WO2022190678A1 - 非接触電圧測定装置 - Google Patents

非接触電圧測定装置 Download PDF

Info

Publication number
WO2022190678A1
WO2022190678A1 PCT/JP2022/002524 JP2022002524W WO2022190678A1 WO 2022190678 A1 WO2022190678 A1 WO 2022190678A1 JP 2022002524 W JP2022002524 W JP 2022002524W WO 2022190678 A1 WO2022190678 A1 WO 2022190678A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
electrode
conductor
coupling capacitance
electric wire
Prior art date
Application number
PCT/JP2022/002524
Other languages
English (en)
French (fr)
Inventor
昂洋 中村
将道 池本
高洋 佐藤
智浩 山田
晃司 横田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022190678A1 publication Critical patent/WO2022190678A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof

Definitions

  • the present invention relates to a non-contact voltage measuring device that measures the voltage of a conductor of an electric wire without contacting the conductor.
  • a non-contact voltage measuring device which has two electrodes and calculates the voltage of the conductor of the electric wire from the voltage induced in each of the two electrodes.
  • the non-contact voltage measuring device disclosed in Patent Document 1 measures with a first voltage measuring unit connected to the first electrode, a second voltage measuring unit connected to the second electrode, and each voltage measuring unit
  • a time domain/frequency domain conversion unit that converts the converted data from the time domain to the frequency domain
  • a voltage value calculation unit for each frequency that calculates the voltage value for each frequency from the data converted to the frequency domain
  • a voltage value for each frequency It comprises a frequency domain/time domain conversion section for converting value data from the frequency domain to the time domain, and a conductor voltage calculation section for calculating the conductor voltage from the data converted to the time domain.
  • the non-contact voltage measurement device disclosed in Patent Document 1 includes a time domain/frequency domain conversion unit, a voltage value calculation unit for each frequency, and a frequency domain/time domain conversion unit, whereby a plurality of frequency components Voltage measurements can be made, including
  • the data measured by each voltage measuring unit is transformed from the time domain to the frequency domain, the voltage value is calculated for each frequency, and the data for each frequency is calculated.
  • a non-contact voltage measuring device comprises: a first electrode and a second electrode spaced apart from each other; a first capacitor connected to the first electrode; a first amplifier circuit connected in series with the first capacitor; a second capacitor connected to the second electrode; a second amplifier circuit connected in series with the second capacitor; and a computing unit,
  • Each of the first electrode and the second electrode is non-contact with the conductor of the electric wire and faces the conductor of the electric wire,
  • the first capacitor is connected to an input terminal of the first amplifier circuit
  • the second capacitor is connected to an input terminal of the second amplifier circuit,
  • the first amplifier circuit includes a third capacitor connected between an output terminal and an input terminal,
  • the second amplifier circuit includes a fourth capacitor connected between the output terminal and the input terminal,
  • the calculation unit is The capacity of the first capacitor, the capacity of the second capacitor, the capacity of the third capacitor, the capacity of the fourth capacitor, the voltage of the output terminal of the first amplifier circuit, and the voltage of the output terminal of the second amplifier
  • the present invention it is possible to measure the voltage of the conductor of the electric wire in real time with a simpler calculation than the conventional technology and in response to environmental changes.
  • FIG. 2 is a side view of a gripping member of the non-contact voltage measuring device according to the first embodiment of the present invention
  • 2 is a perspective view of an arm of the gripping member of FIG. 1
  • FIG. 1 is a block diagram of a non-contact voltage measuring device according to a first embodiment of the present invention
  • FIG. 1 is an equivalent circuit diagram of a non-contact voltage measuring device according to a first embodiment of the present invention
  • FIG. 4 is a flow chart showing the process of measuring the voltage of a conductor of an electric wire
  • the perspective view of the holding member of the non-contact voltage measuring device which concerns on 3rd Embodiment of this invention.
  • a non-contact voltage measuring device comprises: a first electrode and a second electrode spaced apart from each other; a first capacitor connected to the first electrode; a first amplifier circuit connected in series with the first capacitor; a second capacitor connected to the second electrode; a second amplifier circuit connected in series with the second capacitor; and a computing unit,
  • Each of the first electrode and the second electrode is non-contact with the conductor of the electric wire and faces the conductor of the electric wire,
  • the first capacitor is connected to an input terminal of the first amplifier circuit
  • the second capacitor is connected to an input terminal of the second amplifier circuit,
  • the first amplifier circuit includes a third capacitor connected between an output terminal and an input terminal,
  • the second amplifier circuit includes a fourth capacitor connected between the output terminal and the input terminal,
  • the calculation unit is The capacity of the first capacitor, the capacity of the second capacitor, the capacity of the third capacitor, the capacity of the fourth capacitor, the voltage of the output terminal of the first amplifier circuit, and the voltage of the output terminal of the second amplifier circuit. , the voltage of the conductor of the
  • the frequency term can be eliminated in the process of calculating the voltage of the conductor of the electric wire by the calculation unit.
  • the voltage of the conductor of the electric wire can be calculated without performing complicated calculations using Fourier transform or the like. In other words, it is possible to measure a voltage containing multiple frequency components with a simpler calculation than the conventional technique.
  • the coupling capacitance between the first electrode and the conductor of the wire and the coupling capacitance between the second electrode and the conductor of the wire can always be obtained. Therefore, it is possible to respond in real time to changes in coupling capacitance due to environmental changes such as changes in temperature and humidity, aged deterioration of wires, and the like.
  • the computing unit further calculates a first coupling capacitance between the first electrode and the conductor of the electric wire and a second coupling capacitance between the second electrode and the conductor of the electric wire. can be calculated.
  • the calculation unit can calculate the capacitance of the first to fourth capacitors, the voltage of the output terminal of the first amplifier circuit, and the output terminal of the second amplifier circuit. , the first coupling capacitance and the second coupling capacitance can be calculated.
  • the calculation unit may calculate the first coupling capacitance and the second coupling capacitance on the assumption that the first coupling capacitance and the second coupling capacitance are equal.
  • the first coupling capacitance and the second coupling capacitance can be calculated by a simple calculation.
  • the calculation unit calculates the first coupling capacitance and the second coupling capacitance on the assumption that the difference between the first coupling capacitance and the second coupling capacitance is constant. good.
  • the first coupling capacitance and the second coupling capacitance can be calculated.
  • Z 2 (C L2 +C 2 )/j ⁇ C L2 C 2 (2)
  • Z 3 1/j ⁇ C 3 (3)
  • Z 4 1/j ⁇ C 4 (4)
  • V 1 -(Z 3 /Z 1 )V L (5)
  • V 2 -(Z 4 /Z 2 )V L (6)
  • C L1 is the first coupling capacitance between the first electrode and the conductor of the wire
  • C L2 is the second coupling capacitance between the second electrode and the conductor of the wire
  • C 1 is the capacitance of the first capacitor
  • C2 is the capacitance of the second capacitor
  • C3 is the capacitance of the third capacitor
  • C4 is the capacitance of the fourth capacitor
  • Z 1 is the combined impedance of the capacitor storing the first coupling capacitance and the first capacitor
  • Z 2 is the combined impedance of the capacitor storing
  • the formula (5 ) and equation (6) substituted with equations (2) and (4) are derived.
  • the first coupling capacitance C L1 , the second coupling capacitance C L2 , and the conductor voltage V L of the wire can be calculated.
  • the ⁇ term (frequency term) disappears.
  • the simultaneous equations can be solved without performing complicated calculations using Fourier transform or the like. In other words, it is possible to measure a voltage containing multiple frequency components with a simpler calculation than the conventional technique.
  • the non-contact voltage measuring device may further include a gripping member that grips the electric wire, the first electrode and the second electrode may be provided on the gripping member, and the first electrode and the second electrode may be provided on the gripping member. Each of the two electrodes may face a conductor of the wire when the gripping member grips the wire.
  • the first electrode and the second electrode may be spaced apart and arranged side by side along the longitudinal direction of the wire when the gripping member grips the wire.
  • the coupling capacitance between the first electrode and the conductor of the wire and the coupling capacitance between the second electrode and the conductor of the wire can be the same or substantially the same.
  • the first electrode and the second electrode may be arranged so as to face each other across the central axis of the wire when the gripping member grips the wire.
  • the coupling capacitance between the first electrode and the conductor of the wire and the coupling capacitance between the second electrode and the conductor of the wire can be the same or substantially the same.
  • FIG. 1 is a side view of a gripping member of the non-contact voltage measuring device according to the first embodiment of the invention.
  • 2 is a perspective view of an arm of the gripping member of FIG. 1;
  • FIG. 3 is a block diagram of the non-contact voltage measuring device according to the first embodiment of the invention.
  • the non-contact voltage measuring device 1 measures the voltage of the conductor of the electric wire without contacting the conductor.
  • the non-contact voltage measuring device 1 measures the voltage of the conductors 2Aa, 2Ba, 2Ca (see FIG. 3) of the three-phase electric wires 2A, 2B, 2C connected to the motor 4.
  • FIG. A gripping member 10 of the non-contact voltage measuring device 1 grips one of the three-phase electric wires 2A, 2B, and 2C.
  • the non-contact voltage measuring device 1 measures the voltage of the conductor of the electric wire gripped by the gripping member 10 .
  • the gripping member 10 grips the electric wire 2A.
  • the non-contact voltage measuring device 1 measures the voltage of the conductor 2Aa of the electric wire 2A.
  • the voltage measured by the non-contact voltage measuring device 1 is displayed on the display section 3 .
  • the electric wire 2A includes a conductor 2Aa and a covering portion 2Ab that covers the conductor 2Aa.
  • the electric wire 2B includes a conductor 2Ba and a covering portion 2Bb covering the conductor 2Ba
  • the electric wire 2C includes a conductor 2Ca and a covering portion 2Cb covering the conductor 2Ca.
  • the non-contact voltage measuring device 1 grips the electric wire 2A out of the three-phase electric wires 2A, 2B, and 2C and measures the voltage of the conductor 2Aa of the electric wire 2A.
  • the non-contact voltage measuring device 1 includes a gripping member 10 and a device main body 20. As shown in FIG. 1, the gripping member 10 grips the electric wire 2A. As shown in FIG. 3, the device body 20 is connected to the gripping member 10 .
  • the gripping member 10 includes arms 10A and 10B.
  • the arms 10A and 10B grip the electric wire 2A by sandwiching the electric wire 2A.
  • the arm 10A has a surface 10Aa.
  • Arm 10B has a surface 10Ba.
  • the surfaces 10Aa and 10Ba face each other.
  • the surface 10Aa is the arc of a circle that constitutes the cross section of the electric wire 2A cut perpendicular to the longitudinal direction. Shape.
  • the width direction is parallel to the longitudinal direction of the wire 2A when the gripping member 10 grips the wire 2A.
  • the width direction (longitudinal direction of the electric wire 2A) matches the depth direction of FIG. 1 and the vertical direction of FIG. 3 .
  • the surface 10Ba As shown in FIG. 1, when viewed from the width direction, the surface 10Ba, like the surface 10Aa, has the shape of an arc of a circle that constitutes the cross section of the electric wire 2A cut perpendicularly to the longitudinal direction.
  • the surfaces 10Aa and 10Ba come into surface contact with the outer peripheral surface of the covering portion 2Ab of the electric wire 2A.
  • the arms 10A and 10B can also grip an electric wire with a diameter different from that of the electric wire 2A. In this case, the surfaces 10Aa and 10Ba are in line contact with the outer peripheral surface of the covering portion of the electric wire.
  • the arm 10A has a pair of shaft support parts 10Ab.
  • a pair of shaft support portions 10Ab face each other in the width direction.
  • Each of the shaft support portions 10Ab has a through hole 10Ac passing through the shaft support portion 10Ab in the width direction.
  • the arm 10B has a pair of shaft support parts 10Bb.
  • a pair of shaft support portions 10Bb face each other in the width direction.
  • the pair of shaft support portions 10Bb sandwich the pair of shaft support portions 10Ab from the outside in the width direction.
  • Each of the pair of shaft support portions 10Bb has a recess (not shown).
  • the recess is formed on the surface of the shaft support portion 10Bb facing the shaft support portion 10Ab.
  • the recess is recessed in the width direction.
  • Each through hole 10Ac of the arm 10A and each recess of the arm 10B are aligned in a straight line along the width direction.
  • a shaft (not shown) is inserted through each through hole 10Ac of the arm 10A and each recess of the arm 10B.
  • the arms 10A and 10B are rotatably supported relative to each other. That is, arm 10A is rotatably supported by arm 10B, and arm 10B is rotatably supported by arm 10A.
  • a torsion coil spring (not shown) is arranged between the pair of shaft support parts 10Ab.
  • a torsion coil spring is arranged around the shaft. Arms 10A and 10B are biased in a direction in which gripping member 10 is closed by a torsion coil spring. Thereby, the electric wire 2A is held in a state of being gripped by the gripping member 10 .
  • arms 10A and 10B face each other. Therefore, when the tips of the arms 10A and 10B come into contact with each other, the gripping member 10 will not close any more.
  • Electrode 11 is an example of a first electrode. Electrode 11 is an example of a second electrode. As shown in FIG. 2, the electrodes 11 and 12 are juxtaposed apart from each other in the width direction. Electrodes 11 and 12 are arranged on the back side of surface 10Aa of arm 10A.
  • the gripping member 10 comprises two capacitors C 1 and C 2 .
  • Capacitor C1 is an example of a first capacitor.
  • Capacitor C2 is an example of a second capacitor.
  • capacitors C 1 and C 2 are provided inside arm 10A.
  • Capacitor C 1 is connected to electrode 11 .
  • Capacitor C 2 is connected to electrode 12 .
  • the capacitance of the capacitor C1 is set to several pF to several tens of pF.
  • the capacity of the capacitor C2 is set to be 10 to 100 times the capacity of the capacitor C1.
  • the electrodes 11 and 12 are arranged inside the arm 10A. Therefore, as shown in FIG. 1, when the gripping member 10 grips the wire 2A, there is an arm 10A between the electrodes 11, 12 and the wire 2A. Moreover, as described above, the conductor 2Aa of the electric wire 2A is covered with the covering portion 2Ab. Therefore, when the gripping member 10 grips the electric wire 2A, the covering portion 2Ab of the electric wire 2A is present between the electrodes 11 and 12 and the conductor 2Aa of the electric wire 2A. That is, when the gripping member 10 grips the wire 2A, the arm 10A and the covering portion 2Ab of the wire 2A are present between the electrodes 11 and 12 and the conductor 2Aa of the wire 2A. That is, when the gripping member 10 grips the electric wire 2A, the electrodes 11 and 12 are out of contact with the conductor 2Aa of the electric wire 2A.
  • the electrodes 11 and 12 are arranged on the back side of the surface 10Aa of the arm 10A. Therefore, when the gripping member 10 grips the electric wire 2A, the electrodes 11 and 12 face the conductor 2Aa of the electric wire 2A in the radial direction of the electric wire 2A.
  • the electrodes 11 and 12 are out of contact with the conductor 2Ba of the electric wire 2B and face the conductor 2Ba of the electric wire 2B in the radial direction of the electric wire 2B.
  • the electrodes 11 and 12 are out of contact with the conductor 2Ca of the electric wire 2C and face the conductor 2Ca of the electric wire 2C in the radial direction of the electric wire 2C.
  • the apparatus main body 20 includes a rectangular parallelepiped housing (not shown), amplifier circuits 21 and 22, and a computing section 23.
  • the amplifier circuits 21 and 22 and the arithmetic unit 23 are arranged inside the housing. Note that the shape of the housing is not limited to a rectangular parallelepiped.
  • the amplifier circuit 21 is an example of a first amplifier circuit.
  • the amplifier circuit 22 is an example of a second amplifier circuit.
  • An amplifier circuit 21 is connected to the capacitor C1.
  • Amplifier circuit 21 is connected in series with capacitor C1 .
  • Amplifier circuit 22 is connected to capacitor C2 .
  • Amplifier circuit 22 is connected in series with capacitor C2 . The configurations of the amplifier circuits 21 and 22 will be described later.
  • the calculation unit 23 performs calculations, which will be described later.
  • the computing unit 23 can be implemented in various forms.
  • the calculation unit 23 may include a memory and a CPU (Central Processing Unit).
  • the CPU executes the program stored in the memory to execute the calculations described later.
  • the calculation unit 23 may be configured by a circuit capable of executing calculations described later. Such circuits are, for example, ASICs (Application Specific Integrated Circuits), FPGAs (Field Programmable Gate Arrays), and the like.
  • the calculation unit 23 may be realized by combining the configurations described above.
  • the calculation unit 23 may include a memory, a CPU, and an ASIC.
  • the calculation unit 23 is connected to the display unit 3.
  • the display unit 3 is a known display having a plurality of LEDs, liquid crystals, or the like.
  • the display unit 3 receives information indicating the voltage of the conductor of the electric wire 2 from the calculation unit 23 and displays the voltage value of the conductor of the electric wire 2 in a user-recognizable format (for example, numbers).
  • FIG. 4 is an equivalent circuit diagram of the non-contact voltage measuring device according to the first embodiment of the present invention.
  • the configuration of the amplifier circuits 21 and 22 and the calculation performed by the calculation section 23 will be described below.
  • the amplifier circuit 21 comprises an operational amplifier 211 and a capacitor C3.
  • Capacitor C3 is an example of a third capacitor.
  • a capacitor C 1 is connected to the inverting input terminal 211 B of the operational amplifier 211 .
  • a non-inverting input terminal 211A of the operational amplifier 211 is connected to the ground.
  • Capacitor C3 is connected to inverting input terminal 211B and output terminal 211C of operational amplifier 211 . In other words, capacitor C3 is connected between inverting input terminal 211B and output terminal 211C of operational amplifier 211 .
  • An output terminal 211 ⁇ /b>C of the amplifier circuit 21 is connected to the calculation section 23 .
  • a detection voltage output point 212 is provided between the output terminal 211C of the amplifier circuit 21 and the calculation section 23 . The voltage at the detection voltage output point 212 is, in other words, the voltage at the output terminal 211C of the amplifier circuit 21 .
  • the amplifier circuit 22 comprises an operational amplifier 221 and a capacitor C4 .
  • Capacitor C4 is an example of a fourth capacitor.
  • a capacitor C 2 is connected to the inverting input terminal 221 B of the operational amplifier 221 .
  • a non-inverting input terminal 221A of the operational amplifier 221 is connected to the ground.
  • Capacitor C4 is connected to inverting input terminal 221B and output terminal 221C of operational amplifier 221 .
  • capacitor C4 is connected between inverting input terminal 221B and output terminal 221C of operational amplifier 221 .
  • 221 C of output terminals of the amplifier circuit 22 are connected with the calculating part 23.
  • a detection voltage output point 222 is provided between the output terminal 221C of the amplifier circuit 22 and the calculation section 23 .
  • the voltage at the detection voltage output point 222 is, in other words, the voltage at the output terminal 221C of the amplifier circuit 22 .
  • the capacitance of the capacitor C3 is set to, for example, several pF to several tens of pF, like the capacitance of the capacitor C1.
  • the capacity of the capacitor C4 is set to be, for example, 10 to 100 times the capacity of the capacitor C3 , like the capacity of the capacitor C2 .
  • the calculation unit 23 calculates the coupling capacitance and the voltage of the conductor 2Aa of the electric wire 2A. calculate.
  • the coupling capacitance is between the capacitively coupled non-contact voltage measuring device 1 and the wire 2A, between the electrode 11 and the conductor 2Aa of the wire 2A, and between the electrode 12 and the conductor 2Aa of the wire 2A.
  • a capacitor CL1 is equivalently connected between the electrode 11 and the conductor 2Aa of the wire 2A
  • a capacitor CL2 is equivalently connected between the electrode 12 and the conductor 2Aa of the wire 2A. connected That is, the coupling capacitance calculated by the calculation unit 23 indicates the capacitance stored in the capacitor CL1 and the capacitance stored in the capacitor CL2 .
  • the capacitance stored in capacitor CL1 is an example of a first coupling capacitance.
  • the capacitance stored in capacitor CL2 is an example of a second coupling capacitance.
  • the calculation unit 23 uses the following equations (1) to (6) to determine the coupling capacitance between the electrode 11 and the conductor 2Aa of the wire 2A, the coupling capacitance between the electrode 12 and the conductor 2Aa of the wire 2A, And the voltage of the conductor 2Aa of the electric wire 2A is calculated. Note that the calculation unit 23 does not have to calculate the coupling capacitance. In other words, the calculation unit 23 should at least calculate the voltage of the conductor 2Aa of the electric wire 2A.
  • Z 1 (C L1 +C 1 )/j ⁇ C L1 C 1 (1)
  • Z 2 (C L2 +C 2 )/j ⁇ C L2 C 2 (2)
  • Z 3 1/j ⁇ C 3 (3)
  • Z 4 1/j ⁇ C 4 (4)
  • V 1 -(Z 3 /Z 1 )V L (5)
  • V 2 -(Z 4 /Z 2 )V L (6)
  • CL1 is the coupling capacitance between the electrode 11 and the conductor 2Aa of the wire 2A (the capacitance stored in the capacitor CL1 ).
  • CL2 is the coupling capacitance between the electrode 12 and the conductor 2Aa of the wire 2A (the capacitance stored in the capacitor CL2 ).
  • C1 is the capacitance of capacitor C1 .
  • C2 is the capacitance of capacitor C2 .
  • C3 is the capacitance of capacitor C3 .
  • C4 is the capacitance of capacitor C4 .
  • Z1 is the combined impedance of capacitor CL1 and capacitor C1.
  • Z2 is the combined impedance of capacitor CL2 and capacitor C2 .
  • Z3 is the impedance of capacitor C3 .
  • Z4 is the impedance of capacitor C4 .
  • V1 is the voltage at the detection voltage output point 212, that is, the voltage at the output terminal 211C of the amplifier circuit 21
  • V2 is the voltage at the detection voltage output point 222, that is, the voltage at the output terminal 221C of the amplifier circuit 22
  • VL is the voltage on conductor 2Aa of line 2A.
  • Equations (5) and (6) are relational expressions between the input voltage and the output voltage in the amplifier circuits 21 and 22, which are inverting amplifier circuits.
  • Equations (1) and (2) are substituted into equation (5), and equations (3) and (4) are substituted into equation (6).
  • CL is the coupling capacitance existing between the non-contact voltage measuring device 1 and the wire 2A. This leads to a two-dimensional system of equations whose unknown values are C L and V L .
  • the following equations (7) and (8) are derived by solving the two-dimensional simultaneous equations.
  • V L - ( C1C2C4V2 - C1C2C3V1 ) / ( C1C4V2 - C2C3V1 ) ... (7)
  • V L ⁇ ((C 2 ⁇ C 1 )C 3 C 4 V 1 V 2 )/(C 1 C 2 C 4 V 2 ⁇ C 1 C 2 C 3 V 1 ) ...
  • Equation (7) The right-hand sides of equations (7) and (8) are all known values. Therefore, the coupling capacitance CL is calculated from the equation (7), and the voltage VL of the conductor 2Aa of the electric wire 2A is calculated from the equation (8).
  • FIG. 5 is a flow chart showing the process of measuring the voltage of a conductor of an electric wire.
  • the procedure for calculating the voltage V L of the conductor 2Aa of the electric wire 2A and the coupling capacitance C L existing between the non-contact voltage measuring device 1 and the electric wire 2A by the calculation unit 23 will be described. explained.
  • the calculation unit 23 measures the voltages V 1 and V 2 of the amplifier circuits 21 and 22 as follows (S10).
  • S10 When a voltage is applied to the three-phase electric wires 2A, 2B, and 2C to supply power to the motor 4, the voltage V1 is applied to the detection voltage output point 212 via the capacitor C L1 , the capacitor C1, and the amplifier circuit 21. is applied.
  • the voltage V 2 is applied to the detection voltage output point 222 via the capacitor C L2 , the capacitor C 2 , and the amplifier circuit 22 .
  • the calculator 23 acquires these voltages V 1 and V 2 .
  • the calculation unit 23 calculates the coupling capacitance CL by Equation (7) ( S20 ).
  • the calculation unit 23 calculates the voltage VL of the conductor 2Aa of the electric wire 2A using the equation (8) (S30).
  • the execution order of steps S20 and S30 may be reversed, or steps S20 and S30 may be executed in parallel.
  • the frequency term can be eliminated. Accordingly, the voltage of the conductor 2Aa of the electric wire 2A can be calculated without performing complicated calculations using Fourier transform or the like. In other words, it is possible to measure a voltage containing multiple frequency components with a simpler calculation than the conventional technique.
  • the coupling capacitance between the electrode 11 and the conductor 2Aa of the wire 2A and the coupling capacitance between the electrode 12 and the conductor 2Aa of the wire 2A can always be obtained. Therefore, it is possible to respond in real time to changes in coupling capacitance due to environmental changes such as changes in temperature and humidity, aged deterioration of wires, and the like.
  • the computing unit 23 calculates the capacitances of the capacitors C 1 , C 2 , C 3 and C 4 , the voltage of the output terminal 211C of the amplifier circuit 21, the voltage of the output terminal 211C of the amplifier circuit 21, and And based on the voltage of the output terminal 221C of the amplifier circuit 22, the coupling capacitances C L1 and C L2 can be calculated.
  • the formula in which the formula (1) and the formula (3) are substituted Simultaneous equations of (5) and equation (6) with equations (2) and (4) substituted are derived.
  • the coupling capacitance C L1 , the coupling capacitance C L2 , and the conductor voltage V L of the wire can be calculated.
  • the ⁇ term (frequency term) disappears.
  • the simultaneous equations can be solved without performing complicated calculations using Fourier transform or the like. In other words, it is possible to measure a voltage containing multiple frequency components with a simpler calculation than the conventional technique.
  • the voltage of the conductor 2Aa of the electric wire 2A can be calculated by the holding member 10 holding the electric wire 2A.
  • the coupling capacitance CL1 and the coupling capacitance CL2 can be the same or substantially the same.
  • electrodes 11 and 12 and capacitors C 1 and C 2 are provided inside arm 10A of gripping member 10 .
  • electrodes 11 and 12 and capacitors C 1 and C 2 may be provided inside arm 10B of gripping member 10 .
  • the electrodes 11 and 12 are arranged on the back side of the surface 10Ba of the arm 10B, for example.
  • the electric wire 2A includes a conductor 2Aa and a covering portion 2Ab that covers the conductor 2Aa.
  • the electric wire 2A does not have to be provided with the covering portion 2Ab.
  • the conductor 2Aa of the electric wire 2A is exposed to the outside.
  • electrodes 11 and 12 are provided inside arm 10A of gripping member 10 . Therefore, when the gripping member 10 grips the wire 2A, there is an arm 10A between the electrodes 11, 12 and the conductor 2Aa of the wire 2A. Therefore, even in this case, when the gripping member 10 grips the wire 2A, the electrodes 11 and 12 are out of contact with the conductor 2Aa of the wire 2A.
  • the electric wires 2B and 2C do not have to have the covering portions 2Bb and 2Cb, respectively.
  • electrodes 11 and 12 are provided inside arm 10A of gripping member 10 .
  • electrodes 11 and 12 may be provided outside arm 10A.
  • electrodes 11 and 12 may be provided on surface 10Aa of arm 10A. In this case, electrodes 11 and 12 are exposed to the outside.
  • each of the electric wires 2A, 2B, 2C has covering portions 2Ab, 2Bb, 2Cb. Therefore, for example, when the gripping member 10 grips the electric wire 2A, the covering portion 2Ab of the electric wire 2A is present between the electrodes 11 and 12 and the conductor 2Aa of the electric wire 2A. Therefore, even in this case, when the gripping member 10 grips the wire 2A, the electrodes 11 and 12 are out of contact with the conductor 2Aa of the wire 2A.
  • the non-contact voltage measuring device 1 does not have to include the gripping member 10.
  • the gripping member 10 for example, when the voltage of the conductors 2Aa, 2Ba, 2Ca of the wires 2A, 2B, 2C is measured by the non-contact voltage measuring device 1, the bare electrodes 11, 12 are covered with the wires 2A, 2B, 2C. It is attached to the outer peripheral surfaces of the portions 2Ab, 2Bb, and 2Cb.
  • the non-contact voltage measuring device 1 includes a gripping member 10 and a device main body 20. Capacitors C1 and C2 are provided inside the gripping member 10, and amplifier circuits 21 and 21 are provided inside the device main body 20. 22 and a computing unit 23 are provided.
  • the non-contact voltage measuring device 1 is not limited to the configuration as described above.
  • the capacitors C 1 and C 2 may be provided inside the device body 20 instead of inside the gripping member 10 .
  • the amplifier circuits 21 and 22 may be provided inside the gripping member 10 instead of inside the device main body 20 .
  • the gripping member 10 and the apparatus main body 20 may be configured integrally.
  • the capacitors C 1 and C 2 and the operational amplifiers 211 and 221 of the non-contact voltage measuring device 1 have the circuit configuration as shown in FIG. 4, but are not limited to the circuit configuration as shown in FIG. .
  • capacitors C 1 and C 3 may be connected to non-inverting input terminal 211A
  • capacitors C 2 and C 4 may be connected to non-inverting input terminal 221A
  • inverting input terminals 211B and 221B may be connected to ground.
  • capacitors C 1 and C 3 are connected to the inverting input terminal 211B
  • capacitors C 2 and C 4 are connected to the non-inverting input terminal 221A
  • the non-inverting input terminal 211A and the inverting input terminal 221B are connected to the ground.
  • capacitors C 1 and C 3 are connected to the non-inverting input terminal 211A
  • capacitors C 2 and C 4 are connected to the inverting input terminal 221B
  • the inverting input terminal 211B and the non-inverting input terminal 221A are connected to the ground.
  • the coupling capacitance C L1 and the coupling capacitance C L2 may be defined as unequal.
  • the coupling capacitance CL1 and the coupling capacitance CL2 can be calculated.
  • FIG. 6 is a front view of a gripping member of the non-contact voltage measuring device according to the second embodiment of the invention.
  • the non-contact voltage measuring device according to the second embodiment differs from the non-contact voltage measuring device according to the first embodiment in the arrangement of the electrodes 11 and 12 on the gripping member 101 .
  • the configuration different from the first embodiment will be described below. Configurations common to the non-contact voltage measuring device of the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary. This also applies to the third embodiment, which will be described later.
  • the gripping member 101 has electrodes 11 and 12 inside, like the gripping member 10 of the first embodiment.
  • the electrode 11 is provided inside the arm 10A and the electrode 12 is provided inside the arm 10B.
  • the electrodes 11 and 12 are arranged at positions facing each other across the central axis AX of the wire 2A when the gripping member 101 grips the wire 2A.
  • the coupling capacitance CL1 and the coupling capacitance CL2 can be the same or substantially the same.
  • FIG. 7 is a perspective view of a gripping member of a non-contact voltage measuring device according to a third embodiment of the invention.
  • the non-contact voltage measuring device according to the third embodiment differs from the non-contact voltage measuring device according to the first embodiment in that the arms 10A and 10B of the gripping member 102 do not face each other.
  • the configuration different from the first embodiment will be described below.
  • the gripping member 102 includes an arm 10C instead of the arm 10B shown in FIG.
  • the arm 10C has a pair of protrusions 10CA.
  • the pair of protrusions 10CA are opposed to each other in the width direction.
  • the pair of protrusions 10CA are formed at positions sandwiching the arm 10A in the width direction.
  • the arm 10A and the pair of protruding portions 10CA grip the electric wire 2A by sandwiching the electric wire 2A.
  • a pair of projecting portions 10CA do not face the arm 10A.
  • Each of the pair of protrusions 10CA has a surface 10Ca.
  • the surface 10Ca does not face the surface 10Aa of the arm 10A.
  • the arm 10C has a pair of shaft support parts 10Cb.
  • FIG. 7 shows only one of the pair of shaft support portions 10Cb.
  • a pair of shaft support portions 10Cb face each other in the width direction.
  • the pair of shaft support portions 10Cb sandwich the pair of shaft support portions 10Ab from the outside in the width direction.
  • Each of the pair of shaft support portions 10Cb has a through hole 10Cc.
  • Each through hole 10Ac of the arm 10A and each through hole 10Cc of the arm 10C are aligned along the width direction. As a result, the arms 10A and 10C are rotatably supported with respect to each other, as in the first embodiment.
  • the arms 10A and 10B face each other. Therefore, when the tips of the arms 10A and 10B come into contact with each other, the gripping member 10 will not close any more.
  • the pair of protruding portions 10CA do not face the arm 10A. Therefore, the pair of projections 10CA of the gripping member 102 can be closed closer to the arm 10A than the arm 10B of the gripping member 10 of the first embodiment.
  • the gripping member 102 of the non-contact voltage measuring device according to the third embodiment can grip the wire 2 thinner than the gripping member 10 of the non-contact voltage measuring device 1 according to the first embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

従来技術より簡単な演算で、しかも環境変化に対応してリアルタイムで電線の導体の電圧を測定することができる非接触電圧測定装置を提供する。非接触電圧測定装置1は、電線2Aを把持する把持部材10に設けられる電極11,12と、電極11に接続されるコンデンサC1及び増幅回路21と、電極12に接続されるコンデンサC2及び増幅回路22と、演算部23とを備える。コンデンサC1は、増幅回路21の反転入力端子211Bに接続される。コンデンサC2は、増幅回路22の反転入力端子221Bに接続される。増幅回路21,22は、それぞれコンデンサC3,C4を備える。演算部23は、各コンデンサの容量C1,C2,C3,C4、及び増幅回路21,22の出力端子211C,221Cの電圧に基づいて、電線2Aの導体2Aaの電圧を算出する。

Description

非接触電圧測定装置
 本発明は、電線の導体と非接触で当該導体の電圧を測定する非接触電圧測定装置に関する。
 2つの電極を備え、2つの電極の各々に誘起される電圧から電線の導体の電圧を算出する非接触電圧測定装置が知られている。
 しかし、このような非接触電圧測定装置では、インバータ電圧駆動を行う回転機に供給される駆動電圧を正確に算出できない。インバータ電圧駆動を行う回転機の駆動電圧を測定するためには、複数の周波数成分を含む電圧の測定を行う必要があるためである。
 そこで、特許文献1に開示された非接触電圧測定装置は、第1電極に接続された第1電圧計測部と、第2電極に接続された第2電圧計測部と、各電圧計測部で計測されたデータを時間領域から周波数領域に変換する時間領域・周波数領域変換部と、周波数領域に変換されたデータから、周波数ごとの電圧値を演算する周波数ごと電圧値演算部と、周波数ごとの電圧値のデータを、周波数領域から時間領域に変換する周波数領域・時間領域変換部と、時間領域に変換されたデータから、導体の電圧を演算する導体電圧演算部とを備える。つまり、特許文献1に開示された非接触電圧測定装置では、時間領域・周波数領域変換部と、周波数ごと電圧値演算部と、周波数領域・時間領域変換部とを備えることによって、複数の周波数成分を含む電圧の測定を行うことができる。
特開2020-91209号公報
 しかし、特許文献1に開示された非接触電圧測定装置では、各電圧計測部で計測されたデータを時間領域から周波数領域に変換して、周波数ごとに電圧値を演算し、周波数ごとのデータを周波数領域から時間領域に変換する必要がある。この場合、演算過程において、フーリエ変換等を用いる必要があり、演算が複雑化してしまう。
 従って、本発明の目的は、前記課題を解決することにあって、従来技術より簡単な演算で、しかも環境変化に対応してリアルタイムで電線の導体の電圧を測定することができる非接触電圧測定装置を提供することにある。
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の一態様に係る非接触電圧測定装置は、
 互いに離隔して設けられる第1電極及び第2電極と、
 前記第1電極と接続される第1コンデンサと、
 前記第1コンデンサと互いに直列に接続される第1増幅回路と、
 前記第2電極と接続される第2コンデンサと、
 前記第2コンデンサと互いに直列に接続される第2増幅回路と、
 演算部と、を備え、
 前記第1電極及び前記第2電極の各々は、電線の導体と非接触で且つ前記電線の導体と対向し、
 前記第1コンデンサは、前記第1増幅回路の入力端子に接続され、
 前記第2コンデンサは、前記第2増幅回路の入力端子に接続され、
 前記第1増幅回路は、出力端子と入力端子との間に接続される第3コンデンサを備え、
 前記第2増幅回路は、出力端子と入力端子との間に接続される第4コンデンサを備え、
 前記演算部は、
 前記第1コンデンサの容量、前記第2コンデンサの容量、前記第3コンデンサの容量、前記第4コンデンサの容量、前記第1増幅回路の出力端子の電圧、及び前記第2増幅回路の出力端子の電圧に基づいて、前記電線の導体の電圧を算出する。
 本発明によれば、従来技術より簡単な演算で、しかも環境変化に対応してリアルタイムで電線の導体の電圧を測定することができる。
本発明の第1実施形態に係る非接触電圧測定装置の把持部材の側面図。 図1の把持部材のアームの斜視図。 本発明の第1実施形態に係る非接触電圧測定装置のブロック図。 本発明の第1実施形態に係る非接触電圧測定装置の等価回路図。 電線の導体の電圧を測定する過程を示すフローチャート。 本発明の第2実施形態に係る非接触電圧測定装置の把持部材の正面図。 本発明の第3実施形態に係る非接触電圧測定装置の把持部材の斜視図。
 本発明の一態様に係る非接触電圧測定装置は、
 互いに離隔して設けられる第1電極及び第2電極と、
 前記第1電極と接続される第1コンデンサと、
 前記第1コンデンサと互いに直列に接続される第1増幅回路と、
 前記第2電極と接続される第2コンデンサと、
 前記第2コンデンサと互いに直列に接続される第2増幅回路と、
 演算部と、を備え、
 前記第1電極及び前記第2電極の各々は、電線の導体と非接触で且つ前記電線の導体と対向し、
 前記第1コンデンサは、前記第1増幅回路の入力端子に接続され、
 前記第2コンデンサは、前記第2増幅回路の入力端子に接続され、
 前記第1増幅回路は、出力端子と入力端子との間に接続される第3コンデンサを備え、
 前記第2増幅回路は、出力端子と入力端子との間に接続される第4コンデンサを備え、
 前記演算部は、
 前記第1コンデンサの容量、前記第2コンデンサの容量、前記第3コンデンサの容量、前記第4コンデンサの容量、前記第1増幅回路の出力端子の電圧、及び前記第2増幅回路の出力端子の電圧に基づいて、前記電線の導体の電圧を算出する。
 この構成によれば、演算部による電線の導体の電圧の算出過程において、周波数の項を消すことができる。これにより、フーリエ変換等を用いた複雑な演算を行うことなく、電線の導体の電圧を算出することができる。つまり、従来技術より簡単な演算で、複数の周波数成分を含む電圧の測定を行うことができる。
 この構成によれば、第1電極と電線の導体との間の結合容量と、第2電極と電線の導体との間の結合容量とを常時求めることができる。そのため、温度及び湿度の変化、電線の経年劣化等の環境変化による結合容量の変化にリアルタイムで対応することができる。
 前記非接触電圧測定装置において、前記演算部はさらに、前記第1電極と前記電線の導体との間の第1結合容量、前記第2電極と前記電線の導体との間の第2結合容量を算出してもよい。
 この構成によれば、演算部は、電線の導体の電圧と同様にして、第1コンデンサ~第4コンデンサの容量、前記第1増幅回路の出力端子の電圧、及び前記第2増幅回路の出力端子の電圧に基づいて、第1結合容量及び第2結合容量を算出することができる。
 前記非接触電圧測定装置において、前記演算部は、前記第1結合容量と前記第2結合容量とが等しいとして、前記第1結合容量と前記第2結合容量とを算出してもよい。
 この構成によれば、第1結合容量と第2結合容量とを簡単な演算で算出することができる。
 前記非接触電圧測定装置において、前記演算部は、前記第1結合容量と前記第2結合容量との差が一定であるとして、前記第1結合容量と前記第2結合容量とを算出してもよい。
 この構成によれば、第1結合容量と第2結合容量とが等しくない場合であっても、第1結合容量と第2結合容量とを算出することができる。
 前記非接触電圧測定装置において、前記演算部は、以下の式(1)から式(6)を用いて、
 Z=(CL1+C)/jωCL1・・・(1)
 Z=(CL2+C)/jωCL2・・・(2)
 Z=1/jωC・・・(3)
 Z=1/jωC・・・(4)
 V=-(Z/Z)V・・・(5)
 V=-(Z/Z)V・・・(6)
 ここで、
 CL1は、前記第1電極と前記電線の導体との間の第1結合容量であり、
 CL2は、前記第2電極と前記電線の導体との間の第2結合容量であり、
 Cは、前記第1コンデンサの容量であり、
 Cは、前記第2コンデンサの容量であり、
 Cは、前記第3コンデンサの容量であり、
 Cは、前記第4コンデンサの容量であり、
 Zは、前記第1結合容量を蓄えるコンデンサと前記第1コンデンサとの合成インピーダンスであり、
 Zは、前記第2結合容量を蓄えるコンデンサと前記第2コンデンサとの合成インピーダンスであり、
 Zは、前記第3コンデンサのインピーダンスであり、
 Zは、前記第4コンデンサのインピーダンスであり、
 Vは、前記第1増幅回路の出力端子の電圧であり、
 Vは、前記第2増幅回路の出力端子の電圧であり、
 Vは、前記電線の導体の電圧であり、
 前記電線の導体の電圧を算出してもよい。
 この構成によれば、CL1とCL2との関係が規定されることにより、例えばCL1=CL2と規定されることにより、式(1)及び式(3)が代入された式(5)と、式(2)及び式(4)が代入された式(6)との連立方程式が導出される。この連立方程式を解くことによって、第1結合容量CL1、第2結合容量CL2、及び電線の導体の電圧Vを算出することができる。前記の連立方程式を解く過程において、ωの項(周波数の項)が消える。これにより、フーリエ変換等を用いた複雑な演算を行うことなく、当該連立方程式を解くことができる。つまり、従来技術より簡単な演算で、複数の周波数成分を含む電圧の測定を行うことができる。
 前記非接触電圧測定装置はさらに、前記電線を把持する把持部材を備えてもよく、前記第1電極及び前記第2電極は、前記把持部材に設けられてもよく、前記第1電極及び前記第2電極の各々は、前記把持部材が前記電線を把持するときに、前記電線の導体と対向してもよい。
 この構成によれば、把持部材が電線を把持することによって、電線の導体の電圧を算出することができる。
 前記非接触電圧測定装置において、前記第1電極及び前記第2電極は、前記把持部材が前記電線を把持するときの前記電線の長手方向に沿って離隔して並置されてもよい。
 この構成によれば、第1電極と電線の導体との間の結合容量と、第2電極と電線の導体との間の結合容量とを同一または略同一とすることができる。
 前記非接触電圧測定装置において、前記第1電極及び前記第2電極は、前記把持部材が前記電線を把持するときに、前記電線の中心軸を挟んで互いに対向するように配置されてもよい。
 この構成によれば、第1電極と電線の導体との間の結合容量と、第2電極と電線の導体との間の結合容量とを同一または略同一とすることができる。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る非接触電圧測定装置の把持部材の側面図である。図2は、図1の把持部材のアームの斜視図である。図3は、本発明の第1実施形態に係る非接触電圧測定装置のブロック図である。
 非接触電圧測定装置1は、電線の導体の電圧を、当該導体とは非接触で測定する。第1実施形態において、非接触電圧測定装置1は、モータ4に接続された3相の電線2A,2B,2Cの導体2Aa,2Ba,2Ca(図3参照)の電圧を測定する。非接触電圧測定装置1の把持部材10が、3相の電線2A,2B,2Cのいずれかを把持する。非接触電圧測定装置1は、把持部材10が把持した電線の導体の電圧を測定する。図1では、把持部材10は、電線2Aを把持している。図3では、非接触電圧測定装置1は、電線2Aの導体2Aaの電圧を測定している。非接触電圧測定装置1によって測定された電圧は、表示部3に表示される。
 第1実施形態では、図3に示すように、電線2Aは、導体2Aaと、導体2Aaを覆う被覆部2Abとを備える。同様に、電線2Bは、導体2Baと、導体2Baを覆う被覆部2Bbとを備え、電線2Cは、導体2Caと、導体2Caを覆う被覆部2Cbとを備える。
 以下では、非接触電圧測定装置1が、3相の電線2A,2B,2Cのうちの電線2Aを把持して、電線2Aの導体2Aaの電圧を測定するものとして、説明が行われる。
 図1~図3に示すように、非接触電圧測定装置1は、把持部材10と、装置本体20とを備える。図1に示すように、把持部材10は、電線2Aを把持する。図3に示すように、装置本体20は、把持部材10に接続される。
 図1及び図2に示すように、把持部材10は、アーム10A,10Bを備える。アーム10A,10Bは、電線2Aを挟むことによって、電線2Aを把持する。
 アーム10Aは、面10Aaを有する。アーム10Bは、面10Baを有する。面10Aa,10Baは、互いに対向する。
 図1に示すように、把持部材10を幅方向(以下、幅方向と記す。)から見て、面10Aaは、電線2Aを長手方向と直交に切断したときの断面を構成する円の円弧の形状である。幅方向は、把持部材10が電線2Aを把持するときの電線2Aの長手方向と平行である。幅方向(電線2Aの長手方向)は、図1の紙面奥行き方向と一致し、図3の紙面上下方向と一致する。
 図1に示すように、幅方向から見て、面10Baは、面10Aaと同様に、電線2Aを長手方向と直交に切断したときの断面を構成する円の円弧の形状である。
 これにより、アーム10A,10Bが電線2Aを把持したとき、面10Aa,10Baは、電線2Aの被覆部2Abの外周面に面接触する。なお、アーム10A,10Bは、電線2Aとは異なる直径の電線を把持することも可能である。この場合、面10Aa,10Baは、当該電線の被覆部の外周面に線接触する。
 図2に示すように、アーム10Aは、一対の軸支持部10Abを有する。一対の軸支持部10Abは幅方向に対向する。軸支持部10Abの各々は、軸支持部10Abを幅方向に貫通する貫通孔10Acを有する。
 図1に示すように、アーム10Bは、一対の軸支持部10Bbを有する。一対の軸支持部10Bbは、幅方向に対向する。図1では、一対の軸支持部10Bbのうちの一方のみが示される。一対の軸支持部10Bbは、幅方向の外側から一対の軸支持部10Abを挟む。一対の軸支持部10Bbの各々は、凹部(不図示)を有する。凹部は、軸支持部10Bbにおける軸支持部10Abを向く面に形成される。凹部は、幅方向に凹んでいる。アーム10Aの各貫通孔10Acと、アーム10Bの各凹部とは、幅方向に沿って一直線に並んでいる。
 シャフト(不図示)が、アーム10Aの各貫通孔10Acと、アーム10Bの各凹部とに挿通される。これにより、アーム10A,10Bは、互いに回動可能に支持される。つまり、アーム10Aはアーム10Bによって回転可能に支持され、アーム10Bはアーム10Aによって回転可能に支持される。
 ねじりコイルばね(不図示)が、一対の軸支持部10Abの間に配置される。ねじりコイルばねは、シャフトの周りに配置される。アーム10A,10Bは、ねじりコイルばねによって、把持部材10が閉じる方向に付勢される。これにより、電線2Aが、把持部材10によって把持された状態に保持される。
 第1実施形態において、アーム10A,10Bは、互いに対向する。そのため、アーム10A,10Bの先端部が互いに接触すると、把持部材10はそれ以上閉じない。
 図1及び図2に示すように、把持部材10のアーム10Aの内部に、2個の電極11,12が設けられる。電極11は、第1電極の一例である。電極11は、第2電極の一例である。図2に示すように、電極11,12は、幅方向に互いに離隔して並置される。電極11,12は、アーム10Aの面10Aaの裏側に配置される。
 図3に示すように、把持部材10は、2個のコンデンサC,Cを備える。コンデンサCは、第1コンデンサの一例である。コンデンサCは、第2コンデンサの一例である。第1実施形態において、コンデンサC,Cは、アーム10Aの内部に設けられる。コンデンサCは、電極11に接続される。コンデンサCは、電極12に接続される。第1実施形態において、コンデンサCの容量は、数pF~数十pFに設定される。コンデンサCの容量は、コンデンサCの容量の10倍~100倍に設定される。
 前述したように、電極11,12はアーム10Aの内部に配置される。そのため、図1に示すように、把持部材10が電線2Aを把持するとき、電極11,12と電線2Aとの間に、アーム10Aがある。また、前述したように、電線2Aの導体2Aaは、被覆部2Abによって覆われる。そのため、把持部材10が電線2Aを把持するとき、電極11,12と電線2Aの導体2Aaとの間に、電線2Aの被覆部2Abがある。つまり、把持部材10が電線2Aを把持するとき、電極11,12と電線2Aの導体2Aaとの間に、アーム10Aと電線2Aの被覆部2Abとがある。すなわち、把持部材10が電線2Aを把持するとき、電極11,12は、電線2Aの導体2Aaと非接触である。
 また、前述したように、電極11,12は、アーム10Aの面10Aaの裏側に配置される。そのため、把持部材10が電線2Aを把持するとき、電極11,12は、電線2Aの導体2Aaと電線2Aの径方向に対向する。
 同様に、把持部材10が電線2Bを把持するとき、電極11,12は、電線2Bの導体2Baと非接触であり、電線2Bの導体2Baと電線2Bの径方向に対向する。また、把持部材10が電線2Cを把持するとき、電極11,12は、電線2Cの導体2Caと非接触であり、電線2Cの導体2Caと電線2Cの径方向に対向する。
 装置本体20は、直方体形状の筐体(不図示)と、増幅回路21,22と、演算部23とを備える。増幅回路21,22と演算部23とは、筐体の内部に配置される。なお、筐体の形状は、直方体に限らない。増幅回路21は、第1増幅回路の一例である。増幅回路22は、第2増幅回路の一例である。
 増幅回路21は、コンデンサCに接続される。増幅回路21は、コンデンサCと互いに直列に接続される。増幅回路22は、コンデンサCに接続される。増幅回路22は、コンデンサCと互いに直列に接続される。増幅回路21,22の構成は、後述される。
 演算部23は、後述する演算を行う。演算部23は、様々な態様で実現可能である。例えば、演算部23は、メモリとCPU(Central Processing Unit)とを備えていてもよい。この場合、CPUが、メモリに記憶されたプログラムを実行することによって、後述する演算が実行される。また、例えば、演算部23は、後述する演算が実行可能な回路によって構成されてもよい。このような回路は、例えば、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等である。演算部23は、前述した構成が組み合わされて実現されてもよい。例えば、演算部23は、メモリと、CPUと、ASICとを備えていてもよい。
 演算部23は、表示部3に接続される。表示部3は、LEDや液晶等複数を備えた公知のディスプレイである。表示部3は、電線2の導体の電圧を示す情報を演算部23から受け取り、電線2の導体の電圧値を、ユーザが認識可能な形式(例えば数字)で表示する。
 図4は、本発明の第1実施形態に係る非接触電圧測定装置の等価回路図である。以下に、増幅回路21,22の構成と、演算部23が実行する演算とが説明される。
 増幅回路21は、演算増幅器211と、コンデンサCとを備える。コンデンサCは、第3コンデンサの一例である。演算増幅器211の反転入力端子211Bに、コンデンサCが接続される。演算増幅器211の非反転入力端子211Aは、グランドに接続される。コンデンサCは、演算増幅器211の反転入力端子211Bと出力端子211Cとに接続される。言い換えると、コンデンサCは、演算増幅器211の反転入力端子211Bと出力端子211Cとの間に接続される。増幅回路21の出力端子211Cは、演算部23と接続される。増幅回路21の出力端子211Cと演算部23との間は、検出電圧出力点212である。検出電圧出力点212の電圧は、言い換えると、増幅回路21の出力端子211Cの電圧である。
 増幅回路22は、演算増幅器221と、コンデンサCとを備える。コンデンサCは、第4コンデンサの一例である。演算増幅器221の反転入力端子221Bに、コンデンサCが接続される。演算増幅器221の非反転入力端子221Aは、グランドに接続される。コンデンサCは、演算増幅器221の反転入力端子221Bと出力端子221Cとに接続される。言い換えると、コンデンサCは、演算増幅器221の反転入力端子221Bと出力端子221Cとの間に接続される。増幅回路22の出力端子221Cは、演算部23と接続される。増幅回路22の出力端子221Cと演算部23との間は、検出電圧出力点222である。検出電圧出力点222の電圧は、言い換えると、増幅回路22の出力端子221Cの電圧である。
 第1実施形態において、コンデンサCの容量は、例えば、コンデンサCの容量と同様に、数pF~数十pFに設定される。コンデンサCの容量は、例えば、コンデンサCの容量と同様に、コンデンサCの容量の10倍~100倍に設定される。
 演算部23は、検出電圧出力点212,222から得た電圧と、予め設定されるコンデンサC~Cの各々の容量とに基づいて、結合容量と、電線2Aの導体2Aaの電圧とを算出する。
 結合容量は、容量結合している非接触電圧測定装置1と電線2Aとの間のうち、電極11と電線2Aの導体2Aaとの間、及び、電極12と電線2Aの導体2Aaとの間に存在する。つまり、図4に示すように、電極11と電線2Aの導体2Aaとの間に、コンデンサCL1が等価的に接続され、電極12と電線2Aの導体2Aaとの間に、コンデンサCL2が等価的に接続される。つまり、演算部23が算出する結合容量は、コンデンサCL1に蓄えられる容量と、コンデンサCL2に蓄えられる容量とを指す。コンデンサCL1に蓄えられる容量は、第1結合容量の一例である。コンデンサCL2に蓄えられる容量は、第2結合容量の一例である。
 演算部23は、以下の式(1)~式(6)を用いて、電極11と電線2Aの導体2Aaとの間の結合容量、電極12と電線2Aの導体2Aaとの間の結合容量、及び電線2Aの導体2Aaの電圧を算出する。なお、演算部23は、前記の結合容量を算出しなくてもよい。つまり、演算部23は、少なくとも電線2Aの導体2Aaの電圧を算出すればよい。
 Z=(CL1+C)/jωCL1  ・・・(1)
 Z=(CL2+C)/jωCL2  ・・・(2)
 Z=1/jωC  ・・・(3)
 Z=1/jωC  ・・・(4)
 V=-(Z/Z)V  ・・・(5)
 V=-(Z/Z)V  ・・・(6)
 前述の式(1)~式(4)において、「C」を含む各記号の意味は、以下の通りである。CL1は、電極11と電線2Aの導体2Aaとの間の結合容量(コンデンサCL1に蓄えられる容量)である。CL2は、電極12と電線2Aの導体2Aaとの間の結合容量(コンデンサCL2に蓄えられる容量)である。Cは、コンデンサCの容量である。Cは、コンデンサCの容量である。Cは、コンデンサCの容量である。Cは、コンデンサCの容量である。
 前述の式(1)~式(6)において、「Z」を含む各記号の意味は、以下の通りである。Zは、コンデンサCL1とコンデンサCとの合成インピーダンスである。Zは、コンデンサCL2とコンデンサCとの合成インピーダンスである。Zは、コンデンサCのインピーダンスである。Zは、コンデンサCのインピーダンスである。
 前述の式(5)及び式(6)において、「V」を含む各記号の意味は、以下の通りである。Vは、検出電圧出力点212の電圧、つまり増幅回路21の出力端子211Cの電圧である。Vは、検出電圧出力点222の電圧、つまり増幅回路22の出力端子221Cの電圧である。Vは、電線2Aの導体2Aaの電圧である。なお、式(5)、(6)は、反転増幅回路である増幅回路21,22における入力電圧と出力電圧との関係式である。
 式(1)及び式(2)が式(5)に代入され、式(3)及び式(4)が式(6)に代入される。また、第1実施形態では、CL1=CL2=Cとされる。Cは、非接触電圧測定装置1と電線2Aとの間に存在する結合容量である。これにより、未知の値がCとVである二次元連立方程式が導出される。この二次元連立方程式を解くことによって、以下の式(7)及び式(8)が導出される。
 C=-(C-C)/(C-C
                           ・・・(7)
 V=-((C-C)C)/(C-C
                           ・・・(8)
 式(7)及び式(8)の右辺は、全て既知の値である。そのため、式(7)より結合容量Cが算出され、式(8)より電線2Aの導体2Aaの電圧Vが算出される。
 図5は、電線の導体の電圧を測定する過程を示すフローチャートである。以下、図5を参照しつつ、演算部23が、電線2Aの導体2Aaの電圧Vと、非接触電圧測定装置1と電線2Aとの間に存在する結合容量Cとを算出する手順が説明される。
 最初に、演算部23は、以下のようにして、各増幅回路21,22の電圧V,Vを計測する(S10)。モータ4に電力を供給するために、3相の電線2A,2B,2Cに電圧が印加されると、コンデンサCL1、コンデンサC、増幅回路21を介して検出電圧出力点212に電圧Vが印加される。また、コンデンサCL2、コンデンサC、増幅回路22を介して検出電圧出力点222に電圧Vが印加される。演算部23は、これらの電圧V,Vを取得する。
 次に、演算部23は、式(7)によって結合容量Cを算出する(S20)。次に、演算部23は、式(8)によって電線2Aの導体2Aaの電圧Vを算出する(S30)。なお、ステップS20,S30の実行順序は逆でもよいし、ステップS20,S30が並行して実行されてもよい。
 第1実施形態によれば、演算部23による電線2Aの導体2Aaの電圧の算出過程において、周波数の項を消すことができる。これにより、フーリエ変換等を用いた複雑な演算を行うことなく、電線2Aの導体2Aaの電圧を算出することができる。つまり、従来技術より簡単な演算で、複数の周波数成分を含む電圧の測定を行うことができる。
 第1実施形態によれば、電極11と電線2Aの導体2Aaとの間の結合容量と、電極12と電線2Aの導体2Aaとの間の結合容量とを常時求めることができる。そのため、温度及び湿度の変化、電線の経年劣化等の環境変化による結合容量の変化にリアルタイムで対応することができる。
 第1実施形態によれば、演算部23は、電線2Aの導体2Aaの電圧と同様にして、コンデンサC,C,C,Cの容量、増幅回路21の出力端子211Cの電圧、及び増幅回路22の出力端子221Cの電圧に基づいて、結合容量CL1,CL2を算出することができる。
 第1実施形態では、CL1=CL2=Cとされる。これにより、結合容量CL1と結合容量CL2とを簡単な演算で算出することができる。
 第1実施形態によれば、CL1とCL2との関係が規定されることにより、例えばCL1=CL2と規定されることにより、式(1)及び式(3)が代入された式(5)と、式(2)及び式(4)が代入された式(6)との連立方程式が導出される。この連立方程式を解くことによって、結合容量CL1、結合容量CL2、及び電線の導体の電圧Vを算出することができる。前記の連立方程式を解く過程において、ωの項(周波数の項)が消える。これにより、フーリエ変換等を用いた複雑な演算を行うことなく、当該連立方程式を解くことができる。つまり、従来技術より簡単な演算で、複数の周波数成分を含む電圧の測定を行うことができる。
 第1実施形態によれば、把持部材10が電線2Aを把持することによって、電線2Aの導体2Aaの電圧を算出することができる。
 第1実施形態によれば、結合容量CL1と結合容量CL2とを同一または略同一とすることができる。
 第1実施形態では、電極11,12及びコンデンサC,Cは、把持部材10のアーム10Aの内部に設けられる。しかし、電極11,12及びコンデンサC,Cは、把持部材10のアーム10Bの内部に設けられてもよい。この場合、電極11,12は、例えば、アーム10Bの面10Baの裏側に配置される。
 第1実施形態では、電線2Aは、導体2Aaと、導体2Aaを覆う被覆部2Abとを備える。しかし、電線2Aは、被覆部2Abを備えていなくてもよい。この場合、電線2Aの導体2Aaは、外部に剥き出しである。しかし、第1実施形態では、電極11,12は、把持部材10のアーム10Aの内部に設けられる。そのため、把持部材10が電線2Aを把持するとき、電極11,12と電線2Aの導体2Aaとの間に、アーム10Aがある。よって、この場合であっても、把持部材10が電線2Aを把持するとき、電極11,12は、電線2Aの導体2Aaと非接触である。なお、電線2B,2Cも、それぞれ被覆部2Bb,2Cbを備えていなくてもよい。
 第1実施形態では、電極11,12は、把持部材10のアーム10Aの内部に設けられる。しかし、電極11,12は、アーム10Aの外部に設けられてもよい。例えば、電極11,12は、アーム10Aの面10Aaに設けられてもよい。この場合、電極11,12は外部に剥き出しである。しかし、第1実施形態では、電線2A,2B,2Cの各々は、被覆部2Ab,2Bb,2Cbを備える。そのため、例えば、把持部材10が電線2Aを把持するとき、電極11,12と電線2Aの導体2Aaとの間に、電線2Aの被覆部2Abがある。よって、この場合であっても、把持部材10が電線2Aを把持するとき、電極11,12は、電線2Aの導体2Aaと非接触である。
 非接触電圧測定装置1は、把持部材10を備えていなくてもよい。この場合、例えば、非接触電圧測定装置1によって電線2A,2B,2Cの導体2Aa,2Ba,2Caの電圧が測定されるときに、剥き出しの電極11,12が、電線2A,2B,2Cの被覆部2Ab,2Bb,2Cbの外周面に貼り付けられる。
 第1実施形態では、非接触電圧測定装置1は把持部材10と装置本体20とを備え、把持部材10の内部にコンデンサC,Cが設けられ、装置本体20の内部に増幅回路21,22及び演算部23が設けられる。しかし、非接触電圧測定装置1は、前述のような構成に限らない。例えば、コンデンサC,Cが把持部材10の内部ではなく、装置本体20の内部に設けられてもよい。また、例えば、増幅回路21,22が装置本体20の内部ではなく、把持部材10の内部に設けられてもよい。また、例えば、把持部材10と装置本体20とが一体に構成されていてもよい。
 第1実施形態では、非接触電圧測定装置1のコンデンサC,C及び演算増幅器211,221は、図4に示すような回路構成であるが、図4に示すような回路構成に限らない。
 例えば、コンデンサC,Cが非反転入力端子211Aに接続され、コンデンサC,Cが非反転入力端子221Aに接続され、反転入力端子211B,221Bがグランドに接続されていてもよい。また、例えば、コンデンサC,Cが反転入力端子211Bに接続され、コンデンサC,Cが非反転入力端子221Aに接続され、非反転入力端子211A及び反転入力端子221Bがグランドに接続されていてもよい。また、例えば、コンデンサC,Cが非反転入力端子211Aに接続され、コンデンサC,Cが反転入力端子221Bに接続され、反転入力端子211B及び非反転入力端子221Aがグランドに接続されていてもよい。
 第1実施形態では、CL1=CL2=Cと規定されることによって、式(7)及び式(8)よりなる連立方程式が導出される。しかし、結合容量CL1と結合容量CL2とは、等しくないと規定されてもよい。例えば、CL1+ΔCL1=CL2とされてもよい。つまり、演算部23は、結合容量CL1と結合容量CL2との差が一定であるとして、結合容量CL1と結合容量CL2とを算出してもよい。この場合であっても、前述した式によって結合容量CL1,L2を算出することができる。
 この場合、結合容量CL1と結合容量CL2とが等しくない場合であっても、結合容量CL1と結合容量CL2とを算出することができる。
<第2実施形態>
 図6は、本発明の第2実施形態に係る非接触電圧測定装置の把持部材の正面図である。第2実施形態に係る非接触電圧測定装置が第1実施形態に係る非接触電圧測定装置と異なることは、把持部材101における電極11,12の配置である。以下、第1実施形態と相違する構成が説明される。第1実施形態の非接触電圧測定装置と共通する構成については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。これは、後述する第3実施形態においても同様である。
 把持部材101は、第1実施形態の把持部材10と同様に、内部に電極11,12を有する。第2実施形態では、図6に示すように、電極11はアーム10Aの内部に設けられ、電極12はアーム10Bの内部に設けられる。電極11,12は、把持部材101が電線2Aを把持するときに、電線2Aの中心軸AXを挟んで互いに対向する位置に配置される。
 第2実施形態によれば、結合容量CL1と結合容量CL2とを同一または略同一とすることができる。
<第3実施形態>
 図7は、本発明の第3実施形態に係る非接触電圧測定装置の把持部材の斜視図である。第3実施形態に係る非接触電圧測定装置が第1実施形態に係る非接触電圧測定装置と異なることは、把持部材102において、アーム10A,10Bが互いに対向していないことである。以下、第1実施形態と相違する構成が説明される。
 図7に示すように、把持部材102は、図1に示すアーム10Bの代わりにアーム10Cを備える。
 アーム10Cは、一対の突出部10CAを備える。一対の突出部10CAは、互いに幅方向に対向する。一対の突出部10CAは、アーム10Aを幅方向に挟む位置に形成される。アーム10Aと一対の突出部10CAとは、電線2Aを挟むことによって、電線2Aを把持する。一対の突出部10CAは、アーム10Aと対向していない。一対の突出部10CAの各々は、面10Caを有する。面10Caは、アーム10Aの面10Aaと対向していない。
 アーム10Cは、一対の軸支持部10Cbを有する。図7では、一対の軸支持部10Cbのうちの一方のみが示される。一対の軸支持部10Cbは、幅方向に対向する。一対の軸支持部10Cbは、幅方向の外側から一対の軸支持部10Abを挟む。一対の軸支持部10Cbの各々は、貫通孔10Ccを有する。アーム10Aの各貫通孔10Acと、アーム10Cの各貫通孔10Ccとは、幅方向に沿って一直線に並んでいる。これにより、第1実施形態と同様に、アーム10A,10Cは、互いに回動可能に支持される。
 第1実施形態では、アーム10A,10Bは、互いに対向する。そのため、アーム10A,10Bの先端部が互いに接触すると、把持部材10はそれ以上閉じない。これに対して、第3実施形態では、一対の突出部10CAは、アーム10Aと対向していない。そのため、把持部材102の一対の突出部10CAは、第1実施形態の把持部材10のアーム10Bより、アーム10Aに近づくまで閉じることができる。その結果、第3実施形態に係る非接触電圧測定装置の把持部材102は、第1実施形態に係る非接触電圧測定装置1の把持部材10より細い電線2を把持することができる。
  1 非接触電圧測定装置
 2A 電線
 2B 電線
 2C 電線
 10 把持部材
 11 電極(第1電極)
 12 電極(第2電極)
 21 増幅回路(第1増幅回路)
211B 反転入力端子
211C 出力端子
 22 増幅回路(第2増幅回路)
221B 反転入力端子
221C 出力端子
 23 演算部
 C コンデンサ(第1コンデンサ)
 C コンデンサ(第2コンデンサ)
 C コンデンサ(第3コンデンサ)
 C コンデンサ(第4コンデンサ)

Claims (8)

  1.  互いに離隔して設けられる第1電極及び第2電極と、
     前記第1電極と接続される第1コンデンサと、
     前記第1コンデンサと互いに直列に接続される第1増幅回路と、
     前記第2電極と接続される第2コンデンサと、
     前記第2コンデンサと互いに直列に接続される第2増幅回路と、
     演算部と、を備え、
     前記第1電極及び前記第2電極の各々は、電線の導体と非接触で且つ前記電線の導体と対向し、
     前記第1コンデンサは、前記第1増幅回路の入力端子に接続され、
     前記第2コンデンサは、前記第2増幅回路の入力端子に接続され、
     前記第1増幅回路は、出力端子と入力端子との間に接続される第3コンデンサを備え、
     前記第2増幅回路は、出力端子と入力端子との間に接続される第4コンデンサを備え、
     前記演算部は、
     前記第1コンデンサの容量、前記第2コンデンサの容量、前記第3コンデンサの容量、前記第4コンデンサの容量、前記第1増幅回路の出力端子の電圧、及び前記第2増幅回路の出力端子の電圧に基づいて、前記電線の導体の電圧を算出する非接触電圧測定装置。
  2.  前記演算部はさらに、前記第1電極と前記電線の導体との間の第1結合容量、前記第2電極と前記電線の導体との間の第2結合容量を算出する請求項1に記載の非接触電圧測定装置。
  3.  前記演算部は、前記第1結合容量と前記第2結合容量とが等しいとして、前記第1結合容量と前記第2結合容量とを算出する請求項2に記載の非接触電圧測定装置。
  4.  前記演算部は、前記第1結合容量と前記第2結合容量との差が一定であるとして、前記第1結合容量と前記第2結合容量とを算出する請求項2に記載の非接触電圧測定装置。
  5.  前記演算部は、以下の式(1)から式(6)を用いて、
     Z=(CL1+C)/jωCL1・・・(1)
     Z=(CL2+C)/jωCL2・・・(2)
     Z=1/jωC・・・(3)
     Z=1/jωC・・・(4)
     V=-(Z/Z)V・・・(5)
     V=-(Z/Z)V・・・(6)
     ここで、
     CL1は、前記第1電極と前記電線の導体との間の第1結合容量であり、
     CL2は、前記第2電極と前記電線の導体との間の第2結合容量であり、
     Cは、前記第1コンデンサの容量であり、
     Cは、前記第2コンデンサの容量であり、
     Cは、前記第3コンデンサの容量であり、
     Cは、前記第4コンデンサの容量であり、
     Zは、前記第1結合容量を蓄えるコンデンサと前記第1コンデンサとの合成インピーダンスであり、
     Zは、前記第2結合容量を蓄えるコンデンサと前記第2コンデンサとの合成インピーダンスであり、
     Zは、前記第3コンデンサのインピーダンスであり、
     Zは、前記第4コンデンサのインピーダンスであり、
     Vは、前記第1増幅回路の出力端子の電圧であり、
     Vは、前記第2増幅回路の出力端子の電圧であり、
     Vは、前記電線の導体の電圧であり、
     前記電線の導体の電圧を算出する請求項1から4のいずれか1項に記載の非接触電圧測定装置。
  6.  前記非接触電圧測定装置はさらに、前記電線を把持する把持部材を備え、
     前記第1電極及び前記第2電極は、前記把持部材に設けられ、
     前記第1電極及び前記第2電極の各々は、前記把持部材が前記電線を把持するときに、前記電線の導体と対向する請求項1から5のいずれか1項に記載の非接触電圧測定装置。
  7.  前記第1電極及び前記第2電極は、前記把持部材が前記電線を把持するときの前記電線の長手方向に沿って離隔して並置される請求項6に記載の非接触電圧測定装置。
  8.  前記第1電極及び前記第2電極は、前記把持部材が前記電線を把持するときに、前記電線の中心軸を挟んで互いに対向するように配置される請求項6に記載の非接触電圧測定装置。
PCT/JP2022/002524 2021-03-11 2022-01-25 非接触電圧測定装置 WO2022190678A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021039429A JP2022139167A (ja) 2021-03-11 2021-03-11 非接触電圧測定装置
JP2021-039429 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022190678A1 true WO2022190678A1 (ja) 2022-09-15

Family

ID=83226691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002524 WO2022190678A1 (ja) 2021-03-11 2022-01-25 非接触電圧測定装置

Country Status (2)

Country Link
JP (1) JP2022139167A (ja)
WO (1) WO2022190678A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215558A (ja) * 2011-03-30 2012-11-08 Denso Corp 電圧検出装置および結合回路
JP2015175655A (ja) * 2014-03-13 2015-10-05 オムロン株式会社 非接触電圧計測装置
WO2016175123A1 (ja) * 2015-04-28 2016-11-03 アルプス・グリーンデバイス株式会社 非接触電圧計測装置
JP2019032179A (ja) * 2017-08-04 2019-02-28 株式会社エム・アンド・ジェイ ブレードの計測方法
JP2019078677A (ja) * 2017-10-26 2019-05-23 大崎電気工業株式会社 電圧測定装置
JP2019114901A (ja) * 2017-12-22 2019-07-11 ルネサスエレクトロニクス株式会社 半導体装置およびセンサシステム
JP2020144026A (ja) * 2019-03-07 2020-09-10 株式会社関電工 絶縁型電圧測定装置
CN211905516U (zh) * 2020-02-17 2020-11-10 南方电网科学研究院有限责任公司 一种非接触式电压测量装置
CN112394846A (zh) * 2019-08-16 2021-02-23 瑞尼斯股份有限公司 触摸输入检测装置
JP2021042996A (ja) * 2019-09-06 2021-03-18 株式会社東芝 電子回路、電流計測装置、および方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215558A (ja) * 2011-03-30 2012-11-08 Denso Corp 電圧検出装置および結合回路
JP2015175655A (ja) * 2014-03-13 2015-10-05 オムロン株式会社 非接触電圧計測装置
WO2016175123A1 (ja) * 2015-04-28 2016-11-03 アルプス・グリーンデバイス株式会社 非接触電圧計測装置
JP2019032179A (ja) * 2017-08-04 2019-02-28 株式会社エム・アンド・ジェイ ブレードの計測方法
JP2019078677A (ja) * 2017-10-26 2019-05-23 大崎電気工業株式会社 電圧測定装置
JP2019114901A (ja) * 2017-12-22 2019-07-11 ルネサスエレクトロニクス株式会社 半導体装置およびセンサシステム
JP2020144026A (ja) * 2019-03-07 2020-09-10 株式会社関電工 絶縁型電圧測定装置
CN112394846A (zh) * 2019-08-16 2021-02-23 瑞尼斯股份有限公司 触摸输入检测装置
JP2021042996A (ja) * 2019-09-06 2021-03-18 株式会社東芝 電子回路、電流計測装置、および方法
CN211905516U (zh) * 2020-02-17 2020-11-10 南方电网科学研究院有限责任公司 一种非接触式电压测量装置

Also Published As

Publication number Publication date
JP2022139167A (ja) 2022-09-26

Similar Documents

Publication Publication Date Title
JP5312326B2 (ja) 溶液の電気伝導率を測定する方法
WO2017168608A1 (ja) 非接触電圧測定装置および非接触電圧測定方法
WO2020095471A1 (ja) インピーダンス測定装置
JP2003028900A (ja) 非接触電圧測定方法およびその装置
WO2022190678A1 (ja) 非接触電圧測定装置
WO2020149135A1 (ja) 容量性電圧測定装置
JP2006084380A (ja) 非接触電圧測定装置
JP4251961B2 (ja) 非接触電圧測定装置
CN104067113B (zh) 低电导率的接触式电导率测试系统
JP3815771B2 (ja) 静電容量式ギャップセンサ、及びその信号検出方法
JP2003066074A (ja) 抵抗測定方法および抵抗測定装置
JP2019078677A (ja) 電圧測定装置
JP4208560B2 (ja) インピーダンス測定装置
JP2017161366A (ja) 電圧測定装置
Willihnganz A bridge for measuring storage battery resistance
JP5615463B1 (ja) 電圧検出装置および電圧検出方法
JP4670549B2 (ja) 測定誤差の補正方法
WO2016139924A1 (ja) 電圧測定装置
RU2818785C1 (ru) Устройство для дистанционного измерения сопротивления
JP2655886B2 (ja) レーザー加工機ノズルの距離検出装置
WO2022172312A1 (ja) 非接触電圧測定装置および非接触電圧測定方法
JP3757226B2 (ja) 搬送波型3線式ひずみ測定システム
JP2003315089A (ja) ひずみゲージ
JPS6241261Y2 (ja)
SU655988A1 (ru) Устройство дл раздельного измерени модул комплексных сопротивлений

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766645

Country of ref document: EP

Kind code of ref document: A1