく、多環式炭化水素基としては、有橋脂環式炭化水素基及び縮合脂環式炭化水素基のいずれでもよく、飽和炭化水素基及び不飽和炭化水素基のいずれでもよい。なお、縮合脂環式炭化水素基とは、複数の脂環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環性の脂環式炭化水素基をいう。
 単環の脂環式炭化水素基のうち飽和炭化水素基としては、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基等が好ましく、不飽和炭化水素基としてはシクロペンテンジイル基、シクロヘキセンジイル基、シクロヘプテンジイル基、シクロオクテンジイル基、シクロデセンジイル基等が好ましい。多環の脂環式炭化水素基としては、有橋脂環式飽和炭化水素基が好ましく、例えばビシクロ[2.2.1]ヘプタン-2,2-ジイル基(ノルボルナン-2,2-ジイル基)、ビシクロ[2.2.2]オクタン-2,2-ジイル基、トリシクロ[3.3.1.13,7]デカン-2,2-ジイル基(アダマンタン-2,2-ジイル基)等が好ましい。
 これらの中で、Rは炭素数1~4のアルキル基であり、R及びRが互いに合わせられこれらが結合する炭素原子と共に構成される脂環構造が多環又は単環のシクロアルカン構造であることが好ましい。
 構造単位(I-1)としては、例えば、下記式(2-1)~(2-6)で表される構造単位(以下、「構造単位(I-1-1)~(I-1-6)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(2-1)~(2-6)中、R~Rは、上記式(2)と同義である。i及びjは、それぞれ独立して、1~4の整数である。k及びlは0又は1である。
 i及びjとしては、1が好ましい。Rとしては、メチル基、エチル基又はイソプロピル基が好ましい。R及びRとしては、メチル基又はエチル基が好ましい。
 ベース樹脂は、構造単位(I)を1種又は2種以上組み合わせて含んでいてもよい。
 構造単位(I)の含有割合(複数種含む場合は合計の含有割合)は、ベース樹脂を構成する全構造単位に対して、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましく、35モル%以上が特に好ましい。また、80モル%以下が好ましく、75モル%以下がより好ましく、70モル%以下がさらに好ましく、65モル%以下が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のパターン形成性をより向上させることができる。
[構造単位(II)]
 構造単位(II)は、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位である。ベース樹脂は、構造単位(II)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物は、解像性等のリソグラフィー性能を向上させることができる。また、ベース樹脂から形成されるレジストパターンと基板との密着性を向上させることができる。
 構造単位(II)としては、例えば、下記式(3-1)~(3-10)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RL2~RL5は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、シアノ基、トリフルオロメチル基、メトキシ基、メトキシカルボニル基、ヒドロキシ基、ヒドロキシメチル基、ジメチルアミノ基である。RL4及びRL5は、互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基であってもよい。Lは、単結合又は2価の連結基である。Xは、酸素原子又はメチレン基である。pは0~3の整数である。qは1~3の整数である。
 上記RL4及びRL5が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基としては、上記式(2)中のR及びRで表される鎖状炭化水素基又は脂環式炭化水素基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基のうち炭素数が3~8の基が挙げられる。この脂環式基上の1つ以上の水素原子は、ヒドロキシ基で置換されていてもよい。
 上記Lで表される2価の連結基としては、例えば、炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの炭化水素基の1個以上と-CO-、-O-、-NH-及び-S-のうちの少なくとも1種の基とから構成される基等が挙げられる。
 構造単位(II)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
 構造単位(II)の含有割合は、ベース樹脂を構成する全構造単位に対して、20モル%以上が好ましく、30モル%以上がより好ましく、35モル%以上がさらに好ましい。また、75モル%以下が好ましく、70モル%以下がより好ましく、65モル%以下がさらに好ましい。構造単位(II)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は解像性等のリソグラフィー性能及び形成されるレジストパターンの基板との密着性をより向上させることができる。
[構造単位(III)]
 ベース樹脂は、上記構造単位(I)及び(II)以外にも、その他の構造単位を任意で有する。上記その他の構造単位としては、例えば、極性基を含む構造単位(III)等が挙げられる(但し、構造単位(II)に該当するものを除く)。ベース樹脂は、構造単位(III)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能を向上させることができる。上記極性基としては、例えば、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等が挙げられる。これらの中で、ヒドロキシ基、カルボキシ基が好ましく、ヒドロキシ基がより好ましい。
 構造単位(III)としては、例えば、下記式で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000018
 上記式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記ベース樹脂が上記極性基を有する構造単位(III)を有する場合、上記構造単位(III)の含有割合は、ベース樹脂を構成する全構造単位に対して、5モル%以上が好ましく、8モル%以上がより好ましく、10モル%以上がさらに好ましい。また、40モル%以下が好ましく、35モル%以下がより好ましく、30モル%以下がさらに好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能をさらに向上させることができる。
[構造単位(IV)]
 ベース樹脂は、その他の構造単位として、上記極性基を有する構造単位(III)以外に、ヒドロキシスチレンに由来する構造単位又はフェノール性水酸基を有する構造単位(以下、両者を合わせて「構造単位(IV)」ともいう。)を任意で有する。構造単位(IV)はエッチング耐性の向上と、露光部と未露光部との間の現像液溶解性の差(溶解コントラスト)の向上に寄与する。特に、電子線やEUVといった波長50nm以下の放射線による露光を用いるパターン形成に好適に適用することができる。この場合、樹脂は、構造単位(IV)とともに構造単位(I)を有することが好ましい。
 この場合、重合時にはアルカリ解離性基等の保護基によりフェノール性水酸基を保護した状態で重合させておき、その後加水分解を行って脱保護することにより構造単位(IV)を得るようにすることが好ましい。加水分解により構造単位(IV)を与える構造単位としては、下記式(4-1)、(4-2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 上記式(4-1)、(4-2)中、R11は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R12は、炭素数1~20の1価の炭化水素基又はアルコキシ基である。R12の炭素数1~20の1価の炭化水素基としては、構造単位(I)におけるRの炭素数1~20の1価の炭化水素基が挙げられる。アルコキシ基としては、例えば、メトキシ基、エトキシ基及びtert-ブトキシ基等が挙げられる。
 上記R12としては、アルキル基及びアルコキシ基が好ましく、中でもメチル基、tert-ブトキシ基がより好ましい。
 波長50nm以下の放射線による露光用の樹脂の場合、構造単位(IV)の含有割合は、樹脂を構成する全構造単位に対して、10モル%以上が好ましく、20モル%以上がより好ましい。また、70モル%以下が好ましく、60モル%以下がより好ましい。
 (ベース樹脂の合成方法)
 ベース樹脂は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶剤中で重合することにより合成できる。
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等が挙げられる。これらの中で、AIBN、ジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は1種単独で又は2種以上を混合して用いることができる。
 上記重合に使用される溶剤としては、例えば
 n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;
 シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;
 ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;
 クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;
 酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;
 アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;
 テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;
 メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等が挙げられる。これらの重合に使用される溶剤は、1種単独で又は2種以上を併用してもよい。
 上記重合における反応温度としては、通常40℃~150℃であり、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間であり、1時間~24時間が好ましい。
 ベース樹脂の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、4,000が特に好ましい。Mwの上限としては50,000が好ましく、30,000がより好ましく、15,000がさらに好ましく、12,000が特に好ましい。ベース樹脂のMwが上記下限未満だと、得られるレジスト膜の耐熱性が低下する場合がある。ベース樹脂のMwが上記上限を超えると、レジスト膜の現像性が低下する場合がある。
 ベース樹脂のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がさらに好ましい。
 本明細書における樹脂のMw及びMnは、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される値である。
 GPCカラム:G2000HXL 2本、G3000HXL 1本、G4000HXL 1本(以上、東ソー製)
 カラム温度:40℃
 溶出溶剤:テトラヒドロフラン
 流速:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
 ベース樹脂の含有割合としては、当該感放射線性樹脂組成物の全固形分に対して、70質量%以上が好ましく、80質量%以上がより好ましく、85質量%以上がさらに好ましい。
 (他の樹脂)
 本実施形態の感放射線性樹脂組成物は、他の樹脂として、上記ベース樹脂よりもフッ素原子の質量含有率が大きい樹脂(以下、「高フッ素含有量樹脂」ともいう。)を含んでいてもよい。当該感放射線性樹脂組成物が高フッ素含有量樹脂を含有する場合、上記ベース樹脂に対してレジスト膜の表層に偏在化させることができ、その結果、液浸露光時のレジスト膜の表面の撥水性を高めたり、レジスト膜中の成分を所望の状態に制御したりすることができる。
 高フッ素含有量樹脂としては、例えば下記式(5)で表される構造単位(以下、「構造単位(V)」ともいう。)を有することが好ましく、必要に応じて上記ベース樹脂における構造単位(I)や構造単位(III)を有していてもよい。
Figure JPOXMLDOC01-appb-C000020
 上記式(5)中、R13は、水素原子、メチル基又はトリフルオロメチル基である。Gは、単結合、酸素原子、硫黄原子、-COO-、-SOONH-、-CONH-又は-OCONH-である。R14は、炭素数1~20の1価のフッ素化鎖状炭化水素基又は炭素数3~20の1価のフッ素化脂環式炭化水素基である。
 上記R13としては、構造単位(V)を与える単量体の共重合性の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 上記Gとしては、構造単位(V)を与える単量体の共重合性の観点から、単結合及び-COO-が好ましく、-COO-がより好ましい。
 上記R14で表される炭素数1~20の1価のフッ素化鎖状炭化水素基としては、炭素数1~20の直鎖又は分岐鎖アルキル基が有する水素原子の一部又は全部がフッ素原子により置換されたものが挙げられる。
 上記R14で表される炭素数3~20の1価のフッ素化脂環式炭化水素基としては、炭素数3~20の単環又は多環式炭化水素基が有する水素原子の一部又は全部がフッ素原子により置換されたものが挙げられる。
 上記R14としては、フッ素化鎖状炭化水素基が好ましく、フッ素化アルキル基がより好ましく、2,2,2-トリフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロプロピル基及び5,5,5-トリフルオロ-1,1-ジエチルペンチル基がさらに好ましい。
 高フッ素含有量樹脂が構造単位(V)を有する場合、構造単位(V)の含有割合は、高フッ素含有量樹脂を構成する全構造単位に対して、30モル%以上が好ましく、40モル%以上がより好ましく、45モル%以上がさらに好ましく、50モル%以上が特に好ましい。また、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下がさらに好ましい。構造単位(V)の含有割合を上記範囲とすることで、高フッ素含有量樹脂のフッ素原子の質量含有率をより適度に調整してレジスト膜の表層への偏在化をさらに促進することができ、その結果、液浸露光時のレジスト膜の撥水性をより向上させることができる。
 高フッ素含有量樹脂は、構造単位(V)とともに又は構造単位(V)に代えて、下記式(f-2)で表されるフッ素原子含有構造単位(以下、構造単位(VI)ともいう。)を有していてもよい。高フッ素含有量樹脂は構造単位(f-2)を有することで、アルカリ現像液への溶解性が向上し、現像欠陥の発生を抑制することができる。
Figure JPOXMLDOC01-appb-C000021
 構造単位(VI)は、(x)アルカリ可溶性基を有する場合と、(y)アルカリの作用により解離してアルカリ現像液への溶解性が増大する基(以下、単に「アルカリ解離性基」とも言う。)を有する場合の2つに大別される。(x)、(y)双方に共通して、上記式(f-2)中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Rは単結合、炭素数1~20の(s+1)価の炭化水素基、この炭化水素基のR側の末端に酸素原子、硫黄原子、-NRdd-、カルボニル基、-COO-若しくは-CONH-が結合された構造、又はこの炭化水素基が有する水素原子の一部がヘテロ原子を有する有機基により置換された構造である。Rddは、水素原子又は炭素数1~10の1価の炭化水素基である。sは、1~3の整数である。
 構造単位(VI)が(x)アルカリ可溶性基を有する場合、Rは水素原子であり、Aは酸素原子、-COO-*又は-SOO-*である。*はRに結合する部位を示す。Wは単結合、炭素数1~20の炭化水素基又は2価のフッ素化炭化水素基である。Aが酸素原子である場合、WはAが結合する炭素原子にフッ素原子又はフルオロアルキル基を有するフッ素化炭化水素基である。Rは単結合又は炭素数1~20の2価の有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(VI)が(x)アルカリ可溶性基を有することで、アルカリ現像液に対する親和性を高め、現像欠陥を抑制することができる。(x)アルカリ可溶性基を有する構造単位(VI)としては、Aが酸素原子でありWが1,1,1,3,3,3-ヘキサフルオロ-2,2-メタンジイル基である場合が特に好ましい。
 構造単位(VI)が(y)アルカリ解離性基を有する場合、Rは炭素数1~30の1価の有機基であり、Aは酸素原子、-NRaa-、-COO-*又は-SOO-*である。Raaは水素原子又は炭素数1~10の1価の炭化水素基である。*はRに結合する部位を示す。Wは単結合又は炭素数1~20の2価のフッ素化炭化水素基である。Rは、単結合又は炭素数1~20の2価の有機基である。Aが-COO-*又は-SOO-*である場合、W又はRはAと結合する炭素原子又はこれに隣接する炭素原子上にフッ素原子を有する。Aが酸素原子である場合、W、Rは単結合であり、Rは炭素数1~20の炭化水素基のR側の末端にカルボニル基が結合された構造であり、Rはフッ素原子を有する有機基である。sが2又は3の場合、複数のR、W、A及びRはそれぞれ同一でも異なっていてもよい。構造単位(VI)が(y)アルカリ解離性基を有することにより、アルカリ現像工程においてレジスト膜表面が疎水性から親水性へと変化する。この結果、現像液に対する親和性を大幅に高め、より効率的に現像欠陥を抑制することができる。(y)アルカリ解離性基を有する構造単位(VI)としては、Aが-COO-*であり、R若しくはW又はこれら両方がフッ素原子を有するものが特に好ましい。
 Rとしては、構造単位(VI)を与える単量体の共重合性等の観点から、水素原子及びメチル基が好ましく、メチル基がより好ましい。
 Rが2価の有機基である場合、ラクトン構造を有する基が好ましく、多環のラクトン構造を有する基がより好ましく、ノルボルナンラクトン構造を有する基がより好ましい。
 高フッ素含有量樹脂が構造単位(VI)を有する場合、構造単位(VI)の含有割合は、高フッ素含有量樹脂を構成する全構造単位に対して、40モル%以上が好ましく、50モル%以上がより好ましく、60モル%以上がさらに好ましい。また、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下がさらに好ましい。構造単位(VI)の含有割合を上記範囲とすることで、液浸露光時のレジスト膜の撥水性をより向上させることができる。
[その他の構造単位]
 高フッ素含有量樹脂は、上記列挙した構造単位以外の構造単位として、下記式(6)で表される脂環構造を有する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000022
(上記式(6)中、R1αは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R2αは、炭素数3~20の1価の脂環式炭化水素基である。)
 上記式(6)中、R2αで表される炭素数3~20の1価の脂環式炭化水素基としては、上記式(1)のRにおける炭素数3~20の1価の脂環式炭化水素基を好適に採用することができる。
 高フッ素含有量樹脂が上記脂環構造を有する構造単位を含む場合、上記脂環構造を有する構造単位の含有割合は、高フッ素含有量樹脂を構成する全構造単位に対して、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上がさらに好ましい。また、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下がさらに好ましい。
 高フッ素含有量樹脂のMwの下限は、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、5,000が特に好ましい。また、上記Mwの上限は、50,000が好ましく、30,000がより好ましく、20,000がさらに好ましく、15,000が特に好ましい。
 高フッ素含有量樹脂のMw/Mnは、通常1以上であり、1.1以上がより好ましい。また、通常5以下であり、3以下が好ましく、2以下がより好ましく、1.9以下がさらに好ましい。
 高フッ素含有量樹脂の含有量は、上記ベース樹脂100質量部に対して、0.1質量部以上が好ましく、0.5質量部以上がより好ましく、1質量部以上がさらに好ましく、1.5質量部以上が特に好ましい。また、15質量部以下が好ましく、10質量部以下がより好ましく、8質量部以下がさらに好ましく、5質量部以下が特に好ましい。
 高フッ素含有量樹脂の含有量を上記範囲とすることで、高フッ素含有量樹脂をレジスト膜の表層へより効果的に偏在化させることができ、その結果、液浸露光時におけるレジスト膜の表面の撥水性をより高めることができる。当該感放射線性樹脂組成物は、高フッ素含有量樹脂を1種又は2種以上含有していてもよい。
 (高フッ素含有量樹脂の合成方法)
 高フッ素含有量樹脂は、上述のベース樹脂の合成方法と同様の方法により合成することができる。
 (光崩壊性塩基)
 本発明の感放射線性樹脂組成物は、酸拡散制御剤として光崩壊性塩基を含有する。
 酸拡散制御剤は、露光により化合物(1)から生じる酸のレジスト膜中における拡散現象を制御し、未露光部における好ましくない化学反応を抑制する効果を奏する。また、得られる感放射線性樹脂組成物の貯蔵安定性が向上する。さらに、レジストパターンの解像度がさらに向上すると共に、露光から現像処理までの引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れた感放射線性樹脂組成物が得られる。
 光崩壊性塩基は、露光により弱酸を発生するオニウム塩化合物であり、発生する酸は通常の条件では、上記樹脂中の酸解離性基の解離を誘発しない弱酸である。なお、本明細書において「通常の条件」とは、110℃で60秒間ポストエクスポージャーベークする条件をいう。
 光崩壊性塩基は、未露光部においては塩基性を有するため酸拡散制御剤として働くが、露光部においては、感放射線性オニウムカチオンが分解して生じるプロトンと、弱酸のアニオンとから弱酸が発生するので、酸拡散制御性が低下する。従って、露光部では発生した酸が効率よく働いて樹脂及び化合物(1)の酸解離性基が解離し、未露光部では酸が拡散せず樹脂及び化合物(1)が変化しないため、露光部と未露光部との溶解性の差がより顕著になり、得られるレジスト膜はLWR性能、CDU性能、パターン矩形性がさらに優れたものとなる。
 光崩壊性塩基としては、例えば下記式(7-1)で表されるスルホニウム塩化合物、下記式(7-2)で表されるヨードニウム塩化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
 上記式(7-1)及び式(7-2)中、Jはスルホニウムカチオンであり、Uはヨードニウムカチオンである。E及びQは、それぞれ独立して、OH、Rα-COO、Rα-SO で表されるアニオンである。カチオン部分とアニオン部分とはイオン結合のみならず、配位結合や共有結合で結合していてもよい。Rαは、アルキル基、アリール基又はアラルキル基である。Rαで表されるアリール基又はアラルキル基の芳香環の水素原子は、ヒドロキシ基、フッ素原子置換若しくは非置換の炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基で置換されていてもよい。
 上記Jで表されるスルホニウムカチオンとしては、上記式(X-1)~(X-4)で表されるスルホニウムカチオンが挙げられる。
 上記Uで表されるヨードニウムカチオンとしては、上記式(X-5)~(X-6)で表されるヨードニウムカチオンが挙げられる。
 上記光崩壊性塩基としては、例えば下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 上記光崩壊性塩基としては、これらの中で、スルホニウム塩が好ましく、トリアリールスルホニウム塩がより好ましく、トリフェニルスルホニウムサリチレート及びトリフェニルスルホニウム10-カンファースルホネートがさらに好ましい。
 光崩壊性塩基の含有量の下限は、感放射線性酸発生剤(化合物(1)を含む)の合計100質量部に対して、3質量部が好ましく、4質量部がより好ましく、5質量部がさらに好ましい。また、上記含有量の上限は、80質量部が好ましく、70質量部がより好ましく、50質量部がさらに好ましい。
 光崩壊性塩基の含有量を上記範囲とすることで、当該感放射線性樹脂組成物のリソグラフィー性能をより向上させることができる。当該感放射線性樹脂組成物は、光崩壊性塩基を1種又は2種以上を含有していてもよい。
 (溶剤)
 本実施形態に係る感放射線性樹脂組成物は、溶剤を含有する。溶剤は、少なくとも化合物(1)及び樹脂、並びに所望により含有される感放射線性酸発生剤等を溶解又は分散可能な溶剤であれば特に限定されない。
 溶剤としては、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、エステル系溶剤、炭化水素系溶剤等が挙げられる。
 アルコール系溶剤としては、例えば、
 iso-プロパノール、4-メチル-2-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-エチルヘキサノール、フルフリルアルコール、シクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ジアセトンアルコール等の炭素数1~18のモノアルコール系溶剤;
 エチレングリコール、1,2-プロピレングリコール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の炭素数2~18の多価アルコール系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基の一部をエーテル化した多価アルコール部分エーテル系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶剤;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶剤;
 ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基をエーテル化した多価アルコールエーテル系溶剤等が挙げられる。
 ケトン系溶剤としては、例えばアセトン、ブタノン、メチル-iso-ブチルケトン等の鎖状ケトン系溶剤:
 シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等の環状ケトン系溶剤:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶剤としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶剤;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶剤等が挙げられる。
 エステル系溶剤としては、例えば、
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶剤;
 ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶剤;
 γ-ブチロラクトン、バレロラクトン等のラクトン系溶剤;
 ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;
 ジ酢酸プロピレングリコール、酢酸メトキシトリグリコール、シュウ酸ジエチル、アセト酢酸エチル、乳酸エチル、フタル酸ジエチル等の多価カルボン酸ジエステル系溶剤が挙げられる。
 炭化水素系溶剤としては、例えば
 n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;
 ベンゼン、トルエン、ジ-iso-プロピルベンセン、n-アミルナフタレン等の芳香族炭化水素系溶剤等が挙げられる。
 これらの中で、エステル系溶剤、ケトン系溶剤が好ましく、多価アルコール部分エーテルアセテート系溶剤、環状ケトン系溶剤、ラクトン系溶剤がより好ましく、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、γ-ブチロラクトンがさらに好ましい。当該感放射線性樹脂組成物は、溶剤を1種又は2種以上含有していてもよい。
 (その他の任意成分)
 上記感放射線性樹脂組成物は、上記成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、化合物(1)以外の感放射線性光酸発生剤、光崩壊性塩基以外の酸拡散制御剤、架橋剤、偏在化促進剤、界面活性剤、脂環式骨格含有化合物、増感剤等をあげることができる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
 光崩壊性塩基以外の酸拡散制御剤としては、例えば下記式(8)で表される化合物(以下、「含窒素化合物(I)」ともいう)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(II)」ともいう)、窒素原子を3個有する化合物(以下、「含窒素化合物(III)」ともいう)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
 上記式(8)中、R22、R23及びR24は、それぞれ独立して、水素原子、置換若しくは非置換のアルキル基、置換若しくは非置換のシクロアルキル基、置換若しくは非置換のアリール基又は置換若しくは非置換のアラルキル基である。
 含窒素化合物(I)としては、例えばn-ヘキシルアミン等のモノアルキルアミン類;ジ-n-ブチルアミン等のジアルキルアミン類;トリエチルアミン等のトリアルキルアミン類;アニリン等の芳香族アミン類等が挙げられる。
 含窒素化合物(II)としては、例えばエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等が挙げられる。
 含窒素化合物(III)としては、例えばポリエチレンイミン、ポリアリルアミン等のポリアミン化合物;ジメチルアミノエチルアクリルアミド等の重合体等が挙げられる。
 アミド基含有化合物としては、例えばホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等が挙げられる。
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等が挙げられる。
 含窒素複素環化合物としては、例えばピリジン、2-メチルピリジン等のピリジン類;N-プロピルモルホリン、N-(ウンデシルカルボニルオキシエチル)モルホリン等のモルホリン類;ピラジン、ピラゾール等が挙げられる。
 また上記含窒素有機化合物として、酸解離性基を有する化合物を用いることもできる。このような酸解離性基を有する含窒素有機化合物としては、例えばN-t-ブトキシカルボニルピペリジン、N-t-ブトキシカルボニルイミダゾール、N-t-ブトキシカルボニルベンズイミダゾール、N-t-ブトキシカルボニル-2-フェニルベンズイミダゾール、N-(t-ブトキシカルボニル)ジ-n-オクチルアミン、N-(t-ブトキシカルボニル)ジエタノールアミン、N-(t-ブトキシカルボニル)ジシクロヘキシルアミン、N-(t-ブトキシカルボニル)ジフェニルアミン、N-t-ブトキシカルボニル-4-ヒドロキシピペリジン、N-t-ブトキシカルボニル-4-アセトキシピペリジン、N-t-アミルオキシカルボニル-4-ヒドロキシピペリジン等が挙げられる。
 <感放射線性樹脂組成物の調製方法>
 上記感放射線性樹脂組成物は、例えば、化合物(1)、樹脂、光崩壊性塩基、必要に応じて高フッ素含有量樹脂等、及び溶剤を所定の割合で混合することにより調製できる。上記感放射線性樹脂組成物は、混合後に、例えば、孔径0.05μm~0.20μm程度のフィルター等でろ過することが好ましい。上記感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
 <パターン形成方法>
 本発明の一実施形態に係るパターン形成方法は、
 上記感放射線性樹脂組成物を基板上に直接又は間接に塗布してレジスト膜を形成する工程(1)(以下、「レジスト膜形成工程」ともいう)と、
 上記レジスト膜を露光する工程(2)(以下、「露光工程」ともいう)と、
 露光された上記レジスト膜を現像する工程(3)(以下、「現像工程」ともいう)とを含む。
 上記レジストパターン形成方法によれば、露光工程における感度やLWR性能、CDU性能、パターン矩形性、エッチング耐性に優れたレジスト膜を形成可能な上記感放射線性樹脂組成物を用いているため、高品位のレジストパターンを形成することができる。以下、各工程について説明する。
 [レジスト膜形成工程]
 本工程(上記工程(1))では、上記感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えば、シリコンウエハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等を挙げることができる。また、例えば、特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等をあげることができる。塗布した後に、必要に応じて、塗膜中の溶剤を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~140℃であり、80℃~120℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
 液浸露光を行う場合、上記感放射線性樹脂組成物における上記高フッ素含有量樹脂等の撥水性重合体添加剤の有無にかかわらず、上記形成したレジスト膜上に、液浸液とレジスト膜との直接の接触を避ける目的で、液浸液に不溶性の液浸用保護膜を設けてもよい。液浸用保護膜としては、現像工程の前に溶剤により剥離する溶剤剥離型保護膜(例えば、特開2006-227632号公報参照)、現像工程の現像と同時に剥離する現像液剥離型保護膜(例えば、WO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。ただし、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 また、次工程である露光工程を波長50nm以下の放射線にて行う場合、上記組成物中のベース樹脂として上記構造単位(I)及び構造単位(IV)を有する樹脂を用いることが好ましい。
 [露光工程]
 本工程(上記工程(2))では、上記工程(1)であるレジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光する。露光に用いる放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、遠紫外線、EUV(極端紫外線)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などをあげることができる。これらの中でも、遠紫外線、電子線、EUVが好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、電子線、EUVがより好ましく、次世代露光技術として位置付けされる波長50nm以下の電子線、EUVがさらに好ましい。
 露光を液浸露光により行う場合、用いる液浸液としては、例えば、水、フッ素系不活性液体等をあげることができる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により感放射線性酸発生剤から発生した酸による樹脂等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性に差が生じる。PEB温度としては、通常50℃~180℃であり、80℃~130℃が好ましい。PEB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
 [現像工程]
 本工程(上記工程(3))では、上記工程(2)である上記露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。
 上記現像に用いる現像液としては、アルカリ現像の場合、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等をあげることができる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 また、有機溶媒現像の場合、炭化水素系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、アルコール系溶媒等の有機溶媒、又は有機溶媒を含有する溶媒をあげることができる。上記有機溶媒としては、例えば、上述の感放射線性樹脂組成物の溶剤として列挙した溶剤の1種又は2種以上等をあげることができる。これらの中でも、エーテル系溶媒、エステル系溶媒、ケトン系溶媒が好ましい。エーテル系溶媒としては、グリコールエーテル系溶媒が好ましく、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルがより好ましい。エステル系溶媒としては、酢酸エステル系溶媒が好ましく、酢酸n-ブチル、酢酸アミルがより好ましい。ケトン系溶媒としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶媒の含有量としては、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上が特に好ましい。現像液中の有機溶媒以外の成分としては、例えば、水、シリコンオイル等をあげることができる。
 上述のように、現像液としてはアルカリ現像液、有機溶媒現像液のいずれであってもよい。目的とするポジ型パターン又はネガ型パターンの別に応じて適宜選択することができる。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出しつづける方法(ダイナミックディスペンス法)等をあげることができる。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、上述した条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
13C-NMR分析]
 重合体の13C-NMR分析は、核磁気共鳴装置(日本電子(株)の「JNM-Delta400」)を用いて行った。
<樹脂及び高フッ素含有量樹脂の合成>
 各実施例及び各比較例における各樹脂及び高フッ素含有量樹脂の合成で用いた単量体を以下に示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000026
[合成例1]
 (樹脂(A-1)の合成)
 単量体(M-1)、単量体(M-2)及び単量体(M-13)を、モル比率が40/15/45(モル%)となるよう2-ブタノン(200質量部)に溶解し、開始剤としてAIBN(アゾビスイソブチロニトリル)(使用した単量体の合計100モル%に対して3モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノールで2回洗浄した後、ろ別し、50℃で24時間乾燥させて白色粉末状の樹脂(A-1)を得た(収率:83%)。樹脂(A-1)のMwは8,800であり、Mw/Mnは1.50であった。また、13C-NMR分析の結果、(M-1)、(M-2)及び(M-13)に由来する各構造単位の含有割合は、それぞれ41.3モル%、13.8モル%及び44.9モル%であった。
[合成例2~11]
 (樹脂(A-2)~樹脂(A-11)の合成)
 下記表1に示す種類及び配合割合の単量体を用いたこと以外は合成例1と同様にして、樹脂(A-2)~樹脂(A-11)を合成した。得られた樹脂の各構造単位の含有割合(モル%)、収率(%)及び物性値(Mw及びMw/Mn)を下記表1に併せて示す。なお、下記表1における「-」は、該当する単量体を使用しなかったことを示す(以降の表についても同様。)。
Figure JPOXMLDOC01-appb-T000027
[合成例12]
 (樹脂(A-12)の合成)
 単量体(M-1)及び単量体(M-18)を、モル比率が50/50(モル%)となるよう1-メトキシ-2-プロパノール(200質量部)に溶解し、開始剤としてAIBN(5モル%)を添加して単量体溶液を調製した。反応容器に1-メトキシ-2-プロパノール(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をヘキサン(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をヘキサンで2回洗浄した後、ろ別し、1-メトキシ-2-プロパノール(300質量部)に溶解した。次いで、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、撹拌しながら70℃で6時間加水分解反応を実施した。反応終了後、残溶媒を留去し、得られた固体をアセトン(100質量部)に溶解し、水(500質量部)の中に滴下して樹脂を凝固させた。得られた固体をろ別し、50℃で13時間乾燥させて白色粉末状の樹脂(A-12)を得た(収率:79%)。樹脂(A-12)のMwは5,200であり、Mw/Mnは1.60であった。また、13C-NMR分析の結果、(M-1)及び(M-18)に由来する各構造単位の含有割合は、それぞれ51.3モル%及び48.7モル%であった。
[合成例13~15]
 (樹脂(A-13)~樹脂(A-15)の合成)
 下記表2に示す種類及び配合割合の単量体を用いたこと以外は合成例12と同様にして、樹脂(A-13)~樹脂(A-15)を合成した。得られた樹脂の各構造単位の含有割合(モル%)、収率(%)及び物性値(Mw及びMw/Mn)を下記表2に併せて示す。
Figure JPOXMLDOC01-appb-T000028
[合成例16]
 (高フッ素含有量樹脂(E-1)の合成)
 単量体(M-1)及び単量体(M-20)を、モル比率が20/80(モル%)となるよう2-ブタノン(200質量部)に溶解し、開始剤としてAIBN(4モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。溶媒をアセトニトリル(400質量部)に置換した後、ヘキサン(100質量部)を加えて撹拌しアセトニトリル層を回収する作業を3回繰り返した。溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、高フッ素含有量樹脂(E-1)の溶液を得た(収率:69%)。高フッ素含有量樹脂(E-1)のMwは6,000であり、Mw/Mnは1.62であった。また、13C-NMR分析の結果、(M-1)及び(M-20)に由来する各構造単位の含有割合は、それぞれ19.9モル%及び80.1モル%であった。
[合成例17~20]
 (高フッ素含有量樹脂(E-2)~高フッ素含有量樹脂(E-5)の合成)
 下記表3に示す種類及び配合割合の単量体を用いたこと以外は合成例16と同様にして、高フッ素含有量樹脂(E-2)~高フッ素含有量樹脂(E-5)を合成した。得られた高フッ素含有量樹脂の各構造単位の含有割合(モル%)、収率(%)及び物性値(Mw及びMw/Mn)を下記表3に合わせて示す。
Figure JPOXMLDOC01-appb-T000029
<感放射線性酸発生剤(オニウム塩化合物)Bの合成>
[合成例21]
 (化合物(B-1)の合成)
 化合物(B-1)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000030
 反応容器に5-ヒドロキシ-2-アダマンタノン20.0mmol、トリフルオロ酢酸30.0mmol、ジシクロヘキシルカルボジイミド30.0mmol及び塩化メチレン50gを加えて室温で4時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、エステル体を良好な収率で得た。
 上記エステル体にメチルマグネシウムクロリド30.0mmol、塩化リチウム30.0mmol及びテトラヒドロフラン100gを加えて室温で1時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、アルコール体を良好な収率で得た。
 上記アルコール体にトリエチルアミン30.0mmol、ブロモジフルオロアセチルクロリド30.0mmol及びアセトニトリル50gを加えて100℃で6時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、ブロモ体を良好な収率で得た。
 上記ブロモ体にアセトニトリル:水(1:1(質量比))の混合液を加えて1M溶液とした後、亜ジチオン酸ナトリウム40.0mmolと炭酸水素ナトリウム60.0mmolを加え、70℃で4時間反応させた。アセトニトリルで抽出し溶媒を留去した後、アセトニトリル:水(3:1(質量比))の混合液を加え0.5M溶液とした。過酸化水素水60.0mmol及びタングステン酸ナトリウム2.00mmolを加え、50℃で12時間加熱攪拌した。アセトニトリルで抽出し溶媒を留去することでスルホン酸ナトリウム塩化合物を得た。上記スルホン酸ナトリウム塩化合物にトリフェニルスルホニウムブロミド20.0mmolを加え、水:ジクロロメタン(1:3(質量比))の混合液を加えることで0.5M溶液とした。室温で3時間激しく撹拌した後、ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-1)で表される化合物(B-1)を良好な収率で得た。
[合成例22~24]
 (化合物(B-2)~(B-4)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例21と同様にして、下記式(B-2)~(B-4)で表されるオニウム塩を合成した。
Figure JPOXMLDOC01-appb-C000031
[合成例25]
 (化合物(B-5-1)の合成)
 化合物(B-5-1)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000032
 ブロモジフルオロ酢酸エチル20.0mmolにアセトニトリル:水(1:1(質量比))の混合液を加えて1M溶液とした後、亜ジチオン酸ナトリウム40.0mmolと炭酸水素ナトリウム60.0mmolを加え、70℃で4時間反応させた。アセトニトリルで抽出し溶媒を留去した後、アセトニトリル:水(3:1(質量比))の混合液を加え0.5M溶液とした。過酸化水素水60.0mmol及びタングステン酸ナトリウム2.00mmolを加え、50℃で12時間加熱攪拌した。アセトニトリルで抽出し溶媒を留去することでスルホン酸ナトリウム塩化合物を得た。上記スルホン酸ナトリウム塩化合物にトリフェニルスルホニウムブロミド20.0mmolを加え、水:ジクロロメタン(1:3(質量比))の混合液を加えることで0.5M溶液とした。室温で3時間激しく撹拌した後、ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、オニウム塩体を良好な収率で得た。
 上記オニウム塩体にメタノール:水(1:1(質量比))の混合液を加えて1M溶液とした後、水酸化リチウム20.0mmolを加え、室温で2時間反応させた。その後、2M塩酸を加えて反応を停止させたのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-5-1)で表される化合物(B-5-1)を良好な収率で得た。
[合成例26]
 (化合物(B-5)の合成)
 化合物(B-5)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000033
 反応容器に5-ヒドロキシ-2-アダマンタノン20.0mmol、メトキシメチルクロリド30.0mmol、トリエチルアミン30.0mmol及びテトラヒドロフラン50gを加えて室温で4時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-5-2)で表される化合物(B-5-2)を良好な収率で得た。
 上記化合物(B-5-2)にエチルマグネシウムクロリド30.0mmol及びテトラヒドロフラン100gを加えて室温で5時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、アルコール体を良好な収率で得た。
 上記アルコール体にトリエチルアミン30.0mmol、クロロアセチルクロリド30.0mmol及びアセトニトリル50gを加えて室温で3時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-5-3)で表される化合物(B-5-3)を良好な収率で得た。
 上記化合物(B-5-3)に炭酸カリウム30.0mmol、化合物(B-5-1)20.0mmol及びアセトン50gを加えて40℃で24時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-5)で表される化合物(B-5)を良好な収率で得た。
[合成例27~30]
 (化合物(B-6)~(B-9)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例26と同様にして、下記式(B-6)~(B-9)で表されるオニウム塩を合成した。
Figure JPOXMLDOC01-appb-C000034
[合成例31]
 (化合物(B-10)の合成)
 化合物(B-10)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000035
 反応容器にシクロヘキサノン-4-カルボン酸20.0mmol、7-ヒドロキシヘキサヒドロ-3,5-メタノシクロペンタ[c][1,2]オキサチオール-1,1-ジオキサイド30.0mmol、ジシクロヘキシルカルボジイミド30.0mmol及び塩化メチレン50gを加えて室温で10時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、エステル体を良好な収率で得た。
 上記エステル体にメチルマグネシウムクロリド30.0mmol、塩化リチウム30.0mmol及びテトラヒドロフラン100gを加えて室温で1時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、アルコール体を良好な収率で得た。
 上記アルコール体にトリエチルアミン30.0mmol、クロロアセチルクロリド30.0mmol及びアセトニトリル50gを加えて室温で1時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、クロロ体を良好な収率で得た。
 上記クロロ体に炭酸セシウム30.0mmol、化合物(B-5-1)20.0mmol及びジメチルホルムアミド50gを加えて室温で1時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-10)で表される化合物(B-10)を良好な収率で得た。
[合成例32]
 (化合物(B-11)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例31と同様にして、下記式(B-11)で表されるオニウム塩を合成した。
Figure JPOXMLDOC01-appb-C000036
[合成例33]
 (化合物(B-12)の合成)
 化合物(B-12)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000037
 反応容器にブロモジフルオロ酢酸20.0mmol、1,3-ジヒドロキシアダマンタン20.0mmol、ジシクロヘキシルカルボジイミド20.0mmol及び塩化メチレン50gを加えて室温で4時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、エステル体を良好な収率で得た。
 上記エステル体にアセトニトリル:水(1:1(質量比))の混合液を加えて1M溶液とした後、亜ジチオン酸ナトリウム40.0mmolと炭酸水素ナトリウム60.0mmolを加え、70℃で5時間反応させた。アセトニトリルで抽出し溶媒を留去した後、アセトニトリル:水(3:1(質量比))の混合液を加え0.5M溶液とした。過酸化水素水60.0mmol及びタングステン酸ナトリウム2.00mmolを加え、50℃で12時間加熱攪拌した。アセトニトリルで抽出し溶媒を留去することでスルホン酸ナトリウム塩化合物を得た。上記スルホン酸ナトリウム塩化合物にトリフェニルスルホニウムブロミド20.0mmolを加え、水:ジクロロメタン(1:3(質量比))の混合液を加えることで0.5M溶液とした。室温で3時間激しく撹拌した後、ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、オニウム塩体を良好な収率で得た。
 上記オニウム塩体に水素化ナトリウム30.0mmol、化合物(B-5-3)30.0mmol及びテトラヒドロフラン50gを加えて50℃で3時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-12)で表される化合物(B-12)を良好な収率で得た。
[合成例34]
 (化合物(B-13)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例33と同様にして、下記式(B-13)で表されるオニウム塩を合成した。
Figure JPOXMLDOC01-appb-C000038
[合成例35]
 (化合物(B-14)の合成)
 化合物(B-14)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000039
 反応容器に(B-5-2)20.0mmol、メチルマグネシウムクロリド30.0mmol及びテトラヒドロフラン100gを加えて室温で6時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-14-1)で表される化合物(B-14-1)を良好な収率で得た。
 反応容器に4-(ブロモメチル)安息香酸20.0mmol、塩化チオニル30.0mmol及びアセトニトリル50gを加えて室温で1時間撹拌した。その後、(B-14-1)20.0mmolおよびトリエチルアミン30.0mmolを加えて室温で6時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、ブロモ体を良好な収率で得た。
 上記ブロモ体に炭酸カリウム30.0mmol、化合物(B-5-1)20.0mmol及びメチルエチルケトン50gを加えて50℃で5時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-14)で表される化合物(B-14)を良好な収率で得た。
[合成例36]
 (化合物(B-15-1)の合成)
 化合物(B-15-1)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000040
 反応容器に(B-5-1)20.0mmol、水素化アルミニウムリチウム40.0mmol及びテトラヒドロフラン100gを加えて室温で6時間撹拌した。その後、飽和酒石酸カリウムナトリウム水溶液を加えて反応を停止させたのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、再結晶精製することで、上記式(B-15-1)で表される化合物(B-15-1)を良好な収率で得た。
[合成例37]
 (化合物(B-15)の合成)
 化合物(B-15)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000041
 反応容器に(B-14-1)20.0mmol、トリエチルアミン30.0mmol、クロロアセチルクロリド30.0mmol及びアセトニトリル50gを加えて室温で1時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、クロロ体を良好な収率で得た。
 上記クロロ体に水素化ナトリウム30.0mmol、3-ヒドロキシ-1-アダマンタンカルボン酸メチル30.0mmol及びテトラヒドロフラン50gを加えて50℃で3時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、エステル体を良好な収率で得た。
 上記エステル体にテトラヒドロフラン:水(1:1(質量比))の混合液を加えて1M溶液とした後、水酸化リチウム20.0mmolを加え、室温で2時間反応させた。その後、2M塩酸を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、カルボン酸体を良好な収率で得た。
 上記カルボン酸体に(B-15-1)20.0mmol、ジシクロヘキシルカルボジイミド30.0mmol及び塩化メチレン50gを加えて室温で3時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-15)で表される化合物(B-15)を良好な収率で得た。
[合成例38~40]
 (化合物(B-16)~(B-18)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例37と同様にして、下記式(B-16)~(B-18)で表されるオニウム塩を合成した。
Figure JPOXMLDOC01-appb-C000042
[合成例41]
 (化合物(B-19)の合成)
 化合物(B-19)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000043
 反応容器に5-ヒドロキシ-2-アダマンタノン20.0mmol、メチルビニルエーテル30.0mmol、トシル酸一水和物20.0mmol及びテトラヒドロフラン50gを加えて室温で10時間撹拌した。その後、水を加えて希釈したのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、アセタール体を良好な収率で得た。
 上記アセタール体にメチルマグネシウムクロリド30.0mmol及びテトラヒドロフラン100gを加えて室温で4時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、アルコール体を良好な収率で得た。
 反応容器にテレフタル酸モノメチル20.0mmol、塩化チオニル30.0mmol及びアセトニトリル50gを加えて室温で1時間撹拌した。その後、上記アルコール体20.0mmolおよびトリエチルアミン30.0mmolを加えて室温で10時間撹拌した。その後、飽和塩化アンモニウム水溶液を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、エステル体を良好な収率で得た。
 上記エステル体にテトラヒドロフラン:水(1:1(質量比))の混合液を加えて1M溶液とした後、水酸化リチウム20.0mmolを加え、室温で3時間反応させた。その後、2M塩酸を加えて反応を停止させたのち、酢酸エチルを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、カルボン酸体を良好な収率で得た。
 上記カルボン酸体に(B-15-1)20.0mmol、ジシクロヘキシルカルボジイミド30.0mmol及び塩化メチレン50gを加えて室温で3時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-19)で表される化合物(B-19)を良好な収率で得た。
[合成例42]
 (化合物(B-20)の合成)
 化合物(B-20)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000044
 反応容器に(B-5)20.0mmol、2M塩酸40.0mmol及びメタノール50gを加えて室温で10時間撹拌した。その後、水を加えて希釈したのち、塩化メチレンを加えて抽出し、有機層を分離した。得られた有機層を硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、上記式(B-20)で表される化合物(B-20)を良好な収率で得た。
[合成例43~44]
 (化合物(B-21)~(B-22)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例42と同様にして、下記式(B-21)~(B-22)で表されるオニウム塩を合成した。
Figure JPOXMLDOC01-appb-C000045
[化合物(B-1)~(B-22)の物性]
 化合物(B-1)~(B-22)のアニオン構造と、該アニオン構造の酸解離性基が開裂した後の構造とにおける、ファンデルワールス体積の変化率とCLogP値の差について、下記表4に示す。なお、それぞれの物性の算出方法は下記のとおりである。
(ファンデルワールス体積の変化率)
 オープンソースのケモインフォマティクスソフトウェアであるRDKitを用いてそれぞれのファンデルワールス体積を算出し、上記式(i)に従って変化率を計算した。
(ClogP値の差)
 Chemdraw(CambridgeSoft製、Ver.12)を用いてそれぞれのClogP値を算出し、上記式(ii)に従って差を計算した。
Figure JPOXMLDOC01-appb-T000046
[化合物(B-1)~(B-22)以外のオニウム塩化合物]
b-1~b-16:下記式(b-1)~(b-16)で表される化合物(以下、式(b-1)~(b-16)で表される化合物をそれぞれ「化合物(b-1)」~「化合物(b-16)」と記載する場合がある。)
 なお、化合物(b-1)~(b-16)のファンデルワールス体積の変化率と、CLogP値の変化について、下記表5に示す。表5における「-」は、露光前のアニオン構造が酸解離性基を有さなかったことから、酸解離性基が開裂した構造が得られなかったことを示す。
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-T000048
[[C]酸拡散制御剤]
C-1~C-8:下記式(C-1)~(C-8)で表される化合物(以下、式(C-1)~(C-8)で表される化合物をそれぞれ「化合物(C-1)」~「化合物(C-8)」と記載する場合がある。)
Figure JPOXMLDOC01-appb-C000049
[[D]溶剤]
 D-1:プロピレングリコールモノメチルエーテルアセテート
 D-2:プロピレングリコールモノメチルエーテル
 D-3:γ-ブチロラクトン
 D-4:乳酸エチル
[ArF露光用ポジ型感放射線性樹脂組成物の調製]
[実施例1]
 [A]樹脂としての(A-1)100質量部、[B]感放射線性酸発生剤としての(B-1)12.0質量部、[C]酸拡散制御剤としての(C-1)5.0質量部、[E]高フッ素含有量樹脂としての(E-1)3.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-2)/(D-3)の混合溶媒3,230質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-1)を調製した。
[実施例2~48及び比較例1~19]
 下記表6に示す種類及び含有量の各成分を用いたこと以外は実施例1と同様にして、感放射線性樹脂組成物(J-2)~(J-48)及び(CJ-1)~(CJ-19)を調製した。
Figure JPOXMLDOC01-appb-T000050
<ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成>
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ100nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したArF露光用ポジ型感放射線性樹脂組成物を塗布し、100℃で60秒間PB(プレベーク)を行った。その後、23℃で30秒間冷却することにより、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Dipole(σ=0.9/0.7)の光学条件にて、40nmラインアンドスペースのマスクパターンを介して露光した。露光後、100℃で60秒間PEB(ポストエクスポージャーベーク)を行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターン(40nmラインアンドスペースパターン)を形成した。
<評価>
 上記ArF露光用ポジ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度、LWR性能及びパターン矩形性を下記方法に従って評価した。その結果を下記表7に示す。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[感度]
 上記ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成において、40nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、25mJ/cm以下の場合は「良好」と、25mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記感度の評価で求めた最適露光量を照射して40nmラインアンドスペースのレジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、この3シグマ値をLWR(nm)とした。LWRは、その値が小さいほど、ラインのラフネスが小さく良好であることを示す。LWR性能は、2.5nm以下の場合は「良好」と、2.5nmを超える場合は「不良」と評価した。
[パターン矩形性]
 上記感度の評価で求めた最適露光量を照射して形成された40nmラインアンドスペースのレジストパターンについて、上記走査型電子顕微鏡を用いて観察し、当該ラインアンドスペースパターンの断面形状を評価した。レジストパターンの矩形性は、断面形状における下辺の長さの上辺の長さに対する比が、1以上1.05以下であれば「A」(極めて良好)、1.05超1.10以下であれば「B」(良好)、1.10超であれば「C」(不良)と評価した。
Figure JPOXMLDOC01-appb-T000051
 表7の結果から明らかなように、実施例の感放射線性樹脂組成物は、ArF露光に用いた場合、感度、LWR性能及びパターン矩形性が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。したがって、実施例の感放射線性樹脂組成物をArF露光に用いた場合、高い感度でLWR性能が良好、かつ矩形性に優れたレジストパターンを形成することができる。
[極端紫外線(EUV)露光用ポジ型感放射線性樹脂組成物の調製]
[実施例49]
 [A]樹脂としての(A-12)100質量部、[B]感放射線性酸発生剤としての(B-6)15.0質量部、[C]酸拡散制御剤としての(C-1)8.0質量部、[E]高フッ素含有量樹脂としての(E-5)3.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-4)の混合溶媒6,110質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-49)を調製した。
[実施例50~61及び比較例20~23]
 下記表8に示す種類及び含有量の各成分を用いたこと以外は実施例49と同様にして、感放射線性樹脂組成物(J-50)~(J-61)及び(CJ-20)~(CJ-23)を調製した。
Figure JPOXMLDOC01-appb-T000052
<EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成>
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したEUV露光用ポジ型感放射線性樹脂組成物を塗布し、130℃で60秒間PBを行った。その後、23℃で30秒間冷却することにより、平均厚さ55nmのレジスト膜を形成した。次に、このレジスト膜に対し、EUV露光装置(ASML社の「NXE3300」)を用い、NA=0.33、照明条件:Conventional s=0.89、マスク:imecDEFECT32FFR02にて露光した。露光後、120℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターン(32nmラインアンドスペースパターン)を形成した。
<評価>
 上記EUV露光用ポジ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度及びLWR性能を下記方法に従って評価した。その結果を下記表9に示す。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[感度]
 上記EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、25mJ/cm以下の場合は「良好」と、25mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記感度の評価で求めた最適露光量を照射して32nmラインアンドスペースのパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、この3シグマ値をLWR(nm)とした。LWRは、その値が小さいほど、ラインのがたつきが小さく良好であることを示す。LWR性能は、2.5nm以下の場合は「良好」と、2.5nmを超える場合は「不良」と評価した。
Figure JPOXMLDOC01-appb-T000053
 表9の結果から明らかなように、実施例の感放射線性樹脂組成物は、EUV露光に用いた場合、感度及びLWR性能が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。
[ArF露光用ネガ型感放射線性樹脂組成物の調製、この組成物を用いたレジストパターンの形成及び評価]
[実施例62]
 [A]樹脂としての(A-6)100質量部、[B]感放射線性酸発生剤としての(B-15)10.0質量部、[C]酸拡散制御剤としての(C-1)6.0質量部、[E]高フッ素含有量樹脂としての(E-4)1.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-2)/(D-3)の混合溶媒3,230質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-62)を調製した。
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ100nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したArF露光用ネガ型感放射線性樹脂組成物(J-62)を塗布し、100℃で60秒間PB(プレベーク)を行った。その後、23℃で30秒間冷却することにより、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Annular(σ=0.8/0.6)の光学条件にて、40nmホール、105nmピッチのマスクパターンを介して露光した。露光後、100℃で60秒間PEB(ポストエクスポージャーベーク)を行った。その後、有機溶媒現像液として酢酸n-ブチルを用いて上記レジスト膜を有機溶媒現像し、乾燥させることでネガ型のレジストパターン(40nmホール、105nmピッチ)を形成した。
<評価>
 上記ArF露光用ネガ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、CDU性能を下記方法に従って評価した。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[CDU性能]
 40nmホール、105nmピッチのレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から任意のポイントで計1,800個測長した。寸法のバラつき(3σ)を求め、これをCDU性能(nm)とした。CDUは、その値が小さいほど、長周期でのホール径のばらつきが小さく良好であることを示す。
 上記ArF露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンについて、上記の通り評価した結果、実施例62の感放射線性樹脂組成物は、ArF露光にてネガ型のレジストパターンを形成した場合においても、CDU性能が良好であった。
[EUV露光用ネガ型感放射線性樹脂組成物の調製、この組成物を用いたレジストパターンの形成及び評価]
[実施例63]
 [A]樹脂としての(A-13)100質量部、[B]感放射線性酸発生剤としての(B-13)18.0質量部、[C]酸拡散制御剤としての(C-1)10.0質量部、[E]高フッ素含有量樹脂としての(E-5)1.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-4)の混合溶媒6,110質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-63)を調製した。
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したEUV露光用ネガ型感放射線性樹脂組成物(J-63)を塗布し、130℃で60秒間PBを行った。その後、23℃で30秒間冷却することにより、平均厚さ55nmのレジスト膜を形成した。次に、このレジスト膜に対し、EUV露光装置(ASML社の「NXE3300」)を用い、NA=0.33、照明条件:Conventional s=0.89、マスク:imecDEFECT32FFR02にて露光した。露光後、120℃で60秒間PEBを行った。その後、有機溶媒現像液として酢酸n-ブチルを用いて上記レジスト膜を有機溶媒現像し、乾燥させることでネガ型のレジストパターン(40nmホール、105nmピッチ)を形成した。
 上記EUV露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンについて、上記ArF露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンの評価と同様にして評価した。その結果、実施例63の感放射線性樹脂組成物は、EUV露光にてネガ型のレジストパターンを形成した場合においても、感度、及びCDU性能が良好であった。
 上記で説明した感放射線性樹脂組成物及びレジストパターン形成方法によれば、露光光に対する感度が良好であり、LWR性能、CDU性能及びパターン矩形性に優れるレジストパターンを形成することができる。したがって、これらは、今後さらに微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 

Claims (7)

  1.  下記式(1)で表され、かつ下記条件(i)及び(ii)を満たすオニウム塩化合物と、
     酸解離性基を有する構造単位を含む樹脂と、
     光崩壊性塩基と、
     溶剤と
     を含む感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     Rは、フッ素原子又は炭素数1~10の1価のフッ素化炭化水素基である。
     R、R及びRは、それぞれ独立して、水素原子、フッ素原子、炭素数1~10の炭化水素基又は炭素数1~10の1価のフッ素化炭化水素基である。
     mは0~7の整数であり、mが2以上である場合、複数のR及びRは互いに同一又は異なる。
     Aは、単結合又は環員数3~30の2価の環状有機基である。
     Aは、炭素数1~10の2価の鎖状炭化水素基又は環員数3~30の2価の環状有機基である。
     Lは、-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-S-、-SO-、-CONH-及び-NHCO-から選ばれる2価の連結基である。
     nは0~2の整数であり、nが2である場合、複数のA及びLは互いに同一又は異なる。
     Rは、下記式(1-1)又は下記式(1-2)で表される酸解離性基である。
     Zは、1価の感放射線性オニウムカチオンである。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(1-1)中、R1Aは、炭素数1~20の1価の炭化水素基である。R1B及びR1Cは、それぞれ独立して、炭素数1~20の1価の炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される環員数3~20の2価の環状有機基を表す。*は、上記式(1)のRに隣接している酸素原子と結合する部位を示す。
     上記式(1-2)中、Yは-O-又は-S-である。R2Aは、水素原子若しくは炭素数1~20の1価の炭化水素基であり、R2Bは、炭素数1~20の1価の炭化水素基であるか、又はR2A及びR2Bが互いに合わせられこれらが結合する原子鎖と共に構成される環員数4~20の2価の環状有機基を表す。*は、上記式(1)のRに隣接している酸素原子と結合する部位を示す。)
     
    条件(i):上記式(1)で表されるオニウム塩化合物のアニオン構造の、下記式(i)で表される酸解離性基開裂前後の構造のファンデルワールス体積の変化率が、32%以上67%以下である。
     
    (W1-W2)/(W1)×100(%)  ・・・(i)
     
    (上記式(i)中、W1は、上記式(1)で表されるオニウム塩化合物のアニオン構造のファンデルワールス体積を表し、W2は、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のファンデルワールス体積を表す。)
     
    条件(ii):上記式(1)で表されるオニウム塩化合物のアニオン構造の、下記式(ii)で表される酸解離性基開裂前後の構造のClogP値の差が、3.00以下である。
     
    (P1-P2) ・・・(ii)
     
    (上記式(ii)中、P1は、上記式(1)で表されるオニウム塩化合物のアニオン構造のClogP値を表し、P2は、活性光線又は放射線の照射により生じた酸により上記アニオン構造の酸解離性基が開裂した後の構造のClogP値を表す。)
  2.  上記光崩壊性塩基が、下記式(7-1)で表されるスルホニウム塩化合物、及び下記式(7-2)で表されるヨードニウム塩化合物から選ばれる少なくとも一種である請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(7-1)及び式(7-2)中、Jはスルホニウムカチオンであり、Uはヨードニウムカチオンである。E及びQは、それぞれ独立して、OH、Rα-COO、又はRα-SO で表されるアニオンである。Rαは、アルキル基、アリール基又はアラルキル基である。Rαで表されるアリール基又はアラルキル基の芳香環の水素原子は、ヒドロキシ基、フッ素原子置換若しくは非置換の炭素数1~12のアルキル基又は炭素数1~12のアルコキシ基で置換されていてもよい。)
  3.  上記式(1)におけるmは0であるか、又はmは1であり、R及びRは水素原子である請求項1又は2に記載の感放射線性樹脂組成物。
  4.  上記式(1)におけるRが上記式(1-1)で表される基である請求項1~3のいずれか1項に記載の感放射線性樹脂組成物。
  5.  上記樹脂は、ラクトン構造、環状カーボネート構造、及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位をさらに有する、請求項1~4のいずれか1項に記載の感放射線性樹脂組成物。
  6.  上記樹脂における酸解離性基を有する構造単位は、下記式(2)で表される、請求項1~5のいずれか1項に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、
     Rは、水素原子、フッ素原子、メチル基、又はトリフルオロメチル基である。
     Rは、炭素数1~20の1価の炭化水素基である。
     R及びRは、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はR及びRが互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基である。)
  7.  請求項1~6のいずれか1項に記載の感放射線性樹脂組成物を基板上に直接又は間接に塗布してレジスト膜を形成する工程と、
     上記レジスト膜を露光する工程と、
     露光された上記レジスト膜を現像液で現像する工程と
     を含むパターン形成方法。
     
     
PCT/JP2022/008604 2021-03-12 2022-03-01 感放射線性樹脂組成物及びパターン形成方法 WO2022190964A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505326A JPWO2022190964A1 (ja) 2021-03-12 2022-03-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040407 2021-03-12
JP2021-040407 2021-03-12

Publications (1)

Publication Number Publication Date
WO2022190964A1 true WO2022190964A1 (ja) 2022-09-15

Family

ID=83227146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008604 WO2022190964A1 (ja) 2021-03-12 2022-03-01 感放射線性樹脂組成物及びパターン形成方法

Country Status (2)

Country Link
JP (1) JPWO2022190964A1 (ja)
WO (1) WO2022190964A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020898A (ja) * 2019-07-29 2021-02-18 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
JP2021070692A (ja) * 2019-10-29 2021-05-06 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021020898A (ja) * 2019-07-29 2021-02-18 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法
JP2021070692A (ja) * 2019-10-29 2021-05-06 住友化学株式会社 塩、酸発生剤、レジスト組成物及びレジストパターンの製造方法

Also Published As

Publication number Publication date
JPWO2022190964A1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
JP6421449B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、酸発生体及び化合物
JP2022007909A (ja) 感放射線性樹脂組成物、パターン形成方法及び単量体化合物の製造方法
JP6721823B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
KR102437123B1 (ko) 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
WO2022113663A1 (ja) 感放射線性樹脂組成物、及びパターン形成方法
JP2017156649A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、重合体及び化合物
JP2017181697A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2021241246A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP7323865B2 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2021220648A1 (ja) 感放射線性樹脂組成物及びそれを用いたレジストパターンの形成方法、並びに、スルホン酸塩化合物及びそれを含む感放射線性酸発生剤
JP7061268B2 (ja) レジストパターンの形成方法及び感放射線性樹脂組成物
JP7268770B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2023100574A1 (ja) 感放射線性樹脂組成物、パターン形成方法、基板の製造方法、及び化合物
JP7091762B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2022172736A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
JP6593138B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び感放射線性酸発生体
JP6641905B2 (ja) リソグラフィー用組成物及びレジストパターン形成方法
WO2021157354A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP2018049177A (ja) 感放射線性樹脂組成物、レジストパターン形成方法、感放射線性酸発生剤、化合物及び化合物の製造方法
WO2022190964A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2024116575A1 (ja) 感放射線性樹脂組成物、パターン形成方法及び感放射線性酸発生剤
WO2023095561A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2024116576A1 (ja) 感放射線性樹脂組成物、パターン形成方法及び感放射線性酸発生剤
WO2024116577A1 (ja) 感放射線性樹脂組成物、パターン形成方法及び感放射線性酸発生剤
JP2022135905A (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766923

Country of ref document: EP

Kind code of ref document: A1