CN111452352B - 一种超弹性3d打印纳米纤维素复合材料及其制备方法 - Google Patents

一种超弹性3d打印纳米纤维素复合材料及其制备方法 Download PDF

Info

Publication number
CN111452352B
CN111452352B CN202010415155.7A CN202010415155A CN111452352B CN 111452352 B CN111452352 B CN 111452352B CN 202010415155 A CN202010415155 A CN 202010415155A CN 111452352 B CN111452352 B CN 111452352B
Authority
CN
China
Prior art keywords
cellulose
printing
nano
nanocellulose
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010415155.7A
Other languages
English (en)
Other versions
CN111452352A (zh
Inventor
陈媛
姜峰
李改云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Forestry New Technology of Chinese Academy of Forestry
Original Assignee
Research Institute of Forestry New Technology of Chinese Academy of Forestry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Forestry New Technology of Chinese Academy of Forestry filed Critical Research Institute of Forestry New Technology of Chinese Academy of Forestry
Priority to CN202010415155.7A priority Critical patent/CN111452352B/zh
Publication of CN111452352A publication Critical patent/CN111452352A/zh
Application granted granted Critical
Publication of CN111452352B publication Critical patent/CN111452352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/379Handling of additively manufactured objects, e.g. using robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • B29C2071/0027Removing undesirable residual components, e.g. solvents, unreacted monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Robotics (AREA)

Abstract

本发明涉及一种超弹性3D打印纳米纤维素复合材料及其制备方法,包括以下步骤:将浓度为1.5~12wt%的纳米纤维素水溶液与无机纳米颗粒共混,经均质处理后进行3D打印成型,打印水凝胶经吸湿性盐浸渍,冷冻干燥成型,即得。本发明提供的抗疲劳、高弹性3D复合材料,在物质吸附、水收集、生物工程等方面具有广阔的应用前景。

Description

一种超弹性3D打印纳米纤维素复合材料及其制备方法
技术领域
本发明涉及3D打印材料技术领域,具体涉及一种超弹性3D打印纳米纤维素复合材料及其制备方法。
背景技术
纤维素广泛存在于植物及其加工物、海洋生物和细菌等。纳米纤维素因其独特的小尺寸效应、高比表面积、高杨氏模量、高机械强度以及高生物生物相容性等,使其在物理、化学、力学性能上与宏观物体显著不同。纳米纤维素还具有良好的蓬松三维网络结构,能促使聚合物基体和纳米纤维素达到机械结合,增强基体材料性能。因此,采用纳米纤维素作为主体材料或填充材料,符合高性能绿色复合材料的发展趋势。
纳米纤维素/无机纳米颗粒高性能复合材料成为制备功能材料的重要方法,随着3D打印技术的兴起,人们对材料的要求更加严格,目前,3D打印技术主要包括树脂复合材料、高分粉末材料、石蜡粉末材料、陶瓷粉末材料、木塑复合材料等。常规的3D打印方法依托高温熔融等方法,容易造成生物质碳化等问题,因此,直写成型打印方式具有一定的发展空间。而无机纳米颗粒水溶液由于极低的黏度和浓度,不能采用3D打印技术,因此,在3D打印技术领域开发纳米纤维素/无机纳米颗粒复合材料具有重要意义。
传统的纳米纤维素复合3D打印材料具有刚性特征,不具有弹性和抗疲劳性,而改性该材料力学性能的方法主要为硅烷气相沉积等化学修饰方法。这种方法成本较高,且不符合环保可持续发展的要求。因此,目前亟需提供具有高弹性抗疲劳的3D打印纳米纤维素/无机纳米颗粒复合材料。
发明内容
针对现有技术中存在的缺陷和不足,本发明提供了一种超弹性3D打印纳米纤维素复合材料及其制备方法。
本发明采用特定浓度纳米纤维素作为增稠剂,实现无机纳米颗粒的打印成型,并采用浸渍法使材料表面覆盖吸湿性盐,从而达到柔化复合物材料的目的,最终制备具有高弹性抗疲劳的3D打印纳米纤维素复合材料。
本发明的目的之一在于提供一种超弹性3D打印纳米纤维素复合材料的制备方法,包括以下步骤:将浓度为1.5~12wt%的纳米纤维素水溶液与无机纳米颗粒共混,经均质处理后进行3D打印成型,打印水凝胶经吸湿性盐浸渍,冷冻干燥成型,即得。
根据本发明的一些优选实施方式,包括以下步骤:
步骤1),直接配制或脱水处理形成浓度为1.5~12wt%的纳米纤维素水溶液;
步骤2),向步骤1)中的所述纳米纤维素水溶液中加入质量分数5~90%的无机纳米颗粒,进行高速均质,得打印墨水;
步骤3),将步骤2)中所制备的打印墨水进行3D打印成型,得成型样品;
步骤4),将步骤3)的所述成型样品置于0.1~2mol/L的吸湿性盐溶液中浸泡1min以上,然后进行干燥,即得。
根据本发明的一些优选实施方式,步骤1)中,所述纳米纤维素包括微晶纤维素、TEMPO氧化纤维素、羟甲基纤维素或酶解纳米纤维素,动物纳米纤维素或细菌纤维素中的一种或多种,优选为微晶纤维素或TEMPO氧化纤维素。
根据本发明的一些优选实施方式,步骤1)中,配制浓度为6~8wt%的微晶纳米纤维素或羟甲基纤维素的水溶液;和/或,对TEMPO纳米纤维素水溶液脱水处理形成浓度为2~3wt%的纳米纤维素水溶液。本发明中通过采用特定浓度纳米纤维素起到增稠的效果,从而增强水性聚氨酯的可打印性。
根据本发明的一些优选实施方式,步骤2)中,所述无机纳米颗粒的固含量为5~90%;和/或,所述无机纳米颗粒和纳米纤维素共混的固含质量比为1:19~9:1,优选为5:5~8:2。
根据本发明的一些优选实施方式,步骤2)中,所述无机纳米颗粒包含纳米粒子、纳米纤维、纳米薄膜、纳米块状和纳米晶中的一种或多种,优选为TiO2纳米颗粒,SiO2纳米颗粒,碳纳米管、石墨烯或纳米蒙脱土。
根据本发明的一些优选实施方式,步骤1)中,所述脱水处理为真空干燥去水、自然干燥去水、烘箱干燥去水或冷冻干燥去水。
根据本发明的一些优选实施方式,步骤3)中,3D打印成型为常温打印,打印速度为2~6mm/s,材料挤出速度为1~3mL/h,喷嘴口直径为0.2~0.6mm,优选的,打印速度为2.5mm/s,材料挤出速度为1.5mL/h,喷嘴口直径为0.41mm。
根据本发明的一些优选实施方式,步骤4)中,所述吸湿性盐溶液选自钙盐、镁盐、钠盐和铵盐中的一种或多种的盐溶液,浓度0.1~2mol/L,优选选自氯化钠、氯化钙、尿素、硝酸铵和氯化镁中的一种或多种的盐溶液,优选浓度为0.3~0.75mol/L。
根据本发明的一些优选实施方式,步骤4)中,所述吸湿性盐溶液浸泡时间为1~30min;优选5~10min。
本发明中通过采用吸湿性盐以特定浓度和工艺参数吸附到样品内部,能有效吸收水分,水分破坏纤维素氢键作用,起到柔化纤维的效果,从而增强复合材料的弹性。
根据本发明的一些优选实施方式,步骤4)中,所述干燥采用室温干燥、超临界干燥、冷冻干燥或溶液置换干燥,优选为液氮冷冻干燥。
根据本发明的一些优选实施方式,1)直接配制6wt%的微晶纳米纤维素或将低浓度TEMPO氧化纳米纤维素水溶液脱水至2.5wt%,加入无机纳米颗粒,无机纳米颗粒与纳米纤维素共混的固含质量比为1:19到9:1,共混后进行高速均质;2)在室温下直接用于3D打印成型,打印速度为2~6mm/s,材料挤出速度为1~3mL/h,喷嘴口直径为0.2~0.6mm;3)用浓度为0.3~0.75mol/L的吸湿性盐溶液滴加到成型样品上1min以上,或将打印水凝胶样品浸泡至以上浓度的吸湿性盐溶液中1min以上;4)样品取出后采用常温干燥、冷冻干燥、超临界干燥和溶剂置换干燥方式成型。
本发明另一目的在于提供一种超弹性3D打印纳米纤维素复合材料,由所述的方法制备得到。
本发明的有益效果至少在于:本发明提供的方法制备了具有高弹性抗疲劳的3D打印纳米纤维素/无机纳米颗粒复合材料,高弹性抗疲劳压缩性能优异使材料具有循环使用、节约成本的优势。本发明提供的抗疲劳、高弹性3D复合材料,在物质吸附、水收集、生物工程等方面具有广阔的应用前景。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中,实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件,或者按照产品说明书进行。所用仪器等未注明生产厂商者,均为可通过正规渠道商购买得到的常规产品。本发明中所用的化工原料均可在国内化工产品市场方便买到。
实施例1
本实施例提供超弹性3D打印纳米纤维素复合材料的制备方法,步骤如下:
步骤1)配制6wt%质量分数的微晶纳米纤维素溶液100克;
步骤2)在配制好的微晶纳米纤维素水溶液中加入TiO2纳米颗粒6克,采用高速均质机均质;
步骤3)在室温下直接用于3D打印成型,打印速度为2.5mm/s,材料挤出速度为1.5mL/h,喷嘴口直径为0.41mm;
步骤4)用浓度为0.5mol/L的氯化钙溶液滴加到成型样品上5min,样品取出后液氮冷冻干燥,置于40%的湿度环境中。
通过对实施例1制备的纳米纤维素/TiO2纳米颗粒复合物3D打印样品进行24次50%形变压缩测试,压缩速率为50mm/min,检测结果如下:24次压缩后,只有6%的压缩形变没有恢复,94%的压缩形变可恢复,可以看出,本实施例方法制备的纳米纤维素/TiO2纳米颗粒复合物3D打印样品具有优异的回弹性能和抗疲劳性能。
实施例2
本实施例提供超弹性3D打印纳米纤维素材料的制备方法,步骤如下:
步骤1)采用真空干燥方式使TEMPO氧化制备的纳米纤维素水溶液脱水至2.0wt%浓度,取100克;
步骤2)在脱水后的纳米纤维素水溶液中加入纳米蒙脱土18克,采用高速均质机均质;
步骤3)在室温下直接用于3D打印成型,打印速度为2.5mm/s,材料挤出速度为1.5mL/h,喷嘴口直径为0.41mm;
步骤4)用浓度为0.75mol/L的氯化钙溶液滴加到成型样品上30min,样品取出后液氮冷冻干燥,置于40%的湿度环境中。
对比例1
采用实施例2中的方法,不同之处仅在于步骤4)采用0.05mol/L的氯化钙溶液滴加到打印成型样品上。
实验例1
对以上实施例2和对比例1中的复合材料进行力学压缩测试,压缩形变为50%时,实施例2样品100%形变恢复,对比例1样品接近40%的压缩变形不可恢复,可以看出,低浓度吸湿性盐不能使材料具有回弹性能。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (8)

1.一种超弹性3D打印纳米纤维素复合材料的制备方法,其特征在于,包括以下步骤:
步骤1),配制浓度为6~8wt%的微晶纳米纤维素或羟甲基纤维素的水溶液,或对TEMPO纳米纤维素水溶液脱水处理形成浓度为2~3wt%的纳米纤维素水溶液;所述纳米纤维素包括微晶纤维素、TEMPO氧化纤维素、羟甲基纤维素、酶解纳米纤维素、动物纳米纤维素、细菌纤维素中的一种或多种;所述脱水处理为真空干燥去水;
步骤2),向步骤1)中的所述纳米纤维素水溶液中加入质量分数5~90%的无机纳米颗粒,进行高速均质,得打印墨水;所述无机纳米颗粒为TiO2纳米颗粒、SiO2纳米颗粒、碳纳米管、石墨烯或纳米蒙脱土;
步骤3),将步骤2)中所制备的打印墨水进行3D打印成型,得成型样品;3D打印成型为常温打印,打印速度为2~6 mm/s,材料挤出速度为1~3 mL/h,喷嘴口直径为0.2~0.6 mm;
步骤4),将步骤3)的所述成型样品置于0.3~0.75mol/L的吸湿性盐溶液中浸泡1~30min,然后进行干燥,即得;所述吸湿性盐溶液选自氯化钠、氯化钙、尿素、硝酸铵和氯化镁中的一种或多种的盐溶液。
2.根据权利要求1所述的方法,其特征在于,步骤1)中,所述纳米纤维素为微晶纤维素或TEMPO氧化纤维素。
3.根据权利要求1所述的方法,其特征在于,步骤2)中,所述无机纳米颗粒的固含量为5~90%;和/或,所述无机纳米颗粒和纳米纤维素共混的固含质量比为1:19~9:1。
4.根据权利要求3所述的方法,其特征在于,所述无机纳米颗粒和纳米纤维素共混的固含质量比为5:5~8:2。
5.根据权利要求1所述的方法,其特征在于,步骤3)中,打印速度为2.5 mm/s,材料挤出速度为1.5 mL/h,喷嘴口直径为0.41 mm。
6.根据权利要求1所述的方法,其特征在于,步骤4)中,所述吸湿性盐溶液浸泡时间为5~10min;和/或,所述干燥采用室温干燥、超临界干燥、冷冻干燥或溶液置换干燥。
7.根据权利要求6所述的方法,其特征在于,步骤4)中,所述干燥为液氮冷冻干燥。
8.一种超弹性3D打印纳米纤维素复合材料,其特征在于,由权利要求1-7任一项所述的方法制备得到。
CN202010415155.7A 2020-05-15 2020-05-15 一种超弹性3d打印纳米纤维素复合材料及其制备方法 Active CN111452352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010415155.7A CN111452352B (zh) 2020-05-15 2020-05-15 一种超弹性3d打印纳米纤维素复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010415155.7A CN111452352B (zh) 2020-05-15 2020-05-15 一种超弹性3d打印纳米纤维素复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111452352A CN111452352A (zh) 2020-07-28
CN111452352B true CN111452352B (zh) 2022-06-17

Family

ID=71675696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010415155.7A Active CN111452352B (zh) 2020-05-15 2020-05-15 一种超弹性3d打印纳米纤维素复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111452352B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112812376A (zh) * 2021-01-13 2021-05-18 上海大学 一种3d打印纤维素/纳米无机填料复合凝胶墨水及其制备方法
CN112920538B (zh) * 2021-01-27 2022-12-06 英索来欣(盐城)新材料科技有限公司 一种超弹性3d打印纳米纤维素复合材料及其制备方法
US20230183432A1 (en) * 2021-03-05 2023-06-15 Lg Chem, Ltd. Polymer Composite
CN113385140A (zh) * 2021-05-08 2021-09-14 西安交通大学 用于3d打印的蒙脱石纳米片凝胶墨水及制备方法和基于其的吸附材料和应用
CN113694891B (zh) * 2021-08-26 2023-09-01 华侨大学 一种基于3d打印制备炭黑吸附材料的方法
CN113666358B (zh) * 2021-09-28 2023-08-18 四川大学 一种通过直接墨水书写3d打印技术制备三维柔性碳基气凝胶的方法
CN113845700B (zh) * 2021-09-28 2022-10-14 四川大学 一种钛酸钡基体复合材料及其diw打印成型方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2741514T3 (es) * 2015-10-14 2020-02-11 Fiberlean Tech Ltd Material laminado conformable en 3D
CN110368718B (zh) * 2019-06-28 2021-10-22 天津大学 一种三维打印的超亲水及水下超疏油网膜及其制备方法
CN110452510A (zh) * 2019-08-20 2019-11-15 管彩琴 一种3d打印用高强度易降解材料及其制备方法
CN110982339A (zh) * 2019-12-16 2020-04-10 郑州中科新兴产业技术研究院 3d打印制备的石墨烯基柔性传感器、制备方法及应用

Also Published As

Publication number Publication date
CN111452352A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN111452352B (zh) 一种超弹性3d打印纳米纤维素复合材料及其制备方法
Tanpichai et al. Review of the recent developments in all-cellulose nanocomposites: Properties and applications
Duan et al. Recent advances in chitin based materials constructed via physical methods
Huang et al. Introduction to nanocellulose
Wei et al. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis
CN101586309B (zh) 一种原位复合单质纳米银的细菌纤维素膜的制备方法
Wahid et al. Bacterial cellulose and its potential for biomedical applications
Long et al. Cellulose aerogels: Synthesis, applications, and prospects
Fu et al. Present status and applications of bacterial cellulose-based materials for skin tissue repair
Asim et al. Biomass and industrial wastes as resource materials for aerogel preparation: opportunities, challenges, and research directions
Naz et al. Nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims
Thakur Nanocellulose polymer nanocomposites: fundamentals and applications
Zhao et al. Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans
Ji et al. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery
Navya et al. Bacterial cellulose: A promising biopolymer with interesting properties and applications
Qi Novel functional materials based on cellulose
Meftahi et al. The effects of cotton gauze coating with microbial cellulose
Chen et al. Bacterial cellulose/gelatin composites: in situ preparation and glutaraldehyde treatment
KR20140133094A (ko) 박테리아 셀룰로오스와 강화재료의 복합재 및 그 제조방법
Orasugh et al. Nanofiber-reinforced biocomposites
Figueiredo et al. Bacterial Cellulose‐Based Nanocomposites: Roadmap for Innovative Materials
CN106860916B (zh) 一种GO/nHA/胶原复合骨修复材料及其制备方法
Ul-Islam et al. Synthesis, chemistry, and medical application of bacterial cellulose nanocomposites
Kiangkitiwan et al. Preparation and properties of bacterial cellulose/graphene oxide composite films using dyeing method
Liu et al. Physicochemical properties and antibacterial activity of gellan gum incorporating zinc oxide/carbon nanotubes bionanocomposite film for wound healing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant