WO2022186157A1 - 芯鞘複合繊維および繊維構造体 - Google Patents

芯鞘複合繊維および繊維構造体 Download PDF

Info

Publication number
WO2022186157A1
WO2022186157A1 PCT/JP2022/008397 JP2022008397W WO2022186157A1 WO 2022186157 A1 WO2022186157 A1 WO 2022186157A1 JP 2022008397 W JP2022008397 W JP 2022008397W WO 2022186157 A1 WO2022186157 A1 WO 2022186157A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
component
fiber
composite fiber
polymer
Prior art date
Application number
PCT/JP2022/008397
Other languages
English (en)
French (fr)
Inventor
孝太 研井
俊一 長谷川
祐二 荻野
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2023503839A priority Critical patent/JPWO2022186157A1/ja
Publication of WO2022186157A1 publication Critical patent/WO2022186157A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Definitions

  • the present invention relates to a core-sheath composite fiber and a fiber structure that have a molten anisotropic aromatic polyester as a core component, improve fibril resistance, have excellent abrasion resistance, and have excellent dimensional stability.
  • Fused anisotropic aromatic polyester fibers are known to have high strength and high modulus, but these fibers are easily fibrillated by abrasion because the molecular chains are highly oriented in the direction of the fiber axis. There was a problem. Accordingly, a composite fiber has been proposed in which fibrillation is suppressed by covering the periphery with a sheath component while using a molten anisotropic aromatic polyester as a core component.
  • a core component is a molten anisotropic aromatic polyester (A), and a flexible polyester (B ), and the polyester (B) has an intrinsic viscosity [ ⁇ ] of 0.65 dl/g or more.
  • Patent Document 1 describes that by blending the same polymer as the core component into the sheath component, the strength of the sheath component is increased and at the same time the adhesiveness to the core component is increased.
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2008-255535 discloses that the core component is made of a molten anisotropic aromatic polyester (A polymer), the sheath component has a sea-island structure, and the sheath component ratio is from 0.2 to 0.7, and the sea component constituting the sheath component consists of a flexible thermoplastic polymer (B polymer), the island component consists of a melting anisotropic aromatic polyester (C polymer), and the island component in the sheath component A core-sheath composite fiber satisfying a component ratio of 0 to 0.25, wherein 0.03 to 2.5% by mass of inorganic fine particles containing a silicate compound as a main component are attached to the fiber surface. is disclosed.
  • a polymer molten anisotropic aromatic polyester
  • B polymer flexible thermoplastic polymer
  • C polymer melting anisotropic aromatic polyester
  • the sheath component is composed of a melt anisotropic polyester and a polymer having no melt anisotropy. Forming by blending is described.
  • Patent Literature 1 denies that the sheath component ratio decreases, arguing that the core component is likely to be exposed when the sheath component ratio containing the flexible polyester is less than 0.2, and also denies that the sheath component ratio decreases. If the ratio of the anisotropic aromatic polyester exceeds 10%, unevenness occurs on the fiber surface and the spinnability deteriorates. Therefore, reducing the ratio of the flexible polyester (B polymer) in the core-sheath composite fiber is denied.
  • the B polymer component (sea component) is still large, and the properties derived from the B polymer component are still present. presumed to be pronounced.
  • an object of the present invention is to provide a technique for improving fibril resistance and abrasion resistance in a core-sheath composite fiber, while at the same time providing excellent dimensional stability.
  • the inventors of the present invention have made intensive studies to achieve the above objects, and found that in a core-sheath composite fiber having a melted anisotropic aromatic polyester as a core component, (I) the sheath component is a melted anisotropic aromatic polyester.
  • a sea-island structure having islands made of group polyester and seas made of a flexible thermoplastic polymer, and increasing the ratio of the flexible thermoplastic polymer in the core-sheath composite fiber, the properties of the flexible thermoplastic polymer can be obtained.
  • the high proportion of flexible thermoplastic polymer results in decreased dimensional stability.
  • a new challenge was to achieve both improved wear resistance and improved dimensional stability.
  • the ratio of the flexible thermoplastic polymer in the core-sheath composite fiber is set within a predetermined range, and the discharged yarn discharged by kneading the sheath component by a specific method is drawn at a specific draft value.
  • the present inventors have found that the wear resistance of the core-sheath composite fiber can be improved and the dimensional stability can also be improved by removing the core-sheath composite fiber, thus completing the present invention.
  • the core component comprises a melted anisotropic aromatic polyester (A polymer), the sheath component comprises a flexible thermoplastic polymer (B polymer) and the melted anisotropic aromatic polyester (C polymer), the B polymer being the sea component.
  • a polymer a melted anisotropic aromatic polyester
  • B polymer a flexible thermoplastic polymer
  • C polymer the melted anisotropic aromatic polyester
  • the ratio of the B polymer component in the core-sheath composite fiber is 20% by weight or less (preferably 18% by weight or less, more preferably 16% by weight or less, still more preferably less than 15% by weight, and even more preferably 14% by weight or less, Especially preferably 12% by weight or less, most preferably 11% by weight or less).
  • the maximum width W of the island portion having the largest width in the direction perpendicular to the fiber is 0.65 ⁇ m or less ( (preferably 0.60 ⁇ m or less, more preferably 0.55 ⁇ m or less, still more preferably 0.50 ⁇ m or less).
  • the island portion having the maximum width W extends from one longitudinal end of the fiber to the other.
  • the ratio L1/W to the maximum width W of the portion is 5.0 or more (preferably 5.1 or more, more preferably 5.2 or more, still more preferably 5.3 or more, still more preferably 5.5 or more)
  • a core-sheath composite fiber is 5.0 or more (preferably 5.1 or more, more preferably 5.2 or more, still more preferably 5.3 or more, still more preferably 5.5 or more) A core-sheath composite fiber.
  • a fiber structure comprising at least a part of the core-sheath composite fiber according to any one of aspects 1 to 8.
  • the cross section of the core-sheath composite fiber cut along the fiber longitudinal direction so as to include the fiber central axis is sometimes referred to as the "fiber longitudinal section".
  • the vertical direction of the fiber means a direction orthogonal to the longitudinal direction of the fiber (or a direction perpendicular to the longitudinal direction of the fiber) in the longitudinal section of the fiber.
  • the core-sheath composite fiber has a melted anisotropic aromatic polyester as the core component and the sheath component has a sea-island structure.
  • a thermoplastic polymer and a melting anisotropic aromatic polyester are used, the ratio of the flexible thermoplastic polymer in the core-sheath composite fiber is set within a predetermined range, and the sheath component is kneaded by a specific method to obtain a core-sheath composite fiber. It can improve abrasion resistance, prevent fibrillation, and highly improve dimensional stability.
  • FIG. 1 is a schematic perspective view of a core-sheath composite fiber according to an embodiment of the present invention
  • FIG. 1 is a schematic cross-sectional view of a concentric-sheath conjugate fiber cut in the fiber longitudinal direction.
  • FIG. It is an enlarged view of the II part in FIG. 1B.
  • FIG. 1 is a schematic cross-sectional view of a concentric-sheath conjugate fiber cut along a plane perpendicular to the longitudinal direction of the fiber;
  • FIG. 2 is a schematic cross-sectional view showing the structure of a spinneret used for spinning a concentric-sheath conjugate fiber.
  • One aspect of the present invention is a core-sheath composite fiber comprising a core component and a sheath component covering the core component, and the sheath component has a sea-island structure including a sea component and an island component.
  • the core component comprises a melt anisotropic aromatic polyester (A polymer)
  • the sheath component comprises a flexible thermoplastic polymer (B polymer) and a melt anisotropic aromatic polyester (C polymer), the B polymer comprising the sea component. and the C polymer forms the island component.
  • the ratio of the flexible thermoplastic polymer (B polymer) in the core-sheath composite fiber is 20% by weight or less.
  • the melt anisotropic aromatic polyester (A polymer) used for the core component is a polymer exhibiting optical anisotropy (liquid crystallinity) in the melt phase. For example, a sample is placed on a hot stage, heated in a nitrogen atmosphere, and the light transmitted through the sample is observed to determine whether it is a molten anisotropic aromatic polyester.
  • the melting anisotropic aromatic polyester of the present invention is composed of repeating structural units derived from, for example, an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, etc., unless the effects of the present invention are impaired. , an aromatic dicarboxylic acid, and an aromatic hydroxycarboxylic acid are not particularly limited in their chemical constitution.
  • the fusion anisotropic aromatic polyester may contain structural units derived from aromatic diamines, aromatic hydroxyamines, or aromatic aminocarboxylic acids to the extent that the effects of the present invention are not impaired.
  • preferred structural units include those shown in Table 1.
  • Y in the formula is independently a hydrogen atom, a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (e.g., alkyl group having 1 to 4 carbon atoms such as methyl group, ethyl group, isopropyl group, t-butyl group, etc.), alkoxy group (e.g., methoxy group, ethoxy group, isopropoxy group, n-butoxy group, etc.), aryl group (e.g., phenyl group, naphthyl group, etc.), aralkyl group [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group), etc.], aryloxy groups (eg, phenoxy group, etc.), aralkyloxy groups (eg, benzyl
  • More preferred structural units include structural units described in Examples (1) to (18) shown in Tables 2, 3 and 4 below.
  • the structural unit in the formula is a structural unit capable of exhibiting multiple structures, two or more of such structural units may be combined and used as a structural unit that constitutes the polymer.
  • n is an integer of 1 or 2
  • Y 1 and Y 2 are each independently a hydrogen atom, a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group (e.g., methyl group, ethyl group, isopropyl group, t-butyl group, etc.) C1-C4 alkyl group, etc.), alkoxy group (e.g., methoxy group, ethoxy group, isopropoxy group, n-butoxy group, etc.), aryl group (e.g., phenyl group, naphthyl group, etc.), aralkyl group [benzyl group (phenylmethyl group), phenethyl group (phenylethyl group), etc.], aryloxy group (eg., fluorine atom
  • Z includes a substituent represented by the following formula.
  • the fusion anisotropic aromatic polyester may preferably be a combination having a naphthalene skeleton as a structural unit.
  • the structural unit (A) includes the following formula (A)
  • the structural unit (B) includes the following formula (B).
  • the ratio of units (B) may preferably range from 9/1 to 1/1, more preferably from 7/1 to 1/1, even more preferably from 5/1 to 1/1.
  • the total amount of the structural units (A) and the structural units (B) may be, for example, 65 mol% or more, more preferably 70 mol% or more, and still more preferably 80 mol% of all structural units. % or more.
  • a melting anisotropic aromatic polyester containing 4 to 45 mol % of the constituent units of (B) is particularly preferred.
  • the melting point of the melting anisotropic aromatic polyester suitably used in the present invention is preferably in the range of 250 to 360°C, more preferably 260 to 320°C.
  • the melting point here is measured by a test method conforming to JIS K 7121, and the peak temperature of the main endothermic peak observed with a differential scanning calorimeter (for example, Shimadzu Corporation DSC: Differential scanning calorimetry) is.
  • the above melting anisotropic aromatic polyester includes thermoplastic resins such as polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyamide, polyphenylene sulfide, polyether ether ketone, and fluororesin, as long as the effects of the present invention are not impaired.
  • a polymer may be added. It may also contain various additives such as inorganic substances such as titanium oxide, kaolin, silica and barium oxide, carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers and light stabilizers.
  • the sheath component has a sea-island structure, with the flexible thermoplastic polymer (B polymer) forming the sea component and the melting anisotropic aromatic polyester (C polymer) forming the island component.
  • the flexible thermoplastic polymer (B polymer) forming the sea component may be a polymer having no aromatic ring on the main chain, or a polymer having an aromatic ring on the main chain and atoms on the main chain between the aromatic rings.
  • polystyrene resin there are four or more polymers, specifically, for example, polyolefin, polyamide, polycarbonate, polyphenylene sulfide (abbreviation: PPS), polyethylene terephthalate, modified polyethylene terephthalate, amorphous polyarylate, polyethylene naphthalate (abbreviation : PEN), polyether ether ketone, fluororesin, and the like.
  • PPS polyethylene terephthalate
  • PEN polyethylene naphthalate
  • polyether ether ketone fluororesin, and the like.
  • These flexible thermoplastic polymers may be used alone or in combination of two or more, with one being the main thermoplastic polymer (e.g., accounting for 80% by weight or more) and the other as the thermoplastic polymer to be added. good too.
  • PPS and PEN are preferred as main thermoplastic polymers.
  • flexible thermoplastic polymers include inorganic substances such as titanium oxide, silica, and barium oxide, colorants such as carbon black, dyes or pigments, antioxidants, ultraviolet absorbers, light stabilizers, and various additives such as nucleating agents. may contain inorganic substances such as titanium oxide, silica, and barium oxide, colorants such as carbon black, dyes or pigments, antioxidants, ultraviolet absorbers, light stabilizers, and various additives such as nucleating agents. may contain inorganic substances such as titanium oxide, silica, and barium oxide, colorants such as carbon black, dyes or pigments, antioxidants, ultraviolet absorbers, light stabilizers, and various additives such as nucleating agents. may contain
  • the melting anisotropic aromatic polyester (C polymer) forming the island component can include the melting anisotropic aromatic polyester described in the A polymer above, and may be the same as or different from the A polymer. However, from the viewpoint of affinity, they are preferably the same kind of melting anisotropic aromatic polyesters, for example, preferably the melting anisotropic aromatic polyesters having the same main structural unit.
  • the A polymer and the C polymer may be the same type of polymer having the same main structural unit and differing only in, for example, the added thermoplastic polymer or additives.
  • the melting point (Mc) of the C polymer can be appropriately selected within a range in which the C polymer can be finely dispersed in the B polymer. ), it may be in the range of (Mb-10) to (Mb+80)°C, or may be in the range of Mb to (Mb+70)°C.
  • the melt viscosity ⁇ of the C polymer may be, for example, 10 to 60 Pa ⁇ s, preferably 20 to 50 Pa ⁇ s, more preferably 25 to 45 Pa ⁇ s, from the viewpoint of spinnability.
  • the core-sheath composite fiber of the present invention can be produced by a production method comprising at least a kneading step and a discharging step.
  • the manufacturing process may further comprise a heat treatment process.
  • the B polymer and the C polymer used for the sheath component are melted and kneaded using a twin-screw extruder, and the A polymer used for the core component is mixed with the twin-screw extruder used for the sheath component. Melt and knead using a separate extruder.
  • the set temperature of the kneading unit in the twin-screw extruder is (Mb) ° C. or higher relative to the melting point (Mb) of the B polymer
  • the melting point (Mc) of the C polymer is set to (Mc-20) ° C. or more and less than (Mc) ° C.
  • the parallel biaxial screws rotatably supported in the kneading section are rotated to cause the melting point (Mc) in the sheath component. It is possible to finely disperse a plurality of island portions.
  • the extruder for melting and kneading the A polymer may be a single-screw extruder or a twin-screw extruder.
  • the extruder used for melt-kneading may be a single-screw extruder or a twin-screw extruder.
  • the ratio of the core component to the sheath component is, from the viewpoint of reducing the proportion of the B polymer, the weight ratio of the core component/sheath component (hereinafter sometimes simply referred to as the core-sheath ratio), for example, 65/ It may be from 35 to 97/3, preferably from 70/30 to 95/5, more preferably from 75/25 to 90/10.
  • the weight ratio of the core component to the sheath component can be obtained, for example, from the weight ratio of the core component to the sheath component each put into each extruder described later during production.
  • the proportion of the island component in the sheath component may exceed, for example, 10% by weight, preferably 15% by weight or more, and more preferably 20% by weight or more.
  • the proportion of the island component By increasing the proportion of the island component, the effect of anchoring the core component and the sheath component by the island component can be strengthened.
  • the proportion of the island component is too high, the possibility of aggregation of the island component increases, so the island component may be 45% by weight or less, preferably 40% by weight or less.
  • the sheath component and the core component kneaded in the kneading step are compounded and ejected from, for example, a spinneret having a structure shown in FIG. can be spun.
  • the fibers obtained in the discharge step are subjected to heat treatment at stepwise temperature increases, thereby making it possible to more reliably satisfy the required quality.
  • the spinneret temperature (spinning temperature) during ejection may be, for example, (Ma+10) to (Ma+60)° C., preferably (Ma+15) to (Ma+40)° C., relative to the melting point (Ma) of the A polymer. More preferably, it may be (Ma+20) to (Ma+35)°C.
  • the shape of the finely dispersed islands is controlled by the draft value. 38, particularly preferably 20-35.
  • the draft value means the ratio of the winding speed to the discharge speed during spinning.
  • heat treatment may be performed on the spun fibers.
  • the heat treatment not only increases the oriented crystallinity of the B polymer in the sheath component, but also allows solid-phase polymerization of the molten anisotropic aromatic polyester, thereby improving the strength of the core-sheath composite fiber.
  • the spun fiber may be heat-treated under normal pressure or reduced pressure in an atmosphere of an inert gas such as nitrogen or an oxygen-containing active gas (for example, air) atmosphere.
  • the heat treatment atmosphere preferably has a dew point of ⁇ 50° C. or less, preferably ⁇ 60° C. or less, more preferably ⁇ 70° C. or less.
  • the heat treatment conditions are (Ma-20)° C. or less, preferably (Ma-30)° C. or less, more preferably (Ma-40)° C. or less to the melting point of the sheath component with respect to the melting point (Ma) of the A polymer.
  • a temperature pattern in which the temperature is gradually increased to As a method of supplying heat there are a method using a gaseous medium, a method using radiation from a heating plate, an infrared heater, etc., and an internal heating method using a high frequency.
  • the form of processing may be roll-to-roll continuous production, or batch production by rewinding the spun raw yarn on a bobbin for heat treatment, in the form of a skein, a tow, or the like.
  • inorganic fine particles may be applied to the surface of the fiber during spinning, after spinning, and before heat treatment, if necessary.
  • the inorganic fine particles those mainly composed of silicate compounds such as talc and mica are preferable.
  • inorganic fine particles may be adhered.
  • the fibers By uniformly attaching the inorganic fine particles to the surface of the fiber during or after spinning the fiber before heat treatment, the fibers can be prevented from coming into direct contact with each other, and sticking of the fibers can be avoided.
  • Most of the inorganic fine particles containing silicate compounds as a main component are inactive, and even if they are attached to fibers, the physical properties of the fibers are not deteriorated.
  • the method of adhering the inorganic fine particles to the surface of the fiber is not limited at all as long as it is a method that allows the inorganic fine particles to be uniformly adhered to the fiber.
  • a simple and preferable method is to use an oiling roller or a crow mouth to deposit inorganic fine particles dispersed in a spinning oil by stirring.
  • the average particle diameter of the inorganic fine particles attached to the surface of the core-sheath composite fiber may be, for example, in the range of 0.01 to 10 ⁇ m, preferably 0.02 to 5 ⁇ m, from the viewpoint of uniform attachment to the fiber surface.
  • the amount of the inorganic fine particles attached to the surface of the core-sheath composite fiber may range from 0.03 to 2.5% by mass, preferably from 0.1 to 2.3% by mass.
  • FIG. 1A is a schematic perspective view of a core-sheath composite fiber according to an embodiment of the present invention
  • FIG. 1B is a schematic cross-sectional view of the core-sheath composite fiber cut in the longitudinal direction of the fiber.
  • the core-sheath composite fiber 10 has a core portion 12 formed of a core component and a sheath portion 14 formed of a sheath component.
  • FIG. 2 is an enlarged cross-sectional view showing a partially enlarged portion II of FIG. 1B.
  • the sheath portion 14 forms a sea-island structure
  • the sea portion 16 has a sea-island structure.
  • a plurality of islands 18 are formed in the . The islands are finely dispersed in the sea component.
  • the proportion of the sea portion (that is, the flexible thermoplastic polymer) 16 in the core-sheath composite fiber is 20% by weight or less, preferably 18% by weight or less, more preferably 16% by weight. %, more preferably less than 15 wt %, even more preferably 14 wt % or less, particularly preferably 12 wt % or less, most preferably 11 wt % or less.
  • the lower limit of the ratio (% by weight) of the sea (that is, flexible thermoplastic polymer) 16 in the core-sheath composite fiber is not particularly limited, but for example, 5 weight. % or more, preferably 7 wt % or more, more preferably 10 wt % or more.
  • the sheath component containing the flexible thermoplastic polymer can provide the core-sheath composite fiber with abrasion resistance derived from the properties of the flexible thermoplastic polymer.
  • the decrease in dimensional stability derived from the flexible thermoplastic polymer can be suppressed, that is, the dimensional stability of the core-sheath composite fiber can be improved.
  • the core-sheath composite fiber of the present invention by optimizing the content of the flexible thermoplastic polymer in the core-sheath composite fiber, there is a trade-off between improved wear resistance and dimensional stability. can be compatible with the improvement of
  • the islands are basically elliptical and extend in the longitudinal direction of the fiber while being finely dispersed.
  • the diameter of the island portion is large, the unevenness derived from the island component on the fiber surface becomes larger. Since the generation of fibrils is derived from the size of the irregularities on the fiber surface, the maximum diameter of the island portion is preferably small.
  • the island portion has a shape extending long in the longitudinal direction of the fiber because the anchor effect can be exhibited. That is, by simply measuring the maximum width of the island part in one fiber cross section, the contribution of the anchoring effect caused by the length of the island part cannot be taken into account.
  • the fibrillation resistance can be evaluated while considering the degree of contribution. For that purpose, for example, after selecting an island portion having the maximum width W, as shown in FIG.
  • the shape of the island may be evaluated by measuring the maximum oblique length L1 of the length overlapping the oblique line extending at the angle ⁇ (10°), and the shape of the island may be evaluated by calculating L1/W. may be evaluated.
  • the island portion having the maximum width can be selected from an enlarged image of the longitudinal section of the fiber. Specifically, with a scanning probe microscope (SPM), which will be described later, the longitudinal cross section of the fiber is observed at 100 ⁇ m or more and 1000 ⁇ m or less in the fiber longitudinal direction. The numerical value at the point where the length in the vertical direction (perpendicular to the fiber) is maximum is used as the measured value. However, the observation range does not have to be continuous, and may be the sum of a plurality of randomly extracted fields of view.
  • SPM scanning probe microscope
  • the observation range of the longitudinal section of the fiber among the many islands extending in the longitudinal direction of the fiber, a plurality of islands with relatively large lengths in the direction perpendicular to the fiber are extracted, and the length of the islands perpendicular to the fiber
  • the island having the widest width can be determined by comparing the width as the width of the island.
  • only one of the upper and lower portions of the sheath component (for example, the lower portion in FIG. 1B) may be the observation range in the longitudinal section of the fiber.
  • the longitudinal cross-section of the fiber was observed with a scanning probe microscope to determine the maximum width of the islands. may When cutting the fiber, it is preferable to fix the fiber by embedding it in a resin before cutting, in order to minimize the influence of stress.
  • the maximum width W of the island portion may be 0.65 ⁇ m or less, preferably 0.60 ⁇ m or less, more preferably 0.55 ⁇ m or less, and even more preferably 0.50 ⁇ m or less. If the maximum width of the island portion exceeds 0.65 ⁇ m, the fibrillation resistance may be insufficient. Also, the maximum width W of the island portion may be 0.07 ⁇ m or more, or may be 0.1 ⁇ m or more.
  • the island portion After selecting the island portion having the maximum width W, the island portion is continuously observed in the longitudinal direction, and as shown in FIG. Measure the maximum oblique length L1 of the length overlapping the oblique line extending at the angle ⁇ (10°).
  • the maximum length L1 of the oblique length is a value that changes according to the value of the maximum width W.
  • it may be 1.0 ⁇ m or more, preferably 1.3 ⁇ m or more, more preferably 1.5 ⁇ m. 1.7 ⁇ m or more, more preferably 1.7 ⁇ m or more.
  • the maximum oblique length L1 is equal to or greater than the above lower limit, the anchoring effect on the core component tends to increase.
  • the maximum length L1 of the oblique length may be 3.3 ⁇ m or less, preferably 3.1 ⁇ m or less, more preferably 2.9 ⁇ m or less. When the maximum oblique length L1 is equal to or less than the above upper limit, fibrillation tends to be suppressed.
  • the ratio L1/W between the maximum length L1 and the maximum width W of the oblique length may be, for example, 5.0 or more. , preferably 5.1 or more, more preferably 5.2 or more, still more preferably 5.3 or more, and even more preferably 5.5 or more.
  • the upper limit of L1/W is not particularly limited, it may be 10 or less.
  • the length L2 of the island portion having the largest width in the sheath component in the longitudinal direction of the fiber may be, for example, 450 to 1000 ⁇ m, preferably 500 to 800 ⁇ m, more preferably 550 to 650 ⁇ m. may be The longer the length, the better the anchoring effect on the core component.
  • the length of the island portion in the longitudinal direction of the fiber can be obtained from an enlarged image of the longitudinal section of the fiber.
  • the length of the island portion in the fiber longitudinal direction of the discharged yarn may be obtained, and the obtained value may be multiplied by the draft value to obtain a calculated value.
  • the thickness of the sheath component may be, for example, 0.8 to 5.0 ⁇ m, preferably 0.9 to 4.0 ⁇ m, more preferably 0.9 to 4.0 ⁇ m, from the viewpoint of ensuring the strength of the fiber by spinning the exposed core portion. It may be from 0.9 to 3.0 ⁇ m, particularly preferably from 1.0 to 2.5 ⁇ m.
  • the thickness of the sheath component is, for example, a cross section of the core-sheath composite fiber cut along a plane perpendicular to the longitudinal direction of the fiber (hereinafter sometimes referred to as "fiber cross section"). ), it can be obtained from an enlarged image of the cross section of the fiber.
  • the cross section of the fiber is imaged with a scanning microscope, and the radial distance from the outer peripheral surface of the core component to the outer peripheral surface of the sheath component is measured at three arbitrary points that divide the outer periphery of the fiber into three equal parts, It is possible to determine the thickness of the sheath component from the average value.
  • the single filament fineness of the core-sheath composite fiber may be, for example, 1 to 120 dtex, preferably 2 to 60 dtex, more preferably 2.5 to 30 dtex, still more preferably 3 to 15 dtex.
  • This single yarn fineness can be measured, for example, according to JIS L 1013 "Chemical fiber filament yarn test method".
  • the core-sheath composite fiber may be a monofilament or a multifilament containing two or more monofilaments.
  • the core-sheath composite fiber may have a tensile strength of, for example, 10 cN/dtex or more, preferably 13 cN/dtex or more, more preferably 15 cN/dtex or more, and still more preferably 18 cN/dtex or more, in an atmosphere at 25°C. Even more preferably, it may be 20 cN/dtex or more.
  • the upper limit of the tensile strength is not particularly limited, but may be 30 cN/dtex or less.
  • the tensile strength is a value measured with reference to the JIS L 1013 test method.
  • the core-sheath composite fiber has extremely high dimensional stability, and the dry heat shrinkage at 250°C may be 0.01% or less, preferably 0.01% or less.
  • the dry heat shrinkage rate is a value measured by the method described in Examples below.
  • the core-sheath composite fiber was passed through three comb guides alternately arranged at an angle of 120° with respect to the core-sheath composite fiber, and a load of 1 g/dtex was applied to each fiber.
  • the average number of fluff (average of 5 times) generated per 3 cm of fiber length when 30,000 reciprocating motions are applied at a stroke length of 3 cm and a speed of 95 times/min. may be less than or equal to 0.5.
  • the fluff can be observed as small fluff (fibril) of 1 mm or less, fluff larger than 1 mm, or peeling of the sheath.
  • the core-sheath composite fiber of the present invention can be woven and knitted by ordinary methods, and can be dyed by ordinary methods depending on the type of flexible thermoplastic polymer.
  • the flexible polymer is a polyester polymer
  • it can be dyed by a conventional polyester fiber dyeing method using a disperse dye.
  • the core-sheath composite fiber of the present invention can be suitably used as various fiber structures, and the fiber structure of the present invention contains the core-sheath composite fiber of the present invention at least in part.
  • fiber structures include one-dimensional structures such as ropes and mixed filament yarns, and high-order processed products such as two-dimensional structures such as woven fabrics, knitted fabrics and non-woven fabrics.
  • the fiber structure may be composed of the core-sheath composite fiber alone, or may contain other constituent members within a range in which the effects of the present invention are not hindered. Once the fiber structure is formed, the fiber structure may be dyed by the dyeing method described above.
  • the weave structure is not particularly limited. Examples include heavy weave, multiple weave, warp pile weave, weft pile weave, and leno weave.
  • the knitting structure is not particularly limited. , smooth knitting (double-sided knitting), rubber knitting, pearl knitting, Denby weaving, cord weaving, atlas weaving, chain weaving, insertion weaving, and the like.
  • the core-sheath composite fiber was embedded in an epoxy resin, and the embedded fiber was cut along a plane perpendicular to the longitudinal direction of the fiber to obtain a cross section of the fiber.
  • a microscope is used to measure the radial distance from the outer peripheral surface of the core to the outer peripheral surface of the sheath at any three points that divide the outer periphery of the fiber into three equal parts, and the average value is calculated. , the thickness of the sheath component.
  • the core-sheath composite fiber was embedded in an epoxy resin, and the embedded fiber was cut in the longitudinal direction of the fiber with a cross-section polisher (CP) to expose the vertical cross section of the fiber.
  • This fiber longitudinal section was observed with a scanning probe microscope (SPM) at a length of 100 ⁇ m or more and 1000 ⁇ m or less in the longitudinal direction of the fiber.
  • SPM scanning probe microscope
  • Widths were compared and the maximum width W of the island was determined for the island having the largest width.
  • the length L2 in the longitudinal direction of the fiber was measured for the island portion having the maximum width W.
  • each fiber to be tested is passed through three comb guides alternately arranged at an angle of 120 °, and each fiber is A load of 1 g/dtex was applied, a stroke length of 3 cm, and a reciprocating motion of 30,000 times at a speed of 95 times/min were applied, and the state of fluff was confirmed by magnifying 20 times with a camera.
  • the above test was performed 5 times, and the presence or absence of fluff generation was observed for each 3 cm length of the fiber.
  • fine fluff with a length of 1 mm or less and fluff with a length of more than 1 mm were distinguished and evaluated according to the following criteria.
  • the number was measured and calculated as an average value obtained by performing the above test five times.
  • a core-sheath composite fiber was produced according to the following method.
  • a melt anisotropic aromatic polyester having a molar ratio of structural units (P: HBA) and (Q: HNA) of 73/27 as polymer A [melting point (Ma): 278°C, melt viscosity (MVa) : 32.1 Pa ⁇ s] was used.
  • PEN melting point (Mb): 266.3°C, melt viscosity (MVb): 100 Pa s] was used as the B polymer forming the sea component, and the above polymer A was used as the C polymer forming the island component.
  • the same melting anisotropic aromatic polyester [melting point (Mc): 278°C, melt viscosity (MVc): 32.1 Pa ⁇ s] was used.
  • the core component and the sheath component were melted and kneaded by separate extruders.
  • the B polymer and C polymer were mixed so that the proportion of the island component in the sheath component was 30% by weight. ⁇ 12) ° C.) and sufficiently kneaded (low temperature kneading step), in the discharge step, the sheath component ratio is controlled to 0.35 (65/35 as a core-sheath ratio (weight ratio))
  • a spinneret having a structure No. 4 was used for spinning at a spinning temperature of 310° C.
  • the obtained fiber was wound around a heat treatment bobbin, and the treatment temperature was raised stepwise to a maximum temperature of 260°C, and heat treatment was performed in a nitrogen gas atmosphere for 18 hours.
  • the unwindability from the heat-treated bobbin was satisfactory, and the heat-treated yarn obtained had the performance shown in Table 5.
  • Examples 2 to 4 A core-sheath composite fiber was produced in the same manner as in Example 1, except that the core-sheath ratio, the ratio of the island component in the sheath component, the single fiber fineness, the number of filaments, and the draft value were changed as shown in Table 5. Table 5 shows the results. All of them had good spinnability and could be collected without breaking.
  • Comparative Example 2 A core-sheath composite fiber was produced in the same manner as in Comparative Example 1, except that the ratio of the island component in the sheath component was mixed to 20% by weight. The spinnability was poor, and there were cases of yarn breakage. Table 5 shows the results.
  • Comparative Example 3 Spinning and heat treatment were carried out in the same manner as in Comparative Example 1, except that the ratio of the island component in the sheath component was mixed to 5% by weight to produce a core-sheath composite fiber. As described in Patent Document 1, since the ratio of the island component in the sheath component is 10% by weight or less, the spinnability is good and the fiber can be collected without breaking. Table 5 shows the results.
  • Example 5 As shown in Table 5, since the ratio of the B polymer component in the core-sheath composite fiber is reduced, the dry heat shrinkage rate is 0.00% in Examples 1 to 4, and extremely high dimensional stability is achieved. showing.
  • Example 1 to 4 no fluff larger than 1 mm was observed in the abrasion test with 30,000 reciprocating motions, so the peeling of the sheath did not occur and the abrasion resistance was excellent.
  • Example 1 and 2 neither fluff nor minute fibrils of 1 mm or less were observed.
  • Example 3 exhibits better abrasion resistance than Comparative Examples 1 to 3, although the single yarn fineness is small.
  • the abrasion resistance is better than that of Comparative Examples 1 to 3.
  • the core-sheath composite fiber of the present invention has improved fibril resistance and excellent wear resistance, and at the same time has excellent dimensional stability.
  • Cords for various electrical products such as earphone cords, etc.), sail cloths, ropes (marine, mountaineering, cranes, yachts, tags, etc.), ropes, land nets, slings, lifelines, fishing lines, sewing threads, screen door cords, fishing nets, longlines, geo Grids, protective gloves, ripstop protective clothing and outdoor clothing, rider suits, sports rackets, guts, medical catheter reinforcing materials, sutures, screen gauze, filters, base fabrics for printed circuit boards, mesh conveyor belts, papermaking Belts, dryer canvas, airships, balloons, airbags, speaker cones, reinforcing materials for various hoses and pipes, rubber and plastic reinforcing materials for tires, conveyor belts, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

芯鞘複合繊維および繊維構造体を提供する。前記芯鞘複合繊維は、芯成分(12)が溶融異方性芳香族ポリエステル(Aポリマー)を含み、鞘成分が屈曲性熱可塑性ポリマー(Bポリマー)および溶融異方性芳香族ポリエステル(Cポリマー)を含み、前記Bポリマーが海成分を形成し、前記Cポリマーが島成分を形成し、前記海成分からなる海部(14)中に前記島成分からなる複数の島部が分散する海島構造を有する芯鞘複合繊維であって、芯鞘複合繊維中におけるBポリマー成分が占める割合が20重量%以下である。

Description

芯鞘複合繊維および繊維構造体 関連出願
 本願は、日本国で2021年3月4日に出願した特願2021-34708の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。
 本発明は、芯成分として溶融異方性芳香族ポリエステルを有し、耐フィブリル性を向上させ耐摩耗性に優れ、しかも寸法安定性に優れる、芯鞘複合繊維および繊維構造体に関する。
 溶融異方性芳香族ポリエステル繊維は高強力高弾性率となることが知られているが、これらの繊維は、分子鎖が繊維軸方向に高度に配向しているため摩耗により容易にフィブリル化するという問題があった。そこで、溶融異方性芳香族ポリエステルを芯成分とする一方で、周囲を鞘成分で被覆することによりフィブリル化を抑制した複合繊維が提案されている。
 例えば、特許文献1(特開2002-20932号公報)には、芯成分が溶融異方性芳香族ポリエステル(A)、鞘成分がポリマー(A)を0~10%含有する屈曲性ポリエステル(B)からなり、ポリエステル(B)の固有粘度[η]が、0.65dl/g以上であることを特徴とする複合繊維が開示されている。
 特許文献1には、鞘成分に芯成分と同じポリマーをブレンドすることで、鞘成分の強力を高めると同時に芯成分との接着性を高めることが記載されている。
 特許文献2(特開2008-255535号公報)には、芯成分が溶融異方性芳香族ポリエステル(Aポリマー)からなり、鞘成分が海島構造を有し、かつ鞘成分比が0.2~0.7であること、および該鞘成分を構成する海成分は屈曲性熱可塑性ポリマー(Bポリマー)からなり、島成分は溶融異方性芳香族ポリエステル(Cポリマー)からなり、鞘成分における島成分比が0~0.25であることを満足する芯鞘複合繊維において、繊維表面にケイ酸塩化合物を主成分とする無機微粒子を0.03~2.5質量%付着させてなる複合繊維が開示されている。
 特許文献2では、溶融異方性を有しないポリマーは溶融異方性ポリエステルとの接着性が低く、剥離しやすいため、鞘成分を溶融異方性ポリエステルと溶融異方性を有しないポリマーからなるブレンドで形成することが記載されている。
特開2002-20932号公報 特開2008-255535号公報
 しかしながら、特許文献1では、屈曲性ポリエステルを含む鞘成分比が0.2未満である場合芯成分が露出しやすくなるとして、鞘成分比が低下することを否定し、また、鞘成分中における溶融異方性芳香族ポリエステルの割合が10%を超える場合、繊維表面に凹凸が発生し、紡糸性が悪化するとして、鞘成分中において溶融異方性芳香族ポリエステルの割合を高めることを否定しているため、芯鞘複合繊維中の屈曲性ポリエステル(Bポリマー)の割合を低減することが否定されている。
 また、特許文献2の記載に倣って鞘成分における島成分比を仮に最大値である0.25に設定した場合にも、Bポリマー成分(海成分)が依然として多く、Bポリマー成分由来の性質が顕著化すると推定される。
 したがって、本発明の目的は、芯鞘複合繊維において、耐フィブリル性を向上させ耐摩耗性に優れたものにしつつ、寸法安定性にも優れたものにする技術を提供することにある。
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、芯成分として溶融異方性芳香族ポリエステルを有する芯鞘複合繊維において、(I)鞘成分を、溶融異方性芳香族ポリエステルからなる島部と、屈曲性熱可塑性ポリマーからなる海部とを有する海島構造とし、芯鞘複合繊維中の屈曲性熱可塑性ポリマーの割合を高めると、屈曲性熱可塑性ポリマーの性質に由来して耐摩耗性を向上できる(すなわち、フィブリル化を防止できる)が、(II)その一方で、屈曲性熱可塑性ポリマーの高い割合に由来して寸法安定性が低下することに気づき、トレードオフの関係にある耐摩耗性の向上と、寸法安定性の向上とを、両立させることを新たな課題とした。そして、(III)芯鞘複合繊維中における屈曲性熱可塑性ポリマーが占める比率を所定の範囲とするとともに、鞘成分を特定の方法により混練して吐出された放流糸を、特定のドラフト値で引取ることで、芯鞘複合繊維の耐摩耗性を向上させつつ寸法安定性も向上させることができることを見出し、本発明を完成した。
 すなわち、本発明は、以下の態様で構成されうる。
〔態様1〕
 芯成分が溶融異方性芳香族ポリエステル(Aポリマー)を含み、鞘成分が屈曲性熱可塑性ポリマー(Bポリマー)および溶融異方性芳香族ポリエステル(Cポリマー)を含み、前記Bポリマーが海成分を形成し、前記Cポリマーが島成分を形成し、前記海成分からなる海部中に前記島成分からなる複数の島部が分散する海島構造を有する芯鞘複合繊維であって、
 芯鞘複合繊維中におけるBポリマー成分が占める割合が20重量%以下(好ましくは18重量%以下、より好ましくは16重量%以下、さらに好ましくは15重量%未満、さらにより好ましくは14重量%以下、特に好ましくは12重量%以下、最も好ましくは11重量%以下)である芯鞘複合繊維。
〔態様2〕
 態様1に記載の芯鞘複合繊維であって、この芯鞘複合繊維中におけるBポリマー成分が占める割合が5重量%以上(好ましくは10重量%以上)である芯鞘複合繊維。
〔態様3〕
 態様1または2に記載の芯鞘複合繊維であって、芯鞘複合繊維を繊維長手方向に切断した断面で、繊維垂直方向に最も大きな幅を有する島部の最大幅Wが0.65μm以下(好ましくは0.60μm以下、より好ましくは0.55μm以下、さらに好ましくは0.50μm以下)である芯鞘複合繊維。
〔態様4〕
 態様1~3のいずれか一態様に記載の芯鞘複合繊維であって、芯鞘複合繊維を繊維長手方向に切断した断面で、前記最大幅Wを有する島部において、繊維長手方向一端から他端に向かうに従って、前記繊維長手方向に対し定められた角度10°で延びる前記鞘成分中における斜線に接する島部のうち、前記斜線と重なる長さの斜め長の最大長さL1と、前記島部の最大幅Wとの比L1/Wが5.0以上(好ましくは5.1以上、より好ましくは5.2以上、さらに好ましくは5.3以上、さらにより好ましくは5.5以上)である芯鞘複合繊維。
〔態様5〕
 態様1~4のいずれか一態様に記載の芯鞘複合繊維であって、前記鞘成分の繊維径方向の厚みが0.8~5.0μm(好ましくは0.9~4.0μm、より好ましくは0.9~3.0μm、特に好ましくは1.0~2.5μm)である芯鞘複合繊維。
〔態様6〕
 態様1~5のいずれか一態様に記載の芯鞘複合繊維であって、前記Aポリマーと前記Cポリマーが、主たる構成単位が同一の溶融異方性芳香族ポリエステルである芯鞘複合繊維。
〔態様7〕
 態様1~6のいずれか一態様に記載の芯鞘複合繊維であって、前記芯成分と前記鞘成分の重量比である芯成分/鞘成分が65/35~97/3(好ましくは70/30~95/5、より好ましくは75/25~90/10)である芯鞘複合繊維。
〔態様8〕
 態様1~7のいずれか一態様に記載の芯鞘複合繊維であって、この芯鞘複合繊維の単糸繊度が1~120dtex(好ましくは2~60dtex、より好ましくは2.5~30dtex、さらに好ましくは3~15dtex)である芯鞘複合繊維。
〔態様9〕
 様態1~8のいずれか一様態に記載の芯鞘複合繊維を少なくとも一部に含む、繊維構造体。
 本明細書中、芯鞘複合繊維をその繊維中心軸を含むように繊維長手方向に沿って切断して見た断面のことを、「繊維縦断面」と称す場合がある。また、繊維垂直方向とは、繊維縦断面において、繊維長手方向に対して直交する方向(または繊維長手方向に垂直な方向)を意味する。
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。
 本発明の芯鞘複合繊維によれば、芯成分として溶融異方性芳香族ポリエステルを有し、鞘成分が海島構造である芯鞘複合繊維において、鞘成分の海成分および島成分をそれぞれ屈曲性熱可塑性ポリマーおよび溶融異方性芳香族ポリエステルとし、さらに芯鞘複合繊維中の屈曲性熱可塑性ポリマーの割合を所定の範囲とし、鞘成分を特定の方法により混練することで、芯鞘複合繊維の耐摩耗性を向上させフィブリル化を防止するとともに、寸法安定性を高度に向上させることができる。
 この発明は、添付の図面を参考にした以下の好適な実施例の説明から、より明瞭に理解されるであろう。しかしながら、実施例および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の一実施形態に係る芯鞘複合繊維の概略斜視図である。 同芯鞘複合繊維を繊維長手方向に切断して見た概略断面図である。 図1B中のII部分の拡大図である。 同芯鞘複合繊維を繊維長手方向に対して垂直な平面で切断して見た概略断面図である。 同芯鞘複合繊維の紡糸に用いられる口金の構造を示す概略断面図である。
 以下、本発明を例示に基づいて詳細に説明する。本発明の一態様は、芯成分と、この芯成分を覆う鞘成分とを備える芯鞘複合繊維であり、鞘成分が海成分および島成分を含む海島構造を有する。芯成分は溶融異方性芳香族ポリエステル(Aポリマー)を含み、鞘成分は屈曲性熱可塑性ポリマー(Bポリマー)および溶融異方性芳香族ポリエステル(Cポリマー)を含み、Bポリマーが海成分を形成し、Cポリマーが島成分を形成する。芯鞘複合繊維中における屈曲性熱可塑性ポリマー(Bポリマー)が占める割合は20重量%以下である。
(芯成分)
 芯成分に用いられる溶融異方性芳香族ポリエステル(Aポリマー)とは、溶融相において光学異方性(液晶性)を示すポリマーである。例えば試料をホットステージに載せ、窒素雰囲気下で昇温加熱し、試料の透過光を観察することにより溶融異方性芳香族ポリエステルであるか否かを認識し得る。本発明の溶融異方性芳香族ポリエステルとしては、例えば芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸などに由来する反復構成単位からなり、本発明の効果を損なわない限り、芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸に由来する構成単位は、その化学的構成については特に限定されるものではない。また、本発明の効果を阻害しない範囲で、溶融異方性芳香族ポリエステルは、芳香族ジアミン、芳香族ヒドロキシアミンまたは芳香族アミノカルボン酸に由来する構成単位を含んでいてもよい。例えば、好ましい構成単位としては、表1に示す例が挙げられる。
Figure JPOXMLDOC01-appb-T000001
 表1の構成単位において、mは0~2の整数であり、式中のYは、1~置換可能な最大数の範囲において、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基などの炭素数1から4のアルキル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基など)、アリール基(例えば、フェニル基、ナフチル基など)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)など]、アリールオキシ基(例えば、フェノキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基など)などが挙げられる。
 より好ましい構成単位としては、下記表2、表3および表4に示す例(1)~(18)に記載される構成単位が挙げられる。なお、式中の構成単位が、複数の構造を示しうる構成単位である場合、そのような構成単位を二種以上組み合わせて、ポリマーを構成する構成単位として使用してもよい。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2、表3および表4の構成単位において、nは1または2の整数で、それぞれの構成単位n=1、n=2は、単独でまたは組み合わせて存在してもよく、YおよびYは、それぞれ独立して、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、アルキル基(例えば、メチル基、エチル基、イソプロピル基、t-ブチル基などの炭素数1から4のアルキル基など)、アルコキシ基(例えば、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基など)、アリール基(例えば、フェニル基、ナフチル基など)、アラルキル基[ベンジル基(フェニルメチル基)、フェネチル基(フェニルエチル基)など]、アリールオキシ基(例えば、フェノキシ基など)、アラルキルオキシ基(例えば、ベンジルオキシ基など)などであってもよい。これらのうち、水素原子、塩素原子、臭素原子、またはメチル基が好ましい。
 また、Zとしては、下記式で表される置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 溶融異方性芳香族ポリエステルは、好ましくは、ナフタレン骨格を構成単位として有する組み合わせであってもよい。なお、ヒドロキシ安息香酸(略称:HBA)由来の構成単位(A)と、ヒドロキシナフトエ酸(略称:HNA)由来の構成単位(B)の両方を含むことが、特に好ましい。例えば、構成単位(A)としては下記式(A)が挙げられ、構成単位(B)としては下記式(B)が挙げられ、溶融成形性を向上する観点から、構成単位(A)と構成単位(B)の比率は、好ましくは9/1~1/1、より好ましくは7/1~1/1、さらに好ましくは5/1~1/1の範囲であってもよい。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 また、(A)の構成単位と(B)の構成単位の合計は、例えば、全構成単位に対して65モル%以上であってもよく、より好ましくは70モル%以上、さらに好ましくは80モル%以上であってもよい。ポリマー中、特に(B)の構成単位が4~45モル%である溶融異方性芳香族ポリエステルが好ましい。
 本発明で好適に用いられる溶融異方性芳香族ポリエステルの融点は250~360℃の範囲であることが好ましく、より好ましくは260~320℃である。ここでいう融点とは、JIS K 7121に準拠した試験方法により測定されるものであり、示差走査熱量計(例えば(株)島津製作所DSC:Differential scanning calorimetry)で観察される主吸熱ピークのピーク温度である。
 なお、上記溶融異方性芳香族ポリエステルには、本発明の効果を損なわない範囲で、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、フッ素樹脂などの熱可塑性ポリマーを添加してもよい。また酸化チタン、カオリン、シリカ、酸化バリウムなどの無機物、カーボンブラック、染料や顔料などの着色剤、酸化防止剤、紫外線吸収剤、光安定剤などの各種添加剤を含んでいてもよい。
(鞘成分)
 鞘成分は海島構造を有しており、屈曲性熱可塑性ポリマー(Bポリマー)が海成分を形成し、溶融異方性芳香族ポリエステル(Cポリマー)が島成分を形成している。
 海成分を形成する屈曲性熱可塑性ポリマー(Bポリマー)としては、主鎖上に芳香環を有さないポリマー、あるいは主鎖上に芳香環を有し、かつ芳香環間の主鎖上に原子が4個以上存在するポリマーが挙げられ、具体的には、例えば、ポリオレフィン、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド(略称:PPS)、ポリエチレンテレフタレート、変性ポリエチレンテレフタレート、非晶性ポリアリレート、ポリエチレンナフタレート(略称:PEN)などのポリエステル、ポリエーテルエーテルケトン、フッ素樹脂などが挙げられる。これらの屈曲性熱可塑性ポリマーは、単独でまたは二種以上組み合わせて使用してもよく、一方を主たる(例えば、80重量%以上を占める)熱可塑性ポリマーとし、それ以外を添加する熱可塑性ポリマーとしてもよい。この中でもPPS、PENが主たる熱可塑性ポリマーであるのが好ましい。
 また屈曲性熱可塑性ポリマーは、酸化チタン、シリカ、酸化バリウムなどの無機物、カーボンブラック、染料または顔料などの着色剤、酸化防止剤、紫外線吸収剤、光安定剤、造核剤などの各種添加剤を含んでいてもよい。
 島成分を形成する溶融異方性芳香族ポリエステル(Cポリマー)は、前記Aポリマーにおいて記載した溶融異方性芳香族ポリエステルを挙げることができ、Aポリマーと同一であっても異なっていてもよいが、親和性の観点から、同種の溶融異方性芳香族ポリエステルであるのが好ましく、例えば、主たる構成単位が同一の溶融異方性芳香族ポリエステルであるのが好ましい。また、AポリマーとCポリマーとは、主たる構成単位が同一で、かつ、例えば添加する熱可塑性ポリマーまたは添加剤のみが異なる同種類のポリマーであってもよい。
 またCポリマーの融点(Mc)は、CポリマーをBポリマーに対して微分散することができる範囲で適宜選択することができ、例えば、Cポリマーの融点(Mc)は、Bポリマーの融点(Mb)に対して、(Mb-10)~(Mb+80)℃の範囲であってもよく、Mb~(Mb+70)℃の範囲であってもよい。
 さらにCポリマーの溶融粘度ηは、紡糸性の観点から、例えば、10~60Pa・sであってもよく、好ましくは20~50Pa・s、より好ましくは25~45Pa・sであってもよい。
 なお、本発明にいう溶融粘度ηとは、温度T(Cポリマーの融点(Mc)が290℃以上の場合T=Mc+10℃、融点Mcが290℃未満の場合T=300℃)、せん断速度1000sec-1で測定した溶融粘度である。
(芯鞘複合繊維の製造方法)
 本発明の芯鞘複合繊維は、混練工程と、吐出工程と、を少なくとも備える製造方法により製造することができる。製造工程は、さらに熱処理工程を備えていてもよい。
 混練工程では、鞘成分に用いる前記Bポリマーおよび前記Cポリマーを、二軸押出機を用いて溶融し混練すると共に、芯成分に用いるAポリマーを、前記鞘成分に用いる前記二軸押出機とは別の押出機を用いて溶融し混練する。
 特に、BポリマーおよびCポリマーの混練に用いる二軸押出機において、この二軸押出機中の混練部の設定温度を、Bポリマーの融点(Mb)に対して(Mb)℃以上であって、Cポリマーの融点(Mc)に対して(Mc-20)℃以上、(Mc)℃未満に設定すると共に、混練部で回転自在に支持された平行二軸のスクリュの回転により、鞘成分中における複数の島部の微分散化を図ることが可能となる。本発明では、Bポリマーの割合を低減させるにあたり、(i)芯成分の割合を高める、および/または(ii)島成分の割合を高めることが考えられるが、(i)の場合は鞘成分の厚さがうすくなり、(ii)の場合は島成分の割合が高くなるため、複数の島部の微分散化を図ることが重要となる。
 なお、前記Aポリマーを溶融し混練する押出機は、単軸押出機でもよく二軸押出機であってもよい。また、事前にBポリマーとCポリマーを上記の条件でコンパウンド化した原料を使用する場合には、すでに鞘成分中における複数の島部の微分散化を図ることができているため、鞘成分の溶融混練に使用する押出機は、単軸押出機でもよく二軸押出機であってもよい。
 混練工程において、芯成分と鞘成分の割合は、Bポリマーの割合を低減させる観点から、芯成分/鞘成分の重量比(以下、単に芯鞘比と称する場合がある)として、例えば、65/35~97/3であってもよく、好ましくは70/30~95/5、より好ましくは75/25~90/10であってもよい。芯成分と鞘成分の重量比は、例えば、製造時において後述する各押出機にそれぞれ投入される芯成分と鞘成分の重量比などにより求め得る。
 鞘成分における島成分の割合は、例えば、10重量%を超えていてもよく、好ましくは15重量%以上、より好ましくは20重量%以上であってもよい。島成分の割合を高めることにより、島成分による芯成分と鞘成分のアンカー効果を強固にすることができる。一方、島成分の割合が高すぎると、島成分が凝集する可能性が高まるため、島成分は、45重量%以下であってもよく、好ましくは40重量%以下であってもよい。
 吐出工程では、前記混練工程でそれぞれ混練させた鞘成分および芯成分を、例えば、図4に示される構造の口金から複合して吐出することで断面(繊維横断面)円形状の芯鞘複合繊維を紡糸することができる。熱処理工程では、吐出工程で得られた繊維に対し段階的に処理温度を上げる熱処理を施すことで、要求品質をより確実に充足することが可能となる。
 吐出の際の口金温度(紡糸温度)は、例えば、Aポリマーの融点(Ma)に対して、(Ma+10)~(Ma+60)℃であってもよく、好ましくは(Ma+15)~(Ma+40)℃、より好ましくは(Ma+20)~(Ma+35)℃であってもよい。
 微分散された島部の形状は、ドラフト値により制御され、吐出された放流糸は、ドラフト値13~50で引取られ、好ましくは15~45、より好ましくは16~40、さらに好ましくは19~38、特に好ましくは20~35で引き取られてもよい。なお、ドラフト値とは、紡糸の際の吐出速度に対する巻取速度の比を意味している。
 さらに紡糸された繊維に対して熱処理を行ってもよい。熱処理により、鞘成分中のBポリマーの配向結晶化度を高めるだけでなく、溶融異方性芳香族ポリエステルを固相重合することができ、芯鞘複合繊維の強度を向上することができる。
 熱処理では、紡糸された繊維を、窒素などの不活性ガス雰囲気下、または酸素含有の活性ガス(例えば、空気)雰囲気下において、常圧または減圧下で熱処理を行ってもよい。
 熱処理を行う場合、熱処理雰囲気は露点が-50℃以下、好ましくは-60℃以下、より好ましくは-70℃以下の低湿気体が好ましい。熱処理条件としては、Aポリマーの融点(Ma)に対して、(Ma-20)℃以下、好ましくは(Ma-30)℃以下、より好ましくは(Ma-40)℃以下から鞘成分の融点以下まで順次昇温していく温度パターンが挙げられる。
 熱の供給方法としては、気体の媒体を用いる方法、加熱板、赤外線ヒーターなどにより輻射を利用する方法、高周波などを利用した内部加熱方法などがある。処理形状は、ロールトゥロールの連続生産であってもよく、カセ状、トウ状、熱処理用ボビンに紡糸原糸を巻き返すことによるバッチ生産であってもよい。
 熱処理後の糸の膠着による鞘剥がれなどを防止する観点から、必要に応じて、繊維の紡糸中または紡糸後、熱処理前に繊維の表面に無機微粒子を塗布してもよい。前記無機微粒子としては、タルク、雲母を始めとするケイ酸塩化合物を主成分とするものが好ましい。
 特許文献2と異なり、本発明では、無機微粒子を付着させなくても良好な解舒性を有するが、解舒性をさらに向上させる観点から、無機微粒子の付着を行ってもよい。
 繊維の紡糸中または紡糸後、熱処理前に繊維の表面に無機微粒子を均一に付着させることで、糸同士が直接接触することを防止し、糸の膠着を回避することができる。なお、ケイ酸塩化合物を主成分とする無機微粒子はその多くが不活性であり、繊維に付着させても繊維の物性低下は見られない。
 前記無機微粒子の繊維の表面への付着方法は、均一に繊維に付着させられる方法であれば何ら限定されるものではない。例えば、紡糸油剤に無機微粒子を攪拌分散させたものをオイリングローラーまたはカラス口を用いて付着させる方法が簡便であり好ましい。
 芯鞘複合繊維の表面に付着させる無機微粒子の平均粒径は繊維表面に均一に付着する観点から、例えば、0.01~10μm、好ましくは0.02~5μmの範囲であってもよい。芯鞘複合繊維の表面に付着させる無機微粒子の付着量は、0.03~2.5質量%、好ましくは0.1~2.3質量%の範囲であってもよい。
(芯鞘複合繊維)
 図1Aは、本発明の一実施形態に係る芯鞘複合繊維の概略斜視図であり、図1Bは、同芯鞘複合繊維を繊維長手方向に切断して見た概略断面図である。芯鞘複合繊維10は、芯成分で形成された芯部12と鞘成分で形成された鞘部14とを有している。
 図2は、図1BのII部を部分的に拡大して示す拡大断面図である。図IBおよび図2に示すように、芯鞘複合繊維をその繊維中心軸を含むように繊維長手方向に切断した断面(繊維縦断面)で、鞘部14は海島構造を形成し、海部16中に複数の島部18を形成している。島部は海成分中で微分散している。
 本発明の芯鞘複合繊維では、この芯鞘複合繊維中における海部(すなわち、屈曲性熱可塑性ポリマー)16が占める割合が20重量%以下であり、好ましくは18重量%以下、より好ましくは16重量%以下、さらに好ましくは15重量%未満、さらにより好ましくは14重量%以下、特に好ましくは12重量%以下、最も好ましくは11重量%以下であってもよい。鞘部が海島構造を形成することができる限り、芯鞘複合繊維中における海部(すなわち、屈曲性熱可塑性ポリマー)16が占める割合(重量%)の下限値は特に限定されないが、例えば、5重量%以上であってもよく、好ましくは7重量%以上、より好ましくは10重量%以上であってもよい。
 このように、本発明の芯鞘複合繊維では、芯鞘複合繊維の耐摩耗性を向上させつつ寸法安定性も向上させることができる。具体的には、屈曲性熱可塑性ポリマーを含む鞘成分により、芯鞘複合繊維に対して屈曲性熱可塑性ポリマーの性質に由来する耐摩耗性を付与することができる一方で、屈曲性熱可塑性ポリマーの含有量を低減させることにより、屈曲性熱可塑性ポリマー由来の寸法安定性の低下を抑え、すなわち芯鞘複合繊維の寸法安定性を向上することができる。そのため、本発明の芯鞘複合繊維によれば、芯鞘複合繊維中における屈曲性熱可塑性ポリマーの含有量を適正化することで、トレードオフの関係にある耐摩耗性の向上と、寸法安定性の向上とを、両立することができる。
 島部は、微分散する中で、基本的に略楕円形状で繊維長手方向に延びている。島部の径が大きいと繊維表面への島成分由来の凹凸がより大きくなる。フィブリルが発生するのはこの繊維表面の凹凸の大きさに由来するため、島部の最大径は小さいことが好ましい。また、島部が繊維長手方向に長く延びる形状であるとアンカー効果を発揮できて好ましい。すなわち、一つの繊維横断面での島部の最大幅を単に測定するだけでは、島部の長さによって発生するアンカー効果による寄与を加味できないが、鞘成分の顕微鏡写真において、長手方向に島部の形状を観察し、最も大きな幅を有する島部について、当該島部の幅のみならず、その島部の長さを加味して島部の幅を測定することにより、島部のアンカー効果による貢献度を加味しつつ、耐フィブリル性を評価することができる。そのためには、例えば、最大幅Wを有する島部を選択した後、この島部について、図2に示すように、繊維長手方向一端から他端に向かって、前記繊維長手方向に対し定められた角度α(10°)で延びる斜線と重なる長さの斜め長の最大長さL1を測定して島部の形状を評価してもよく、L1/Wを算出することにより、島部の形状を評価してもよい。
 前記最大幅を有する島部は、繊維縦断面の拡大画像から選択し得る。具体的には、後述する走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)にて、繊維縦断面を繊維長手方向に100μm以上1000μm以下で観察し、その観察範囲のうち、島部の繊維長手方向に垂直な方向(繊維垂直方向)の長さが最大となる箇所の数値を測定値としたものである。ただし、観察範囲は連続である必要は無く、ランダムに抽出された複数視野分の合計でよい。例えば、繊維縦断面の観察範囲において、繊維長手方向に延びる多数の島部のうち、繊維垂直方向の長さが相対的に大きい島部を複数個抽出し、抽出した島部の繊維垂直方向長さを島部の幅として比較することで最大幅を有する島部を決定することができる。この例では、繊維縦断面において、鞘成分の上側および下側部分のいずれか一方のみ(例えば図1Bの下側部分)を観察範囲とすればよい。またこの例では、繊維縦断面を走査型プローブ顕微鏡にて観察し島部の最大幅を求めているが、島部の最大幅を求め得るものであれば、走査型プローブ顕微鏡以外の手段を用いてもよい。なお、繊維切断時には、応力による影響を最小限にするため、樹脂包埋して繊維を固定した上で切断することが好ましい。
 島部の最大幅Wは、0.65μm以下であってもよく、好ましくは0.60μm以下、より好ましくは0.55μm、さらに好ましくは0.50μm以下であってもよい。島部の最大幅が0.65μmを超えると、耐フィブリル性が不十分となるおそれがある。また、島部の最大幅Wは、0.07μm以上であってもよく、0.1μm以上であってもよい。
 最大幅Wを有する島部を選択した後、この島部について連続的に長手方向に観察し、図2に示すように、繊維長手方向一端から他端に向かって、前記繊維長手方向に対し定められた角度α(10°)で延びる斜線と重なる長さの斜め長の最大長さL1を測定する。
 前記斜め長の最大長さL1は、最大幅Wの値に応じて変化する値であるが、例えば、1.0μm以上であってもよく、好ましくは1.3μm以上、より好ましくは1.5μm以上、さらに好ましくは1.7μm以上であってもよい。斜め長の最大長さL1が上記下限値以上である場合、芯成分に対するアンカー効果が高まる傾向にある。また、前記斜め長の最大長さL1は、3.3μm以下であってもよく、好ましくは3.1μm以下、より好ましくは2.9μm以下であってもよい。斜め長の最大長さL1が上記上限値以下である場合、フィブリル化が抑制される傾向にある。
 また、フィブリル化を抑制しつつ、島部によるアンカー効果を向上させる観点から、前記斜め長の最大長さL1と最大幅Wの比L1/Wは、例えば、5.0以上であってもよく、好ましくは5.1以上であり、より好ましくは5.2以上、さらに好ましくは5.3以上、さらにより好ましくは5.5以上であってもよい。L1/Wの上限値に特に制限はないが、10以下であってもよい。
 前記繊維縦断面で、鞘成分中における最も大きな幅を有する島部の繊維長手方向の長さL2は、例えば、450~1000μmであってもよく、好ましくは500~800μm、より好ましくは550~650μmであってもよい。長さが長いほど、芯成分に対するアンカー効果を高めることができる。この島部の繊維長手方向の長さは、繊維縦断面の拡大画像から求め得る。また、放流糸にて島部の繊維長手方向の長さを求め、その値にドラフト値を掛けた計算値として算出してもよい。
 鞘成分の厚みは、芯部の露出を紡糸し繊維の強度を確保する観点から、例えば、0.8~5.0μmであってもよく、好ましくは0.9~4.0μm、より好ましくは0.9~3.0μm、特に好ましくは1.0~2.5μmであってもよい。
 図3に示すように、鞘成分の厚みは、例えば、芯鞘複合繊維を繊維長手方向に対して垂直な平面で切断して見た断面(以下、「繊維横断面」と称す場合がある。)において、その繊維横断面の拡大画像などから求め得る。具体的には、走査型顕微鏡で繊維横断面を撮像し、繊維外周を3等分する任意の3点にて、芯成分の外周面から鞘成分の外周面までの径方向距離を測定し、その平均値から鞘成分の厚みを求めることが可能である。なお、繊維切断時には、応力による影響を最小限にするため、樹脂包埋して繊維を固定した上で切断することが好ましい。
 芯鞘複合繊維の単糸繊度は、例えば1~120dtexであってもよく、好ましくは2~60dtex、より好ましくは2.5~30dtex、さらに好ましくは3~15dtexである。この単糸繊度は、例えば、JIS L 1013「化学繊維フィラメント糸試験方法」に準じて測定し得る。また芯鞘複合繊維は、モノフィラメントであってもよく、2以上のモノフィラメントを含むマルチフィラメントであってもよい。
 芯鞘複合繊維は、25℃雰囲気下における引張強度が、例えば、10cN/dtex以上であってもよく、好ましくは13cN/dtex以上、より好ましくは15cN/dtex以上、さらに好ましくは18cN/dtex以上、さらにより好ましくは20cN/dtex以上であってもよい。引張強度の上限値に特に制限はないが、30cN/dtex以下であってもよい。ここで引張強度は、JIS L 1013試験法を参考にして測定される値である。なお、芯鞘複合繊維がマルチフィラメントの場合、繊維の引き揃えによる強度の変化を考慮し、マルチフィラメントから1本取り出して単糸引張強度として測定してもよい。
 芯鞘複合繊維は、極めて高い寸法安定性を有しており、250℃における乾熱収縮率が0.01%以下であってもよく、好ましくは0.01%以下であってもよく。ここで、乾熱収縮率は、後述する実施例に記載された方法により測定される値である。
 また、芯鞘複合繊維は、この芯鞘複合繊維に対して、120°の角度で互違いに配置された3本の櫛ガイドに試験対象の繊維をそれぞれ通し、各繊維に1g/dtexの荷重をかけ、ストローク長3cm、速度95回/分で30000回の往復運動を与えた場合に、繊維の長さ3cm当たりに発生した、平均毛羽数(5回平均)が、例えば1以下であってもよく、好ましくは0.5以下であってもよい。ここで、毛羽は、芯鞘複合繊維をカメラにて20倍に拡大した際に、1mm以下の小さな毛羽(フィブリル)や、1mmより大きい毛羽や鞘剥がれとして観察することができる。
 本発明の芯鞘複合繊維は、通常の方法で製織、編成することができ、また、屈曲性熱可塑性ポリマーの種類に応じて、通常の方法により染色することができる。例えば屈曲性高分子がポリエステル系ポリマーである場合、分散染料を用いた従来のポリエステル繊維の染色方法で染色することができる。
 本発明の芯鞘複合繊維は、各種繊維構造体として好適に用いることができ、本発明の繊維構造体は、本発明の芯鞘複合繊維を少なくとも一部に含んでいる。繊維構造体としては、ロープ、混繊糸等の一次元構造体、織物、編物、不織布等の二次元構造体等の高次加工品が挙げられる。繊維構造体は、芯鞘複合繊維単独で構成されていてもよいし、他の構成部材を本発明の効果が阻害されない範囲で含んでいてもよい。繊維構造体を一旦形成した後に、上述の染色方法で繊維構造体を染色してもよい。
 繊維構造体が織物である場合、織組織としては特に限定されず、例えば平織、斜文織、朱子織、変化平織、変化斜文織、変化朱子織、変わり織、紋織、片重ね織、二重組織、多重組織、経パイル織、緯パイル織、絡み織などが挙げられる。また、繊維構造体が編物である場合、編組織としては特に限定されず、例えば丸編、緯編、経編(トリコット編、ラッセル編を含む)、パイル編、平編、天竺編、リブ編、スムース編(両面編)、ゴム編、パール編、デンビー組織、コード組織、アトラス組織、鎖組織、挿入組織などが挙げられる。
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。なお、以下の実施例および比較例においては、下記の方法により各種物性を測定した。
[繊度]
 JIS L 1013:2010 8.3.1 A法に基づき、大栄科学精器製作所製検尺器を用いて芯鞘複合繊維を100mカセ取りし、その重量(g)を100倍して1水準当たり3回の測定を行い、前記3回の測定値の平均値を得られた繊度(dtex)とした。
[引張強度]
 JIS L 1013に準じ、USTER社製強伸度測定機「TENSORAPID5」を用いて、試験長20cm、引張速度10cm/分、初荷重を3.3g/dtexとした条件で、1サンプルにつき5回の測定を行い、前記5回の測定値の平均値を強度(cN/dtex)とした。なお、芯鞘複合繊維がマルチフィラメントの場合、マルチフィラメントから1本取り出して単糸引張強度を測定した。
[鞘成分の厚み]
 芯鞘複合繊維をエポキシ樹脂に包埋し、この包埋したものを繊維長手方向に垂直な平面で切断することで繊維横断面の断面出しを行った。この繊維横断面において、マイクロスコープにて、繊維外周を3等分する任意の3点において、芯部の外周面から鞘部の外周面までの径方向距離を測定し、その平均値を算出し、鞘成分の厚みとした。
[島部長さ、島部最大幅]
 芯鞘複合繊維をエポキシ樹脂に包埋し、この包埋したものをクロスセクションポリッシャ(CP)にて繊維長手方向に切断することで繊維縦断面の断面出しを行った。この繊維縦断面において、走査型プローブ顕微鏡(SPM)にて、繊維長手方向に100μm以上1000μm以下で観察した。観察範囲において、繊維長手方向に延びる多数の島部のうち、繊維垂直方向の長さが相対的に大きい島部を複数個抽出し、抽出した島部の繊維垂直方向の長さを島部の幅として比較し、最も大きな幅を有する島部について、島部の最大幅Wを決定した。また、最大幅Wを有する島部について、繊維長手方向の長さL2を測定した。
[島部斜め長の最大長さ]
 次に、最大幅Wを有する島部について、繊維長手方向一端から他端に向かって、前記繊維長手方向に対し定められた角度α(10°)で延びる斜線と重なる長さの中で、最も長い線分を島部の斜め長の最大長さL1として測定した。
[耐摩耗性]
 大栄科学精器製作所製のTM型抱合力試験機(型式 TM-200)を用い、120°の角度で互違いに配置された3本の櫛ガイドに試験対象の繊維をそれぞれ通し、各繊維に1g/dtexの荷重をかけ、ストローク長3cm、速度95回/分で30000回の往復運動を与え、カメラにて20倍に拡大して毛羽の状態を確認した。上記試験を5回行い、繊維の長さ3cm当たりについて、それぞれ毛羽の発生の有無を観察した。なお、発生した毛羽については、長さ1mm以下の微小な毛羽と、長さ1mmより大きい毛羽を区別し、以下の基準で評価した。
(毛羽の発生有無)
 ◎:5回の試験で1回も毛羽が観察されなかった
 ○:5回の試験で1回以上毛羽が観察されたが、長さ1mmより大きい毛羽は1回も観察されなかった
 ×:5回の試験で1回以上毛羽が観察され、長さ1mmより大きい毛羽が1回以上観察された
 さらに、5回の試験で1回以上毛羽の発生が見られたものについては、発生した毛羽の個数を測定し、上記試験を5回行った平均値として算出した。
 [乾熱収縮率]
 Xcmに切り出した繊維を、ヤーンに0.5mg/dの荷重をかけた状態で250℃に保たれた空気恒温槽中で30分間保持した後の繊維長(Ycm)から、次式を用いて算出した。
 乾熱収縮率(%)=<X―Y/X>×100
[実施例1]
 以下の方法に従い、芯鞘複合繊維を製造した。
 芯成分では、ポリマーAとして構成単位(P:HBA)と(Q:HNA)のモル比が73/27である溶融異方性芳香族ポリエステル[融点(Ma):278℃、溶融粘度(MVa):32.1Pa・s]を用いた。また、鞘成分では、海成分を形成するBポリマーとしてPEN[融点(Mb):266.3℃、溶融粘度(MVb):100Pa・s]を用い、島成分を形成するCポリマーとして上記ポリマーAと同様の溶融異方性芳香族ポリエステル[融点(Mc):278℃、溶融粘度(MVc):32.1Pa・s]を用いた。
 混練工程では、芯成分と鞘成分を別々の押出機により溶融混練させた。鞘成分の混練工程では、BポリマーおよびCポリマーを鞘成分中の島成分の割合が30重量%となるように混合し、混練押出スタート後に二軸押出機の混練部の設定温度を266℃((Mc-12)℃)に設定して十分混練した後(低温混練工程)、吐出工程において、鞘成分比が0.35(芯鞘比(重量比)として65/35)となるように制御した図4の構造を有する口金より、紡糸温度310℃、ドラフト値21.6倍で紡糸し、14.0dtexのフィラメント繊維(16f)を得た。紡糸性は良好であり、断糸することなく採取が可能であった。この芯鞘複合繊維中におけるBポリマー成分が占める割合は0.105(10.5重量%)であった。
 ついで、熱処理工程として、得られた繊維を熱処理ボビンに巻き返し、段階的に処理温度を上げ、最高温度260℃として窒素ガス雰囲気中で18時間、熱処理を行った。熱処理ボビンからの解舒性には問題なく、得られた熱処理糸は表5に示す性能を有していた。
[実施例2~4]
 芯鞘比、鞘成分中の島成分の割合、単繊維繊度、フィラメント数、ドラフト値を表5に示すごとく変更したこと以外は、実施例1と同様に芯鞘複合繊維を製造した。結果を表5に示す。いずれも紡糸性は良好であり、断糸することなく採取が可能であった。
[比較例1]
 鞘成分のBポリマーとCポリマーのチップを手混ぜによりブレンドしたチップブレンドを用い、BポリマーおよびCポリマーを、鞘成分中の島成分の割合が20重量%となるように混合して、低温混練工程において単軸押出機を用いて溶融混練し、鞘成分比が0.35(芯鞘比(重量比)として65/35)となるように制御した図4の構造を有する口金より、紡糸温度310℃、ドラフト値9.9倍で紡糸した以外は実施例1と同様に紡糸、熱処理を実施し、芯鞘複合繊維を製造した。紡糸性は劣っており、断糸する場合があった。結果を表5に示す。
[比較例2]
 鞘成分中の島成分の割合を20重量%となるように混合した以外は、比較例1と同様に芯鞘複合繊維を製造した。紡糸性は劣っており、断糸する場合があった。結果を表5に示す。
[比較例3]
 鞘成分中の島成分の割合を5重量%となるように混合した以外は、比較例1と同様に紡糸、熱処理を実施し、芯鞘複合繊維を製造した。特許文献1に記載されているように、鞘成分中の島成分の割合が10重量%以下であるため、紡糸性は良好であり、断糸することなく採取が可能であった。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000008
 表5に示すように、芯鞘複合繊維中におけるBポリマー成分の割合を低減しているため、実施例1~4では乾熱収縮率が0.00%であり、極めて高度な寸法安定性を示している。また、実施例1~4はいずれも、30000回の往復運動による摩耗試験において1mmより大きい毛羽の発生が見られなかったことから、鞘剥がれも発生せず、耐摩耗性に優れている。特に、実施例1および2では、毛羽の発生も、1mm以下の微小なフィブリルすらも見られていない。また、実施例3では、単糸繊度が小さいにもかかわらず、比較例1~3より良好な耐摩耗性を示している。実施例4のように単糸繊度が太い場合についても同様に、比較例1~3より良好な耐摩耗性を示している。
 一方、芯鞘複合繊維中におけるBポリマー成分の割合が高いため、比較例1~3では乾熱収縮が0.05%~0.1%であり、実施例1~4と比較すると高度な寸法安定性を実現できていない。また、比較例1~3では、従来行われているチップブレンドではLCPを微細に混和できないため、結果として、耐摩耗試験での毛羽の評価に際して、1mmより大きな毛羽(フィブリル)が発生するだけでなく、毛羽数も実施例1より多く発生し、さらに1mmより大きい毛羽、鞘剥がれが発生している。また、繊維強度についても、実施例1より低い値を示している。
 本発明の芯鞘複合繊維は、耐フィブリル性を向上させ耐摩耗性に優れたものにしつつ、寸法安定性にも優れているため、テンションメンバー(電線、光ファイバー、アンビリカルケーブル、ヒーター線芯糸、イヤホンコード等の各種電気製品のコード等)、セールクロス、ロープ(海洋、登山、クレーン、ヨット、タグ等)、ザイル、陸上ネット、スリング、命綱、釣糸、縫い糸、網戸コード、漁網、延縄、ジオグリッド、防護手袋、防護衣・アウトドア衣料のリップストップ、ライダースーツ、スポーツ用ラケット、ガット、医療用カテーテル補強材、縫合糸、スクリーン紗、フィルター、プリント基板用基布、メッシュ状搬送ベルト、抄紙用ベルト、ドライヤーカンバス、飛行船、気球、エアーバッグ、スピーカーコーン、各種ホース・パイプ用の補強材、タイヤ・コンベアベルト等のゴム・プラスチック等の補強材等の高次加工製品等に活用され、特にプリント基板用基布などにおいて、良好に活用される。また、一般的な手法で染色できるため、特にセールクロス、ザイル、陸上ネット、釣糸、漁網、延縄、防護衣・アウトドア衣料のリップストップ、ゴム・プラスチック等の補強材、一般衣料等の高次加工製品などにおいて、良好に活用される。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。

Claims (9)

  1.  芯成分が溶融異方性芳香族ポリエステル(Aポリマー)を含み、鞘成分が屈曲性熱可塑性ポリマー(Bポリマー)および溶融異方性芳香族ポリエステル(Cポリマー)を含み、前記Bポリマーが海成分を形成し、前記Cポリマーが島成分を形成し、前記海成分からなる海部中に前記島成分からなる複数の島部が分散する海島構造を有する芯鞘複合繊維であって、
     芯鞘複合繊維中におけるBポリマー成分が占める割合が20重量%以下である芯鞘複合繊維。
  2.  請求項1に記載の芯鞘複合繊維であって、この芯鞘複合繊維中におけるBポリマー成分が占める割合が5重量%以上である芯鞘複合繊維。
  3.  請求項1または2に記載の芯鞘複合繊維であって、芯鞘複合繊維を繊維長手方向に切断した断面で、繊維垂直方向に最も大きな幅を有する島部の最大幅Wが0.65μm以下である芯鞘複合繊維。
  4.  請求項1~3のいずれか一項に記載の芯鞘複合繊維であって、芯鞘複合繊維を繊維長手方向に切断した断面で、前記最大幅Wを有する島部において、繊維長手方向一端から他端に向かうに従って、前記繊維長手方向に対し定められた角度10°で延びる前記鞘成分中における斜線に接する島部のうち、前記斜線と重なる長さの斜め長の最大長さL1と、前記島部の最大幅Wとの比L1/Wが5.0以上である芯鞘複合繊維。
  5.  請求項1~4のいずれか一項に記載の芯鞘複合繊維であって、前記鞘成分の繊維径方向の厚みが0.8~5.0μmである芯鞘複合繊維。
  6.  請求項1~5のいずれか一項に記載の芯鞘複合繊維であって、前記Aポリマーと前記Cポリマーが、主たる構成単位が同一の溶融異方性芳香族ポリエステルである芯鞘複合繊維。
  7.  請求項1~6のいずれか一項に記載の芯鞘複合繊維であって、前記芯成分と前記鞘成分の重量比である芯成分/鞘成分が65/35~97/3である芯鞘複合繊維。
  8.  請求項1~7のいずれか一項に記載の芯鞘複合繊維であって、この芯鞘複合繊維の単糸繊度が1~120dtexである芯鞘複合繊維。
  9.  請求項1~8のいずれか一項に記載の芯鞘複合繊維を少なくとも一部に含む、繊維構造体。
PCT/JP2022/008397 2021-03-04 2022-02-28 芯鞘複合繊維および繊維構造体 WO2022186157A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503839A JPWO2022186157A1 (ja) 2021-03-04 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-034708 2021-03-04
JP2021034708 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022186157A1 true WO2022186157A1 (ja) 2022-09-09

Family

ID=83153760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008397 WO2022186157A1 (ja) 2021-03-04 2022-02-28 芯鞘複合繊維および繊維構造体

Country Status (3)

Country Link
JP (1) JPWO2022186157A1 (ja)
TW (1) TW202300741A (ja)
WO (1) WO2022186157A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126916A (ja) * 1993-09-03 1995-05-16 Polymer Processing Res Inst サーモトロピック液晶ポリマーフィラメントの製法
JPH1181031A (ja) * 1997-07-10 1999-03-26 Kuraray Co Ltd 芯鞘型複合繊維
JP2005133250A (ja) * 2003-10-31 2005-05-26 Toray Ind Inc 芯鞘複合繊維
JP2007119977A (ja) * 2005-10-31 2007-05-17 Toray Ind Inc 高強度複合繊維
JP2010077540A (ja) * 2008-09-24 2010-04-08 Kuraray Co Ltd 染色性良好な高強力繊維およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07126916A (ja) * 1993-09-03 1995-05-16 Polymer Processing Res Inst サーモトロピック液晶ポリマーフィラメントの製法
JPH1181031A (ja) * 1997-07-10 1999-03-26 Kuraray Co Ltd 芯鞘型複合繊維
JP2005133250A (ja) * 2003-10-31 2005-05-26 Toray Ind Inc 芯鞘複合繊維
JP2007119977A (ja) * 2005-10-31 2007-05-17 Toray Ind Inc 高強度複合繊維
JP2010077540A (ja) * 2008-09-24 2010-04-08 Kuraray Co Ltd 染色性良好な高強力繊維およびその製造方法

Also Published As

Publication number Publication date
TW202300741A (zh) 2023-01-01
JPWO2022186157A1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
KR101412284B1 (ko) 액정 폴리에스테르 섬유 및 그의 제조 방법
EP2799600B1 (en) Liquid-crystalline polyester multifilament
TW200819566A (en) Electrically-conductive core-sheath type composite fiber and production method thereof
JP6855683B2 (ja) 液晶ポリエステルマルチフィラメント
JP5428271B2 (ja) 液晶ポリエステル繊維の製造方法
JP2010242246A (ja) 液晶ポリエステル繊維の製造方法
TWI623657B (zh) Organic resin, non-curled staple fiber
JP7332693B2 (ja) 導電性複合繊維およびそれを用いた繊維構造物
JP3778088B2 (ja) スクリーン紗用芯鞘型複合ポリエステルモノフィラメントおよびその製造方法
JP6395054B2 (ja) 液晶ポリエステルマルチフィラメント
JP4631481B2 (ja) ポリエステル芯鞘複合繊維
WO2022186157A1 (ja) 芯鞘複合繊維および繊維構造体
JP5187224B2 (ja) 溶融液晶性ポリエステル繊維の製造方法
WO2022186150A1 (ja) 芯鞘複合繊維およびその製造方法ならびに繊維構造体
JP7239410B2 (ja) 液晶ポリエステル繊維の製造方法
JP4892999B2 (ja) 溶融液晶形成性ポリエステル複合繊維
JP4826416B2 (ja) 芯鞘型複合繊維
JP4802663B2 (ja) 芯鞘型複合繊維
JPWO2019225644A1 (ja) 液晶ポリエステルからなるマルチフィラメントの製造方法および液晶ポリエステルマルチフィラメント
JP3875797B2 (ja) 芯鞘型複合繊維
JP2005047020A (ja) スクリーン紗用ポリエステルモノフィラメント
JP6870822B2 (ja) 高比重繊維からなるマルチフィラメント糸
WO2023054725A1 (ja) 液晶ポリエステル繊維及びその製造方法
JP2023153257A (ja) 芯鞘型ポリエステル複合繊維、及びその製造方法
WO2003016603A1 (fr) Fil a coudre pour machine compose de filaments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763213

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503839

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763213

Country of ref document: EP

Kind code of ref document: A1