WO2022186669A1 - 고분자 복합체 - Google Patents

고분자 복합체 Download PDF

Info

Publication number
WO2022186669A1
WO2022186669A1 PCT/KR2022/003159 KR2022003159W WO2022186669A1 WO 2022186669 A1 WO2022186669 A1 WO 2022186669A1 KR 2022003159 W KR2022003159 W KR 2022003159W WO 2022186669 A1 WO2022186669 A1 WO 2022186669A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer composite
inorganic particles
weight
microcellulose
polymer
Prior art date
Application number
PCT/KR2022/003159
Other languages
English (en)
French (fr)
Inventor
김율리아나
김인영
전광승
박민성
최지환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220028337A external-priority patent/KR20220125705A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280004325.XA priority Critical patent/CN115667412B/zh
Priority to US17/925,484 priority patent/US20230183432A1/en
Priority to EP22763650.3A priority patent/EP4134403A4/en
Priority to JP2022568639A priority patent/JP2023525539A/ja
Publication of WO2022186669A1 publication Critical patent/WO2022186669A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a polymer composite comprising fibrillated microcellulose fibers.
  • Cellulose fiber is a lignocellulosic fibrous material obtained by chemically or mechanically separating cellulose fibers from wood, fiber crops, waste paper, or rags. Cellulose fibers are mainly used in the paper industry and are used as raw materials for nanocellulose.
  • Nanocellulose is being applied to research to improve the physical properties of polymers through complexation with polymers. Unlike glass fiber applied as a reinforcing material, a polymer composite to which environmentally friendly nanocellulose is applied has the advantage of being easy to recycle.
  • An object of the present invention is to provide a polymer composite capable of exhibiting improved light resistance while being environmentally friendly, including cellulose fibers as a reinforcing material.
  • 'nanofiber' or 'nanofibrils' means a fiber having a minor axis diameter of a nanometer scale
  • 'microfiber' means a fiber having a minor axis diameter of a micrometer scale.
  • the microfiber may be formed of a bundle of the nanofibers.
  • 'fiber' refers to a lignocellulosic fibrous material obtained by chemically or mechanically separating cellulose fibers from wood, fiber crops, waste paper or rags, etc. .
  • 'pulp fiber', 'cellulose fiber' or 'micro cellulose fiber' means microfibers made of cellulose.
  • 'cellulose nanofiber' or 'nanocellulose fiber' refers to a nanofiber made of cellulose.
  • 'fibrillation' refers to a phenomenon in which the nanofibrils forming the internal structure of the microcellulose fibers are released and the nanofibrils are generated on the microcellulose fibers like fluff.
  • the term 'fibrillated cellulose fiber' refers to a microcellulose fiber in a state in which nanofibrils having a minor axis diameter of a nanometer scale are raised like fluff on the microcellulose fiber by the fibrillation.
  • fibrillated cellulose fibers obtained by growing inorganic particles on cellulose fibers can exhibit a polymer reinforcing effect comparable to nanocellulose obtained by nanoizing cellulose fibers.
  • the inorganic particles contained on the fibrillated cellulose fiber can delay the deterioration of the fiber due to a high process temperature during the complexing process with the polymer, thereby enabling the expression of an excellent reinforcing effect.
  • the inorganic particles included on the fibrillated cellulose fibers enable the provision of a polymer composite having improved light resistance.
  • a polymer composite that satisfies the following formula 1 is provided:
  • ⁇ E* ab is a color difference value represented by the polymer composite, and the color difference value is [(L* t - L* 0 ) 2 + (a* t ) from the chromaticity value of L*a*b* measured using a colorimeter. - a* 0 ) 2 + (b* t - b* 0 ) 2 ] obtained by the formula 1/2 ,
  • the L* 0 , a* 0 and b* 0 values are initial values of the chromaticity represented by the polymer composite
  • the L* t , a* t and b* t values were obtained after exposing the polymer composite to a light source (fluorescent UV lamp) for 480 hours under the conditions of 0.75 W/(m 2 nm) @ 340 nm and 45 ⁇ 1° C. It is the chromaticity value shown by the said polymer composite.
  • the polymer composite includes the microcellulose fibers and the compatibilizer dispersed in the polymer matrix.
  • the polymer matrix may be a thermoplastic resin.
  • the polymer matrix may be at least one polymer selected from the group consisting of polyolefin, polyamide, styrenic polymer, and polycarbonate.
  • the polymer matrix may include polyolefins such as polyethylene, polyethylene-based copolymers, polypropylenes, and polypropylene-based copolymers; aliphatic polyamides such as nylon-6 and nylon-66; aromatic polyamides such as aramid; styrenic polymers such as polystyrene, acrylonitrile-butadiene-styrene copolymer, styrene-maleic anhydride copolymer, styrene-acrylonitrile copolymer, and styrene-butadiene-styrene copolymer; It may be a polycarbonate obtained by polymerizing a polyol including bisphenol A, polyether polyol, polyester polyol, or a mixture thereof and phosgene.
  • polyolefins such as polyethylene, polyethylene-based copolymers, polypropylenes, and polypropylene-based copolymers
  • the polymer matrix is polyethylene, polyethylene-based copolymer, polypropylene (especially homo polypropylene), polypropylene-based copolymer, nylon-6, nylon-66, aramid, polystyrene, acrylonitrile-butadiene-styrene copolymer It may include at least one polymer resin selected from the group consisting of a copolymer, a styrene-maleic anhydride copolymer, a styrene-acrylonitrile copolymer, and a styrene-butadiene-styrene copolymer, and polycarbonate.
  • the polymer matrix is 40 g/10min to 70 g/10min, or 45 g/10min to 70 g/10min, or 45 g/10min to 65 g/10min, or 50 g/10min to 65 g/10min, or Having a melt flow rate (MFR) of 50 g/10 min to 60 g/10 min may be advantageous for the manifestation of the effect according to the present invention.
  • the MFR of the polymer matrix may be measured according to the standard test method of ASTM D1238.
  • the polymer composite includes the microcellulose fibers dispersed on the polymer matrix.
  • the microcellulose fiber refers to a fiber having a minor axis diameter of a micrometer scale.
  • the microcellulose fibers are cellulose fibers fibrillated by growth of inorganic particles.
  • the cellulose fibers may be natural cellulose fibers obtained from wood such as conifers and hardwoods.
  • fibrillation of microcellulose fibers is a process such as beating ( ⁇ : beating) to release relatively large fibrils forming the membrane of cellulose fibers and their internal tissues, and microfibrils are formed on the surface. It means a phenomenon that occurs like fluff.
  • the microcellulose fibers are fibrillated cellulose fibers by growing inorganic particles on the microcellulose fibers. That is, the microcellulose fiber may be a fiber in which some of the fibrils forming the microcellulose fiber are released or in a state in which fibers are released by the growth of the inorganic particles on the microcellulose fiber.
  • FIG. 1 schematically shows (a) non-fibrillated microcellulose fibers and (b) microcellulose fibers containing nanofibrils and inorganic particles in an enlarged manner.
  • the non-fibrillated micro cellulose fiber 100 is a fiber having a minor axis diameter of a micrometer scale.
  • FIG. 1 (b) when inorganic particles are grown on cellulose fibers, some of the fibrils forming the microcellulose fibers 100' are released by the growth of the inorganic particles 20, and the microcellulose fibers A fiber in a state in which the nanofibrils 11 are raised like fluff may be formed on the (100 ′).
  • the nanofibrils 11 may be present inside the microcellulose fibers 100 ′ through fibrillation by the growth of the inorganic particles 20 .
  • the microcellulose fiber includes nanofibrils and inorganic particles.
  • the nanofibrils may be bonded to the surface of the microcellulose fiber or may be present therein.
  • the inorganic particles may be bonded to the nanofibrils or to the surface or the inside of the microcellulose fibers.
  • the micro-cellulose fiber is 1 ⁇ m or more; And it may have a minor axis diameter of 30 ⁇ m or less, or 25 ⁇ m or less, or 20 ⁇ m or less, or 15 ⁇ m or less, or 10 ⁇ m or less.
  • the microcellulose fibers may have an average minor axis diameter of 5 ⁇ m to 30 ⁇ m, or 5 ⁇ m to 25 ⁇ m, or 10 ⁇ m to 20 ⁇ m, or 15 ⁇ m to 20 ⁇ m.
  • the nanofibrils are 10 nm or more, or 20 nm or more, or 30 nm or more, or 40 nm or more, or 50 nm or more; And it may have a minor axis diameter of 400 nm or less, or 350 nm or less, or 300 nm or less, or 250 nm or less, or 200 nm or less, or 150 nm or less, or 100 nm or less.
  • the nanofibrils are 10 nm to 400 nm, or 10 nm to 350 nm, or 10 nm to 300 nm, or 20 nm to 300 nm, or 20 nm to 250 nm, or 30 nm to 250 nm, or It may have a minor axis diameter of 30 nm to 200 nm, or 40 nm to 200 nm, or 40 nm to 150 nm, or 50 nm to 150 nm, or 50 nm to 100 nm.
  • the lengths of the microcellulose fibers and the nanofibrils are not particularly limited.
  • the microcellulose fibers including the nanofibrils and inorganic particles are distributed on the cellulose fibers by adding a reducing agent, a catalyst, a ligand, or a mixture thereof to a mixture containing the microcellulose fibers, an inorganic particle precursor, and a solvent. It may be prepared through a process of growing inorganic particles from an inorganic particle precursor.
  • a mixture including microcellulose fibers, an inorganic particle precursor, and a solvent is prepared.
  • a compound capable of dissolving the inorganic particle precursor and swelling microcellulose fibers may be used.
  • water eg, water, alcohol (eg, a lower alcohol such as methanol, ethanol, propanol, butanol), dimethyl sulfoxide, sodium hydroxide aqueous solution, ammonia aqueous solution, urea aqueous solution, or a mixture thereof may be used.
  • alcohol eg, a lower alcohol such as methanol, ethanol, propanol, butanol
  • dimethyl sulfoxide sodium hydroxide aqueous solution
  • ammonia aqueous solution ammonia aqueous solution
  • urea aqueous solution or a mixture thereof
  • the solvent may be used in an amount of 1000 to 10000 parts by weight based on 100 parts by weight of the microcellulose fibers. Within the content range of the solvent, the microcellulose fibers are sufficiently swollen, and fluidity of the inorganic particle precursor is secured, so that the inorganic particle precursor can be evenly dispersed on the microcellulose fibers.
  • a polymer composite having various physical properties may be provided according to the types of inorganic particles grown on the microcellulose fibers. That is, the inorganic particle precursor may be appropriately selected according to the physical properties to be imparted to the polymer composite. As a non-limiting example, an inorganic particle precursor capable of growing zinc oxide may be selected for the purpose of imparting antibacterial properties and heat resistance to the polymer composite.
  • the inorganic particles include copper, zinc, calcium, aluminum, iron, silver, platinum, palladium, ruthenium, iridium, rhodium, osmium, chromium, cobalt, nickel, manganese, vanadium, molybdenum, magnesium, strontium, titanium, zirconium. , hafnium, and may include at least one element selected from the group consisting of gallium.
  • the component of the inorganic particles may be one or two or more.
  • the inorganic particle precursor examples include copper, zinc, calcium, aluminum, iron, silver, platinum, palladium, ruthenium, iridium, rhodium, osmium, chromium, cobalt, nickel, manganese, vanadium, molybdenum, magnesium, strontium, titanium, zirconium,
  • a salt of at least one element selected from the group consisting of hafnium and gallium may be used.
  • the salt may be an acetate, chloride, nitrate, or the like.
  • a silicon oxide precursor such as tetraethyl orthosilicate (TEOS) may be used as the inorganic particle precursor.
  • the content of the inorganic particles may be 1 to 40 parts by weight based on 100 parts by weight of the microcellulose fiber.
  • the content of the inorganic particles is 1 part by weight or more, or 5 parts by weight or more, or 8 parts by weight or more based on 100 parts by weight of the microcellulose fiber; And 40 parts by weight or less, or 35 parts by weight or less, or 30 parts by weight or less, or 25 parts by weight or less.
  • the content of the inorganic particles is 1 to 40 parts by weight, or 5 to 40 parts by weight, or 5 to 35 parts by weight, or 8 to 35 parts by weight, or 8 to 30 parts by weight based on 100 parts by weight of the microcellulose fiber. It may be a weight part, or 8 to 25 weight part.
  • the content of the inorganic particle precursor included in the mixture may be controlled so that the content of the inorganic particles finally produced on the microcellulose fiber meets the above range. Within this range, the inorganic particle precursors are evenly distributed in the microcellulose fibers to induce sufficient fibrillation, enabling the expression of improved light resistance.
  • the mixture may be prepared by dissolving the inorganic particle precursor in the solvent and then adding microcellulose fibers. The mixture is stirred to swell the microcellulose fibers and at the same time to evenly distribute the inorganic particle precursor on the swollen microcellulose fibers.
  • the types and contents of the reducing agent, catalyst and ligand added to the mixture may be appropriately selected according to the type and content of the inorganic particle precursor added and the inorganic particles to be grown.
  • the reducing agent may be sodium hydroxide (NaOH), a metal hydride-based, borohydride-based, borane-based, silane-based, hydrazine-based, or hydrazide-based reducing agent.
  • the catalyst ammonia or urea may be used.
  • ligand benzene-1,3,5-tricarboxylate may be used.
  • SEM scanning electron microscope
  • the inorganic particles may be modified to provide additional physical properties.
  • a process of modifying the inorganic particles by adding a lipophilic compound having a thiol group may be additionally performed.
  • the lipophilic compound having a thiol group include 1-decanethiol, 1-undecanethiol, 1-dodecanethiol, and 1-tetradecanethiol. ), 1-pentadecanethiol, 1-hexadecanethiol, 1-octadecanethiol, etc. may be used.
  • microcellulose fibers including the nanofibrils and inorganic particles can be obtained.
  • the inorganic particles included in the microcellulose fibers are 0.01 ⁇ m or more, or 0.03 ⁇ m or more, or 0.05 ⁇ m or more; And it may have a minor axis diameter of 10 ⁇ m or less, or 7 ⁇ m or less, or 5 ⁇ m or less.
  • the inorganic particles may have a minor axis diameter of 0.01 ⁇ m to 10 ⁇ m, or 0.03 ⁇ m to 7 ⁇ m, or 0.05 ⁇ m to 5 ⁇ m.
  • the particle size of the inorganic particles included on the microcellulose fibers is too large, the inorganic particles may act as defects, thereby reducing mechanical properties of the polymer composite. Therefore, it is preferable that the particle size of the inorganic particles be 10 ⁇ m or less, or 7 ⁇ m or less, or 5 ⁇ m or less.
  • the particle diameter of the inorganic particles is preferably 0.01 ⁇ m or more, or 0.03 ⁇ m or more, or 0.05 ⁇ m or more.
  • the inorganic particles may be spherical particles having a diameter of 0.01 ⁇ m to 10 ⁇ m.
  • the inorganic particles may be columnar particles having a uniaxial diameter of 0.01 ⁇ m to 10 ⁇ m and another uniaxial diameter of 0.02 ⁇ m to 30 ⁇ m.
  • the inorganic particles may include a mixture of the spherical particles and the columnar particles.
  • the diameter of the inorganic particles may be measured using a scanning electron microscope. As a non-limiting example, after measuring the diameter, minor axis diameter, or major axis diameter of 20 inorganic particles using a scanning electron microscope, an average value calculated by excluding the maximum and minimum values may be obtained.
  • the inorganic particles are 1 part by weight or more, or 5 parts by weight or more, or 8 parts by weight or more, based on 100 parts by weight of the microcellulose fiber; And 40 parts by weight or less, or 35 parts by weight or less, or 30 parts by weight or less, or 25 parts by weight or less may be included.
  • the inorganic particles are 1 to 40 parts by weight, or 5 to 40 parts by weight, or 5 to 35 parts by weight, or 5 to 30 parts by weight, or 8 to 30 parts by weight based on 100 parts by weight of the microcellulose fiber. , or 8 to 25 parts by weight.
  • the inorganic particles are 1 part by weight or more, or 5 parts by weight or more, based on 100 parts by weight of the microcellulose fiber, Alternatively, it is preferably included in an amount of 8 parts by weight or more.
  • the inorganic particles are included in the microcellulose fiber in an excessive amount, compatibility with the polymer matrix may be reduced, and thus the mechanical properties of the polymer composite may be deteriorated.
  • the inorganic particles are included in an excessive amount, the inorganic particles are agglomerated to form a non-uniform agglomerate, and thus light resistance may be poor. Therefore, the inorganic particles are preferably included in an amount of 40 parts by weight or less, or 35 parts by weight or less, or 30 parts by weight or less, or 25 parts by weight or less based on 100 parts by weight of the microcellulose fiber.
  • the polymer composite includes the compatibilizer dispersed on the polymer matrix.
  • the compatibilizer is a component that helps the polymer matrix and the microcellulose fibers to be well blended with each other.
  • compatibilizer those known in the art to which the present invention pertains may be used in consideration of the specific type of the polymer matrix.
  • the compatibilizer may be a modified polyolefin.
  • the modified polyolefin refers to a resin obtained by modifying the polyolefin with an unsaturated carboxylic acid or a derivative thereof.
  • the polyolefin forming the modified polyolefin may include chain olefins such as ethylene, propylene, butene, pentene, hexene, and heptene; cyclic olefins such as cyclopentene, cyclohexene, and 1,3-cyclopentadiene; It may be an olefin substituted with an aromatic ring, such as styrene.
  • the unsaturated carboxylic acid forming the modified polyolefin may be fumaric acid, maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof.
  • the modified polyolefin may be polypropylene or polyethylene grafted with maleic anhydride in an amount of 0.1 to 50% by weight.
  • the modified polyolefin is 1 mg KOH/g to 40 mg KOH/g, or 5 mg KOH/g to 40 mg KOH/g, or 5 mg KOH/g to 35 mg KOH/g, or 10 mg KOH It may be advantageous for the expression of the effect according to the present invention to have an acid number value of /g to 35 mg KOH/g.
  • the acid value means the amount of KOH expressed in mg-KOH/g-polymer required to neutralize the acid functionality as measured by titration.
  • the acid value may be measured according to the standard test method of ASTMD-1386 (2010).
  • the modified polyolefin may further improve the compatibility of the microcellulose fibers with the polymer matrix, thereby further improving the mechanical properties of the polymer composite.
  • the polymer composite is
  • the polymer composite is
  • the compatibilizer may be included.
  • the polymer composite is
  • the compatibilizer may be included.
  • the polymer matrix is preferably included in the polymer composite in an amount of 30 wt% or more, or 35 wt% or more. And, for the expression of improved light resistance according to the present invention, the polymer matrix is preferably included in the polymer composite in an amount of 90 wt% or less, or 85 wt% or less.
  • the microcellulose fiber is preferably included in the polymer composite in an amount of 5 wt% or more.
  • an excessive amount of the reinforcing material may impair compatibility with the polymer matrix, thereby reducing mechanical properties of the polymer composite. Therefore, the microcellulose fiber is preferably included in the polymer composite in an amount of 60 wt% or less or 55 wt% or less.
  • the compatibilizer may be included in an amount of 1 wt% or more or 5 wt% or more in the polymer composite.
  • the compatibilizer is preferably included in the polymer composite in an amount of 20 wt% or less or 15 wt% or less.
  • the polymer composite may include a colorant.
  • the addition of the colorant may advantageously act to lower the color difference value of the polymer composite.
  • the colorant may be added in an amount of 0.1 to 5% by weight, or 0.5 to 5% by weight, or 1 to 5% by weight, or 1 to 3% by weight relative to the total weight of the polymer matrix, the microcellulose fiber and the compatibilizer. .
  • the polymer composite may be obtained by mixing the above-mentioned components in a mixer and then curing.
  • the polymer composite can be obtained by mixing the above-mentioned components in a batch mixer at 100 to 180° C., preparing a master batch in the form of pellets, and injecting the master batch into an extruder for extrusion and injection. .
  • the polymer composite may exhibit improved light resistance while being environmentally friendly by including the above-described components.
  • the polymer composite may have a color difference value ( ⁇ E* ab ) satisfying the following Equation 1:
  • Equation 1 the color difference value ( ⁇ E* ab ) is [(L* t - L* 0 ) 2 + (a* t - a*) from the chromaticity value of L*a*b* measured using a colorimeter. 0 ) 2 + (b* t - b* 0 ) 2 ] 1/2 is obtained.
  • the L* 0 , a* 0 and b* 0 values are initial values of chromaticity indicated by the polymer composite.
  • the L* t , a* t and b* t values were exposed to a light source (fluorescent UV lamp) for 480 hours under the conditions of 0.75 W/(m 2 nm) @ 340 nm and 45 ⁇ 1° C. of the polymer composite. It is the chromaticity value displayed by the polymer composite after the
  • the color difference value may be obtained by measuring the amount of change in chromaticity after a weather resistance test according to the standard test method of ISO 4892-3 for the polymer composite.
  • the polymer composite is 15.0 or less, or 14.5 or less;
  • the chrominance value may be 1.0 or more, or 1.5 or more, or 2.0 or more.
  • the polymer composite may have a color difference value of 1.0 to 15.0, or 1.5 to 15.0, or 2.0 to 15.0, or 1.0 to 14.5, or 1.5 to 14.5, or 2.0 to 14.5.
  • the polymer composite is, 35 MPa or more, or 40, measured according to the standard test method of ASTM D638-5 for a dog-bone type specimen (or dumbbell-shaped specimen) of ASTM D638-5 standard prepared from the polymer composite.
  • it can represent the tensile strength of 65 MPa or less, or 60 MPa or less.
  • the polymer composite may have a tensile strength of 35 to 65 MPa, or 40 to 65 MPa, or 40 to 60 MPa, or 42 to 60 MPa.
  • ASTM D638 provides a standard test method for determining the tensile properties of plastics.
  • the tensile properties of the polymer composite were performed according to specimen type 5 of ASTM D638.
  • ASTM D638 is performed by applying a tensile force to the specimen and measuring the tensile properties of the specimen under stress. This may be performed at a constant tensile speed in the range of 1 to 500 mm/min until the specimen is broken (yield or fractured) in a conventional tensile testing machine.
  • the tensile strength is the amount of force that the specimen can apply until it yields or breaks.
  • the polymer composite may be 50 MPa or more, or 55 MPa or more, measured according to the standard test method of ISO 178 for a specimen of 80 mm x 10 mm x 4 mm prepared from the polymer composite; And 85 MPa or less, or 80 MPa or less flexural strength can be shown.
  • the polymer composite may have a flexural strength of 50 to 85 MPa, or 50 to 80 MPa, or 55 to 80 MPa.
  • the polymer composite 1.0 GPa or more, or 1.5 GPa or more, or 1.7 GPa or more, measured according to ISO 178 for a specimen having a size of 80 mm x 10 mm x 4 mm prepared from the polymer composite; And the flexural modulus of 3.5 GPa or less, or 3.2 GPa or less, or 3.0 GPa or less can be shown.
  • the polymer composite may exhibit a flexural modulus of 1.0 GPa to 3.5 GPa, or 1.5 GPa to 3.5 GPa, or 1.5 GPa to 3.2 GPa, or 1.7 GPa to 3.2 GPa, or 1.7 GPa to 3.0 GPa.
  • ISO 178 provides a standard test method for determining the flexural properties of plastics by performing a three-point bending test.
  • the three-point bending test applies a force to the midpoint of a rectangular specimen freely supported at both ends.
  • the applied force is measured by a load cell, and the resulting deflection is measured by a crosshead displacement or a direct strain measurement device. This may be performed by applying a force to the specimen at a constant speed in the range of 1 to 500 mm/min in a conventional flexural testing machine.
  • the flexural strength is the maximum flexural stress obtained during the flexural test.
  • the flexural stress is measured via a flexural tester as a function of applied load, span, specimen width, and specimen thickness.
  • the polymer composite is environmentally friendly and exhibits improved light resistance, it can be applied to various uses such as lightweight materials for automobiles such as interior and exterior materials for automobiles, interior and exterior materials for home appliances, and packaging materials.
  • a polymer composite capable of exhibiting improved light resistance while being environmentally friendly, including microcellulose fibers fibrillated by the growth of inorganic particles as a reinforcing material.
  • FIG. 1 schematically shows (a) non-fibrillated microcellulose fibers and (b) microcellulose fibers including nanofibrils and inorganic particles in an enlarged manner.
  • SEM scanning electron microscope
  • Figure 5 (a) is an SEM image of the micronized cellulose fiber complexed with inorganic particles according to Preparation Example 5 below
  • Figure 5 (b) is an SEM image of (a) taken at a higher magnification.
  • FIG. 6 shows the specifications of a dog-bone type specimen (or dumbbell-shaped specimen) for measuring tensile strength according to ASTM D638, Type V (unit: mm).
  • hardwood kraft fibers (average fiber length 0.692 mm, average minor axis diameter 15.8 ⁇ m) were prepared.
  • a fibrillated cellulose fiber was prepared in the same manner as in Preparation Example 1, except that the content of zinc acetate was adjusted so that the content of the inorganic particles was 12.5 parts by weight based on 100 parts by weight of the fiber.
  • the inorganic particles had a uniform particle size of about 100 nm.
  • a fibrillated cellulose fiber was prepared in the same manner as in Preparation Example 1, except that the content of zinc acetate was adjusted so that the content of the inorganic particles was 25 parts by weight based on 100 parts by weight of the fiber.
  • the inorganic particles had a uniform particle size of about 100 nm.
  • Calcium carbonate (CaCO 3 ) was used instead of zinc acetate, and the calcium carbonate content was adjusted so that the content of the inorganic particles was 45 parts by weight based on 100 parts by weight of the fiber. Brillated cellulose fibers were prepared.
  • the inorganic particles were agglomerated with particles having a particle diameter of 100 nm to form a non-uniform aggregate ( ⁇ 1 ⁇ m) (see FIG. 3 ).
  • TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxyradical
  • An aqueous zinc acetate solution was prepared by dissolving 20 g of zinc acetate in 1000 g of distilled water. 3.6 g of sodium hydroxide (NaOH) was dissolved in 10 ml of distilled water to prepare an aqueous sodium hydroxide solution.
  • the composite of zinc oxide particles and micronized cellulose according to Preparation Example 5 has strong binding force and agglomeration between micronized cellulose, so that the nanofibers are agglomerated and it was confirmed that the dispersion of the particles was decreased.
  • the master batch was put into a twin screw extruder to perform a compounding process and extruded.
  • the mixture obtained through the extrusion was put back into the injection machine and then injected to obtain a specimen of the polymer composite.
  • a specimen of a polymer composite was obtained in the same manner as in Example 1, except that the fibrillated cellulose fiber according to Preparation Example 2 was used instead of Preparation Example 1.
  • a specimen of a polymer composite was obtained in the same manner as in Example 1, except that the fibrillated cellulose fiber according to Preparation Example 3 was used instead of Preparation Example 1.
  • a specimen of a polymer composite was obtained in the same manner as in Example 1, except that the fibrillated cellulose fiber according to Preparation Example 4 was used instead of Preparation Example 1.
  • a specimen of a polymer composite was obtained in the same manner as in Example 1, except that the hardwood kraft fiber used in Preparation Example 1 was soaked in water to swell instead of the fibrillated cellulose fiber according to Preparation Example 1 .
  • a specimen of a polymer composite was obtained in the same manner as in Example 1, except that the micronized cellulose fiber according to Preparation Example 5 was used instead of Preparation Example 1.
  • the minor axis diameter (the shortest diameter in the cross-section of the fiber) of the cellulose fibers according to Preparation Examples was measured using a scanning electron microscope.
  • the minor axis diameter of 10 microfibers per each sample was measured and expressed as a range excluding the maximum and minimum values;
  • the minor axis diameter of 20 nanofibrils per each sample was measured, and the maximum and minimum values were excluded and displayed as a range.
  • Preparation Example 5 was complexed with particles after micronization (fibrillation) treatment of cellulose fibers. It means the short diameter.
  • Chromaticity values of the specimen before and after exposure to light were measured using a colorimeter (model name: Ci7860, manufacturer: X-rite). From the measured chromaticity values of L*a*b*, [(L* t - L* 0 ) 2 + (a* t - a* 0 ) 2 + (b* t - b* 0 ) 2 ] 1/2 of The color difference value ( ⁇ E* ab ) was obtained by converting to the formula.
  • L* 0 , a* 0 and b* 0 values are the initial values of the chromaticity exhibited by the specimen before the light exposure;
  • the L* t , a* t and b* t values are chromaticity values exhibited by the specimen after the light exposure.
  • FIG. 6 The following specimen (FIG. 6) was prepared according to the standard of specimen type 5 (Type V) of ASTM D638. The specimens were left for 24 hours in a constant temperature and humidity room adjusted to a temperature of 23° C. and a relative humidity of 50%, and then subjected to a tensile test.
  • Tensile strength (MPa) was measured for the specimen according to the standard test method of ASTM D638 using a universal testing machine (UTM) manufactured by Instron. According to the standard test method of ASTM D638, the gap between the grips holding the specimen at both ends was set to 25.4 mm, and the crosshead speed was 5 mm/min at a constant tensile rate.
  • a specimen of 80 mm x 10 mm x 4 mm was prepared according to the standard test method of ISO 178. The specimens were left for 24 hours in a constant temperature and humidity room adjusted to a temperature of 23° C. and a relative humidity of 50%, and then subjected to a flexural test.
  • the flexural strength (MPa) of the specimen was measured according to ISO 178 using a universal testing machine (UTM) manufactured by Instron.
  • UPM universal testing machine
  • a supports span was set to 46 mm using a three-point bending test jig, and flexural strength was obtained by performing a bending test under test conditions of a crosshead speed of 5 mm/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 고분자 복합체에 관한 것이다. 본 발명에 따르면 보강재로 무기 입자들의 성장에 의해 피브릴화된 마이크로 셀룰로오스 섬유를 포함하여 환경 친화적이면서도 향상된 내광성을 나타낼 수 있는 고분자 복합체가 제공된다.

Description

고분자 복합체
관련 출원과의 상호 인용
본 출원은 2021 년 3 월 5 일자 대한민국 특허 출원 제 10-2021-0029734 호 및 2022 년 3 월 4 일자 대한민국 특허 출원 제 10-2022-0028337 호에 기초한 우선권의 이익을 주장하며, 해당 대한민국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 피브릴화된 마이크로 셀룰로오스 섬유를 포함하는 고분자 복합체에 관한 것이다.
셀룰로오스 섬유(pulp)는 목재(wood), 섬유 작물(fiber crops), 폐지, 또는 헝겊(rags) 등으로부터 셀룰로오스 섬유를 화학적 또는 기계적으로 분리하여 얻어진 리그노셀룰로오스 섬유 물질(lignocellulosic fibrous material)이다. 셀룰로오스 섬유는 주로 제지 분야에 사용되고 있으며, 나노셀룰로오스의 원재료로 활용되고 있다.
나노셀룰로오스는 고분자와의 복합화를 통해 고분자의 물성을 개선하기 위한 연구에 응용되고 있다. 보강재로 글라스 파이버가 적용된 것과 달리, 환경 친화적인 나노셀룰로오스가 적용된 고분자 복합체는 재활용이 용이하다는 장점이 있다.
그러나, 셀룰로오스 섬유로부터 나노셀룰로오스를 제조하는 공정이 복잡하며 많은 비용이 소요된다. 그리고, 셀룰로오스 섬유는 고분자와의 복합화 과정에서 높은 공정 온도로 인해 열화하는 문제가 있다. 또한, 셀룰로오스 섬유 및 나노셀룰로오스는 고분자 복합체 내에서 쉽게 응집(aggregation)되기 때문에, 나노 스케일로 분산되어 있기 매우 어렵고, 그로 인해 충분한 보강 효과를 얻기 어려운 한계가 있다.
본 발명은 보강재로 셀룰로오스 섬유를 포함하여 환경 친화적이면서도 향상된 내광성을 나타낼 수 있는 고분자 복합체를 제공하기 위한 것이다.
이하, 발명의 구현 예에 따른 고분자 복합체에 대해 설명하기로 한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
본 명세서에서 '나노섬유' 또는 '나노 피브릴들'은 나노미터 스케일의 단축 지름을 가지는 섬유를 의미하고, '마이크로 섬유'는 마이크로 미터 스케일의 단축 지름을 가지는 섬유를 의미한다. 예를 들어, 상기 마이크로 섬유는 상기 나노섬유들의 다발로 이루어진 것일 수 있다.
본 명세서에서 '섬유'는 목재(wood), 섬유 작물(fiber crops), 폐지 또는 헝겊(rags) 등으로부터 셀룰로오스 섬유를 화학적 또는 기계적으로 분리하여 얻어진 리그노셀룰로오스 섬유 물질(lignocellulosic fibrous material)을 의미한다.
본 명세서에서 '펄프 섬유', '셀룰로오스 섬유' 또는 '마이크로 셀룰로오스 섬유'는 셀룰로오스로 이루어진 마이크로 섬유를 의미한다. 본 명세서에서 '셀룰로오스 나노섬유' 또는 '나노 셀룰로오스 섬유'는 셀룰로오스로 이루어진 나노섬유를 의미한다.
본 명세서에서 '피브릴화'는 마이크로 셀룰로오스 섬유의 내부 조직을 형성하는 나노 피브릴들이 풀려나와 마이크로 셀룰로오스 섬유 상에 나노 피브릴들이 보풀처럼 일어나는 현상을 의미한다.
본 명세서에서 '피브릴화된 셀룰로오스 섬유'는 상기 피브릴화에 의해 마이크로 셀룰로오스 섬유 상에 나노 미터 스케일의 단축 지름을 가지는 나노 피브릴들이 보풀처럼 일어난 상태의 마이크로 셀룰로오스 섬유를 의미한다.
본 발명자들의 계속적인 연구 결과, 셀룰로오스 섬유 상에 무기 입자들을 성장시켜 얻어지는 피브릴화된 셀룰로오스 섬유는, 셀룰로오스 섬유를 나노화하여 얻어지는 나노셀룰로오스와 대등한 고분자 보강 효과를 나타낼 수 있음이 확인되었다.
특히, 상기 피브릴화된 셀룰로오스 섬유 상에 포함된 무기 입자들은, 고분자와의 복합화 과정에서 높은 공정 온도로 인한 섬유의 열화를 지연시킬 수 있어, 우수한 보강 효과의 발현을 가능하게 한다.
그리고, 상기 피브릴화된 셀룰로오스 섬유 상에 포함된 무기 입자들은 향상된 내광성을 갖는 고분자 복합체의 제공을 가능하게 한다.
발명의 일 구현 예에 따르면,
고분자 매트릭스; 마이크로 셀룰로오스 섬유; 및 상용화제를 포함하고,
하기 식 1을 충족하는, 고분자 복합체가 제공된다:
[식 1]
2 ≤ ΔE*ab ≤ 15
상기 식 1에서,
ΔE*ab는 상기 고분자 복합체가 나타내는 색차 값으로서, 상기 색차 값은 색차계를 이용하여 측정되는 L*a*b*의 색도 값으로부터 [(L*t - L*0)2 + (a*t - a*0)2 + (b*t - b*0)2]1/2 의 계산식에 의해 얻어지며,
상기 L*0, a*0 및 b*0 값은 상기 고분자 복합체가 나타내는 색도의 초기 값이고,
상기 L*t, a*t 및 b*t 값은 상기 고분자 복합체를 0.75 W/(m2·nm) @ 340nm 및 45±1℃의 조건 하에서 480 시간 동안 광원(형광 UV 램프)에 노출시킨 후 상기 고분자 복합체가 나타내는 색도 값이다.
상기 고분자 복합체는 상기 고분자 매트릭스 내에 분산된 상기 마이크로 셀룰로오스 섬유 및 상용화제를 포함한다.
상기 고분자 매트릭스는 열가소성 수지일 수 있다.
일 예로, 상기 고분자 매트릭스는 폴리올레핀, 폴리아미드, 스티렌계 중합체, 및 폴리카보네이트로 이루어진 군에서 선택된 1종 이상의 고분자일 수 있다.
구체적으로, 상기 고분자 매트릭스는, 폴리에틸렌, 폴리에틸렌계 공중합체, 폴리프로필렌, 및 폴리프로필렌계 공중합체와 같은 폴리올레핀; 나일론-6 및 나일론-66와 같은 지방족 폴리아미드; 아라미드와 같은 방향족 폴리아미드; 폴리스티렌, 아크릴로니트릴-부타디엔-스티렌 공중합체, 스티렌-말레산 무수물 공중합체, 스티렌-아크릴로니트릴 공중합체, 및 스티렌-부타디엔-스티렌 공중합체와 같은 스티렌계 중합체; 비스페놀 A, 폴리에테르폴리올, 폴리에스테르폴리올 또는 이들의 혼합물을 포함한 폴리올과 포스겐을 중합시킨 폴리카보네이트 등일 수 있다.
바람직하게는, 상기 고분자 매트릭스는 폴리에틸렌, 폴리에틸렌계 공중합체, 폴리프로필렌(특히 호모 폴리프로필렌), 폴리프로필렌계 공중합체, 나일론-6, 나일론-66, 아라미드, 폴리스티렌, 아크릴로니트릴-부타디엔-스티렌 공중합체, 스티렌-말레산 무수물 공중합체, 스티렌-아크릴로니트릴 공중합체, 및 스티렌-부타디엔-스티렌 공중합체, 및 폴리카보네이트로 이루어진 군에서 선택된 1종 이상의 고분자 수지를 포함할 수 있다.
그리고, 상기 고분자 매트릭스는 40 g/10min 내지 70 g/10min, 혹은 45 g/10min 내지 70 g/10min, 혹은 45 g/10min 내지 65 g/10min, 혹은 50 g/10min 내지 65 g/10min, 혹은 50 g/10min 내지 60 g/10min인 멜트 플로우 레이트(MFR)를 가지는 것이 본 발명에 따른 효과의 발현에 유리할 수 있다. 상기 고분자 매트릭스의 MFR은 ASTM D1238의 표준 시험법에 따라 측정될 수 있다.
발명의 구현 예에 따르면, 상기 고분자 복합체는 상기 고분자 매트릭스 상에 분산된 상기 마이크로 셀룰로오스 섬유를 포함한다.
상기 마이크로 셀룰로오스 섬유는 마이크로 미터 스케일의 단축 지름을 가지는 섬유를 의미한다.
바람직하게는, 상기 마이크로 셀룰로오스 섬유는, 무기 입자들의 성장에 의해 피브릴화된 셀룰로오스 섬유이다.
상기 셀룰로오스 섬유는 침엽수, 활엽수 등의 목재로부터 얻어지는 천연 셀룰로오스 섬유일 수 있다.
일반적으로 마이크로 셀룰로오스 섬유의 피브릴화(fibrillation)는 고해(叩解: beating)와 같은 공정을 통해 셀룰로오스 섬유의 막 및 그 내부 조직을 형성하는 비교적 큰 피브릴이 풀려나와 그 표면에 미세한 마이크로피브릴이 보풀처럼 일어나는 현상을 의미한다.
본 발명에 있어서, 상기 마이크로 셀룰로오스 섬유는, 마이크로 셀룰로오스 섬유 상에 무기 입자들을 성장시킴으로써 셀룰로오스 섬유를 피브릴화한 것이다. 즉, 상기 마이크로 셀룰로오스 섬유는, 마이크로 셀룰로오스 섬유 상에서 상기 무기 입자들의 성장에 의해 상기 마이크로 셀룰로오스 섬유를 형성하는 피브릴들의 일부가 풀려나오거나 해섬된 상태의 섬유일 수 있다.
도 1은 (a) 피브릴화되지 않은 마이크로 셀룰로오스 섬유 및 (b) 나노 피브릴들 및 무기 입자를 포함하는 마이크로 셀룰로오스 섬유를 확대하여 모식적으로 나타낸 것이다.
도 1의 (a)에서, 피브릴화되지 않은 마이크로 셀룰로오스 섬유(100)는 마이크로 미터 스케일의 단축 지름을 가지는 섬유이다. 도 1의 (b)를 참고하면, 셀룰로오스 섬유 상에 무기 입자를 성장시키면, 마이크로 셀룰로오스 섬유(100')를 형성하는 피브릴들의 일부가 상기 무기 입자(20)의 성장에 의해 풀려나와 마이크로 셀룰로오스 섬유(100') 상에 나노 피브릴들(11)이 보풀처럼 일어난 상태의 섬유가 형성될 수 있다. 또한, 상기 무기 입자(20)의 성장에 의한 피브릴화를 통해 마이크로 셀룰로오스 섬유(100')의 내부에도 상기 나노 피브릴들(11)이 존재할 수 있다.
일 예로, 상기 마이크로 셀룰로오스 섬유는 나노 피브릴들 및 무기 입자들을 포함한다. 여기서, 상기 나노 피브릴들은 상기 마이크로 셀룰로오스 섬유의 표면에 결합되거나, 그 내부에 존재할 수 있다. 그리고, 상기 무기 입자는 상기 나노 피브릴들과 결합하거나 상기 마이크로 셀룰로오스 섬유의 표면 또는 내부에 결합되어 있을 수 있다.
상기 나노 피브릴들 및 무기 입자를 포함하는 상기 마이크로 셀룰로오스 섬유에서, 상기 마이크로 셀룰로오스 섬유는 1 ㎛ 이상; 그리고 30 ㎛ 이하, 혹은 25 ㎛ 이하, 혹은 20 ㎛ 이하, 혹은 15 ㎛ 이하, 혹은 10 ㎛ 이하의 단축 지름을 갖는 것일 수 있다. 바람직하게는, 상기 마이크로 셀룰로오스 섬유는 5 ㎛ 내지 30 ㎛, 혹은 5 ㎛ 내지 25 ㎛, 혹은 10 ㎛ 내지 20 ㎛, 혹은 15 ㎛ 내지 20 ㎛인 평균 단축 지름을 갖는 것일 수 있다.
그리고, 상기 나노 피브릴들 및 무기 입자를 포함하는 상기 마이크로 셀룰로오스 섬유에서, 상기 나노 피브릴들은 10 nm 이상, 혹은 20 nm 이상, 혹은 30 nm 이상, 혹은 40 nm 이상, 혹은 50 nm 이상; 그리고 400 nm 이하, 혹은 350 nm 이하, 혹은 300 nm 이하, 혹은 250 nm 이하, 혹은 200 nm 이하, 혹은 150 nm 이하, 혹은 100 nm 이하인 단축 지름을 갖는 것일 수 있다. 구체적으로, 상기 나노 피브릴들은 10 nm 내지 400 nm, 혹은 10 nm 내지 350 nm, 혹은 10 nm 내지 300 nm, 혹은 20 nm 내지 300 nm, 혹은 20 nm 내지 250 nm, 혹은 30 nm 내지 250 nm, 혹은 30 nm 내지 200 nm, 혹은 40 nm 내지 200 nm, 혹은 40 nm 내지 150 nm, 혹은 50 nm 내지 150 nm, 혹은 50 nm 내지 100 nm인 단축 지름을 갖는 것일 수 있다.
상기 마이크로 셀룰로오스 섬유 및 상기 나노 피브릴의 길이는 특별히 제한되지 않는다.
상기 나노 피브릴들 및 무기 입자들을 포함한 상기 마이크로 셀룰로오스 섬유는, 마이크로 셀룰로오스 섬유, 무기 입자 전구체 및 용매를 포함하는 혼합물에 환원제, 촉매, 리간드, 또는 이들의 혼합물을 첨가하여, 셀룰로오스 섬유 상에 분포된 무기 입자 전구체로부터 무기 입자들을 성장시키는 공정을 통해 제조될 수 있다.
일 예로, 상기 공정에서는 마이크로 셀룰로오스 섬유, 무기 입자 전구체 및 용매를 포함하는 혼합물을 준비한다.
상기 용매로는 상기 무기 입자 전구체를 용해시킬 수 있고 마이크로 셀룰로오스 섬유를 팽윤시킬 수 있는 화합물이 사용될 수 있다. 일 예로, 상기 용매로는 물, 알코올(예컨대, 메탄올, 에탄올, 프로판올, 부탄올과 같은 저급 알코올), 디메틸 설폭사이드, 수산화나트륨 수용액, 암모니아 수용액, 요소 수용액, 또는 이들의 혼합물이 사용될 수 있다.
상기 용매는 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1000 내지 10000 중량부로 사용될 수 있다. 상기 용매의 함량 범위 내에서 마이크로 셀룰로오스 섬유가 충분히 팽윤되고, 상기 무기 입자 전구체의 유동성이 확보되어 상기 무기 입자 전구체가 상기 마이크로 셀룰로오스 섬유 상에 고르게 분산될 수 있다.
상기 마이크로 셀룰로오스 섬유 상에 성장되는 무기 입자들의 종류에 따라 다양한 물성을 갖는 고분자 복합체를 제공할 수 있다. 즉, 상기 무기 입자 전구체는 고분자 복합체에 부여하려는 물성에 따라 적절하게 선택될 수 있다. 비제한적인 예로, 고분자 복합체에 항균성 및 내열성을 부여할 목적이라면 산화아연을 성장시킬 수 있는 무기 입자 전구체가 선택될 수 있다.
일 예로, 상기 무기 입자들은 구리, 아연, 칼슘, 알루미늄, 철, 은, 백금, 팔라듐, 루테늄, 이리듐, 로듐, 오스뮴, 크롬, 코발트, 니켈, 망간, 바나듐, 몰리브덴, 마그네슘, 스트론튬, 티타늄, 지르코늄, 하프늄, 및 갈륨으로 이루어진 군에서 선택된 1 종 이상의 원소를 포함할 수 있다. 상기 무기 입자들의 성분은 1종이거나 2종 이상일 수 있다.
상기 무기 입자 전구체로는 구리, 아연, 칼슘, 알루미늄, 철, 은, 백금, 팔라듐, 루테늄, 이리듐, 로듐, 오스뮴, 크롬, 코발트, 니켈, 망간, 바나듐, 몰리브덴, 마그네슘, 스트론튬, 티타늄, 지르코늄, 하프늄, 및 갈륨으로 이루어진 군에서 선택된 1 종 이상의 원소의 염이 사용될 수 있다. 상기 염은 아세트산염, 염화염, 질산염 등일 수 있다. 또한, 상기 무기 입자 전구체로 테트라에틸 오르토실리케이트(TEOS) 등의 산화실리콘 전구체가 사용될 수 있다.
상기 무기 입자의 함량은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 내지 40 중량부일 수 있다. 구체적으로, 상기 무기 입자의 함량은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 중량부 이상, 혹은 5 중량부 이상, 혹은 8 중량부 이상; 그리고 40 중량부 이하, 혹은 35 중량부 이하, 혹은 30 중량부 이하, 혹은 25 중량부 이하일 수 있다. 바람직하게는, 상기 무기 입자의 함량은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 내지 40 중량부, 혹은 5 내지 40 중량부, 혹은 5 내지 35 중량부, 혹은 8 내지 35 중량부, 혹은 8 내지 30 중량부, 혹은 8 내지 25 중량부일 수 있다.
상기 혼합물에 포함되는 상기 무기 입자 전구체의 함량은 상기 마이크로 셀룰로오스 섬유 상에 최종적으로 생성되는 무기 입자들의 함량이 상기 범위를 충족하도록 제어될 수 있다. 이러한 범위 내에서 마이크로 셀룰로오스 섬유에 무기 입자 전구체가 고르게 분포하여 충분한 피브릴화를 유도할 수 있고, 향상된 내광성의 발현을 가능하게 한다.
상기 혼합물은 상기 용매에 상기 무기 입자 전구체를 용해시킨 후 마이크로 셀룰로오스 섬유를 첨가하여 준비될 수 있다. 상기 혼합물을 교반하여 마이크로 셀룰로오스 섬유를 팽윤시킴과 동시에 팽윤된 마이크로 셀룰로오스 섬유 상에 상기 무기 입자 전구체가 고르게 분포하도록 한다.
상기 혼합물에 첨가되는 환원제, 촉매 및 리간드의 종류 및 함량은 첨가된 무기 입자 전구체 및 성장시키려는 무기 입자들의 종류와 함량에 따라 적절하게 선택될 수 있다. 일 예로, 상기 환원제로는 수산화나트륨(NaOH), 금속 하이드라이드계, 보로하이드라이드계, 보란계, 실란계, 하이드라진, 또는 하이드라자이드계의 환원제가 사용될 수 있다. 상기 촉매로는 암모니아 또는 요소 등이 사용될 수 있다. 상기 리간드로는 벤젠-1,3,5-트리카복실레이트가 사용될 수 있다.
도 2 및 도 4는 아래 제조예 1에 따른, 상기 무기 입자들의 성장에 의해 피브릴화된 마이크로 셀룰로오스 섬유에 대한 주사전자현미경(SEM) 이미지들이다.
도 2를 참고하면, 마이크로 셀룰로오스 섬유 상에 균일한 입경을 갖는 무기 입자들이 성장하여 피브릴화가 일어난 것을 확인할 수 있다.
도 4를 참고하면, 상기 피브릴화된 마이크로 셀룰로오스 섬유 상에는 상기 무기 입자들의 성장에 따른 (a) 금속 원소(아연) 및 (b) 산소가 고르게 분포되어 있는 것을 확인할 수 있다.
선택적으로, 상기 무기 입자들을 상기 마이크로 셀룰로오스 섬유 상에 성장시킨 후 상기 무기 입자들을 개질하여 추가적인 물성을 부여할 수 있다. 일 예로, 상기 셀룰로오스 섬유 상에 상기 무기 입자들을 성장시킨 후 티올기를 갖는 친유성 화합물을 첨가하여 상기 무기 입자들을 개질하는 공정이 추가로 수행될 수 있다. 상기 무기 입자들을 친유성 개질함으로써, 상기 마이크로 셀룰로오스 섬유와 고분자 매트릭스의 상용성이 더욱 향상될 수 있다. 상기 티올기를 갖는 친유성 화합물로는 1-데칸티올(1-decanethiol), 1-언데칸티올(1-undecanethiol), 1-도데칸티올(1-dodecanethiol), 1-테트라데칸티올(1-tetradecanethiol), 1-펜타데칸티올(1-pentadecanethiol), 1-헥사데칸티올(1-hexadecanethiol), 1-옥타데칸티올(1-octadecanethiol) 등이 사용될 수 있다.
상술한 공정을 통해 상기 나노 피브릴 및 무기 입자를 포함한 마이크로 셀룰로오스 섬유가 얻어질 수 있다.
발명의 구현 예에 따르면, 상기 마이크로 셀룰로오스 섬유에 포함된 상기 무기 입자들은 0.01 ㎛ 이상, 혹은 0.03 ㎛ 이상, 혹은 0.05 ㎛ 이상; 그리고 10 ㎛ 이하, 혹은 7 ㎛ 이하, 혹은 5 ㎛ 이하인 단축 지름을 가질 수 있다. 바람직하게는, 상기 무기 입자들은 0.01 ㎛ 내지 10 ㎛, 혹은 0.03 ㎛ 내지 7 ㎛, 혹은 0.05 ㎛ 내지 5 ㎛인 단축 지름을 가질 수 있다.
상기 마이크로 셀룰로오스 섬유 상에 포함된 상기 무기 입자의 입경이 너무 클 경우 상기 무기 입자가 결함(defect)으로 작용하여 고분자 복합체의 기계적 물성이 저하할 수 있다. 그러므로, 상기 무기 입자의 입경은 10 ㎛ 이하, 혹은 7 ㎛ 이하, 혹은 5 ㎛ 이하인 것이 바람직하다.
그리고, 상기 무기 입자들의 성장에 의한 마이크로 셀룰로오스 섬유의 피브릴화 효과를 발현시키면서 내광성의 향상을 위하여, 상기 무기 입자의 입경은 0.01 ㎛ 이상, 혹은 0.03 ㎛ 이상, 혹은 0.05 ㎛ 이상인 것이 바람직하다.
상기 무기 입자들은 0.01 ㎛ 내지 10 ㎛인 지름을 가지는 구형 입자일 수 있다. 또한, 상기 무기 입자들은 0.01 ㎛ 내지 10 ㎛인 일축 지름과 0.02 ㎛ 내지 30 ㎛인 다른 일축 지름을 가지는 기둥형 입자일 수 있다. 또한, 상기 무기 입자들은 상기 구형 입자 및 상기 기둥형 입자의 혼합물을 포함할 수 있다. 상기 무기 입자들의 지름은 주사전자현미경을 이용하여 측정될 수 있다. 비제한적인 예로, 주사전자현미경을 이용하여 20 개의 무기 입자들에 대한 지름, 단축 지름, 또는 장축 지름을 각각 측정한 후 그 최대값 및 최소값을 제외하고 계산한 평균 값을 얻을 수 있다.
발명의 구현 예에 따르면, 상기 무기 입자들은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 중량부 이상, 혹은 5 중량부 이상, 혹은 8 중량부 이상; 그리고 40 중량부 이하, 혹은 35 중량부 이하, 혹은 30 중량부 이하, 혹은 25 중량부 이하로 포함될 수 있다. 바람직하게는, 상기 무기 입자들은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 내지 40 중량부, 혹은 5 내지 40 중량부, 혹은 5 내지 35 중량부, 혹은 5 내지 30 중량부, 혹은 8 내지 30 중량부, 혹은 8 내지 25 중량부로 포함될 수 있다.
상기 무기 입자들의 성장에 의한 마이크로 셀룰로오스 섬유의 피브릴화 효과 및 내광성이 충분히 발현될 수 있도록 하기 위하여, 상기 무기 입자들은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 중량부 이상, 혹은 5 중량부 이상, 혹은 8 중량부 이상으로 포함되는 것이 바람직하다.
다만, 상기 무기 입자들이 상기 마이크로 셀룰로오스 섬유에 과량으로 포함될 경우 상기 고분자 매트릭스와의 상용성이 저하하고, 이로 인해 고분자 복합체의 기계적 물성이 열악해질 수 있다. 또한, 상기 무기 입자들이 과량으로 포함될 경우 무기 입자들이 응집되어 불균일한 응집체를 형성하고, 그에 따라 내광성이 열악해질 수 있다. 그러므로, 상기 무기 입자들은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 40 중량부 이하, 혹은 35 중량부 이하, 혹은 30 중량부 이하, 혹은 25 중량부 이하로 포함되는 것이 바람직하다.
한편, 상기 고분자 복합체는 상기 고분자 매트릭스 상에 분산된 상기 상용화제를 포함한다. 상기 상용화제는 상기 고분자 매트릭스와 상기 마이크로 셀룰로오스 섬유가 서로 잘 배합될 수 있도록 돕는 성분이다.
상기 상용화제로는 상기 고분자 매트릭스의 구체적인 종류를 고려하여 본 발명이 속하는 기술분야에서 알려진 것들이 사용될 수 있다.
바람직하게는, 상기 상용화제는 변성 폴리올레핀일 수 있다. 상기 변성 폴리올레핀은 불포화 카르복실산 또는 이의 유도체로 폴리올레핀을 변성한 수지를 의미한다.
상기 변성 폴리올레핀을 형성하는 상기 폴리올레핀은, 에틸렌, 프로필렌, 부텐, 펜텐, 헥센, 및 헵텐과 같은 사슬형 올레핀; 사이클로펜텐, 사이클로헥센, 및 1,3-사이클로펜타디엔과 같은 고리형 올레핀; 스티렌 등의 방향족 고리로 치환된 올레핀일 수 있다.
상기 변성 폴리올레핀을 형성하는 상기 불포화 카르복실산은, 푸마르산, 말레산, 이타콘산, 시트라콘산, 아코니티산, 및 이들의 무수물일 수 있다.
비제한적인 예로, 상기 변성 폴리올레핀은 말레산 무수물로 0.1 내지 50 중량%가 그라프트된 폴리프로필렌 또는 폴리에틸렌일 수 있다.
바람직하게는, 상기 변성 폴리올레핀은 1 mg KOH/g 내지 40 mg KOH/g, 혹은 5 mg KOH/g 내지 40 mg KOH/g, 혹은 5 mg KOH/g 내지 35 mg KOH/g, 혹은 10 mg KOH/g 내지 35 mg KOH/g의 산가(acid number) 값을 가지는 것이 본 발명에 따른 효과의 발현에 유리할 수 있다. 상기 산가 값은 적정(titration)에 의해 측정할 때 산 기능성을 중화시키는 것이 요구되는 mg-KOH/g-폴리머로 나타내는 KOH 양을 의미한다. 상기 산가 값은 ASTMD-1386(2010)의 표준 시험법에 따라 측정될 수 있다.
이러한 변성 폴리올레핀은 상기 고분자 매트릭스에 대한 상기 마이크로 셀룰로오스 섬유의 상용성을 더욱 향상시켜 상기 고분자 복합체의 기계적 물성을 더욱 향상시킬 수 있다.
발명의 구현 예에 따르면, 상기 고분자 복합체는
상기 고분자 매트릭스 30 내지 90 중량%,
상기 마이크로 셀룰로오스 섬유 5 내지 60 중량%, 및
상기 상용화제 1 내지 20 중량%를 포함할 수 있다.
또는, 상기 고분자 복합체는
상기 고분자 매트릭스 35 내지 90 중량%,
상기 마이크로 셀룰로오스 섬유 5 내지 55 중량%, 및
상기 상용화제 5 내지 20 중량%를 포함할 수 있다.
또는, 상기 고분자 복합체는
상기 고분자 매트릭스 35 내지 85 중량%,
상기 마이크로 셀룰로오스 섬유 5 내지 55 중량%, 및
상기 상용화제 5 내지 15 중량%를 포함할 수 있다.
적절한 양의 매트릭스를 포함하는 고분자 복합체가 제공될 수 있도록 하기 위하여, 상기 고분자 매트릭스는 상기 고분자 복합체에 30 중량% 이상, 혹은 35 중량% 이상으로 포함하는 것이 바람직하다. 그리고, 본 발명에 따른 향상된 내광성의 발현을 위하여, 상기 고분자 매트릭스는 상기 고분자 복합체에 90 중량% 이하, 혹은 85 중량% 이하로 포함되는 것이 바람직하다.
본 발명에 따른 향상된 내광성의 발현을 위하여, 상기 마이크로 셀룰로오스 섬유는 상기 고분자 복합체에 5 중량% 이상으로 포함되는 것이 바람직하다. 다만, 과량의 보강재는 상기 고분자 매트릭스와의 상용성을 저해하고, 이로 인해 고분자 복합체의 기계적 물성이 저하할 수 있다. 그러므로, 상기 마이크로 셀룰로오스 섬유는 상기 고분자 복합체에 60 중량% 이하 혹은 55 중량% 이하로 포함되는 것이 바람직하다.
그리고, 적절한 상용성이 발현될 수 있도록 하기 위하여, 상기 상용화제는 상기 고분자 복합체에 1 중량% 이상 혹은 5 중량% 이상으로 포함될 수 있다. 다만, 과량의 상용화제는 상기 고분자 복합체의 기계적 물성을 열악하게 할 수 있다. 그러므로, 상기 상용화제는 상기 고분자 복합체에 20 중량% 이하 혹은 15 중량% 이하로 포함되는 것이 바람직하다.
선택적으로, 상기 고분자 복합체에는 착색제(colorant)가 포함될 수 있다. 상기 착색제의 첨가는 고분자 복합체의 상기 색차 값을 낮추는데 유리하게 작용할 수 있다. 상기 착색제는 상기 고분자 매트릭스, 상기 마이크로 셀룰로오스 섬유 및 상기 상용화제의 중량 합 대비 0.1 내지 5 중량%, 혹은 0.5 내지 5 중량%, 혹은 1 내지 5 중량%, 혹은 1 내지 3 중량%로 첨가될 수 있다.
발명의 구현 예에 따르면, 상기 고분자 복합체는 상술한 성분들을 믹서에서 혼합한 후 경화하여 얻어질 수 있다. 비제한적인 예로, 상술한 성분들을 100 내지 180 ℃의 배치 믹서에서 혼합한 후, 펠렛 형태로 마스터 배치를 제조하고, 상기 마스터 배치를 압출기에 투입하여 압출 및 사출함으로써 상기 고분자 복합체가 얻어질 수 있다.
발명의 구현 예에 따르면, 상기 고분자 복합체는 상술한 성분들을 포함함에 따라 환경 친화적이면서도 향상된 내광성을 나타낼 수 있다.
일 예로, 상기 고분자 복합체는 하기 식 1을 충족하는 색차 값(ΔE*ab)을 가질 수 있다:
[식 1]
2 ≤ ΔE*ab ≤ 15
상기 식 1에서, 상기 색차 값(ΔE*ab)은 색차계를 이용하여 측정되는 L*a*b*의 색도 값으로부터 [(L*t - L*0)2 + (a*t - a*0)2 + (b*t - b*0)2]1/2 의 계산식에 의해 얻어진다.
여기서, 상기 L*0, a*0 및 b*0 값은 상기 고분자 복합체가 나타내는 색도의 초기 값이다. 그리고, 상기 L*t, a*t 및 b*t 값은 상기 고분자 복합체를 0.75 W/(m2·nm) @ 340nm 및 45±1℃의 조건 하에서 480 시간 동안 광원(형광 UV 램프)에 노출시킨 후 상기 고분자 복합체가 나타내는 색도 값이다.
또한, 상기 색차 값은 상기 고분자 복합체에 대해 ISO 4892-3의 표준 시험법에 따른 내후성 시험 후, 색도의 변화량을 측정하는 방법으로도 얻어질 수 있다.
바람직하게는, 상기 고분자 복합체는 15.0 이하, 혹은 14.5 이하; 그리고 1.0 이상, 혹은 1.5 이상, 혹은 2.0 이상의 상기 색차 값을 가질 수 있다. 구체적으로, 상기 고분자 복합체는 1.0 내지 15.0, 혹은 1.5 내지 15.0, 혹은 2.0 내지 15.0, 혹은 1.0 내지 14.5, 혹은 1.5 내지 14.5, 혹은 2.0 내지 14.5의 상기 색차 값을 가질 수 있다.
상기 고분자 복합체는, 상기 고분자 복합체로부터 제조된 ASTM D638-5 규격의 dog-bone 형태의 시편(또는 dumbbell-shaped specimen)에 대하여 ASTM D638-5의 표준 시험법에 따라 측정된 35 MPa 이상, 혹은 40 MPa 이상, 혹은 42 MPa 이상; 그리고 65 MPa 이하, 혹은 60 MPa 이하의 인장강도를 나타낼 수 있다. 바람직하게는, 상기 고분자 복합체는 35 내지 65 MPa, 혹은 40 내지 65 MPa, 혹은 40 내지 60 MPa, 혹은 42 내지 60 MPa의 상기 인장 강도를 가질 수 있다.
ASTM D638은 플라스틱의 인장 특성을 결정하기 위한 표준 시험법을 제공한다. 상기 고분자 복합체에 대한 인장 특성은 ASTM D638의 시편 타입 5에 따라 수행된다. ASTM D638은 상기 시편에 인장력을 가하고, 응력 하에서 시편의 인장 특성을 측정하는 것으로 수행된다. 이는 통상의 인장 시험기에서 상기 시편이 파손(항복 또는 파단)될 때까지 1~500 mm/min 범위의 일정한 인장 속도로 수행될 수 있다. 상기 인장 강도는 상기 시편이 항복하거나 파단하기까지 가할 수 있는 힘의 양이다.
다른 일 예로, 상기 고분자 복합체는, 상기 고분자 복합체로부터 제조된 80 mm x 10 mm x 4 mm의 시편에 대하여 ISO 178의 표준 시험법에 따라 측정된 50 MPa 이상, 혹은 55 MPa 이상; 그리고 85 MPa 이하, 혹은 80 MPa 이하의 굴곡 강도를 나타낼 수 있다. 바람직하게는, 상기 고분자 복합체는 50 내지 85 MPa, 혹은 50 내지 80 MPa, 혹은 55 내지 80 MPa의 상기 굴곡 강도를 가질 수 있다.
또한, 상기 고분자 복합체는, 상기 고분자 복합체로부터 제조된 크기 80 mm x 10 mm x 4 mm의 시편에 대하여 ISO 178에 따라 측정된 1.0 GPa 이상, 혹은 1.5 GPa 이상, 혹은 1.7 GPa 이상; 그리고 3.5 GPa 이하, 혹은 3.2 GPa 이하, 혹은 3.0 GPa 이하의 굴곡 탄성률을 나타낼 수 있다. 바람직하게는, 상기 고분자 복합체는 1.0 GPa 내지 3.5 GPa, 혹은 1.5 GPa 내지 3.5 GPa, 혹은 1.5 GPa 내지 3.2 GPa, 혹은 1.7 GPa 내지 3.2 GPa, 혹은 1.7 GPa 내지 3.0 GPa인 굴곡 탄성률을 나타낼 수 있다.
ISO 178은 3-점 굽힘 테스트를 수행하여 플라스틱에 대한 굴곡 특성을 결정하는 표준 시험법을 제공한다. 3-점 굽힘 시험은 양쪽 끝에서 자유롭게 지지되는 직사각형 시편의 중간 점(midpoint)에 힘을 가한다. 이때 가해진 힘은 로드 셀(load cell)에 의해 측정되고, 그에 따른 처짐(resulting deflection)은 크로스 헤드 변위 (crosshead displacement) 또는 직접 스트레인 측정 장치(direct strain measurement device)에 의해 측정된다. 이는 통상의 굴곡 시험기에서 상기 시편에 1~500 mm/min 범위의 일정한 속도로 힘을 가하여 수행될 수 있다. 상기 굴곡 강도(flexural strength)는 굴곡 테스트 중에 얻은 최대 굽힘 응력(maximum flexural stress)이다. 상기 굴곡 응력은 적용된 하중, 스팬(span), 시편 너비, 및 시편 두께의 함수로서, 굴곡 시험기를 통해 측정된다.
상기 고분자 복합체는 환경 친화적이면서도 향상된 내광성을 나타낼 수 있어, 자동차의 내외장재와 같은 자동차용 경량 소재, 가전 제품의 내외장재, 포장재 등 다양한 용도로 적용될 수 있다.
본 발명에 따르면 보강재로 무기 입자들의 성장에 의해 피브릴화된 마이크로 셀룰로오스 섬유를 포함하여 환경 친화적이면서도 향상된 내광성을 나타낼 수 있는 고분자 복합체가 제공된다.
도 1은 (a) 피브릴화되지 않은 마이크로 셀룰로오스 섬유 및 (b) 나노 피브릴들 및 무기 입자를 포함한 마이크로 셀룰로오스 섬유를 확대하여 모식적으로 나타낸 것이다.
도 2 및 도 4는 아래 제조예 1에 따른, 무기 입자들의 성장에 의해 피브릴화된 셀룰로오스 섬유에 대한 주사전자현미경(SEM) 이미지들이다.
도 3은 아래의 제조예 4에 따른, 무기 입자들의 성장에 의해 피브릴화된 셀룰로오스 섬유에 대한 SEM 이미지이다.
도 5의 (a)는 아래 제조예 5에 따른 무기 입자와 복합화된 미세화 셀룰로오스 섬유의 SEM 이미지이고, 도 5의 (b)는 상기 (a)를 더욱 고배율로 촬영한 SEM 이미지이다.
도 6은 ASTM D638의 타입 5(Type V)에 따른 인장 강도 측정용 dog-bone 형태의 시편(또는 dumbbell-shaped specimen)의 규격을 나타낸 것이다 (단위: mm).
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 이해를 돕기 위한 예시로서 제시된 것으로, 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
제조예 1
(피브릴화된 셀룰로오스 섬유의 제조)
셀룰로오스 원료로서 활엽수 크라프트 섬유(평균 섬유 길이 0.692 mm, 평균 단축 지름 15.8 ㎛)를 준비하였다. 증류수 1000 g에 아연 아세테이트 20 g을 용해시킨 수용액을 준비하였다. 상기 수용액에 상기 섬유 20 g을 첨가하고 200 rpm으로 1 시간 동안 교반하여 혼합물을 얻었다.
상기 혼합물에 환원제로써 수산화나트륨(NaOH) 7.2 g을 50 ℃ 하에서 첨가하고, 95 ℃로 승온시킨 후 200 rpm으로 4 시간 동안 교반하여 섬유 상에 무기 입자들을 성장시켰다. 상기 무기 입자들의 함량은 상기 섬유 100 중량부에 대하여 8 중량부인 것으로 확인되었다.
주사전자현미경(SEM)을 통해 확인한 결과, 도 2과 같이 무기 입자들(ZnO)이 성장된 섬유 부분은 피브릴화가 일어난 것을 확인할 수 있었다. SEM 이미지를 분석한 결과, 상기 무기 입자들은 약 100 nm의 균일한 입경을 갖는 것으로 확인되었다(도 2 참조). 또한, 상기 피브릴화된 셀룰로오스 섬유 상에는 상기 무기 입자들의 성장에 따른 (a) 금속 원소(아연) 및 (b) 산소가 고르게 분포되어 있는 것으로 확인되었다(도 4 참조).
제조예 2
(피브릴화된 셀룰로오스 섬유의 제조)
상기 무기 입자들의 함량이 상기 섬유 100 중량부에 대하여 12.5 중량부가 되도록 아연 아세테이트의 함량을 조절한 것을 제외하고, 상기 제조예 1과 동일한 방법으로 피브릴화된 셀룰로오스 섬유를 제조하였다.
SEM 이미지를 분석한 결과, 상기 무기 입자들은 약 100 nm의 균일한 입경을 갖는 것으로 확인되었다.
제조예 3
(피브릴화된 셀룰로오스 섬유의 제조)
상기 무기 입자들의 함량이 상기 섬유 100 중량부에 대하여 25 중량부가 되도록 아연 아세테이트의 함량을 조절한 것을 제외하고, 상기 제조예 1과 동일한 방법으로 피브릴화된 셀룰로오스 섬유를 제조하였다.
SEM 이미지를 분석한 결과, 상기 무기 입자들은 약 100 nm의 균일한 입경을 갖는 것으로 확인되었다.
제조예 4
(피브릴화된 셀룰로오스 섬유의 제조)
아연 아세테이트 대신 탄산 칼슘(CaCO3)을 사용하고, 상기 무기 입자들의 함량이 상기 섬유 100 중량부에 대하여 45 중량부가 되도록 탄산 칼슘의 함량을 조절한 것을 제외하고, 상기 제조예 1과 동일한 방법으로 피브릴화된 셀룰로오스 섬유를 제조하였다.
SEM 이미지를 분석한 결과, 상기 무기 입자들은 입경 100 nm인 입자들이 응집되어 불균일한 응집체(~ 1㎛)를 형성한 것으로 확인되었다(도 3 참조).
제조예 5
(미세화 셀룰로오스 섬유의 제조)
셀룰로오스 원료로서 상기 제조예 1에서와 동일한 활엽수 크라프트 섬유를 준비하였다. 2,2,6,6-테트라메틸피페리디닐-1-옥시라디칼(TEMPO)를 촉매로 이용하여 상기 섬유의 표면을 산화하여, 산화 펄프를 얻었다.
상기 산화 펄프 1 g을 99 g의 증류수에 분산시키고 믹서로 30 분 동안 미세화(해섬) 처리하여 농도 1%의 미세화 셀룰로오스 수분산액을 얻었다.
증류수 1000 g에 아연 아세테이트 20 g을 용해시킨 아연 아세테이트 수용액을 준비하였다. 수산화나트륨(NaOH) 3.6 g을 증류수 10 ml에 용해시켜 수산화나트륨 수용액을 준비하였다.
상기 미세화 셀룰로오스 수분산액 100 g을 15 ℃ 하에서 교반하면서 상기 아연 아세테이트 수용액 50 ml 및 상기 수산화나트륨 수용액 10 ml를 첨가하고 500 rpm으로 2 시간 동안 교반하여 산화 아연(ZnO) 입자와 미세화 셀룰로오스의 복합체를 제조하였다.
주사전자현미경을 이용하여 확인한 결과, 도 5의 (a) 및 (b)와 같이, 제조예 5에 따른 산화 아연 입자와 미세화 셀룰로오스의 상기 복합체는 미세화 셀룰로오스 사이의 결합력과 응집이 강해서 나노 섬유들이 뭉쳐져 있고 입자의 분산도가 떨어지는 것을 확인할 수 있었다.
실시예 1
배치 믹서(batch mixer)에 상기 제조예 1에 따른 피브릴화된 셀룰로오스 섬유 30 중량%, 호모 폴리프로필렌 (ASTM D1238의 표준 시험법에 따른 멜트 플로우 레이트(MFR) 60 g/10min) 60 중량%, 및 상용화제 10 중량%를 투입하고, 160 ℃에서 20 분간 혼합하여 펠렛 형태로 마스터 배치를 제조하였다. 상기 상용화제로는 말레산 무수물로 그라프트된 폴리프로필렌(maleic anhydride-grafted polypropylene; ASTMD-1386(2010)의 표준 시험법에 따른 산가 값 20 mg KOH/g)이 사용되었다.
상기 마스터 배치를 트윈 스크류 압출기에 투입하여 컴파운딩 공정을 수행하고 압출하였다. 상기 압출을 통해 얻은 혼합물을 다시 사출기에 투입한 후 사출하여 고분자 복합체의 시편을 얻었다.
실시예 2
상기 제조예 1 대신 상기 제조예 2에 따른 피브릴화된 셀룰로오스 섬유를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
실시예 3
상기 제조예 1 대신 상기 제조예 3에 따른 피브릴화된 셀룰로오스 섬유를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
실시예 4
상기 제조예 1 대신 상기 제조예 3에 따른 피브릴화된 셀룰로오스 섬유를 사용한 것, 그리고 상기 배치 믹서에 투입된 화합물들의 중량 대비 3 중량%의 black colorant (NB9096)를 추가로 투입하고 혼합하여 마스터 배치를 제조한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
실시예 5
배치 믹서에 상기 제조예 3에 따른 피브릴화된 셀룰로오스 섬유 55 중량%, 폴리프로필렌 35 중량%, 및 상용화제 10 중량%를 투입한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
실시예 6
배치 믹서에 상기 제조예 3에 따른 피브릴화된 셀룰로오스 섬유 5 중량%, 폴리프로필렌 85 중량%, 및 상용화제 10 중량%를 투입한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
비교예 1
상기 제조예 1 대신 상기 제조예 4에 따른 피브릴화된 셀룰로오스 섬유를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
비교예 2
상기 제조예 1에 따른 피브릴화된 셀룰로오스 섬유 대신에 상기 제조예 1에 사용된 활엽수 크라프트 섬유를 물에 담가 팽윤시킨 것을 적용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
비교예 3
상기 제조예 1 대신 상기 제조예 5에 따른 미세화 셀룰로오스 섬유를 사용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고분자 복합체의 시편을 얻었다.
시험예
실시예 및 비교예에서 제조된 시편의 물성을 다음의 방법으로 평가하고, 그 결과를 하기 표 1 및 표 2에 기재하였다.
(1) 섬유의 단축 지름
주사전자현미경을 이용하여 제조예들에 따른 셀룰로오스 섬유의 단축 지름(섬유의 단면에서 가장 짧은 지름)을 측정하였다.
구체적으로, 마이크로 셀룰로오스 섬유의 경우 각 샘플 당 마이크로 섬유 10 개의 단축 지름을 측정하여 최대값 및 최소값을 제외하고 범위로 표시하였고; 나노 피브릴의 경우 각 샘플 당 나노 피브릴 20 개의 단축 지름을 측정하여 최대값 및 최소값을 제외하여 범위로 표시하였다.
제조예 1~4와 달리 제조예 5는 셀룰로오스 섬유를 미세화(해섬) 처리한 후 입자와 복합화한 것으로서, 아래 표 1에서 제조예 5의 나노 피브릴의 단축 지름은 입자와 복합화한 후인 미세화 셀룰로오스의 단축 지름을 의미한다.
(2) 내광성
내후성 시험기(모델명: QUV ACCELERATED WEATHERING TESTER, 제조사: Q-LAB)를 이용하여, 시편을 0.75 W/(m2·nm) @ 340nm 및 45±1℃의 조건 하에서 480 시간 동안 광원(형광 UV 램프)에 노출시켰다.
색차계(모델명: Ci7860, 제조사: X-rite)를 이용하여 상기 시편에 대한 상기 광 노출 전/후의 색도 값을 측정하였다. 측정된 L*a*b*의 색도 값으로부터 [(L*t - L*0)2 + (a*t - a*0)2 + (b*t - b*0)2]1/2 의 식으로 환산하여 색차 값(ΔE*ab)을 얻었다.
상기 식에서, L*0, a*0 및 b*0 값은 상기 광 노출 전에 상기 시편이 나타내는 색도의 초기 값 이고; 상기 L*t, a*t 및 b*t 값은 상기 광 노출 후에 상기 시편이 나타내는 색도 값이다.
(3) 인장 강도
ASTM D638의 시편 타입 5(Type V)의 규격에 따른 아래의 시편(도 6)을 준비하였다. 상기 시편은 23℃의 온도 및 50%의 상대 습도로 조정된 항온 항습실에 24 시간 동안 방치된 후 인장 시험에 제공되었다.
상기 시편에 대해 인스트론(Instron)사의 만능 시험기(UTM)를 이용하여 ASTM D638의 표준 시험법에 따라 인장 강도(MPa)를 측정하였다. ASTM D638의 표준 시험법에 의거하여 상기 시편을 양 쪽 끝에서 잡아주는 그립(grip)의 간격은 25.4 mm로 설정하여 크로스헤드 속도 5 mm/min의 일정한 인장 속도 하에서 수행되었다.
(4) 굴곡 강도 및 굴곡 탄성률
ISO 178의 표준 시험법에 따라 80 mm x 10 mm x 4 mm 규격의 시편을 준비하였다. 상기 시편은 23℃의 온도 및 50%의 상대 습도로 조정된 항온 항습실에 24 시간 동안 방치된 후 굴곡 시험에 제공되었다.
상기 시편에 대해 인스트론(Instron)사의 만능 시험기(UTM)를 이용하여 ISO 178에 따라 굴곡 강도(MPa)를 측정하였다. ISO 178에 의거하여, 3-점 굴곡 시험 지그를 이용해 지지 스판(a supports span)을 46 mm로 설정하고, 크로스헤드 속도 5 mm/min의 시험 조건에서 굴곡 시험하여 굴곡 강도를 얻었다.
단축 지름 무기 입자 크기
(㎛)
마이크로 셀룰로오스 섬유 (㎛) 나노 피브릴 (nm)
제조예 1 1~10 50~100 0.05~0.1
제조예 2 1~10 50~100 0.05~0.5
제조예 3 1~10 50~100 0.1~1
제조예 4 1~10 50~100 0.1~1
제조예 5 없음 10~100 0.1~1
색차 값
(ΔE*ab)
굴곡 강도
(MPa)
굴곡 탄성률
(GPa)
인장 강도
(MPa)
실시예 1 14.4 62 2.3 51
2 13.2 64 2.3 52
3 8.4 65 2.6 54
4 2.0 65 2.5 55
5 5.0 79 3.0 60
6 10.0 55 1.7 42
비교예 1 15.7 63 2.6 56
2 17.0 62 2.6 55
3 15.2 45 1.7 31
상기 표 2를 참고하면, 상기 실시예들에 따른 고분자 복합체는 상기 비교예 1에 따른 고분자 복합체에 비하여 우수한 내광성을 나타내는 것으로 확인되었다.

Claims (13)

  1. 고분자 매트릭스; 마이크로 셀룰로오스 섬유; 및 상용화제를 포함하고,
    하기 식 1을 충족하는, 고분자 복합체:
    [식 1]
    2 ≤ ΔE*ab ≤ 15
    상기 식 1에서,
    ΔE*ab는 상기 고분자 복합체가 나타내는 색차 값으로서, 상기 색차 값은 색차계를 이용하여 측정되는 L*a*b*의 색도 값으로부터 [(L*t - L*0)2 + (a*t - a*0)2 + (b*t - b*0)2]1/2 의 계산식에 의해 얻어지며,
    상기 L*0, a*0 및 b*0 값은 상기 고분자 복합체가 나타내는 색도의 초기 값이고,
    상기 L*t, a*t 및 b*t 값은 상기 고분자 복합체를 0.75 W/(m2·nm) @ 340nm 및 45±1℃의 조건 하에서 480 시간 동안 광원(형광 UV 램프)에 노출시킨 후 상기 고분자 복합체가 나타내는 색도 값이다.
  2. 제 1 항에 있어서,
    상기 마이크로 셀룰로오스 섬유는 나노 피브릴들 및 무기 입자들을 포함하는, 고분자 복합체.
  3. 제 2 항에 있어서,
    상기 나노 피브릴들은 상기 마이크로 셀룰로오스 섬유의 표면에 결합되며,
    상기 무기 입자들은 상기 나노 피브릴들과 결합하거나 상기 마이크로 셀룰로오스 섬유의 표면 또는 내부에 결합되는,
    고분자 복합체.
  4. 제 2 항에 있어서,
    상기 마이크로 셀룰로오스 섬유는 1 ㎛ 내지 30 ㎛인 단축 지름을 가지며,
    상기 나노 피브릴들은 10 nm 내지 400 nm인 단축 지름을 가지는,
    고분자 복합체.
  5. 제 2 항에 있어서,
    상기 무기 입자들은 지름이 0.01 ㎛ 내지 10 ㎛인 구형 입자; 일축 지름이 0.01 ㎛ 내지 10 ㎛이고, 다른 일축 지름이 0.02 ㎛ 내지 30 ㎛인 기둥형 입자; 또는 이들의 혼합물을 포함하는, 고분자 복합체.
  6. 제 2 항에 있어서,
    상기 무기 입자들은 구리, 아연, 칼슘, 알루미늄, 철, 은, 백금, 팔라듐, 루테늄, 이리듐, 로듐, 오스뮴, 크롬, 코발트, 니켈, 망간, 바나듐, 몰리브덴, 마그네슘, 스트론튬, 티타늄, 지르코늄, 하프늄, 및 갈륨으로 이루어진 군에서 선택된 1 종 이상의 원소를 포함하는, 고분자 복합체.
  7. 제 2 항에 있어서,
    상기 무기 입자들은 상기 마이크로 셀룰로오스 섬유 100 중량부에 대하여 1 내지 40 중량부로 포함되는, 고분자 복합체.
  8. 제 1 항에 있어서,
    상기 고분자 매트릭스 30 내지 90 중량%;
    상기 마이크로 셀룰로오스 섬유 5 내지 60 중량%; 및
    상기 상용화제 1 내지 20 중량%
    를 포함하는, 고분자 복합체.
  9. 제 1 항에 있어서,
    상기 고분자 매트리스는 폴리올레핀, 폴리아미드, 스티렌계 중합체, 및 폴리카보네이트로 이루어진 군에서 선택된 1종 이상의 고분자인, 고분자 복합체.
  10. 제 1 항에 있어서,
    상기 상용화제는 변성 폴리올레핀을 포함하는, 고분자 복합체.
  11. 제 1 항에 있어서,
    상기 고분자 복합체로부터 제조된 ASTM D638-5 규격의 시편에 대하여 ASTM D638-5에 따라 측정된 인장 강도가 35 MPa 내지 65 MPa인, 고분자 복합체.
  12. 제 1 항에 있어서,
    상기 고분자 복합체로부터 제조된 크기 80 mm x 10 mm x 4 mm의 시편에 대하여 ISO 178에 따라 측정된 굴곡 강도가 50 MPa 내지 85 MPa인, 고분자 복합체.
  13. 제 1 항에 있어서,
    상기 고분자 복합체로부터 제조된 크기 80 mm x 10 mm x 4 mm의 시편에 대하여 ISO 178에 따라 측정된 굴곡 탄성률이 1.0 GPa 내지 3.5 GPa인, 고분자 복합체.
PCT/KR2022/003159 2021-03-05 2022-03-07 고분자 복합체 WO2022186669A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280004325.XA CN115667412B (zh) 2021-03-05 2022-03-07 聚合物复合材料
US17/925,484 US20230183432A1 (en) 2021-03-05 2022-03-07 Polymer Composite
EP22763650.3A EP4134403A4 (en) 2021-03-05 2022-03-07 POLYMER COMPOSITE
JP2022568639A JP2023525539A (ja) 2021-03-05 2022-03-07 高分子複合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210029734 2021-03-05
KR10-2021-0029734 2021-03-05
KR10-2022-0028337 2022-03-04
KR1020220028337A KR20220125705A (ko) 2021-03-05 2022-03-04 고분자 복합체

Publications (1)

Publication Number Publication Date
WO2022186669A1 true WO2022186669A1 (ko) 2022-09-09

Family

ID=83154295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003159 WO2022186669A1 (ko) 2021-03-05 2022-03-07 고분자 복합체

Country Status (5)

Country Link
US (1) US20230183432A1 (ko)
EP (1) EP4134403A4 (ko)
JP (1) JP2023525539A (ko)
CN (1) CN115667412B (ko)
WO (1) WO2022186669A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120250A (ko) * 2010-04-28 2011-11-03 인하대학교 산학협력단 셀룰로오스-ZnO 압전 종이 및 이의 제조 방법
JP2020007496A (ja) * 2018-07-11 2020-01-16 旭化成株式会社 セルロース含有樹脂組成物
JP2020070379A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂
WO2021242069A1 (ko) * 2020-05-29 2021-12-02 주식회사 엘지화학 고분자 복합체

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007247A (ja) * 2010-06-22 2012-01-12 Oji Paper Co Ltd 微細繊維状セルロースと無機化合物ナノ粒子のコンポジットシート
KR101415636B1 (ko) * 2011-10-26 2014-07-09 인하대학교 산학협력단 산화아연-셀룰로오스 나노 복합재 및 이의 제조 방법
CN104031366B (zh) * 2014-06-27 2016-05-04 重庆大学 纤维素偶合纳米金属氧化物增强聚乳酸材料及其制备方法
JP6910026B2 (ja) * 2016-10-03 2021-07-28 国立研究開発法人産業技術総合研究所 複合材料とその製造方法及び熱伝導性材料
KR102107801B1 (ko) * 2017-04-14 2020-05-07 세종대학교산학협력단 나노 셀룰로오스 복합체 및 이의 제조방법
JP7167433B2 (ja) * 2017-12-01 2022-11-09 凸版印刷株式会社 樹脂組成物および樹脂組成物の製造方法
CN111065682B (zh) * 2018-05-14 2022-07-12 株式会社Lg化学 基体共聚物、接枝共聚物和热塑性树脂组合物
CN110041564A (zh) * 2019-03-29 2019-07-23 北京林业大学 纤维素抗菌膜的原位制备方法、由该方法制备的纤维素抗菌膜及其应用
CN111452352B (zh) * 2020-05-15 2022-06-17 中国林业科学研究院林业新技术研究所 一种超弹性3d打印纳米纤维素复合材料及其制备方法
JP2024511502A (ja) * 2021-08-13 2024-03-13 エルジー・ケム・リミテッド 高分子複合体およびそれを含む成形品
WO2023018030A1 (ko) * 2021-08-13 2023-02-16 주식회사 엘지화학 고분자 복합체 및 이를 포함하는 성형품
JP2024510599A (ja) * 2021-08-13 2024-03-08 エルジー・ケム・リミテッド 高分子複合体およびそれを含む成形品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120250A (ko) * 2010-04-28 2011-11-03 인하대학교 산학협력단 셀룰로오스-ZnO 압전 종이 및 이의 제조 방법
JP2020007496A (ja) * 2018-07-11 2020-01-16 旭化成株式会社 セルロース含有樹脂組成物
JP2020070379A (ja) * 2018-10-31 2020-05-07 大王製紙株式会社 繊維状セルロース複合樹脂
WO2021242069A1 (ko) * 2020-05-29 2021-12-02 주식회사 엘지화학 고분자 복합체

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAHOO KARUNAKAR, MOHANTY BISWAJYOTI, NAYAK JHASAKETAN: "Study of ultraviolet sensing properties of ZnO nanoparticles grown on cellulose fibers", MATERIALS TODAY: PROCEEDINGS, ELSEVIER, NL, vol. 18, 1 January 2019 (2019-01-01), NL , pages 1156 - 1161, XP055963554, ISSN: 2214-7853, DOI: 10.1016/j.matpr.2019.06.576 *
SAHOO KARUNAKAR, NAYAK J.: "ZnO-cellulose nanocomposite powder for application in UV sensors", AIP CONFERENCE PROCEEDINGS, AMERICAN INSTITUTE OF PHYSICS, NEW YORK, US, vol. 1832, 23 May 2017 (2017-05-23), NEW YORK, US , pages 050090, XP055871226, ISSN: 0094-243X, DOI: 10.1063/1.4980323 *
See also references of EP4134403A4 *

Also Published As

Publication number Publication date
JP2023525539A (ja) 2023-06-16
CN115667412B (zh) 2024-02-06
CN115667412A (zh) 2023-01-31
EP4134403A1 (en) 2023-02-15
US20230183432A1 (en) 2023-06-15
EP4134403A4 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2023018033A1 (ko) 고분자 복합체 및 이를 포함하는 성형품
WO2018236151A1 (ko) Pbs 복합소재 및 이의 제조 방법
WO2019083153A1 (ko) 그라프트 공중합체, 이를 포함하는 열가소성 수지 조성물 및 이의 제조방법
WO2017069558A1 (ko) 다공성 단일 수지 섬유 복합재 및 다공성 단일 수지 섬유 복합재를 제조하는 방법
WO2022103116A1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
WO2023018030A1 (ko) 고분자 복합체 및 이를 포함하는 성형품
WO2023018031A1 (ko) 고분자 복합체 및 이를 포함하는 성형품
WO2021242068A1 (ko) 고분자 복합체
WO2022186669A1 (ko) 고분자 복합체
WO2020096400A1 (ko) 전도성 농축 수지 조성물, 전도성 폴리아미드 수지 조성물, 이의 제조방법 및 성형품
WO2015005596A1 (ko) 내충격성, 투명성 및 힌지 특성이 우수한 폴리프로필렌 수지 조성물 및 이의 제조방법
JP6787533B1 (ja) 変性セルロース繊維配合樹脂組成物の製造方法
WO2021066438A1 (ko) 아라미드 나노섬유를 포함하는 고분자 복합소재 및 이의 제조방법
WO2022158720A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2018135793A1 (ko) 실리콘 고무 복합재 및 이의 제조방법
WO2022045574A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023033509A1 (ko) 펄프 및 생분해성 수지를 포함하는 성형품, 이의 제조방법 및 성형용 조성물
KR20220125705A (ko) 고분자 복합체
WO2024005288A1 (ko) 자동차 내장재용 복합수지 조성물 및 이를 이용한 자동차 내장재
WO2023033431A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2023229132A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2023146143A1 (ko) 열가소성 수지 조성물 및 성형품
WO2024043533A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품
WO2022164136A1 (ko) 경량 복합체 조성물 및 경량 복합체의 제조방법
WO2023068481A1 (ko) 폴리에스테르 수지 조성물, 이의 제조방법 및 이로부터 제조된 성형품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763650

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022568639

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022763650

Country of ref document: EP

Effective date: 20221107

NENP Non-entry into the national phase

Ref country code: DE