WO2022188368A1 - 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法 - Google Patents

一种基于ZIFs的高分散Co基双金属催化剂及其制备方法 Download PDF

Info

Publication number
WO2022188368A1
WO2022188368A1 PCT/CN2021/114235 CN2021114235W WO2022188368A1 WO 2022188368 A1 WO2022188368 A1 WO 2022188368A1 CN 2021114235 W CN2021114235 W CN 2021114235W WO 2022188368 A1 WO2022188368 A1 WO 2022188368A1
Authority
WO
WIPO (PCT)
Prior art keywords
zifs
salt
znco
soluble
preparation
Prior art date
Application number
PCT/CN2021/114235
Other languages
English (en)
French (fr)
Inventor
王焕君
郭东方
范金航
汪世清
刘练波
郜时旺
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2022188368A1 publication Critical patent/WO2022188368A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention belongs to the technical field of nanomaterials and catalyst synthesis, and relates to a ZIFs-based highly dispersed Co-based bimetallic catalyst and a preparation method thereof.
  • Zeolitic imidazolate frameworks (ZIFs) materials are a subspecies of metal-organic frameworks (MOFs) materials, composed of metal ions (such as Zn 2+ ) with tetrahedral coordination configuration. , Co 2+ ) coordinated with imidazole-based organic ligands, including Zn-based ZIF-8, Co-based ZIF-67, etc.
  • ZIFs have typical zeolite-like periodic topology, large specific surface area, high thermal stability, and easy preparation. They have a wide range of applications in the fields of gas storage and separation, sensing, catalysis, and membrane science.
  • the Chinese invention patent with the application number of 201510168261.9 discloses a hydrogenation catalyst based on ZIF-8 and its synthesis method.
  • ZIF-8 is used as a carrier, and active metals are introduced by impregnation method, and then hydrogenation is obtained after high-temperature roasting and reduction treatment.
  • the catalytic efficiency of the catalyst in the diesel hydrocracking reaction is several times higher than that of the traditional alumina catalyst, but the active metal particles in the catalyst are in the nanometer scale, and the metal utilization rate is not high.
  • the Chinese invention patent with the application number of 201510891468.9 discloses a method for preparing a ZIF-8 material-loaded CoB catalyst, using the feature that Zn 2+ and Co 2+ can coordinate with 2-methylimidazole at the same time, with cobalt salts, -ZIF-8/ZIF-67 hybrid material was prepared with methylimidazole as raw material, and ZIF-8 supported CoB catalyst was obtained after liquid-phase reduction with sodium borohydride. Stability is not high.
  • nanoclusters ⁇ 2nm
  • sub-nanometers ⁇ 1nm
  • single-atom catalysts have gradually attracted people's attention. s concern.
  • bimetallic catalysts exhibit better catalytic performance due to their unique electronic and geometric effects.
  • bimetallic catalysts based on ZIFs are mostly concentrated at the nanoscale.
  • the Chinese invention patent with the application number of 201911417367.2 discloses a method for preparing a supported Fe-Co/ZIF-67 bimetallic catalyst. The method uses ZIF-67 as a template to support iron and cobalt in a co-precipitated manner.
  • a magnetic Fe-Co/ZIF-67 bimetallic catalyst is obtained by calcination.
  • the mass fraction of Fe and Co is between 5-15%, and the metal particles are at the nanoscale, so there is a problem of low metal utilization. .
  • the purpose of the present invention is to overcome the shortcoming of the low utilization rate of metals in the bimetallic catalyst in the above-mentioned prior art, and to provide a highly dispersed Co-based bimetallic catalyst based on ZIFs and a preparation method thereof.
  • a preparation method of a ZIFs-based highly dispersed Co-based bimetallic catalyst comprising the following steps:
  • Step 1) use soluble zinc salt and soluble cobalt salt to mix and prepare a metal salt solution with a mass concentration of 1% to 10%, and prepare a 2-methylimidazole solution with a mass concentration of 1% to 22%;
  • the solution and the metal salt solution are mixed according to the molar ratio (4-8): 1 to obtain the first mixed solution, and the mixed solution is placed at 30-50 ° C to cooperate with the reaction.
  • the ZnCo-ZIFs precursor is obtained by centrifugation, washing and drying once. ;
  • Step 2 degassing and removing impurities from the ZnCo-ZIFs precursor
  • Step 3) Disperse the degassed and impurity-removed ZnCo-ZIFs precursor in step 2) in a hydrophobic solvent to obtain a second mixed solution with a mass concentration of 0.6% to 0.8%, and mix the second mixed solution with 0 to 150 mg of /mL of the second active metal salt solution, stirred for 6-12 h, and dried to obtain metal salt@ZnCo-ZIFs.
  • Step 4) In an inert gas, the metal salt@ZnCo-ZIFs in step 3) is calcined at high temperature, the calcination temperature is 900-1000 ° C, and air-cooled after the calcination to obtain a highly dispersed Co-based bimetallic catalyst based on ZIFs.
  • the molar ratio of the soluble zinc salt and the soluble cobalt salt is (24-100):1.
  • the zinc salt is Zn(NO 3 ) 2 ⁇ 6H 2 O or Zn(OAc) 2 ⁇ 2H 2 O;
  • the cobalt salt is Co(NO 3 ) 2 ⁇ 6H 2 O or Co (OAc) 2 ⁇ 4H 2 O.
  • the time of the complex reaction in step 1) is 6 to 12 hours; the drying in step 1) is to place the centrifuged precipitate at 40 to 60°C for 8 to 12 hours; in step 4)
  • the high temperature calcination time is 3-6h.
  • both the metal salt solution and the 2-methylimidazole solution described in step 1) are prepared with methanol as a solvent; the washing is performed with methanol.
  • the ZnCo-ZIFs precursor after degassing and removing impurities in step 2) has a porous structure, and its pore volume is 0.57 cm 3 /g as determined by physical adsorption; in step 3), the volume of the second active metal salt solution should be less than or equal to the pore volume of the ZnCo-ZIFs precursor after degassing and impurity removal in step 2).
  • the inert gas described in step 4) is argon or nitrogen.
  • the second active metal salt described in step 3) is any one of water-soluble Ni salt, water-soluble Rh salt, water-soluble Fe salt, water-soluble Ru salt, water-soluble Pd salt and water-soluble Pt salt;
  • the hydrophobic solvent is n-hexane or chloroform.
  • the water-soluble Ni salt is Ni(NO 3 ) 2 ⁇ 6H 2 O or NiCl 2 ⁇ 6H 2 O;
  • the water-soluble Rh salt is RhCl 3 ⁇ 3H 2 O;
  • the water-soluble Fe salt is FeCl 3 ⁇ 6H 2 O or Fe(NO 3 ) 3 ⁇ 9H 2 O;
  • water-soluble Ru salt is RuCl 3 ⁇ 3H 2 O;
  • water-soluble Pd salt is Pd(NO 3 ) 2 ⁇ 2H 2 O or PdSO 4 ⁇ 2H 2 O; water-soluble The Pt salt is H 2 PtCl 6 ⁇ 6H 2 O.
  • the degassing and impurity removal in step 2) is performed under vacuum, the degassing temperature is 80-150°C, and the degassing time is 8-10 h.
  • the present invention has the following beneficial effects:
  • the invention discloses a highly dispersed Co-based bimetallic catalyst based on ZIFs.
  • the metal particles are in nano-cluster or single-atomic scale, which is beneficial to improve the utilization rate of metals and reduce the preparation cost of the catalyst. Due to the size effect and electronic effect of highly dispersed bimetallic catalysts, there is a synergistic effect between bimetals. Compared with the corresponding monometallic catalysts, such Co-based bimetallic catalysts can exhibit high activity and high selectivity in catalytic reactions, etc. Excellent catalytic performance, this kind of Co-based bimetallic catalyst has been calcined at high temperature during the preparation process, and has high thermal stability, and it is not easy to appear the phenomenon of metal particle clusters and deactivation in the catalytic reaction application process.
  • Such Co-based bimetallic catalysts have the advantage of flexible and tunable active metal composition and loading, because Zn 2+ and Co 2+ can simultaneously coordinate with 2-methylimidazole to form a zeolite-like periodic topology, and the two
  • the ratio of metal nodes is flexibly adjustable, so the loading of Co can be flexibly adjusted by changing the ratio of Zn/Co; in addition, when the second active metal is introduced by the dual-solvent method, different types or concentrations of metal salt aqueous solutions can be used. to flexibly adjust the type and loading of the second active metal.
  • the invention also discloses a preparation method of a highly dispersed Co-based bimetallic catalyst based on ZIFs, which fully utilizes that Zn 2+ and Co 2+ can coordinate with 2-methylimidazole at the same time to form a zeolite-like periodic topology, and the two The ZnCo-ZIFs precursor was formed by the flexible and adjustable ratio of metal nodes; the pore structure and hydrophilic properties of the ZnCo-ZIFs precursor were used to introduce other active metals into the precursor pore structure by the dual-solvent method to obtain metal salt@ ZnCo-ZIFs.
  • the Zn 2+ node evaporates, which acts as a fence to the active metal and prevents the agglomeration of active metal particles; the organic ligand is carbonized in situ to form a nitrogen-doped carbon support; the Co node and the introduced second The active metals are reduced in situ, resulting in highly dispersed Co-based bimetallic catalysts supported on nitrogen-doped carbon supports.
  • the method of the invention cleverly utilizes the characteristics of high dispersion of metal nodes and periodic pore structure in ZnCo-ZIFs.
  • the second active metal salt is introduced into the pores of ZIFs by using a dual-solvent method;
  • the volatilization of Zn which acts as a fence, increases the distance between the active metals, and the Co node and the second active metal are reduced in situ to obtain a highly dispersed Co-based bimetallic catalyst supported on a nitrogen-doped carbon carrier.
  • the active components are flexible and adjustable, and the active bimetal is fixed on the nitrogen-doped carbon support in a highly dispersed form, which greatly improves the metal utilization rate.
  • the thermal stability of the metal particles is not easy to appear in the process of catalytic reaction application, and the phenomenon of metal particle clustering and deactivation is not easy.
  • the highly dispersed Co-based bimetallic catalyst prepared by the invention can be used in catalytic reaction processes such as hydrogenation catalysis, synthesis gas conversion and alcohol selective oxidation.
  • both the metal salt solution and the 2-methylimidazole solution were prepared with methanol as the solvent.
  • the ZnCo-ZIFs prepared with methanol as the solvent had a more concentrated grain distribution, The average particle size is smaller and has larger specific surface area and more acid-base sites.
  • the ZnCo-ZIFs precursor after degassing and removing impurities has a porous structure, and the volume of the pores is 0.57 cm 3 /g; in step 3), the volume of the second active metal salt solution should be less than or equal to the step 2)
  • the pore volume of the ZnCo-ZIFs precursor after degassing and impurity removal In order to ensure that all metal ions are introduced into the pores of the ZIFs material under the action of capillary, the metal is not loaded on the outer surface of the ZIFs precursor.
  • Fig. 1 is the XRD pattern of the CoNi/NC catalyst synthesized in Example 1;
  • Figure 2 is the TEM image of the CoNi/NC catalyst synthesized in Example 1, (a) and (b) are the TEM images at different magnifications; (c) is the spherical aberration corrected HAADF-STEM image;
  • Fig. 3 is the TEM image (a) of the CoNi/NC catalyst synthesized in Example 1 and its corresponding element scanning images ((b)-(f)), wherein (b) is C element and (c) is N element , (d) is Ni element, (e) is Co element, (f) is Zn element;
  • Fig. 4 is the XRD pattern of the CoRh/NC catalyst synthesized in Example 2;
  • Figure 5 is the TEM image of the CoRh/NC catalyst synthesized in Example 2, (a) and (b) are the TEM images at different magnifications; (c) is the HAADF-STEM image corrected for spherical aberration;
  • Fig. 6 is the TEM image (a) of the CoRh/NC catalyst synthesized in Example 2 and its corresponding element scanning images ((b)-(f)), wherein (b) is C element and (c) is N element , (d) is Co element, (e) is Rh element, (f) is Zn element.
  • a preparation method of a highly dispersed CoNi bimetallic catalyst based on ZIFs specifically comprising the following steps:
  • Step 1) 5.357 g (297.49 g/mol, 18 mmol) Zn(NO 3 ) 2 .6H 2 O and 0.218 g (291.03 g/mol, 0.75 mmol) Co(NO 3 ) 2 .6H 2 O were dissolved in 150 mL of methanol , the metal salt methanol solution was formed after sonicating for 10 min; 6.160 g (82.1 g/mol, 75 mmol) of 2-methylimidazole was dissolved in 150 mL methanol, and the 2-methylimidazole methanol solution was formed by ultrasonicating for 10 min; the metal salt methanol solution was quickly poured put into 2-methylimidazole methanol solution, ultrasonicated for 10 min, placed in a 35 °C incubator for 12 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 60 °C vacuum drying box for 8 h to obtain ZnCo-ZIFs
  • Step 2) The ZnCo-ZIFs precursor obtained in 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on the vacuum degassing equipment. Raised to 150°C, kept for 8h, cooled to room temperature and taken out.
  • Step 3) The degassed ZnCo-ZIFs precursor in 2) is subjected to dual solvent treatment, and nickel nitrate is loaded into the inside of the ZnCo-ZIFs pores.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of n-hexane, a hydrophobic solvent, and 100 ⁇ L of a 100 mg/mL Ni(NO 3 ) 2 ⁇ 6H 2 O aqueous solution was added dropwise; after ultrasonication for 20 min, stirred at room temperature for 12 h, and the solvent was evaporated. After completion, it was dried in a vacuum drying oven at 60 °C for 8 h to obtain nickel salt@ZnCo-ZIFs.
  • Step 4) In argon, the nickel salt@ZnCo-ZIFs obtained in 3) is calcined at high temperature, the gas flow rate is 0.6L/min, the high temperature calcination temperature is 900°C, the heating rate is 5°C/min, and after calcination for 6h A highly dispersed catalyst CoNi/NC was obtained.
  • Step 1) 5.357 g (297.49 g/mol, 18 mmol) Zn(NO 3 ) 2 .6H 2 O and 0.218 g (291.03 g/mol, 0.75 mmol) Co(NO 3 ) 2 .6H 2 O were dissolved in 150 mL of methanol , the metal salt methanol solution was formed after sonicating for 10 min; 6.160 g (82.1 g/mol, 75 mmol) of 2-methylimidazole was dissolved in 150 mL methanol, and the 2-methylimidazole methanol solution was formed by ultrasonicating for 10 min; the metal salt methanol solution was quickly poured put into 2-methylimidazole methanol solution, ultrasonicated for 10 min, placed in a 50 °C incubator for 6 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 40 °C vacuum drying box for 12 h to obtain ZnCo-ZIFs
  • Step 2) The ZnCo-ZIFs precursor obtained in step 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing equipment. Raised to 100°C, kept for 10h, cooled to room temperature and taken out.
  • Step 3) Perform dual solvent treatment on the degassed ZnCo-ZIFs precursor in step 2), and load rhodium chloride into the inside of the ZnCo-ZIFs pores.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of hydrophobic solvent chloroform, and 100 ⁇ L of 5.16 mg/mL rhodium chloride aqueous solution was added dropwise; after ultrasonication for 30 min, stirred at room temperature for 8 h, and after the solvent was evaporated, vacuumed at 60 °C After drying in a drying oven for 12 h, rhodium salts@ZnCo-ZIFs were obtained.
  • Step 4) In argon, the rhodium salt@ZnCo-ZIFs obtained in step 3) is calcined at high temperature, the gas flow rate is 0.5L/min, the calcination temperature is 900°C, the heating rate is 2°C/min, and after calcination for 5h A highly dispersed catalyst CoRh/NC was obtained.
  • Step 1) 7.902 g (219.51 g/mol, 36 mmol) Zn(OAc) 2 .2H 2 O and 0.187 g (249.08 g/mol, 0.75 mmol) Co(OAc) 2 .4H 2 O were dissolved in 150 mL methanol, After ultrasonication for 10min, a methanol solution of metal salt was formed; 12.315g (82.1g/mol, 150mmol) of 2-methylimidazole was dissolved in 150mL methanol, and sonicated for 15min to form a methanol solution of 2-methylimidazole; the methanol solution of metal salt was quickly poured into 2 -Methylimidazole methanol solution, sonicated for 15 min, placed in a 30 °C incubator for 12 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 50 °C vacuum drying box for 10 h to obtain ZnCo- ZIF
  • Step 2) The ZnCo-ZIFs precursor obtained in 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on the vacuum degassing equipment.
  • the heating program was set as: from room temperature to 100 °C at a heating rate of 5 °C/min, holding for 10 min, and 10 °C/min at 10 °C/min. Raised to 150°C, kept for 8h, cooled to room temperature and taken out.
  • Step 3) Perform dual solvent treatment on the degassed ZnCo-ZIFs precursor in 2), and load ferric nitrate into the pores of the ZnCo-ZIFs.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of n-hexane, a hydrophobic solvent, and 100 ⁇ L of 143.24 mg/mL Fe(NO 3 ) 3 9H 2 O aqueous solution was added dropwise. After volatilization, it was dried in a vacuum drying oven at 60 °C for 8 h to obtain iron salt @ZnCo-ZIFs.
  • Step 4) In nitrogen, the iron salt@ZnCo-ZIFs obtained in 3) was calcined at high temperature, the gas flow was 0.4 L/min, the calcination temperature was 950 °C, the heating rate was 3 °C/min, and the high temperature was obtained after calcination for 4 h. Dispersion catalyst CoFe/NC.
  • Step 1) 5.357 g (297.49 g/mol, 18 mmol) Zn(NO 3 ) 2 .6H 2 O and 0.218 g (291.03 g/mol, 0.75 mmol) Co(NO 3 ) 2 .6H 2 O were dissolved in 150 mL of methanol , the methanol solution of metal salt was formed after sonicating for 10 min; 12.32 g (82.1 g/mol, 150 mmol) of 2-methylimidazole was dissolved in 150 mL methanol, and sonicated for 10 min to form a methanol solution of 2-methylimidazole; the methanol solution of metal salt was quickly poured put into 2-methylimidazole methanol solution, ultrasonicated for 10 min, placed in a 50 °C incubator for 6 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 50 °C vacuum drying box for 12 h to obtain ZnCo-
  • Step 2) The ZnCo-ZIFs precursor obtained in step 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing equipment. Raised to 120°C, kept for 8h, cooled to room temperature and taken out.
  • step 3 the degassed ZnCo-ZIFs precursor in step 2) is subjected to dual-solvent treatment, and ruthenium chloride is loaded into the pores of the ZnCo-ZIFs.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of hydrophobic solvent chloroform, and 100 ⁇ L of 40.64 mg/mL RuCl 3 ⁇ 3H 2 O aqueous solution was added dropwise; after ultrasonication for 30 min, the mixture was stirred at room temperature for 8 h. Dry in a vacuum oven at 60 °C for 12 h to obtain ruthenium salt@ZnCo-ZIFs.
  • Step 4) In argon, the ruthenium salt@ZnCo-ZIFs obtained in step 3) is calcined at high temperature, the gas flow rate is 0.5L/min, the calcination temperature is 950°C, the heating rate is 2°C/min, and after calcination for 5h A highly dispersed catalyst CoRu/NC was obtained.
  • Step 1) 5.357 g (297.49 g/mol, 18 mmol) Zn(NO 3 ) 2 .6H 2 O and 0.218 g (291.03 g/mol, 0.75 mmol) Co(NO 3 ) 2 .6H 2 O were dissolved in 150 mL of methanol , the metal salt methanol solution was formed after sonicating for 10 min; 6.160 g (82.1 g/mol, 75 mmol) of 2-methylimidazole was dissolved in 150 mL methanol, and the 2-methylimidazole methanol solution was formed by ultrasonicating for 10 min; the metal salt methanol solution was quickly poured put into 2-methylimidazole methanol solution, ultrasonicated for 10 min, placed in a 40 °C incubator for 12 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 60 °C vacuum drying box for 12 h to obtain ZnCo-ZIFs
  • Step 2) The ZnCo-ZIFs precursor obtained in 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing equipment. Raised to 120°C, kept for 12h, cooled to room temperature and taken out.
  • step 3 the degassed ZnCo-ZIFs precursor in 2) is subjected to two-solvent treatment, and palladium sulfate is loaded into the inside of the ZnCo-ZIFs pores.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of hydrophobic solvent chloroform, and 100 ⁇ L of 37.67 mg/mL PdSO 4 2H 2 O aqueous solution was added dropwise; after ultrasonication for 30 min, the mixture was stirred at room temperature for 8 h, and after the solvent was evaporated, the solution was added to the solution. Dry in a vacuum oven at 40 °C for 10 h to obtain palladium salt@ZnCo-ZIFs.
  • Step 4) In nitrogen, the palladium salt@ZnCo-ZIFs obtained in 3) is calcined at high temperature, the gas flow rate is 0.6L/min, the high temperature calcination temperature is 1000°C, the heating rate is 5°C/min, and the obtained after calcination is 4h. Highly dispersed catalyst CoPd/NC.
  • Step 1) 5.357 g (297.49 g/mol, 18 mmol) Zn(NO 3 ) 2 .6H 2 O and 0.218 g (291.03 g/mol, 0.75 mmol) Co(NO 3 ) 2 .6H 2 O were dissolved in 150 mL of methanol , the methanol solution of metal salt was formed after sonicating for 10 min; 12.32 g (82.1 g/mol, 150 mmol) of 2-methylimidazole was dissolved in 150 mL methanol, and sonicated for 10 min to form a methanol solution of 2-methylimidazole; the methanol solution of metal salt was quickly poured put into 2-methylimidazole methanol solution, ultrasonicated for 10 min, placed in a 50 °C incubator for 6 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 40 °C vacuum drying box for 12 h to obtain ZnCo-
  • Step 2) The ZnCo-ZIFs precursor obtained in step 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing equipment. Raised to 120 ° C, kept for 10 h, cooled to room temperature and taken out.
  • step 3 the degassed ZnCo-ZIFs precursor in step 2) is subjected to dual-solvent treatment, and chloroplatinic acid is loaded into the inside of the pores of the ZnCo-ZIFs.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of hydrophobic solvent chloroform, and 100 ⁇ L of 52.57 mg/mL H 2 PtCl 6 ⁇ 6H 2 O aqueous solution was added dropwise; after ultrasonication for 30 min, stirred at room temperature for 8 h, and after the solvent was evaporated , and dried in a vacuum drying oven at 60 °C for 12 h to obtain platinum salt @ZnCo-ZIFs.
  • Step 4) In argon, the platinum salt@ZnCo-ZIFs obtained in step 3) is calcined at high temperature, the gas flow rate is 0.5L/min, the calcination temperature is 900°C, the heating rate is 2°C/min, and after calcination for 5h A highly dispersed catalyst CoPt/NC was obtained.
  • Step 1) Dissolve 3.951 g (219.51 g/mol, 18 mmol) Zn(OAc) 2 .2H 2 O and 0.062 g (249.08 g/mol, 0.25 mmol) Co(OAc) 2 .4H 2 O in 150 mL of methanol, After ultrasonication for 10min, a methanol solution of metal salt was formed; 6.158g (82.1g/mol, 75mmol) of 2-methylimidazole was dissolved in 150mL methanol, and sonicated for 15min to form a methanol solution of 2-methylimidazole; the methanol solution of metal salt was quickly poured into 2 -Methylimidazole methanol solution, sonicated for 10 min, placed in a 30 °C incubator for 12 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 60 °C vacuum drying box for 8 h to obtain ZnCo- Z
  • Step 2) The ZnCo-ZIFs precursor obtained in 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing device.
  • the heating program was set as: from room temperature to 80 °C at a heating rate of 5 °C/min, maintained for 10 min, and 10 °C/min at 10 °C/min. Raised to 150°C, kept for 8h, cooled to room temperature and taken out.
  • step 3 the degassed ZnCo-ZIFs precursor in 2) is subjected to two-solvent treatment, and palladium nitrate is loaded into the inside of the ZnCo-ZIFs pores.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of n-hexane, a hydrophobic solvent, and 100 ⁇ L of 49.58 mg/mL Pd(NO 3 ) 2 ⁇ 2H 2 O aqueous solution was added dropwise. After volatilization, it was dried in a vacuum drying oven at 60 °C for 8 h to obtain palladium salt@ZnCo-ZIFs.
  • Step 4) In nitrogen, the palladium salt@ZnCo-ZIFs obtained in 3) was calcined at high temperature, the gas flow was 0.4 L/min, the calcination temperature was 900 °C, the heating rate was 3 °C/min, and the high temperature was obtained after calcination for 4 h. Dispersion catalyst CoPd/NC.
  • Step 1) Dissolve 3.951 g (219.51 g/mol, 18 mmol) Zn(OAc) 2 .2H 2 O and 0.187 g (249.08 g/mol, 0.75 mmol) Co(OAc) 2 .4H 2 O in 150 mL of methanol, After ultrasonication for 10min, a methanol solution of metal salt was formed; 12.315g (82.1g/mol, 150mmol) of 2-methylimidazole was dissolved in 150mL methanol, and sonicated for 15min to form a methanol solution of 2-methylimidazole; the methanol solution of metal salt was quickly poured into 2 -Methylimidazole methanol solution, sonicated for 15 min, placed in a 30 °C incubator for 12 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 50 °C vacuum drying box for 10 h to obtain ZnCo- Z
  • Step 2) The ZnCo-ZIFs precursor obtained in 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing device.
  • the heating program was set as: from room temperature to 80 °C at a heating rate of 5 °C/min, maintained for 10 min, and 10 °C/min at 10 °C/min. Raised to 100°C, kept for 8h, cooled to room temperature and taken out.
  • Step 3) Perform dual solvent treatment on the degassed ZnCo-ZIFs precursor in 2), and load ferric chloride into the pores of the ZnCo-ZIFs.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of n-hexane, a hydrophobic solvent, and 100 ⁇ L of 95.8 mg/mL FeCl 3 6H 2 O aqueous solution was added dropwise; after ultrasonication for 15 min, the solution was stirred at room temperature for 10 h. Dry in a vacuum oven at 60 °C for 8 h to obtain iron salts@ZnCo-ZIFs.
  • Step 4) In nitrogen, the iron salt@ZnCo-ZIFs obtained in 3) was calcined at high temperature, the gas flow was 0.4 L/min, the calcination temperature was 900 °C, the heating rate was 3 °C/min, and the high temperature was obtained after calcination for 4 h. Dispersion catalyst CoFe/NC.
  • Step 1) Dissolve 3.951 g (219.51 g/mol, 18 mmol) Zn(OAc) 2 .2H 2 O and 0.062 g (249.08 g/mol, 0.25 mmol) Co(OAc) 2 .4H 2 O in 150 mL of methanol, After ultrasonication for 10min, a methanol solution of metal salt was formed; 6.158g (82.1g/mol, 75mmol) of 2-methylimidazole was dissolved in 150mL methanol, and sonicated for 15min to form a methanol solution of 2-methylimidazole; the methanol solution of metal salt was quickly poured into 2 -Methylimidazole methanol solution, sonicated for 10 min, placed in a 30 °C incubator for 12 h; then centrifuged the above mixed solution, washed the precipitate with methanol 3 times, and then dried in a 60 °C vacuum drying box for 8 h to obtain ZnCo- Z
  • Step 2) The ZnCo-ZIFs precursor obtained in 1) is subjected to vacuum degassing treatment to remove impurities in the precursor.
  • the ZnCo-ZIFs precursor was placed in a U-shaped tube, and then installed on a vacuum degassing device.
  • the heating program was set as: from room temperature to 80 °C at a heating rate of 5 °C/min, maintained for 10 min, and 10 °C/min at 10 °C/min. Raised to 150°C, kept for 8h, cooled to room temperature and taken out.
  • Step 3) Perform dual solvent treatment on the degassed ZnCo-ZIFs precursor in 2), and load nickel chloride into the inside of the ZnCo-ZIFs pores.
  • 200 mg of degassed ZnCo-ZIFs were ultrasonically dispersed in 40 mL of hydrophobic solvent chloroform, and 100 ⁇ L of 1.88 mg/mL NiCl 2 ⁇ 6H 2 O aqueous solution was added dropwise; after ultrasonication for 20 min, the mixture was stirred at room temperature for 12 h. After drying in a vacuum oven at 60 °C for 8 h, nickel salts@ZnCo-ZIFs were obtained.
  • Step 4) In argon, the nickel salt@ZnCo-ZIFs obtained in 3) is calcined at high temperature, the gas flow rate is 0.4L/min, the calcination temperature is 900°C, the heating rate is 3°C/min, and the obtained after calcination for 4h Highly dispersed catalyst CoNi/NC.
  • the highly dispersed Co-based bimetallic catalysts based on ZIFs prepared by the method of the present invention compared with the corresponding single-metal catalysts, such Co-based bimetallic catalysts can exhibit excellent catalytic performance in catalytic reactions, such as High activity and high selectivity. After high temperature calcination, it has high thermal stability, and the phenomenon of metal particle clusters and deactivation is not easy to appear in the process of catalytic reaction application.
  • the second active metal is introduced by the two-solvent method, the type and loading amount of the second active metal can be flexibly adjusted by using different types or concentrations of metal salt aqueous solutions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了种基于ZIFs的高分散Co基双金属催化剂及其制备方法,属于纳米材料与催化剂合成技术领域,本发明方法巧妙地利用ZnCo-ZIFs中金属节点高分散与具有周期性孔道结构的特点,首先利用双溶剂法将第二种活性金属盐引入ZIFs孔道内;然后在高温煅烧过程中,低沸点金属Zn挥发,起栅栏作用,增大了活性金属间的距离,Co节点和第二种活性金属被原位还原,得到负载在氮掺杂碳载体上的高分散Co基双金属催化剂。此种方法工艺简单、操作方便,得到的高分散Co基双金属催化剂组成灵活可调,金属颗粒以高分散的形式分布,具有较好的稳定性,有望在加氢反应、合成气转化、醇选择性氧化等反应中应用。

Description

一种基于ZIFs的高分散Co基双金属催化剂及其制备方法
本申请要求于2021年03月09日提交中国专利局、申请号为202110255192.0、发明名称为“一种基于ZIFs的高分散Co基双金属催化剂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于纳米材料与催化剂合成技术领域,涉及一种基于ZIFs的高分散Co基双金属催化剂及其制备方法。
背景技术
沸石-咪唑酯骨架(Zeolitic imidazolate frameworks,ZIFs)材料,是隶属于金属-有机骨架(Metal organic frameworks,MOFs)材料的一个亚种,由具有四面体配位构型的金属离子(如Zn 2+、Co 2+)与咪唑基有机配体配位而成,包括Zn基ZIF-8,Co基ZIF-67等。ZIFs材料具有典型的类沸石周期性拓扑结构,具有比表面积大、热稳定性高和易于制备的特点,在气体的存储与分离、传感、催化及膜科学等领域都具有广泛的用途。
申请号为201510168261.9的中国发明专利公布了一种基于ZIF-8的加氢催化剂及其合成方法,首先以ZIF-8为载体,通过浸渍法引入活性金属,然后经高温焙烧还原处理后得到加氢催化剂,该催化剂在柴油加氢裂解反应中的催化效率比传统氧化铝催化剂提高几十倍,但该催化剂中活性金属颗粒处于纳米尺度,金属利用率不高。申请号为201510891468.9的中国发明专利公布了一种ZIF-8材料负载CoB的催化剂制备方法,利用Zn 2+和Co2+可以同时与2-甲基咪唑配位的特点,以钴盐、锌盐、2-甲基咪唑为原料制备了ZIF-8/ZIF-67混杂材料,经硼氢化钠液相还原后得到ZIF-8负载的CoB催化剂,该催化剂可以显著加快硼氢化钠水解制氢速率,但热稳定性不高。
随着纳米技术和表征技术的不断进步,纳米材料的研究维度逐渐减小,高分散负载型金属催化剂,包括纳米簇(<2nm)、亚纳米(<1nm)和单原子催化剂,逐步引起了人们的关注。
当降低金属颗粒尺寸时,除了可以提高金属利用率、降低催化剂制备成本 外,其电子和几何结构也会发生显著的变化,如大量不饱和配位环境、金属-载体相互作用和均一活性位点等,从而使高分散金属催化剂具有不同于普通纳米催化剂的优异性能。例如,王铁峰团队利用ZIF-8/ZIF-67混杂材料为催化剂前驱体,经惰性气体高温煅烧后得到了Co单原子催化剂,该催化剂在硝基苯加氢反应中的加氢活性是相同负载量Co纳米催化剂的5.4倍,且具有较好的稳定性,[ACS Appl.Mater.Interfaces,2020,12,34021-34031]。相对于单金属催化剂,双金属催化剂由于独特的电子效应与几何效应,从而体现出较好的催化性能。目前,针对基于ZIFs的双金属催化剂多集中在纳米尺度。例如,申请号为201911417367.2的中国发明专利公布了一种负载型Fe-Co/ZIF-67双金属催化剂的制备方法,该方法以ZIF-67为模板,将铁和钴以共沉淀的方式负载到ZIF-67上,通过煅烧获得具有磁性的Fe-Co/ZIF-67双金属催化剂,Fe和Co的质量分数在5-15%之间,金属颗粒处于纳米尺度,存在金属利用率不高的问题。
综上所述,亟需开发一种基于ZIFs的高分散双金属催化剂,以解决上述问题。
发明内容
本发明的目的在于克服上述现有技术中,双金属催化剂中金属利用率不高的缺点,提供一种基于ZIFs的高分散Co基双金属催化剂及其制备方法。
为了达到上述目的,本发明采用以下技术方案予以实现:
一种基于ZIFs的高分散Co基双金属催化剂,Co以纳米簇或单原子的形式负载在氮掺杂碳载体上。
一种基于ZIFs的高分散Co基双金属催化剂的制备方法,包括如下步骤:
步骤1)利用可溶性锌盐和可溶性钴盐混合配制得到质量浓度为1%~10%的金属盐溶液,配制质量浓度为1%~22%的2-甲基咪唑溶液;将2-甲基咪唑溶液和金属盐溶液按照摩尔比(4~8):1混合,得到第一混合溶液,将混合溶液置于30~50℃配合反应,反应后一次经过离心、洗涤和干燥得到ZnCo-ZIFs前驱体;
步骤2)对ZnCo-ZIFs前驱体进行脱气除杂;
步骤3)将步骤2)中脱气除杂后的ZnCo-ZIFs前驱体分散于疏水性溶剂中,得到质量浓度为0.6%~0.8%的第二混合溶液,将第二混合溶液与0~150mg/mL的第二活性金属盐溶液混合,搅拌6~12h,干燥后得到金属盐@ZnCo-ZIFs。
步骤4)在惰性气体中,对步骤3)中的金属盐@ZnCo-ZIFs进行高温煅烧,煅烧温度为900~1000℃,煅烧结束后空冷,得到基于ZIFs的高分散Co基双金属催化剂。
优选地,步骤1)中所述金属盐溶液中,可溶性锌盐和可溶性钴盐的摩尔比为(24~100):1。
优选地,步骤1)中所述锌盐为Zn(NO 3) 2·6H 2O或Zn(OAc) 2·2H 2O;所述钴盐为Co(NO 3) 2·6H 2O或Co(OAc) 2·4H 2O。
优选地,步骤1)中所述配合反应的时间为6~12h;步骤1)中所述的干燥是将离心后的沉淀物置于40~60℃下干燥8~12h;步骤4)中所述高温煅烧的时间为3~6h。
优选地,步骤1)所述的金属盐溶液和2-甲基咪唑溶液均以甲醇为溶剂进行配制;所述洗涤利用甲醇进行。
优选地,步骤2)中脱气除杂后的ZnCo-ZIFs前驱体为多孔结构,经物理吸附测定其孔体积为0.57cm 3/g;步骤3)中,第二活性金属盐溶液的体积应小于或等于步骤2)中脱气除杂后的ZnCo-ZIFs前驱体的孔体积。
优选地,步骤4)所述的惰性气体为氩气或氮气。
优选地,步骤3)所述的第二活性金属盐为水溶性Ni盐、水溶性Rh盐、水溶性Fe盐、水溶性Ru盐、水溶性Pd盐和水溶性Pt盐中的任意一种;所述疏水性溶剂为正己烷或氯仿。
进一步优选地,所述水溶性Ni盐为Ni(NO 3) 2·6H 2O或NiCl 2·6H 2O;水溶性Rh盐为RhCl 3·3H 2O;水溶性Fe盐为FeCl 3·6H 2O或Fe(NO 3) 3·9H 2O;水溶性Ru盐为RuCl 3·3H 2O;水溶性Pd盐为Pd(NO 3) 2·2H 2O或PdSO 4·2H 2O;水溶性Pt盐为H 2PtCl 6·6H 2O。
优选地,步骤2)所述的脱气除杂是在真空下进行的,脱气温度为80~150℃,脱气时间为8~10h。
与现有技术相比,本发明具有以下有益效果:
本发明公开了一种基于ZIFs的高分散Co基双金属催化剂,金属颗粒处于纳米簇或单原子尺度,有利于提高金属利用率,降低催化剂的制备成本。由于高分散双金属催化剂具有尺寸效应和电子效应,双金属之间存在协同作用,与对应的单金属催化剂相比,此类Co基双金属催化剂能够在催化反应体现出高活性和高选择性等优异的催化性能,此类Co基双金属催化剂在制备过程中经过了高温煅烧,具有较高的热稳定性,在催化反应应用过程中不易出现金属颗粒团簇、失活的现象。此类Co基双金属催化剂具有活性金属组成和负载量灵活可调的优点,原因在于,Zn 2+和Co 2+能够同时与2-甲基咪唑配位形成类沸石周期性拓扑结构,且两种金属节点比例灵活可调,所以就可以通过改变Zn/Co比例来灵活调节Co的负载量;此外,利用双溶剂法引入第二种活性金属时,可以通过使用不同种类或浓度的金属盐水溶液来灵活调节第二活性金属的种类及负载量。
本发明还公开了一种基于ZIFs的高分散Co基双金属催化剂的制备方法,充分利用Zn 2+和Co 2+能够同时与2-甲基咪唑配位形成类沸石周期性拓扑结构,且两种金属节点比例灵活可调的特性,形成ZnCo-ZIFs前驱体;利用ZnCo-ZIFs前驱体的孔道结构和亲水特性,利用双溶剂法向前驱体孔道结构中引入其他活性金属,得到金属盐@ZnCo-ZIFs。进而在高温煅烧过程中,Zn 2+节点蒸发,对活性金属起栅栏作用,防止活性金属颗粒发生团聚;有机配体被原位碳化,形成氮掺杂碳载体;Co节点和引入的第二种活性金属被原位还原,从而得到氮掺杂碳载体负载的高分散Co基双金属催化剂。
本发明方法巧妙地利用ZnCo-ZIFs中金属节点高分散与具有周期性孔道结构的特点,首先利用双溶剂法将第二种活性金属盐引入ZIFs孔道内;然后在高温煅烧过程中,低沸点金属Zn挥发,起栅栏作用,增大了活性金属间的距离,Co节点和第二种活性金属被原位还原,得到负载在氮掺杂碳载体上的高分散Co基双金属催化剂。在该类催化剂中,活性组分灵活可调,活性双金属以高分散的形式固定在氮掺杂碳载体上,大大提高了金属利用率,且在制备过程中经过了高温煅烧,具有较高的热稳定性,在催化反应应用过程中不易出现金属颗粒团簇、失活的现象。
本发明制备的高分散Co基双金属催化剂可应用于加氢催化、合成气转化及醇选择性氧化等催化反应过程中。
进一步地,金属盐溶液和2-甲基咪唑溶液均以甲醇为溶剂进行配制,与其他溶剂(如NH 4OH、DMF)相比,以甲醇为溶剂制备的ZnCo-ZIFs晶粒分布较集中、平均粒径较小且具有较大的比表面积和较多的酸碱位。
进一步地,步骤2)中脱气除杂后的ZnCo-ZIFs前驱体为多孔结构,孔的体积为0.57cm 3/g;步骤3)中,第二活性金属盐溶液的体积应小于或等于步骤2)中脱气除杂后的ZnCo-ZIFs前驱体的孔体积。以确保在毛细管作用下将金属离子全部引入ZIFs材料孔道内,避免金属负载在ZIFs前驱体的外表面。
附图说明
图1是实施例1合成的CoNi/NC催化剂的XRD图谱;
图2是实施例1合成的CoNi/NC催化剂的TEM图,(a)和(b)是不同倍率下的TEM图;(c)为球差校正的HAADF-STEM图;
图3为实施例1合成的CoNi/NC催化剂的TEM图(a)及其对应的元素扫描图((b)~(f)),其中,(b)为C元素,(c)为N元素,(d)为Ni元素,(e)为Co元素,(f)为Zn元素;
图4是实施例2合成的CoRh/NC催化剂的XRD图谱;
图5是实施例2合成的CoRh/NC催化剂的TEM图,(a)和(b)是不同倍率下的TEM图;(c)为球差校正的HAADF-STEM图;
图6为实施例2合成的CoRh/NC催化剂的TEM图(a)及其对应的元素扫描图((b)~(f)),其中,(b)为C元素,(c)为N元素,(d)为Co元素,(e)为Rh元素,(f)为Zn元素。
具体实施方式
下面结合附图对本发明做进一步详细描述:
实施例1:
一种基于ZIFs的高分散CoNi双金属催化剂的制备方法,具体包括以下步骤:
步骤1)将5.357g(297.49g/mol,18mmol)Zn(NO 3) 2·6H 2O和0.218g(291.03 g/mol,0.75mmol)Co(NO 3) 2·6H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将6.160g(82.1g/mol,75mmol)2-甲基咪唑溶于150mL甲醇,超声10min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声10min后置于35℃恒温箱中静置12h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在60℃真空干燥箱中干燥8h,得到ZnCo-ZIFs前驱体。
步骤2)对1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以10℃/min升温速率升到100℃,保持10min,以10℃/min升到150℃,保持8h,冷却至室温后取出。
步骤3)对2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将硝酸镍负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂正己烷中,逐滴滴加100μL 100mg/mL的Ni(NO 3) 2·6H 2O水溶液;超声20min后,室温搅拌12h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥8h,得到镍盐@ZnCo-ZIFs。
步骤4)在氩气中,对3)中得到的镍盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.6L/min,高温煅烧温度为900℃,升温速率为5℃/min,煅烧6h后得到高分散催化剂CoNi/NC。
按照上述步骤得到高分散催化剂CoNi/NC,其中,Co的负载量为1.52wt%,Ni的负载量为1.50wt%。
如图1所示,在催化剂CoNi/NC的XRD图谱中没出现金属Co或Ni特征峰,只有C的特征峰(PDF#41-1487),在26.381°处出现C(002)的特征峰,在44.391°处出现C(101)的特征峰,说明Co与Ni以高分散的形式负载在氮掺杂碳载体上。
如图2所示,在催化剂CoNi/NC不同放大倍数下的TEM图中,均没有看到明显的纳米颗粒,图2(c)球差校正HAADF-STEM图中孤立亮点为以单原子形式存在的金属元素,以上结果说明金属元素以高分散的形式存在。
如图3所示,在催化剂CoNi/NC的TEM图及对应的元素扫描图中,出现了金属Ni、Co的信号,且Ni和Co均匀分散在氮掺杂碳载体上;此外,还出 现了Zn的信号,说明900℃煅烧之后Zn仍有部分残留。
实施例2:
一种基于ZIFs的高分散CoRh双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将5.357g(297.49g/mol,18mmol)Zn(NO 3) 2·6H 2O和0.218g(291.03g/mol,0.75mmol)Co(NO 3) 2·6H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将6.160g(82.1g/mol,75mmol)2-甲基咪唑溶于150mL甲醇,超声10min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声10min后置于50℃恒温箱中静置6h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在40℃真空干燥箱中干燥12h,得到ZnCo-ZIFs前驱体。
步骤2)对步骤1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以10℃/min升温速率升到80℃,保持10min,以10℃/min升到100℃,保持10h,冷却至室温后取出。
步骤3)对步骤2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将氯化铑负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂氯仿中,逐滴滴加100μL 5.16mg/mL的氯化铑水溶液;超声30min后,室温搅拌8h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥12h,得到铑盐@ZnCo-ZIFs。
步骤4)在氩气中,对步骤3)中得到的铑盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.5L/min,煅烧温度为900℃,升温速率为2℃/min,煅烧5h后得到高分散催化剂CoRh/NC。
按照上述步骤得到高分散催化剂CoRh/NC,其中,Co的负载量为1.50wt%,Rh的负载量为0.15wt%。
如图4所示,在催化剂CoRh/NC的XRD图谱中没出现金属Co或Rh的特征峰,只有C的特征峰(PDF#41-1487),在26.381°处出现C(002)的特征峰,在44.391°处出现C(101)的特征峰,说明Co与Rh以高分散的形式负载在氮掺杂碳载体上。
如图5所示,在催化剂CoRh/NC不同放大倍数下的TEM图中,均没有看到明显的纳米颗粒,图5(c)球差校正HAADF-STEM图中孤立亮点和亮点簇分别为以单原子和纳米簇的形式存在的金属元素,以上结果说明金属元素以高分散的形式存在。
如图6所示,在催化剂CoRh/NC的TEM图及对应的元素扫描图中,出现了Co、Rh的信号,且Co和Rh均匀分散在氮掺杂碳载体上;此外,还出现了Zn的信号,说明900℃煅烧之后Zn仍有部分残留。
实施例3
一种基于ZIFs的高分散CoFe双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将7.902g(219.51g/mol,36mmol)Zn(OAc) 2·2H 2O和0.187g(249.08g/mol,0.75mmol)Co(OAc) 2·4H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将12.315g(82.1g/mol,150mmol)2-甲基咪唑溶于150mL甲醇,超声15min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声15min后置于30℃恒温箱中静置12h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在50℃真空干燥箱中干燥10h,得到ZnCo-ZIFs前驱体。
步骤2)对1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以5℃/min升温速率升到100℃,保持10min,以10℃/min升到150℃,保持8h,冷却至室温后取出。
步骤3)对2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将硝酸铁负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂正己烷中,逐滴滴加100μL 143.24mg/mL的Fe(NO 3) 3·9H 2O水溶液;超声15min后,室温搅拌10h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥8h,得到铁盐@ZnCo-ZIFs。
步骤4)在氮气中,对3)中得到的铁盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.4L/min,煅烧温度为950℃,升温速率为3℃/min,煅烧4h后得到高分散催化剂CoFe/NC。
实施例4
一种基于ZIFs的高分散CoRu双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将5.357g(297.49g/mol,18mmol)Zn(NO 3) 2·6H 2O和0.218g(291.03g/mol,0.75mmol)Co(NO 3) 2·6H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将12.32g(82.1g/mol,150mmol)2-甲基咪唑溶于150mL甲醇,超声10min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声10min后置于50℃恒温箱中静置6h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在50℃真空干燥箱中干燥12h,得到ZnCo-ZIFs前驱体。
步骤2)对步骤1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以10℃/min升温速率升到80℃,保持10min,以10℃/min升到120℃,保持8h,冷却至室温后取出。
步骤3)对步骤2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将氯化钌负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂氯仿中,逐滴滴加100μL 40.64mg/mL的RuCl 3·3H 2O水溶液;超声30min后,室温搅拌8h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥12h,得到钌盐@ZnCo-ZIFs。
步骤4)在氩气中,对步骤3)中得到的钌盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.5L/min,煅烧温度为950℃,升温速率为2℃/min,煅烧5h后得到高分散催化剂CoRu/NC。
实施例5
一种基于ZIFs的高分散CoPd双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将5.357g(297.49g/mol,18mmol)Zn(NO 3) 2·6H 2O和0.218g(291.03g/mol,0.75mmol)Co(NO 3) 2·6H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将6.160g(82.1g/mol,75mmol)2-甲基咪唑溶于150mL甲醇,超声10min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2- 甲基咪唑甲醇溶液中,超声10min后置于40℃恒温箱中静置12h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在60℃真空干燥箱中干燥12h,得到ZnCo-ZIFs前驱体。
步骤2)对1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以10℃/min升温速率升到80℃,保持10min,以10℃/min升到120℃,保持12h,冷却至室温后取出。
步骤3)对2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将硫酸钯负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂氯仿中,逐滴滴加100μL 37.67mg/mL的PdSO 4·2H 2O水溶液;超声30min后,室温搅拌8h,待溶剂挥发完毕后,在40℃真空干燥箱中干燥10h,得到钯盐@ZnCo-ZIFs。
步骤4)在氮气中,对3)中得到的钯盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.6L/min,高温煅烧温度为1000℃,升温速率为5℃/min,煅烧4h后得到高分散催化剂CoPd/NC。
实施例6
一种基于ZIFs的高分散CoPt双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将5.357g(297.49g/mol,18mmol)Zn(NO 3) 2·6H 2O和0.218g(291.03g/mol,0.75mmol)Co(NO 3) 2·6H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将12.32g(82.1g/mol,150mmol)2-甲基咪唑溶于150mL甲醇,超声10min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声10min后置于50℃恒温箱中静置6h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在40℃真空干燥箱中干燥12h,得到ZnCo-ZIFs前驱体。
步骤2)对步骤1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以10℃/min升温速率升到80℃,保持10min,以10℃/min升到120℃,保持10h,冷却至室温后取出。
步骤3)对步骤2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将氯铂酸负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂氯仿中,逐滴滴加100μL 52.57mg/mL的H 2PtCl 6·6H 2O水溶液;超声30min后,室温搅拌8h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥12h,得到铂盐@ZnCo-ZIFs。
步骤4)在氩气中,对步骤3)中得到的铂盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.5L/min,煅烧温度为900℃,升温速率为2℃/min,煅烧5h后得到高分散催化剂CoPt/NC。
实施例7
一种基于ZIFs的高分散CoPd双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将3.951g(219.51g/mol,18mmol)Zn(OAc) 2·2H 2O和0.062g(249.08g/mol,0.25mmol)Co(OAc) 2·4H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将6.158g(82.1g/mol,75mmol)2-甲基咪唑溶于150mL甲醇,超声15min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声10min后置于30℃恒温箱中静置12h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在60℃真空干燥箱中干燥8h,得到ZnCo-ZIFs前驱体。
步骤2)对1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以5℃/min升温速率升到80℃,保持10min,以10℃/min升到150℃,保持8h,冷却至室温后取出。
步骤3)对2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将硝酸钯负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂正己烷中,逐滴滴加100μL 49.58mg/mL的Pd(NO 3) 2·2H 2O水溶液;超声20min后,室温搅拌12h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥8h,得到钯盐@ZnCo-ZIFs。
步骤4)在氮气中,对3)中得到的钯盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.4L/min,煅烧温度为900℃,升温速率为3℃/min,煅烧4h后得 到高分散催化剂CoPd/NC。
实施例8
一种基于ZIFs的高分散CoFe双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将3.951g(219.51g/mol,18mmol)Zn(OAc) 2·2H 2O和0.187g(249.08g/mol,0.75mmol)Co(OAc) 2·4H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将12.315g(82.1g/mol,150mmol)2-甲基咪唑溶于150mL甲醇,超声15min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声15min后置于30℃恒温箱中静置12h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在50℃真空干燥箱中干燥10h,得到ZnCo-ZIFs前驱体。
步骤2)对1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以5℃/min升温速率升到80℃,保持10min,以10℃/min升到100℃,保持8h,冷却至室温后取出。
步骤3)对2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将氯化铁负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂正己烷中,逐滴滴加100μL 95.8mg/mL的FeCl 3·6H 2O水溶液;超声15min后,室温搅拌10h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥8h,得到铁盐@ZnCo-ZIFs。
步骤4)在氮气中,对3)中得到的铁盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.4L/min,煅烧温度为900℃,升温速率为3℃/min,煅烧4h后得到高分散催化剂CoFe/NC。
实施例9
一种基于ZIFs的高分散CoNi双金属催化剂及其制备方法,具体包括以下步骤:
步骤1)将3.951g(219.51g/mol,18mmol)Zn(OAc) 2·2H 2O和0.062g(249.08g/mol,0.25mmol)Co(OAc) 2·4H 2O溶于150mL甲醇中,超声10min后形成金属盐甲醇溶液;将6.158g(82.1g/mol,75mmol)2-甲基咪唑溶于 150mL甲醇,超声15min形成2-甲基咪唑甲醇溶液;将金属盐甲醇溶液快速倒入2-甲基咪唑甲醇溶液中,超声10min后置于30℃恒温箱中静置12h;然后离心上述混合溶液,用甲醇洗涤沉淀物3次,继而在60℃真空干燥箱中干燥8h,得到ZnCo-ZIFs前驱体。
步骤2)对1)中得到的ZnCo-ZIFs前驱体进行真空脱气处理,以除去前驱体中的杂质。首先将ZnCo-ZIFs前驱体置于U型管中,然后安装在真空脱气设备上,设置升温程序为:从室温以5℃/min升温速率升到80℃,保持10min,以10℃/min升到150℃,保持8h,冷却至室温后取出。
步骤3)对2)中脱气后的ZnCo-ZIFs前驱体进行双溶剂处理,将氯化镍负载到ZnCo-ZIFs孔道内部。将200mg脱气后ZnCo-ZIFs超声分散于40mL疏水溶剂氯仿中,逐滴滴加100μL 1.88mg/mL的NiCl 2·6H 2O水溶液;超声20min后,室温搅拌12h,待溶剂挥发完毕后,在60℃真空干燥箱中干燥8h,得到镍盐@ZnCo-ZIFs。
步骤4)在氩气中,对3)中得到的镍盐@ZnCo-ZIFs进行高温煅烧,气体流量为0.4L/min,煅烧温度为900℃,升温速率为3℃/min,煅烧4h后得到高分散催化剂CoNi/NC。
综上所述,利用本发明方法制备的基于ZIFs的高分散Co基双金属催化剂,与对应的单金属催化剂相比,此类Co基双金属催化剂能够在催化反应体现出优异的催化性能,如高活性和高选择性。经过了高温煅烧,具有较高的热稳定性,在催化反应应用过程中不易出现金属颗粒团簇、失活的现象。利用双溶剂法引入第二种活性金属时,可以通过使用不同种类或浓度的金属盐水溶液来灵活调节第二活性金属的种类及负载量。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种基于ZIFs的高分散Co基双金属催化剂,其特征在于,Co以纳米簇或单原子的形式负载在氮掺杂碳载体上。
  2. 一种基于ZIFs的高分散Co基双金属催化剂的制备方法,其特征在于,包括如下步骤:
    步骤1)利用可溶性锌盐和可溶性钴盐混合配制得到质量浓度为1%~10%的金属盐溶液,配制质量浓度为1%~22%的2-甲基咪唑溶液;将2-甲基咪唑溶液和金属盐溶液按照摩尔比(4~8):1混合,得到第一混合溶液,将混合溶液置于30~50℃配合反应,反应后一次经过离心、洗涤和干燥得到ZnCo-ZIFs前驱体;
    步骤2)对ZnCo-ZIFs前驱体进行脱气除杂;
    步骤3)将步骤2)中脱气除杂后的ZnCo-ZIFs前驱体分散于疏水性溶剂中,得到质量浓度为0.6%~0.8%的第二混合溶液,将第二混合溶液与0~150mg/mL的第二活性金属盐溶液混合,搅拌6~12h,干燥后得到金属盐@ZnCo-ZIFs;
    步骤4)在惰性气体中,将步骤3)中的金属盐@ZnCo-ZIFs置于900~1000℃高温煅烧,煅烧结束后空冷,得到基于ZIFs的高分散Co基双金属催化剂。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤1)中所述金属盐溶液中,可溶性锌盐和可溶性钴盐的摩尔比为(24~100):1。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤1)中所述锌盐为Zn(NO 3) 2·6H 2O或Zn(OAc) 2·2H 2O;所述钴盐为Co(NO 3) 2·6H 2O或Co(OAc) 2·4H 2O。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤1)中所述配合反应的时间为6~12h;步骤1)中所述的干燥是将离心后的沉淀物置于40~60℃下干燥8~12h;步骤4)中所述的惰性气体为氩气或氮气;步骤4)中所述高温煅烧的时间为3~6h。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤1)所述的金属盐溶液和2-甲基咪唑溶液均以甲醇为溶剂进行配制;所述洗涤利用甲醇进行。
  7. 根据权利要求2所述的制备方法,其特征在于,步骤2)中脱气除杂后的ZnCo-ZIFs前驱体为多孔结构,经物理吸附测定其孔体积为0.57cm 3/g;步骤3)中,第二活性金属盐溶液的体积应小于或等于步骤2)中脱气除杂后的ZnCo-ZIFs前驱体的孔体积。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤3)所述的第二活性金属盐为水溶性Ni盐、水溶性Rh盐、水溶性Fe盐、水溶性Ru盐、水溶性Pd盐和水溶性Pt盐中的任意一种;所述疏水性溶剂为正己烷或氯仿。
  9. 根据权利要求8所述的制备方法,其特征在于,所述水溶性Ni盐为Ni(NO 3) 2·6H 2O或NiCl 2·6H 2O;水溶性Rh盐为RhCl 3·3H 2O;水溶性Fe盐为FeCl 3·6H 2O或Fe(NO 3) 3·9H 2O;水溶性Ru盐为RuCl 3·3H 2O;水溶性Pd盐为Pd(NO 3) 2·2H 2O或PdSO 4·2H 2O;水溶性Pt盐为H 2PtCl 6·6H 2O。
  10. 根据权利要求2所述的制备方法,其特征在于,步骤2)所述的脱气除杂是在真空下进行的,脱气温度为80~150℃,脱气时间为8~10h。
PCT/CN2021/114235 2021-03-09 2021-08-24 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法 WO2022188368A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110255192.0 2021-03-09
CN202110255192.0A CN112973758A (zh) 2021-03-09 2021-03-09 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2022188368A1 true WO2022188368A1 (zh) 2022-09-15

Family

ID=76336138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114235 WO2022188368A1 (zh) 2021-03-09 2021-08-24 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN112973758A (zh)
WO (1) WO2022188368A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888783A (zh) * 2022-10-10 2023-04-04 福建农林大学 一种高分散、非晶态钌基催化剂的制备方法及其催化苯选择性加氢制环己烯的应用
CN115893425A (zh) * 2022-11-28 2023-04-04 北京化工大学 一种氧化亚硅/碳纳米管复合材料及其在锂离子电池负极中的应用
CN116371440A (zh) * 2023-02-07 2023-07-04 江苏科技大学 一种片层结构铁钴合金氮掺杂碳催化剂及其制备方法
CN117427680A (zh) * 2023-10-26 2024-01-23 烟台先进材料与绿色制造山东省实验室 一种芳香胺与不饱和喹啉衍生物的制备方法
CN117582995A (zh) * 2023-11-15 2024-02-23 山东鑫鼎化工科技有限公司 一种用于甲基丙烯腈合成的催化剂及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973758A (zh) * 2021-03-09 2021-06-18 中国华能集团清洁能源技术研究院有限公司 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法
CN113457707B (zh) * 2021-06-29 2023-11-21 湖北航泰科技有限公司 一种基于MOFs的核壳结构ZnCo@NPC纳米材料及其制备方法
CN114006000B (zh) * 2021-11-05 2023-06-02 电子科技大学 一种抗-SO3H中毒的Pt基氧还原反应催化剂的制备方法
CN114479111B (zh) * 2022-03-04 2023-03-07 北京林业大学 一种用于固定化辣根过氧化物酶的新型载体
CN114653374B (zh) * 2022-04-02 2023-07-18 北京师范大学 一种双金属氢氧化物及其制备方法和应用
CN114904548A (zh) * 2022-04-18 2022-08-16 电子科技大学 一种可吸附和催化多硫化物转化的双功能材料及其制备方法
CN114950437B (zh) * 2022-06-30 2023-09-15 国纳纳米技术研究(河北)有限公司 负载型Cu-Co双金属基ZIF衍生的Cu/Co-C臭氧催化剂的制备及产品和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086313A (zh) * 2017-05-24 2017-08-22 北京化工大学 一种铁、钴、氮共掺杂炭催化剂及其制备方法和应用
CN110350205A (zh) * 2019-07-11 2019-10-18 四川大学 ZIFs衍生金属氮化物/碳复合材料及制备方法和用途
CN110433864A (zh) * 2019-07-11 2019-11-12 厦门大学 一种mof负载双金属型催化剂的制备及其应用
CN111933960A (zh) * 2020-08-18 2020-11-13 哈尔滨工业大学(深圳) 一种PtCo@N-GNS催化剂及其制备方法与应用
CN112973758A (zh) * 2021-03-09 2021-06-18 中国华能集团清洁能源技术研究院有限公司 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126849A (zh) * 2017-06-28 2019-01-04 中国科学院大连化学物理研究所 一种制备Ni-N-C单原子催化剂的方法
CN107694592B (zh) * 2017-09-28 2020-08-18 华南理工大学 超声辅助置换反应制备的单原子贵金属催化剂及其方法
CN107626294B (zh) * 2017-10-23 2020-04-17 清华大学 一种金属单原子位点催化剂的制备方法
EP3524574A1 (en) * 2018-02-13 2019-08-14 Gaznat SA, Société pour l'pprovisionnement et le transport du gaz naturel en Suisse Romande Fe-n-c catalyst, method of preparation and uses thereof
WO2019158516A1 (en) * 2018-02-13 2019-08-22 Gaznat Sa Fe-N-C CATALYST, METHOD OF PREPARATION AND USES THEREOF
US11728492B2 (en) * 2018-12-21 2023-08-15 The Board Of Trustees Of The University Of Illinois Atomically dispersed precursor for preparing a non-platinum group metal electrocatalyst
CN110449177B (zh) * 2019-08-19 2021-01-15 联科华技术有限公司 一种用于空气综合净化的多功能单原子催化剂及其制备方法
CN110479349A (zh) * 2019-09-10 2019-11-22 辽宁星空新能源发展有限公司 一种制备钯单原子双活性位点的全水解催化剂的方法
CN110975938A (zh) * 2019-12-18 2020-04-10 华能国际电力股份有限公司 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法
CN111468167A (zh) * 2020-05-29 2020-07-31 郑州大学 一种钴单原子负载氮掺杂碳氧还原催化剂及其制备方法
CN111584889B (zh) * 2020-05-29 2021-05-11 深圳大学 一种含锌单原子催化剂及其制备方法与应用
CN111952572B (zh) * 2020-08-24 2021-06-15 洛阳理工学院 一种含有单原子活性位点的钴镍双金属氮掺杂碳复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086313A (zh) * 2017-05-24 2017-08-22 北京化工大学 一种铁、钴、氮共掺杂炭催化剂及其制备方法和应用
CN110350205A (zh) * 2019-07-11 2019-10-18 四川大学 ZIFs衍生金属氮化物/碳复合材料及制备方法和用途
CN110433864A (zh) * 2019-07-11 2019-11-12 厦门大学 一种mof负载双金属型催化剂的制备及其应用
CN111933960A (zh) * 2020-08-18 2020-11-13 哈尔滨工业大学(深圳) 一种PtCo@N-GNS催化剂及其制备方法与应用
CN112973758A (zh) * 2021-03-09 2021-06-18 中国华能集团清洁能源技术研究院有限公司 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG JING, HUANG ZHENGQING, LIU WEI, CHANG CHUNRAN, TANG HAOLIN, LI ZHIJUN, CHEN WENXING, JIA CHUNJIANG, YAO TAO, WEI SHIQIANG, WU: "Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 48, 6 December 2017 (2017-12-06), pages 17281 - 17284, XP055965396, ISSN: 0002-7863, DOI: 10.1021/jacs.7b10385 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888783A (zh) * 2022-10-10 2023-04-04 福建农林大学 一种高分散、非晶态钌基催化剂的制备方法及其催化苯选择性加氢制环己烯的应用
CN115893425A (zh) * 2022-11-28 2023-04-04 北京化工大学 一种氧化亚硅/碳纳米管复合材料及其在锂离子电池负极中的应用
CN116371440A (zh) * 2023-02-07 2023-07-04 江苏科技大学 一种片层结构铁钴合金氮掺杂碳催化剂及其制备方法
CN117427680A (zh) * 2023-10-26 2024-01-23 烟台先进材料与绿色制造山东省实验室 一种芳香胺与不饱和喹啉衍生物的制备方法
CN117582995A (zh) * 2023-11-15 2024-02-23 山东鑫鼎化工科技有限公司 一种用于甲基丙烯腈合成的催化剂及其制备方法
CN117582995B (zh) * 2023-11-15 2024-04-19 山东鑫鼎化工科技有限公司 一种用于甲基丙烯腈合成的催化剂及其制备方法

Also Published As

Publication number Publication date
CN112973758A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022188368A1 (zh) 一种基于ZIFs的高分散Co基双金属催化剂及其制备方法
Qi et al. Conversion of confined metal@ ZIF-8 structures to intermetallic nanoparticles supported on nitrogen-doped carbon for electrocatalysis
Ying et al. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction
Wang et al. Co@ Pt Core@ Shell nanoparticles encapsulated in porous carbon derived from zeolitic imidazolate framework 67 for oxygen electroreduction in alkaline media
Su et al. Recent progress in single-atom electrocatalysts: concept, synthesis, and applications in clean energy conversion
Lu et al. One-pot synthesis of interconnected Pt 95 Co 5 nanowires with enhanced electrocatalytic performance for methanol oxidation reaction
Ye et al. Recent progress in improving the stability of copper-based catalysts for hydrogenation of carbon–oxygen bonds
Ying et al. Spontaneous weaving: 3D porous PtCu networks with ultrathin jagged nanowires for highly efficient oxygen reduction reaction
CN113422073B (zh) 钴修饰的碳载超细铂纳米合金催化剂的制备方法
Sun et al. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal
Li et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”
Zhao et al. Monodisperse metal–organic framework nanospheres with encapsulated core–shell nanoparticles Pt/Au@ Pd@{Co2 (oba) 4 (3-bpdh) 2} 4H2O for the highly selective conversion of CO2 to CO
WO2016011841A1 (zh) 一种无载体催化剂及其制备方法和应用
WO2016173285A1 (zh) 一种具有核-壳结构的负载型催化剂及其制备方法与应用
WO2020042526A1 (zh) 复合催化剂及其制备方法、应用
CN105642311A (zh) 碳基非贵金属贵金属核壳纳米催化剂及其以MOFs为模板的制备方法
Zheng et al. Ultralow Pt amount of Pt–Fe alloys supported on ordered mesoporous carbons with excellent methanol tolerance during oxygen reduction reaction
Zhou et al. Facet effect of Pt nanocrystals on catalytical properties toward glycerol oxidation reaction
Feng et al. A universal approach to the synthesis of nanodendrites of noble metals
Jauhar et al. Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability
Li et al. Construction of novel Cu-based bimetal polycrystal@ carbon catalyst prepared from bimetal HKUST-1 type MOFs (MOF-199s) for ultrafast reduction of 4-nitrophenol via interfacial synergistic catalysis
CN114210343A (zh) 一种还原氧化石墨烯负载Ru-Ni双金属纳米团簇催化材料
Jiang et al. Enhanced performance of well-dispersed Co species incorporated on porous carbon derived from metal-organic frameworks in 1, 3-butadiene hydrogenation
Xu et al. Carbon-CeO2 interface confinement enhances the chemical stability of Pt nanocatalyst for catalytic oxidation reactions
Tang et al. Reusable and active Pt@ Co-NC catalysts for oxidation of glycerol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929834

Country of ref document: EP

Kind code of ref document: A1