WO2022185906A1 - 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板 - Google Patents

紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板 Download PDF

Info

Publication number
WO2022185906A1
WO2022185906A1 PCT/JP2022/006033 JP2022006033W WO2022185906A1 WO 2022185906 A1 WO2022185906 A1 WO 2022185906A1 JP 2022006033 W JP2022006033 W JP 2022006033W WO 2022185906 A1 WO2022185906 A1 WO 2022185906A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
ultraviolet light
substrate
light emitting
epitaxial
Prior art date
Application number
PCT/JP2022/006033
Other languages
English (en)
French (fr)
Inventor
慶太郎 土屋
雅人 山田
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021034203A external-priority patent/JP7484773B2/ja
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP22762963.1A priority Critical patent/EP4303940A1/en
Priority to CN202280018054.3A priority patent/CN116964759A/zh
Publication of WO2022185906A1 publication Critical patent/WO2022185906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Definitions

  • the present invention relates to a method for manufacturing an epitaxial wafer for ultraviolet light emitting elements, a method for manufacturing a substrate for ultraviolet light emitting elements, an epitaxial wafer for ultraviolet light emitting elements, and a substrate for ultraviolet light emitting elements.
  • these epitaxial substrates for deep ultraviolet light emitting diodes are formed on material substrates with different lattice constants, such as sapphire and SiC. In that case, defects due to lattice mismatch occur, which tends to lower the internal quantum efficiency and lower the energy conversion efficiency. Moreover, in the case of wavelengths shorter than 250 nm, the effect becomes even more pronounced. Furthermore, the GaN single-crystal self-supporting substrate having a relatively close lattice constant becomes a light-absorbing substrate due to its bandgap, which lowers the external quantum efficiency. AlN single-crystal free-standing substrates are promising as very high-quality epitaxial substrates, but they are difficult to manufacture and are very expensive materials. Therefore, there has been a problem in popularizing high-power, highly-efficient deep-ultraviolet light-emitting diodes for sterilization.
  • Patent Document 1 discloses a substrate in which an AlN seed crystal is bonded to a substrate made of ceramics. light-emitting diodes can be made. However, there is a problem that the cost including the device process is high because the lift-off of the ceramic substrate is difficult.
  • Patent Document 2 discloses a laser lift-off technique for an LED using GaN.
  • the epitaxial growth is limited to expensive substrates, such as sapphire substrates and expensive AlN, which deteriorate the epitaxial crystallinity.
  • Non-Patent Document 1 discloses a method of epitaxially growing GaN on a sapphire substrate, forming an ultraviolet light emitting diode thereon, and performing laser lift-off.
  • a GaN layer and an ultraviolet light emitting diode are produced by epitaxial growth, there is a problem that the luminous efficiency is lowered due to the generation of threading dislocations caused by the difference in lattice constant and thermal expansion coefficient.
  • the present invention has been made to solve the above problems, and provides an inexpensive, high-quality epitaxial wafer for ultraviolet light emitting devices, which is particularly suitable for the deep ultraviolet region (UVC; 200 to 290 nm), and a method for producing the same. for the purpose.
  • UVC deep ultraviolet region
  • the present invention has been made to achieve the above objects, and includes steps of preparing a support substrate having at least one surface made of gallium nitride, and forming a bonding layer on the surface made of gallium nitride of the support substrate. and a step of bonding a seed crystal made of an Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal on the bonding layer to form a bonded substrate having a seed crystal layer.
  • a high-quality epitaxial wafer with a low dislocation density can be obtained at low cost by simple epitaxial growth, and the productivity of the epitaxial process can be improved.
  • the Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal free-standing substrate and epitaxial substrate separated during the formation of the seed crystal layer can be recovered and re-polished to produce an expensive compound semiconductor single crystal. Since the crystal substrate can be reused, it can contribute to cost reduction.
  • the method for manufacturing an epitaxial wafer for an ultraviolet light emitting device may include a step of growing an epitaxial layer on the seed crystal layer by HVPE before growing the first conductivity type clad layer.
  • the epitaxial layer is thickened, the entire epitaxial wafer for ultraviolet light emitting devices can be thickened, and handling becomes easy even when the supporting substrate is separated.
  • an epitaxial wafer for an ultraviolet light emitting element comprising a step of bonding a permanent support substrate transparent to ultraviolet light to the ultraviolet light emitting element layer side, or a step of growing an epitaxial layer on the ultraviolet light emitting element layer side by HVPE. It can be a manufacturing method of.
  • the epitaxial wafer for ultraviolet light emitting elements obtained by the above method for producing an epitaxial wafer for ultraviolet light emitting elements is irradiated with a laser beam that can be absorbed by gallium nitride from the ultraviolet light emitting element layer side, and the support substrate is removed. It can be a method for manufacturing a substrate for ultraviolet light emitting elements in which the substrate for ultraviolet light emitting elements is obtained by separating.
  • the support substrate can be separated using laser lift-off, so the cost of the device process can be reduced.
  • the expensive compound semiconductor single crystal substrate can be reused, so that epitaxial substrates for light-emitting diodes in the deep ultraviolet region can be manufactured at low cost. Since the separated supporting substrate can be reused, further cost reduction is possible.
  • the present invention has been made to achieve the above object, and includes a support substrate having at least one surface made of gallium nitride, a bonding layer on the surface of the support substrate made of gallium nitride, and the bonding layer.
  • a bonded substrate including a seed crystal layer made of Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal above, and an ultraviolet light emitting element layer on the seed crystal layer of the bonded substrate
  • a first-conductivity-type clad layer made of at least Al y Ga 1-y N (0.5 ⁇ y ⁇ 1.0), an AlGaN-based active layer, and Al z Ga 1-z N (0.5 ⁇
  • an epitaxial wafer for an ultraviolet light emitting device comprising an ultraviolet light emitting device layer including a second conductivity type clad layer having z ⁇ 1.0.
  • Such epitaxial wafers for ultraviolet light emitting devices are high-quality and inexpensive epitaxial wafers with low dislocation density.
  • the support substrate can be easily separated from the seed crystal layer and the epitaxial layer on the seed crystal layer by irradiating the epitaxial layer with a laser that is absorbed by gallium nitride. It is economical because the supporting substrate can be reused.
  • the support substrate may be any one of a GaN self-supporting substrate, a sapphire substrate provided with a GaN layer, a SiC substrate provided with a GaN layer, a Si substrate provided with a GaN layer, and an engineering substrate whose surface is made of GaN single crystal. It can be set as the epitaxial wafer for ultraviolet light emitting elements which consists of this.
  • the seed crystal layer may be an epitaxial wafer for an ultraviolet light emitting device having a light transmittance of 70% or more for light with a wavelength of 230 nm.
  • the AlGaN-based active layer has a multiple quantum well (MQW) structure, contains In as a constituent element other than Al, Ga, and N, and the ratio of In is less than 1%. It can be an epitaxial wafer.
  • MQW multiple quantum well
  • the AlGaN-based active layer can be an epitaxial wafer for an ultraviolet light emitting device having a wavelength ⁇ p of a spectrum of light emitted when a current of 0.2 A/mm 2 is injected at 25° C. is shorter than 290 nm.
  • a high-quality deep UV light emitting element can be used as a light source for sterilization.
  • an epitaxial wafer for an ultraviolet light emitting element having a permanent support substrate transparent to ultraviolet light on the ultraviolet light emitting element layer side.
  • the epitaxial wafer can be made thicker and easier to handle.
  • the substrate for ultraviolet light emitting elements can be obtained by separating and removing the support substrate in the epitaxial wafer for ultraviolet light emitting elements.
  • the separated and removed support substrate can be reused, making it an inexpensive product that contributes to cost reduction.
  • the method for producing an epitaxial wafer for ultraviolet light emitting elements of the present invention it is possible to obtain high-quality epitaxial wafers for ultraviolet light emitting elements at low cost. According to the epitaxial wafer for an ultraviolet light emitting device of the present invention, it is inexpensive and of high quality.
  • the present inventors have found a step of preparing a support substrate having at least one surface made of gallium nitride, and forming a bonding layer on the surface of the support substrate made of gallium nitride.
  • the inventors have found that an epitaxial wafer for ultraviolet light emitting devices can be obtained at a low cost, and have completed the present invention.
  • a support substrate is made of gallium nitride
  • a bonding layer on the surface of the support substrate is made of gallium nitride
  • a bonded substrate including a seed crystal layer made of Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal of a first-conductivity-type cladding layer made of at least Al y Ga 1-y N (0.5 ⁇ y ⁇ 1.0), an AlGaN-based active layer, and Al z Ga 1-z N (0.5 ⁇ z ⁇ 1.0)
  • an epitaxial wafer for ultraviolet light emitting elements provided with an ultraviolet light emitting element layer containing a second conductivity type cladding layer of ⁇ 1.0 provides an inexpensive and high quality epitaxial wafer for ultraviolet light emitting elements, and completed the present invention. did.
  • an epitaxial wafer 100A for an ultraviolet light emitting device according to the present invention includes a support substrate 1 having at least one surface made of gallium nitride, and a bonding layer 2 on the surface made of gallium nitride of the support substrate 1. , a bonded substrate 4 including a seed crystal layer 3 made of Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystals on the bonding layer 2, and the seed crystal layer 3 of the bonded substrate 4 It has an ultraviolet light emitting element layer 5 on the top.
  • a support substrate 1 having at least one surface made of gallium nitride
  • a bonding layer 2 on the surface made of gallium nitride of the support substrate 1.
  • the seed crystal layer 3 of the bonded substrate 4 It has an ultraviolet light emitting element layer 5 on the top.
  • the ultraviolet light emitting element layer 5 includes, as shown in FIG. 3, a first conductivity type clad layer 6 made of at least Al y Ga 1-y N (0.5 ⁇ y ⁇ 1.0), an AlGaN-based active layer 7, It includes a second-conductivity-type cladding layer 8 made of Al z Ga 1-z N (0.5 ⁇ z ⁇ 1.0).
  • the substrate obtained by separating and removing the support substrate 1 is the substrate for an ultraviolet light emitting device according to the present invention.
  • the separated and removed support substrate 1 can be reused, which contributes to further cost reduction.
  • Support substrate 1 is not particularly limited as long as at least one surface is made of gallium nitride.
  • a substrate having heat resistance that does not melt, peel off, or break during processing at high temperatures exceeding 1000°C For example, gallium nitride single crystal self-supporting substrates, GaN on sapphire substrates, GaN on SiC substrates, GaN on Si substrates, and engineering substrates in which a material containing GaN as a main component is bonded to ceramics can be used.
  • the bonding layer 2 is a layer for bonding the supporting substrate 1 and the seed crystal layer 3 together.
  • the bonding layer 2 can be a transparent bonding layer such as SiO 2 or an amorphous layer obtained by activating GaN on the surface of the supporting substrate by plasma or argon ion etching.
  • the AlGaN surface on the seed crystal layer 3 side may also be provided with an amorphous layer obtained by activation by plasma or argon ion etching.
  • the seed crystal layer 3 is a layer made of Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal.
  • the seed crystal layer preferably has a light transmittance of 70% or more for light with a wavelength of 230 nm. With such a device, a deep ultraviolet light emitting device having high luminous efficiency can be obtained.
  • the ultraviolet light emitting element layer 5 includes a first conductivity type clad layer 6 made of at least Al y Ga 1-y N (0.5 ⁇ y ⁇ 1.0), an AlGaN-based active layer 7, and Al z Ga 1-z It includes a second-conductivity-type clad layer 8 made of N (0.5 ⁇ z ⁇ 1.0).
  • the first-conductivity-type cladding layer 6 is for supplying electrons to the AlGaN-based active layer 7, and although the film thickness is not particularly limited, it can be, for example, 2.5 ⁇ m.
  • the AlGaN-based active layer 7 is not particularly limited, but preferably has, for example, a multiple quantum well structure (MQW) in which well layers 9 and barrier layers 10 are alternately laminated.
  • the second-conductivity-type clad layer 8 is for supplying holes to the AlGaN-based active layer 7 .
  • the AlGaN-based active layer has a multiple quantum well (MQW) structure, contains In as a constituent element other than Al, Ga, and N, and preferably has an In content of less than 1%. Furthermore, the AlGaN-based active layer preferably has a wavelength ⁇ p of a spectrum emitted at 25° C. and a current of 0.2 A/mm 2 injected at a wavelength shorter than 290 nm. With such a device, a high-quality deep ultraviolet light emitting device can be used as a light source for sterilization.
  • MQW multiple quantum well
  • a contact layer 11 made of p-type AlGaN can be provided in order to reduce the contact resistance with the electrode.
  • the layer arrangement may be such that P/N is reversed.
  • a thick epitaxial layer may be provided on the seed crystal layer 3 of the bonded substrate 4 . Further, instead of this thick epitaxial layer, a thick epitaxial layer or a permanent support substrate transparent to ultraviolet light may be provided on the ultraviolet light emitting element layer 5 . When a thick epitaxial layer and a permanent support substrate are provided in this manner, a constant thickness can be secured as an epitaxial wafer for ultraviolet light emitting devices, so that even when the support substrate 1 is separated and removed, handling becomes easy.
  • a homoepitaxial layer 12 may be provided on the bonded substrate 4 .
  • the homoepitaxial layer 12 is for improving crystal quality, and can be set in the range of 100 nm to 300 ⁇ m, for example.
  • the homoepitaxial layer 12 may be omitted depending on the device design.
  • a substrate obtained by separating and removing the supporting substrate from the epitaxial wafer for ultraviolet light emitting elements according to the present invention becomes the substrate for ultraviolet light emitting elements according to the present invention.
  • FIG. 1 shows a schematic flowchart of a method for producing an epitaxial wafer for ultraviolet light emitting devices and a substrate for ultraviolet light emitting devices according to the present invention.
  • a support substrate having at least one surface made of gallium nitride is prepared (S1).
  • a bonding layer is formed on the surface of the support substrate made of gallium nitride (S2).
  • a method for forming the bonding layer is not particularly limited, but an example thereof includes a method of forming a transparent bonding layer such as SiO 2 .
  • a seed crystal made of Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal is bonded onto the bonding layer to form a bonded substrate having a seed crystal layer (S3).
  • a bonded substrate is produced by bonding together a supporting substrate on which a bonding layer is formed and a seed crystal. At this time, the bonding can be performed by, for example, a method of applying pressure and heating.
  • the seed crystal layer made of Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal is a free-standing Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) single crystal. It can be produced by ion-implanting a substrate or an Al x Ga 1-x N epitaxial substrate to form a brittle layer, bonding it to a support substrate and then peeling it off, but it is not limited to this method.
  • a bonded substrate including a seed crystal layer made of a single crystal can be obtained.
  • the bonded substrate is introduced into the reactor of the MOVPE apparatus. It is preferable to perform cleaning with a chemical before introducing the bonded substrate stack into the reactor. After introducing the bonded substrates into the reactor, the reactor is filled with a high-purity inert gas such as nitrogen, and the gas in the reactor is exhausted.
  • a high-purity inert gas such as nitrogen
  • the temperature for cleaning can be between 1000° C. and 1200° C. in terms of the surface temperature of the bonded substrate, and cleaning at 1050° C. in particular can provide a clean surface. Cleaning is preferably carried out after the pressure in the furnace has been reduced, which can be between 30 mbar (30 ⁇ 10 2 Pa) and 200 mbar (200 ⁇ 10 2 Pa).
  • the reactor is cleaned for about 10 minutes while a mixed gas of hydrogen, nitrogen, ammonia and the like is supplied. These conditions are examples and are not particularly limited.
  • a thick epitaxial layer may be grown on the seed crystal layer by HVPE before growing the clad layer of the first conductivity type (S4).
  • a homoepitaxial layer (S5) before growing the clad layer of the first conductivity type.
  • Al x Ga 1-x N (0.5 ⁇ x ⁇ 1.0) is epitaxially grown.
  • the growth can be performed at a furnace pressure of 50 mbar (50 ⁇ 10 2 Pa) and a substrate temperature of 1120° C., for example.
  • Trimethylaluminum (TMAl) can be used as the Al source
  • trimethylgallium (TMGa) can be used as the Ga source
  • NH 3 ammonia
  • Carrier gas for TMAl, TMGa, NH3 can be hydrogen, for example. These conditions are examples and are not particularly limited.
  • an ultraviolet light emitting element layer is formed by epitaxial growth (S6).
  • an ultraviolet light emitting element layer can be formed as follows.
  • This step is a step of growing the first conductivity type clad layer on the seed crystal layer.
  • This step after the inside of the reaction furnace is maintained at a specified furnace pressure and substrate temperature, raw materials TMAl, TMGa, NH 3 and an impurity gas for n-type conductivity are supplied into the furnace, and the first A conductive clad layer is grown.
  • the first-conductivity-type cladding layer can be freely produced with a composition represented by Al y Ga 1-y N (0.5 ⁇ y ⁇ 1.0).
  • the specified furnace pressure for this process can be, for example, 75 mbar (75 ⁇ 10 2 Pa) and the substrate temperature can be 1100°C.
  • the flow rate of raw materials TMAl and TMGa is adjusted so that the Al/Ga ratio taken into the thin film becomes a set ratio, taking into consideration the material efficiency of the raw material gas. set.
  • Monosilane (SiH 4 ) can be used as an impurity gas for n-type conductivity.
  • Hydrogen can be used as a carrier gas for transporting the raw material gas.
  • Tetraethylsilane may be used as the impurity gas.
  • This step is a step of growing an AlGaN-based active layer on the clad layer of the first conductivity type.
  • raw materials TMAl, TMGa, and NH 3 are supplied into the furnace to grow an AlGaN-based active layer.
  • the AlGaN-based active layer can be, for example, a barrier layer Al 0.75 Ga 0.25 N and a well layer Al 0.6 Ga 0.4 N.
  • the specified furnace pressure in this process can be, for example, 75 mbar (75 ⁇ 10 2 Pa) and the substrate temperature can be 1100°C.
  • the raw material TMAl and TMGa are mixed so that the Al/Ga ratio taken into the thin film is a set ratio, taking into account the material efficiency of the raw material gas. Set the flow rate.
  • This step is a step of growing a second-conductivity-type clad layer on the AlGaN-based active layer.
  • This step after the inside of the reaction furnace is maintained at a specified furnace pressure and substrate temperature, raw materials TMAl, TMGa, and NH 3 , and impurity raw materials for making p-type conductivity are supplied into the furnace.
  • the second-conductivity-type cladding layer can be freely produced with a composition represented by Al z Ga 1-z N (0.5 ⁇ z ⁇ 1.0). Also, a plurality of layers may be formed by changing the composition.
  • the specified furnace pressure for this process can be, for example, 75 mbar (75 ⁇ 10 2 Pa) and the substrate temperature can be 1100°C.
  • the flow rate of raw materials TMAl and TMGa is adjusted so that the Al/Ga ratio taken into the thin film becomes a set ratio, taking into consideration the material efficiency of the raw material gas. set.
  • These values are examples and are not particularly limited.
  • Biscyclopentadienylmagnesium (Cp 2 Mg) can be used as an impurity material for providing p-type conductivity.
  • a carrier gas for transporting the raw material gas can be hydrogen.
  • This step is a step of growing a p-type AlGaN contact layer on the second conductivity type clad layer.
  • raw materials TMAl, TMGa, and NH 3 , and impurity raw materials for making p-type conductivity are supplied into the furnace and p Grow a type AlGaN contact layer.
  • the specified furnace pressure for this process can be, for example, 75 mbar (75 ⁇ 10 2 Pa) and the substrate temperature can be 1100°C. These values are examples and are not particularly limited.
  • Biscyclopentadienylmagnesium (Cp 2 Mg) can be used as an impurity material for providing p-type conductivity.
  • a carrier gas for transporting the raw material gas can be hydrogen.
  • Activation annealing step the wafer is annealed at a predetermined temperature and time in a heating furnace to activate the p-type impurities in the second-conductivity-type cladding layer and the p-type AlGaN contact layer. Activation in the heating furnace can be performed at 750° C. for 10 minutes, for example.
  • a permanent support substrate transparent to ultraviolet light may be bonded onto the ultraviolet light emitting element layer (S7).
  • a thick epitaxial layer may be grown by the HVPE method (S8).
  • an epitaxial wafer for an ultraviolet light emitting device and a substrate for an ultraviolet light emitting device which are particularly suitable for light emitting diodes in the deep ultraviolet region
  • a high-quality substrate with a low dislocation density can be obtained by simple epitaxial growth. can be obtained, and the productivity of the epitaxial process can be improved.
  • the substrate can be peeled off using laser lift-off, the cost of the device process can be reduced.
  • by recovering AlN single crystal substrates and gallium nitride substrates and re-polishing them it is possible to reuse expensive compound semiconductor single crystal substrates. can be manufactured.
  • Example 1 A substrate was prepared by growing a bonding layer made of SiO 2 to a thickness of 2 ⁇ m on a free-standing gallium nitride substrate and attaching a seed crystal made of an AlN single crystal.
  • a fragile layer was previously formed by ion implantation from the nitrogen surface of the AlN single crystal, and an AlN single crystal layer having a thickness of 200 nm was formed on the bonding layer by bonding and peeling. After that, the surface of the AlN single crystal layer left after peeling was polished to remove the remaining brittle layer to obtain a good surface of the seed crystal layer.
  • the AlN single crystal after peeling was collected, re-polished, and reused as a seed crystal layer forming substrate.
  • AlN was grown to a thickness of 150 ⁇ m by HVPE on the bonded substrate obtained as described above, and the substrate after growth was taken out.
  • XRD rocking curve measurement was performed on the substrate after AlN growth, it was found that AlN (0002) was 42 arcsec and AlN (10-12) was 91 arcsec, indicating that a template with good crystallinity was obtained.
  • n-type Al 0.95 Ga 0.05 N was grown on the template to a thickness of 2.5 ⁇ m by MOVPE.
  • a quantum well structure consisting of three layers of barrier layers (Al 0.75 Ga 0.25 N) and well layers (Al 0.6 Ga 0.4 N) was formed thereon.
  • a p-type Al 0.95 Ga 0.05 N layer and a p-type AlGaN contact layer were formed.
  • activation annealing was performed at 750° C. for 10 minutes in a nitrogen atmosphere in the MOVPE furnace.
  • a laser with a wavelength of 308 nm is incident from the p-type AlGaN contact layer side, and the laser is absorbed by the surface of the gallium nitride free-standing substrate, and the heat generated causes the gallium nitride free-standing substrate, the epitaxial layer, the seed crystal layer, and the bonding layer. was peeled off.
  • the substrate consisting of the epitaxial layer, the seed crystal layer, and the bonding layer By etching the substrate consisting of the epitaxial layer, the seed crystal layer, and the bonding layer after peeling off the free-standing gallium nitride substrate with a solution, the SiO2 , gallium nitride, and Ga residues of the bonding layer are removed, and the deep ultraviolet light emitting diode is obtained.
  • a suitable epitaxial substrate was obtained.
  • the separated gallium nitride single crystal was collected, re-polished, and reused as a support substrate.
  • Example 2 A substrate was prepared by bonding a seed crystal made of an AlN single crystal onto a gallium nitride (GaN) self-supporting substrate by room temperature bonding. That is, after forming a brittle layer by ion implantation from the nitrogen surface of the AlN single crystal, the surfaces of the AlN single crystal and the GaN free-standing substrate are activated by argon ion etching to form an amorphous layer (bonding layer), followed by pressurization. and the AlN single crystal was peeled off at the brittle layer to obtain a bonded substrate. The AlN single crystal after peeling was collected, re-polished, and reused as a seed crystal layer forming substrate.
  • GaN gallium nitride
  • An n-type Al 0.95 Ga 0.05 N was grown to a thickness of 2.5 ⁇ m on the bonded substrate described above using the MOVPE method.
  • a quantum well structure consisting of three layers of barrier layers (Al 0.75 Ga 0.25 N) and well layers (Al 0.6 Ga 0.4 N) was formed thereon. After that, a p-type Al 0.95 Ga 0.05 N layer and a p-type AlGaN contact layer were formed.
  • activation annealing was performed at 750° C. for 10 minutes in a nitrogen atmosphere in the MOVPE furnace.
  • a film of SiO 2 was formed as a bonding layer on the substrate after epitaxial growth, and the substrate was bonded to a sapphire substrate on which SiO 2 was similarly formed.
  • a laser with a wavelength of 308 nm is incident on the back surface of the sapphire substrate, and the laser is absorbed by the surface of the gallium nitride self-supporting substrate.
  • the layers were peeled off to obtain an epitaxial substrate suitable for deep UV light emitting diodes.
  • the separated gallium nitride single crystal was collected, re-polished, and reused as a support substrate.
  • Example 3 An epitaxial wafer was produced in the same procedure as in Example 2 up to the activation annealing step.
  • AlGaN was grown to a thickness of 150 ⁇ m on the p-type AlGaN contact layer of the wafer using the HVPE method.
  • the AlGaN layer was produced with the same Al composition as the AlGaN contact layer in order to lattice-match it with the p-type AlGaN contact layer.
  • a laser with a wavelength of 308 nm is incident from the p-type AlGaN contact layer side of the substrate, and the laser is absorbed by the surface of the gallium nitride free-standing substrate, and the generated heat causes the gallium nitride free-standing substrate, the epitaxial layer, and the seed crystal layer to form. , the bonding layer was peeled off, and an epitaxial substrate suitable for a deep ultraviolet light emitting diode was obtained. The separated gallium nitride single crystal was collected, re-polished, and reused as a support substrate.
  • the sapphire substrate was introduced into the reactor of the MOVPE apparatus, heated to 1030° C., and cleaned for 10 minutes while hydrogen was supplied.
  • a buffer layer of 3 ⁇ m for improving the crystallinity of the epitaxial layer was grown on the sapphire substrate by introducing gases serving as raw materials Al, Ga, and N at a specified furnace pressure and substrate temperature.
  • An epitaxial substrate for a light-emitting diode in the deep ultraviolet range was produced by the same manufacturing method as in Example 1, from the step of growing the first conductivity type cladding layer to the activation annealing step.
  • Table 1 shows the results of XRD rocking curve measurement of the epitaxial substrates for deep ultraviolet light emitting diodes produced in Examples 1-3 and Comparative Example 1.
  • the FWHM of the XRD rocking curve of AlN (0002) of the epitaxial substrate for a deep ultraviolet light emitting diode of the example is 35 to 60 arcsec, while the FWHM of the comparative example is 562 arcsec.
  • An epitaxial substrate having better crystallinity than that of Comparative Example 1 was obtained.
  • the step of growing the buffer layer was changed from the method of Comparative Example 1 to grow low-temperature GaN at 500° C. and then raise the temperature to 1100° C. to grow a GaN layer of 100 nm.
  • An epitaxial substrate for light-emitting diodes in the deep UV region was fabricated by epitaxial growth. When the epitaxial substrate was taken out from the MOVPE apparatus, cracks were found on the entire surface of the epitaxial layer. Further, when the threading dislocation densities were compared, it was 3 to 7 ⁇ 10 4 cm ⁇ 1 in the method of Example, whereas it was 2 ⁇ 10 8 cm ⁇ 1 in the method of Comparative Example 2. Threading dislocation density increased significantly.
  • an epitaxial substrate with good crystallinity could be obtained at low cost.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本発明は、少なくとも一方の表面が窒化ガリウムからなる支持基板を準備する工程と、前記支持基板の前記窒化ガリウムからなる前記表面に接合層を形成する工程と、前記接合層上にAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶を貼り合わせて種結晶層を有する貼り合わせ基板を形成する工程と、前記貼り合わせ基板の前記種結晶層上に、少なくとも、AlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層をエピタキシャル成長させる工程とを有する紫外線発光素子用エピタキシャルウェーハの製造方法である。これにより、安価で高品質な紫外線発光素子用エピタキシャルウェーハの製造方法が提供される。

Description

紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板
 本発明は、紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板に関する。
 窒化物系半導体材料を活用した深紫外線用発光ダイオードは、殺菌用光源として水銀レス、長寿命、コンパクト化、軽量化、省エネ等の観点から、近年、市場拡大が期待されている。
特開2020-100528号公報 特開2020-35829号公報
光学 246(2) 「深紫外窒化物系発光デバイス」川崎宏治
 しかしながらこれらの深紫外線用発光ダイオード用エピタキシャル基板は、サファイヤやSiCといった格子定数の異なる材料基板上に形成されている。その場合、格子ミスマッチによる欠陥が発生し、内部量子効率を落としエネルギー変換効率が低下する傾向にある。また、250nmより短波長の場合、その影響がさらに著しくなる。さらに、格子定数の比較的近いGaN単結晶自立基板はそのバンドギャップから光吸収基板となり外部量子効率を低下させる。AlN単結晶自立基板は非常に高品質なエピタキシャル用の基板として有望であるが製造が難しく、非常に高価な材料である。そのため、高出力、高効率の殺菌用深紫外発光ダイオードの普及に問題があった。
 安価で高品質な深紫外用発光ダイオードを作製するため、特許文献1には、セラミックスからなる基板上にAlN種結晶を貼り合わせた基板が開示されており、このような基板の上に深紫外用発光ダイオードを作製することができる。しかしながら、セラミックス基板のリフトオフが困難なためデバイス工程も含めてコストが高くなるという問題があった。
 また、特許文献2では、GaNを用いたLEDのレーザーリフトオフ技術が開示されているが、この方法ではサファイヤのように成長したエピタキシャル層よりもバンドギャップの大きい、つまり透明且つ自立性のある基板上への成長が大前提となり、エピタキシャルの結晶性が悪くなるサファイヤ基板や高価なAlNといった高価な基板に制約されるという問題があった。
 非特許文献1には、サファイヤ基板上にGaNをエピタキシャル成長させて、その上に紫外発光ダイオードを形成して、レーザーリフトオフする方法が開示されている。しかしながら、エピタキシャル成長でGaN層及び紫外発光ダイオードを作製すると格子定数差、熱膨張係数差に起因する貫通転位の発生により、発光効率が低下する問題があった。
 本発明は、上記問題を解決するためになされたものであり、安価で高品質な、特に深紫外線領域(UVC;200~290nm)に適した紫外線発光素子用エピタキシャルウェーハ及びその製造方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、少なくとも一方の表面が窒化ガリウムからなる支持基板を準備する工程と、前記支持基板の前記窒化ガリウムからなる前記表面に接合層を形成する工程と、前記接合層上にAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶を貼り合わせて種結晶層を有する貼り合わせ基板を形成する工程と、前記貼り合わせ基板の前記種結晶層上に、少なくとも、AlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層をエピタキシャル成長させる工程とを有する紫外線発光素子用エピタキシャルウェーハの製造方法を提供する。
 このような紫外線発光素子用エピタキシャルウェーハの製造方法によれば、簡便なエピタキシャル成長で、転位密度が少なく高品質なエピタキシャルウェーハを低コストで得ることができ、エピタキシャル工程の生産性を向上させることができる。
 このとき、前記貼り合わせ基板を形成する工程では、AlGa1-xN(0.5<x≦1.0)単結晶自立基板又はAlGa1-xN(0.5<x≦1.0)エピタキシャル基板にイオン注入を行うことで内部に脆弱層を形成した後、前記支持基板と貼り合わせ、前記脆弱層で剥離することにより前記種結晶層を形成する紫外線発光素子用エピタキシャルウェーハの製造方法とすることができる。
 このようにイオン注入を行うことで、比較的簡単に薄い種結晶層を貼り合わせることができる。また、種結晶層形成時に剥離したAlGa1-xN(0.5<x≦1.0)単結晶自立基板やエピタキシャル基板は、回収して再研磨することにより、高価な化合物半導体単結晶基板を再利用できるため、低コスト化に寄与できる。
 このとき、前記第一導電型クラッド層を成長する前に、前記種結晶層上にHVPE法によりエピタキシャル層を成長させる工程を有する紫外線発光素子用エピタキシャルウェーハの製造方法とすることができる。
 これにより、エピタキシャル層が厚くなり、紫外線発光素子用エピタキシャルウェーハ全体を厚くすることができ、支持基板を剥離してもハンドリングが容易となる。
 このとき、前記紫外発光素子層側に紫外光に対して透明な恒久支持基板を接合する工程又は、前記紫外発光素子層側にHVPE法によりエピタキシャル層を成長させる工程を有する紫外線発光素子用エピタキシャルウェーハの製造方法とすることができる。
 これにより、紫外線発光素子用エピタキシャルウェーハ全体を厚くすることができ、ハンドリングが容易となる。
 このとき、上記の紫外線発光素子用エピタキシャルウェーハの製造方法により得た紫外線発光素子用エピタキシャルウェーハに対し、窒化ガリウムに吸収されるレーザー光を前記紫外発光素子層側から照射して、前記支持基板を分離して紫外線発光素子用基板を得る紫外線発光素子用基板の製造方法とすることができる。
 これにより、レーザーリフトオフを利用して支持基板を剥離できるので、デバイス工程を低コスト化することができる。また、支持基板を回収して、再研磨することにより、高価な化合物半導体単結晶基板を再利用できるので、深紫外線領域の発光ダイオード用エピタキシャル基板を安価に製造することができる。分離した支持基板は再利用可能となるため、より一層の低コスト化が可能となる。
 本発明は、上記目的を達成するためになされたものであり、少なくとも一方の表面が窒化ガリウムからなる支持基板と、前記支持基板の前記窒化ガリウムからなる前記表面上の接合層と、前記接合層上のAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶層を含む貼り合わせ基板と、前記貼り合わせ基板の前記種結晶層上の紫外発光素子層であって、少なくともAlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層を備える紫外線発光素子用エピタキシャルウェーハを提供する。
 このような紫外線発光素子用エピタキシャルウェーハは、転位密度が少なく高品質かつ安価なエピタキシャルウェーハである。また、このような紫外線発光素子用エピタキシャルウェーハであれば、窒化ガリウムに吸収されるレーザーをエピタキシャル層側から照射することにより、種結晶層と種結晶層上のエピタキシャル層から支持基板を簡単に分離することができ、支持基板を再利用できるため経済的なものとなる。
 このとき、前記支持基板が、GaN自立基板、GaN層を備えたサファイヤ基板、GaN層を備えたSiC基板、GaN層を備えたSi基板、表面がGaN単結晶からなる材料であるエンジニアリング基板のいずれかからなるものである紫外線発光素子用エピタキシャルウェーハとすることができる。
 このとき、前記種結晶層が、波長230nmの光の光透過率が70%以上のものである紫外線発光素子用エピタキシャルウェーハとすることができる。
 これにより、発光効率の高い深紫外線発光素子とすることができる。
 このとき、前記AlGaN系活性層は、多重量子井戸(MQW)構造であり、Al、Ga、N以外の構成元素としてInを含み、前記Inの割合が1%未満のものである紫外線発光素子用エピタキシャルウェーハとすることができる。
 また、前記AlGaN系活性層は、25℃、0.2A/mmの電流注入時に発光するスペクトルのλが290nmより短波長のものである紫外線発光素子用エピタキシャルウェーハとすることができる。
 これにより、殺菌用光源として高品質な深紫外線発光素子とすることができる。
 このとき、前記紫外発光素子層側に紫外光に対して透明な恒久支持基板を備える紫外線発光素子用エピタキシャルウェーハとすることができる。
 これにより、エピタキシャルウェーハを厚くすることができハンドリングが容易なものとなる。
 このとき、上記の紫外線発光素子用エピタキシャルウェーハにおける前記支持基板が分離除去されたものである紫外線発光素子用基板とすることができる。
 これにより、分離除去された支持基板は再利用が可能となり、よりコスト低減に寄与できる安価なものとなる。
 以上のように、本発明の紫外線発光素子用エピタキシャルウェーハの製造方法によれば、高品質な紫外線発光素子用エピタキシャルウェーハを低コストで得ることが可能となる。本発明の紫外線発光素子用エピタキシャルウェーハによれば、安価で高品質なものとなる。
本発明に係る紫外線発光素子用エピタキシャルウェーハの製造方法の概略フロー図を示す。 本発明に係る紫外線発光素子用エピタキシャルウェーハの一例を示す。 本発明に係る紫外線発光素子用エピタキシャルウェーハの他の例を示す。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、深紫外線領域(UVC;200~290nm)の発光ダイオード用に好適な、安価で高品質な紫外線発光素子用エピタキシャルウェーハ及びその製造方法が求められていた。
 本発明者らは、上記課題について鋭意検討を重ねた結果、少なくとも一方の表面が窒化ガリウムからなる支持基板を準備する工程と、前記支持基板の前記窒化ガリウムからなる前記表面に接合層を形成する工程と、前記接合層上にAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶を貼り合わせて種結晶層を有する貼り合わせ基板を形成する工程と、前記貼り合わせ基板の前記種結晶層上に、少なくとも、AlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層をエピタキシャル成長させる工程とを有する紫外線発光素子用エピタキシャルウェーハの製造方法により、高品質な紫外線発光素子用エピタキシャルウェーハを低コストで得ることができることを見出し、本発明を完成した。
 本発明者らは、上記課題について鋭意検討を重ねた結果、少なくとも一方の表面が窒化ガリウムからなる支持基板と、前記支持基板の前記窒化ガリウムからなる前記表面上の接合層と、前記接合層上のAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶層を含む貼り合わせ基板と、前記貼り合わせ基板の前記種結晶層上の紫外発光素子層であって、少なくともAlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層を備える紫外線発光素子用エピタキシャルウェーハにより、安価で高品質な紫外線発光素子用エピタキシャルウェーハとなることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
[紫外線発光素子用エピタキシャルウェーハ]
 図2,3に、本発明に係る紫外線発光素子用エピタキシャルウェーハの一例を示す。図2に示されるように、本発明に係る紫外線発光素子用エピタキシャルウェーハ100Aは、少なくとも一方の表面が窒化ガリウムからなる支持基板1と、支持基板1の窒化ガリウムからなる表面の上の接合層2と、接合層2上のAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶層3を含む貼り合わせ基板4と、貼り合わせ基板4の種結晶層3の上の紫外発光素子層5を備えている。図2の例では、紫外発光素子層5の詳細は省略してある。紫外発光素子層5は、図3に示すように少なくともAlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層6と、AlGaN系活性層7と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層8を含んでいる。
 また、後述するように、支持基板1を分離除去したものが、本発明に係る紫外線発光素子用基板である。分離除去された支持基板1は、再利用が可能となるため、より一層の低コスト化に寄与できるものとなる。
 まず、貼り合わせ基板4について説明する。支持基板1は、少なくとも一方の表面が窒化ガリウムからなるものであれば特に限定されない。特に、1000℃を超える高温での処理において、溶融、剥離、破損しない耐熱性を有している基板を用いることができる。例えば、窒化ガリウム単結晶自立基板、GaN on サファイヤ基板、GaN on SiC基板、GaN on Si基板、GaNを主成分とする材料をセラミックスに貼り合わせたエンジニアリング基板を用いることができる。
 接合層2は、支持基板1と種結晶層3とを接合するための層である。例えば、SiOなどの透明接合層や、支持基板表面のGaNをプラズマやアルゴンイオンエッチングによって、活性化して得られるアモルファス層を接合層2とすることができる。このとき、種結晶層3側のAlGaN表面にも、プラズマやアルゴンイオンエッチングによって、活性化して得られるアモルファス層を設けてもよい。種結晶層3は、AlGa1-xN(0.5<x≦1.0)単結晶からなる層である。
 種結晶層は、波長230nmの光の光透過率が70%以上のものが好ましい。このようなものであれば、発光効率の高い深紫外線発光素子とすることができる。
 次に、紫外発光素子層5の構成について、図3を参照しながら詳細に説明する。なお、図3の紫外線発光素子用エピタキシャルウェーハ100Bの例では、貼り合わせ基板4の詳細は省略してある。紫外発光素子層5は、少なくともAlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層6と、AlGaN系活性層7と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層8を含んでいる。
 第一導電型クラッド層6はAlGaN系活性層7へ電子を供給するためのものであり、特に膜厚は限定されないが、例えば2.5μmとすることができる。AlGaN系活性層7は、特に限定されないが、例えば井戸層9と障壁層10が交互に積層された多重量子井戸構造(MQW)を有するものが好ましい。第二導電型クラッド層8は、AlGaN系活性層7へ正孔を供給するためのものである。
 AlGaN系活性層は、多重量子井戸(MQW)構造であり、Al、Ga、N以外の構成元素としてInを含み、Inの割合が1%未満のものが好ましい。さらに、AlGaN系活性層は、25℃、0.2A/mmの電流注入時に発光するスペクトルのλが290nmより短波長のものが好ましい。このようなものであれば、殺菌用光源として高品質な深紫外線発光素子となる。
 さらに、電極との接触抵抗を低減するため、p型AlGaNからなるコンタクト層11を設けることもできる。この場合、第二導電型クラッド層8の導電型に合わせて、P/Nを逆転した層配置でもよい。
 なお、貼り合わせ基板4の種結晶層3の上には厚膜のエピタキシャル層を設けてもよい。また、この厚膜のエピタキシャル層に代えて、紫外発光素子層5の上に厚膜のエピタキシャル層や紫外光に対して透明な恒久支持基板を設けてもよい。このように厚膜のエピタキシャル層や恒久支持基板を設けると、紫外線発光素子用エピタキシャルウェーハとして一定の厚さが確保できるため、支持基板1を分離除去した場合でもハンドリングが容易なものとなる。
 また、貼り合わせ基板4上にホモエピタキシャル層12を設けてもよい。ホモエピタキシャル層12は結晶品質を向上させるためのものであり、例えば、100nm~300μmの範囲で設定することができる。ホモエピタキシャル層12は、デバイスの設計により省略することもできる。
[紫外線発光素子用基板]
 本発明に係る紫外線発光素子用エピタキシャルウェーハから支持基板を分離除去したものが、本発明に係る紫外線発光素子用基板となる。
[紫外線発光素子用エピタキシャルウェーハの製造方法]
 図1に、本発明に係る紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板の製造方法の概略フロー図を示す。
(貼り合わせ基板の形成)
 まず、少なくとも一方の表面が窒化ガリウムからなる支持基板を準備する(S1)。次に、支持基板の窒化ガリウムからなる表面に接合層を形成する(S2)。接合層の形成方法は特に限定されないが、例えばSiOなどの透明接合層を成膜する方法が挙げられる。あるいは、GaN表面をプラズマやアルゴンイオンエッチングによって、活性化してアモルファス層を形成する方法が挙げられる。このとき、種結晶層側のAlGaNの表面も同様にしてアモルファス層を形成することが好ましい。
 接合層上にAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶を貼り合わせて種結晶層を有する貼り合わせ基板を形成する(S3)。貼り合わせ基板は、接合層を形成した支持基板と種結晶を貼り合わせることで作製する。このとき、例えば、加圧、加熱する方法で接合することができる。
 また、AlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶層は、AlGa1-xN(0.5<x≦1.0)単結晶自立基板、あるいはAlGa1-xNエピタキシャル基板にイオン注入を行い、脆弱層を形成しておき、支持基板と貼り合わせた後に剥離することによって作製することができるが、この方法に限定されない。このようにして、少なくとも一方の表面が窒化ガリウムからなる支持基板と、支持基板の窒化ガリウムからなる表面上の接合層と、接合層上のAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶層を含む貼り合わせ基板を得ることができる。
(反応炉への導入)
 貼り合わせ基板をMOVPE装置の反応炉内に導入する。貼り合わせ基板を反応炉に導入する前に、薬品によりクリーニングを行うことが好ましい。貼り合わせ基板を反応炉内に導入後、窒素などの高純度不活性ガスで炉内を満たして、炉内のガスを排気する。
(貼り合わせ基板表面のクリーニング)
 まず、貼り合わせ基板を反応炉内で加熱して、基板の表面をクリーニングすることが好ましい。クリーニングを行う温度は、貼り合わせ基板表面の温度で1000℃から1200℃の間とすることができるが、特に1050℃でクリーニングを行うことで清浄な表面を得ることができる。クリーニングは、炉内の圧力が減圧された後に実施することが好ましく、炉内圧力は30mbar(30×10Pa)から200mbar(200×10Pa)の間とすることができる。反応炉内には、水素、窒素、アンモニアなどからなる混合ガスを供給した状態で10分程度クリーニングを行う。これらの条件は一例であり、特に限定されるものではない。
(厚膜エピタキシャル層の成長)
 種結晶層上には、第一導電型クラッド層を成長する前にHVPE法により厚膜のエピタキシャル層を成長させてもよい(S4)。
(ホモエピタキシャル層の成長)
 また、第一導電型クラッド層を成長する前にホモエピタキシャル層を形成する(S5)ことも好ましい。この工程では、規定の炉内圧力及び基板温度において、原料であるAl、Ga、N源となるガスを導入することによって、貼り合わせ基板上に、AlGa1-xN(0.5<x≦1.0)をエピタキシャル成長させる。この工程では、例えば炉内圧力は50mbar(50×10Pa)、基板温度1120℃で成長させることができる。Al源としてはトリメチルアルミニウム(TMAl)、Ga源としてはトリメチルガリウム(TMGa)、N源としてはアンモニア(NH)を用いることができる。また、所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl、TMGaの流量を設定する。TMAl、TMGa、NHのキャリアガスは例えば水素を使用することができる。これらの条件は一例であり、特に限定されるものではない。
(紫外発光素子層の成長)
 次に、種結晶層上に(ホモエピタキシャル層を形成した場合にはホモエピタキシャル層の上に)、紫外発光素子層をエピタキシャル成長により形成する(S6)。例えば、以下のようにして紫外発光素子層を形成することができる。
(第一導電型クラッド層の成長)
 この工程は、種結晶層上に第一導電型クラッド層を成長する工程である。この工程では、反応炉内を規定の炉内圧力、基板温度に保持した後、原料のTMAl、TMGa、NH及びn型導電性にするための不純物ガスを、炉内に供給して第一導電型クラッド層を成長する。第一導電型クラッド層は、AlGa1-yN(0.5<y≦1.0)で表される組成で自由に作製することができる。
 この工程の規定の炉内圧力は例えば75mbar(75×10Pa)、基板温度は1100℃とすることができる。所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl、TMGaの流量を設定する。
 n型導電性にするための不純物ガスは、モノシラン(SiH)を用いることができる。原料ガスを輸送するためのキャリアガスは、水素を用いることができる。不純物ガスとして、テトラエチルシランを用いてもよい。
(AlGaN系活性層の成長)
 この工程は、第一導電型クラッド層の上にAlGaN系活性層を成長する工程である。この工程では、反応炉内を規定の炉内圧力、基板温度に保持した後、原料のTMAl、TMGa、NHを炉内に供給してAlGaN系活性層を成長する。AlGaN系活性層は、一例として障壁層Al0.75Ga0.25N、井戸層Al0.6Ga0.4Nとすることができる。また、この工程の規定の炉内圧力は例えば75mbar(75×10Pa)、基板温度は1100℃とすることができる。各層で所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl、TMGaの流量を設定する。これらの値は、一例であり特に限定されるものではない。
(第二導電型クラッド層の成長)
 この工程は、AlGaN系活性層の上に第二導電型クラッド層を成長する工程である。この工程では、反応炉内を規定の炉内圧力、基板温度に保持した後、原料のTMAl、TMGa、NH、及びp型導電性にするための不純物原料を、炉内に供給して第二導電型クラッド層を成長する。第二導電型クラッド層は、AlGa1-zN(0.5<z≦1.0)で表される組成で自由に作製することができる。また、組成を変えて複数層形成されてもよい。
 この工程の規定の炉内圧力は例えば75mbar(75×10Pa)、基板温度は1100℃とすることができる。所望のAl組成の混晶を得るために、原料ガスの材料効率を考慮して、薄膜中に取り込まれるAl/Ga比が設定している比率になるように、原料のTMAl、TMGaの流量を設定する。これらの値は、一例であり特に限定されるものではない。p型導電性にするための不純物原料は、ビスシクロペンタジエニルマグネシウム(CpMg)を用いることができる。原料ガスを輸送するためのキャリアガスは、水素とすることができる。
(p型AlGaNコンタクト層の成長)
 この工程は、第二導電型クラッド層の上にp型AlGaNコンタクト層を成長する工程である。この工程では、反応炉内を規定の炉内圧力、基板温度に保持した後、原料のTMAl、TMGa、NH、及びp型導電性にするための不純物原料を、炉内に供給してp型AlGaNコンタクト層を成長する。この工程の規定の炉内圧力は例えば75mbar(75×10Pa)、基板温度は1100℃とすることができる。これらの値は、一例であり特に限定されるものではない。p型導電性にするための不純物原料は、ビスシクロペンタジエニルマグネシウム(CpMg)を用いることができる。原料ガスを輸送するためのキャリアガスは、水素とすることができる。
(活性化アニール工程)
 この工程では、加熱炉内で所定の温度、時間でウェーハをアニールすることで、第二導電型クラッド層、p型AlGaNコンタクト層のp型不純物を活性化させる。加熱炉内での活性化は、例えば750℃、10分とすることができる。
(厚膜エピタキシャル層等の形成)
 紫外発光素子層の上には、紫外光に対して透明な恒久支持基板を接合(S7)してもよい。また、HVPE法により厚膜のエピタキシャル層を成長させてもよい(S8)。
(レーザーによるエピタキシャル層の剥離)
 例えば、深紫外発光ダイオードなどの紫外線発光素子用基板を作製するために、エピタキシャル層、種結晶を透過し、且つGaNに吸収されるレーザー光を第二導電型クラッド層側(紫外発光素子層側)から照射して、種結晶層と種結晶上のエピタキシャル層から前記の支持基板を分離する(S9)。照射したレーザー光は支持基板表面の窒化ガリウムで吸収され、発生した熱により支持基板が剥離し、分離される。
(種基板、支持基板の再生)
 貼り合わせ基板の作製時(S3)に、AlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶を貼り合わせ、種結晶層を剥離して残った単結晶及び剥離された支持基板を再生して使用することにより、高価な化合物半導体基板を再利用できるので、低コスト化することができる。
 本発明に係る製造方法により、特に深紫外線領域の発光ダイオードに適した紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板を作製することで、簡便なエピタキシャル成長で、転位密度が少なく高品質な基板を得ることができ、エピタキシャル工程の生産性を向上させることができる。また、レーザーリフトオフを利用して基板を剥離できるので、デバイス工程を低コスト化することができる。また、AlN単結晶基板や窒化ガリウム基板を回収して、再研磨することにより、高価な化合物半導体単結晶基板を再利用できるので、深紫外線領域の発光ダイオードなどの紫外線発光素子用基板を安価に製造することができる。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 (実施例1)
 窒化ガリウム自立基板上に、SiOからなる接合層を2μm成長し、AlN単結晶からなる種結晶を貼り合わせた基板を準備した。予め、AlN単結晶の窒素面からイオン注入によって、脆弱層を形成して、接合、剥離することによって、前記接合層上に200nmの厚さのAlN単結晶層を形成した。その後、剥離されて残ったAlN単結晶層の表面を研磨し残存した脆弱層を取り除いて良好な種結晶層表面を得た。なお、剥離後のAlN単結晶は、回収し、再研磨して種結晶層形成用基板として再利用した。
 上記のようにして得た貼り合わせ基板上に、HVPE法でAlNを150μm成長し、成長後の基板を取り出した。AlN成長後の基板についてXRDロッキングカーブ測定を行ったところ、AlN(0002) 42arcsec、AlN(10-12) 91arcsecであり、結晶性が良好なテンプレートが得られていることが分かった。
 次に、テンプレート上にMOVPE法で、n型Al0.95Ga0.05Nを2.5μm成長した。その上に、3層の障壁層(Al0.75Ga0.25N)、井戸層(Al0.6Ga0.4N)からなる量子井戸構造を形成した。その後、p型Al0.95Ga0.05N層とp型AlGaNコンタクト層を形成した。p型AlGaNコンタクト層を形成後、MOVPE炉内を窒素雰囲気にして、750℃で10分間、活性化アニールを行った。
 p型AlGaNコンタクト層側から308nmの波長のレーザーを入射することによって、窒化ガリウム自立基板の表面でレーザーを吸収させて、発生した熱により窒化ガリウム自立基板と、エピタキシャル層、種結晶層、接合層を剥離した。
 窒化ガリウム自立基板剥離後のエピタキシャル層、種結晶層、接合層からなる基板を溶液によりエッチングすることで、接合層であるSiOと窒化ガリウム、Gaの残渣を除去して、深紫外発光ダイオードに好適なエピタキシャル基板が得られた。なお、剥離後の窒化ガリウム単結晶は回収し、再研磨して支持基板として再利用した。
 (実施例2)
 窒化ガリウム(GaN)自立基板上に、常温接合によってAlN単結晶からなる種結晶を貼り合わせた基板を準備した。すなわち、AlN単結晶の窒素面からイオン注入によって、脆弱層を形成した後、AlN単結晶、GaN自立基板表面をアルゴンイオンエッチングによって、活性化してアモルファス層(接合層)を形成し、加圧する方法で接合し、AlN単結晶を脆弱層で剥離して貼り合わせ基板を得た。なお、剥離後のAlN単結晶は、回収し、再研磨して種結晶層形成用基板として再利用した。
 上述の貼り合わせ基板上にMOVPE法を用いてn型Al0.95Ga0.05Nを2.5μm成長した。その上に、3層の障壁層(Al0.75Ga0.25N)、井戸層(Al0.6Ga0.4N)からなる量子井戸構造を形成した。その後、p型Al0.95Ga0.05N層とp型AlGaNコンタクト層を形成した。p型AlGaNコンタクト層を形成後、MOVPE炉内を窒素雰囲気にして、750℃で10分間、活性化アニールを行った。
 エピタキシャル成長後の基板に接合層としてSiOを成膜し、同様にSiOを成膜したサファイヤ基板と貼り合わせた。
 サファイヤ基板の裏面から308nmの波長のレーザーを入射することによって、窒化ガリウム自立基板の表面でレーザーを吸収させて、発生した熱により窒化ガリウム自立基板と、サファイヤ基板、接合層、エピタキシャル層、種結晶層を剥離して、深紫外発光ダイオードに好適なエピタキシャル基板が得られた。なお、剥離後の窒化ガリウム単結晶は回収し、再研磨して支持基板として再利用した。
(実施例3)
 活性化アニール工程まで、実施例2と同様の手順で、エピタキシャルウェーハを作製した。前記ウェーハのp型AlGaNコンタクト層上にHVPE法を用いて、AlGaNを150μm成長した。AlGaN層は、前記p型AlGaNコンタクト層と格子整合させるため、AlGaNコンタクト層と同じAl組成で作製した。
前記基板のp型AlGaNコンタクト層側から308nmの波長のレーザーを入射することによって、窒化ガリウム自立基板の表面でレーザーを吸収させて、発生した熱により窒化ガリウム自立基板と、エピタキシャル層、種結晶層、接合層を剥離し、深紫外発光ダイオードに好適なエピタキシャル基板が得られた。なお、剥離後の窒化ガリウム単結晶は回収し、再研磨して支持基板として再利用した。
(比較例1)
 サファイヤ基板をMOVPE装置の反応炉内に導入し、1030℃に加熱して水素を供給した状態で10分間クリーニングを行った。規定の炉内圧力及び基板温度において、原料であるAl、Ga、N源となるガスを導入することによって、サファイヤ基板上に、エピタキシャル層の結晶性を改善するためのバッファー層を3μm成長した。第一導電型クラッド層を成長する工程~活性化アニール工程は、実施例1の方法と同じ製造方法で、深紫外線領域の発光ダイオード用エピタキシャル基板を作製した。
 実施例1-3と比較例1で作製された深紫外発光ダイオード用エピタキシャル基板について、XRDロッキングカーブ測定を行った結果を表1に示す。表1に示すとおり、実施例の深紫外発光ダイオード用エピタキシャル基板のAlN(0002)のXRDロッキングカーブのFWHMが35~60arcsecであるのに対して、比較例のFWHMは562arcsecであり、実施例は比較例1に比べて結晶性の良いエピタキシャル基板を得ることができた。
Figure JPOXMLDOC01-appb-T000001
 (比較例2)
 比較例1の方法から、バッファー層を成長する工程を、500℃で低温GaNを成長した後、1100℃に昇温してGaN層を100nm成長する方法に変更して、レーザーリフトオフの剥離層をエピタキシャル成長で作製する深紫外線領域の発光ダイオード用エピタキシャル基板を作製した。エピタキシャル基板をMOVPE装置から取り出したところ、エピタキシャル層に全面クラックが発生していた。また、貫通転位密度を比較したところ、実施例の方法では、3~7×10cm-1であったのに対して、比較例2の方法では、2×10cm-1であり、貫通転位密度が著しく増加した。
 以上のとおり、本発明の実施例によれば、結晶性の良いエピタキシャル基板を低コストで得ることができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (13)

  1.  少なくとも一方の表面が窒化ガリウムからなる支持基板を準備する工程と、
     前記支持基板の前記窒化ガリウムからなる前記表面に接合層を形成する工程と、
     前記接合層上にAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶を貼り合わせて種結晶層を有する貼り合わせ基板を形成する工程と、
     前記貼り合わせ基板の前記種結晶層上に、少なくとも、AlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層をエピタキシャル成長させる工程とを有することを特徴とする紫外線発光素子用エピタキシャルウェーハの製造方法。
  2.  前記貼り合わせ基板を形成する工程では、AlGa1-xN(0.5<x≦1.0)単結晶自立基板又はAlGa1-xN(0.5<x≦1.0)エピタキシャル基板にイオン注入を行うことで内部に脆弱層を形成した後、前記支持基板と貼り合わせ、前記脆弱層で剥離することにより前記種結晶層を形成することを特徴とする請求項1に記載の紫外線発光素子用エピタキシャルウェーハの製造方法。
  3.  前記第一導電型クラッド層を成長する前に、前記種結晶層上にHVPE法によりエピタキシャル層を成長させる工程を有することを特徴とする請求項1又は請求項2に記載の紫外線発光素子用エピタキシャルウェーハの製造方法。
  4.  前記紫外発光素子層側に紫外光に対して透明な恒久支持基板を接合する工程を有することを特徴とする請求項1又は請求項2に記載の紫外線発光素子用エピタキシャルウェーハの製造方法。
  5.  前記紫外発光素子層側にHVPE法によりエピタキシャル層を成長させる工程を有することを特徴とする請求項1又は請求項2に記載の紫外線発光素子用エピタキシャルウェーハの製造方法。
  6.  請求項1から請求項5のいずれか一項に記載の紫外線発光素子用エピタキシャルウェーハの製造方法により得た紫外線発光素子用エピタキシャルウェーハに対し、窒化ガリウムに吸収されるレーザー光を前記紫外発光素子層側から照射して、前記支持基板を分離して紫外線発光素子用基板を得ることを特徴とする紫外線発光素子用基板の製造方法。
  7.  少なくとも一方の表面が窒化ガリウムからなる支持基板と、前記支持基板の前記窒化ガリウムからなる前記表面上の接合層と、前記接合層上のAlGa1-xN(0.5<x≦1.0)単結晶からなる種結晶層を含む貼り合わせ基板と、
     前記貼り合わせ基板の前記種結晶層上の紫外発光素子層であって、少なくともAlGa1-yN(0.5<y≦1.0)からなる第一導電型クラッド層と、AlGaN系活性層と、AlGa1-zN(0.5<z≦1.0)からなる第二導電型クラッド層を含む紫外発光素子層を備えることを特徴とする紫外線発光素子用エピタキシャルウェーハ。
  8.  前記支持基板が、GaN自立基板、GaN層を備えたサファイヤ基板、GaN層を備えたSiC基板、GaN層を備えたSi基板、表面がGaN単結晶からなる材料であるエンジニアリング基板のいずれかからなるものであることを特徴とする請求項7に記載の紫外線発光素子用エピタキシャルウェーハ。
  9.  前記種結晶層が、波長230nmの光の光透過率が70%以上のものであることを特徴とする請求項7又は請求項8に記載の紫外線発光素子用エピタキシャルウェーハ。
  10.  前記AlGaN系活性層は、多重量子井戸(MQW)構造であり、Al、Ga、N以外の構成元素としてInを含み、前記Inの割合が1%未満のものであることを特徴とする請求項7から請求項9のいずれか一項に記載の紫外線発光素子用エピタキシャルウェーハ。
  11.  前記AlGaN系活性層は、25℃、0.2A/mmの電流注入時に発光するスペクトルのλが290nmより短波長のものであることを特徴とする請求項7から請求項10のいずれか一項に記載の紫外線発光素子用エピタキシャルウェーハ。
  12.  前記紫外発光素子層側に紫外光に対して透明な恒久支持基板を備えることを特徴とする請求項7から請求項11のいずれか一項に記載の紫外線発光素子用エピタキシャルウェーハ。
  13.  請求項7から請求項12のいずれか一項に記載の紫外線発光素子用エピタキシャルウェーハにおける前記支持基板が分離除去されたものであることを特徴とする紫外線発光素子用基板。
PCT/JP2022/006033 2021-03-04 2022-02-16 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板 WO2022185906A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22762963.1A EP4303940A1 (en) 2021-03-04 2022-02-16 Method for manufacturing epitaxial wafer for ultraviolet light-emitting element, method for manufacturing substrate for ultraviolet light-emitting element, epitaxial wafer for ultraviolet light-emitting element, and substrate for ultraviolet light-emitting element
CN202280018054.3A CN116964759A (zh) 2021-03-04 2022-02-16 紫外线发光元件用外延片的制造方法、紫外线发光元件用基板的制造方法、紫外线发光元件用外延片及紫外线发光元件用基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-034203 2021-03-04
JP2021034203A JP7484773B2 (ja) 2021-03-04 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法及び紫外線発光素子用エピタキシャルウェーハ

Publications (1)

Publication Number Publication Date
WO2022185906A1 true WO2022185906A1 (ja) 2022-09-09

Family

ID=83154129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006033 WO2022185906A1 (ja) 2021-03-04 2022-02-16 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板

Country Status (4)

Country Link
EP (1) EP4303940A1 (ja)
CN (1) CN116964759A (ja)
TW (1) TW202237911A (ja)
WO (1) WO2022185906A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501778A (ja) * 1996-10-01 2001-02-06 シーメンス アクチエンゲゼルシヤフト 2つの材料層を相互に分離する方法及びこの方法により製造された電子部品
JP2006210660A (ja) * 2005-01-28 2006-08-10 Hitachi Cable Ltd 半導体基板の製造方法
US20100127353A1 (en) * 2008-11-26 2010-05-27 S.O.I.Tec Silicon On Insulator Technologies, S.A. Strain engineered composite semiconductor substrates and methods of forming same
WO2011132654A1 (ja) * 2010-04-20 2011-10-27 住友電気工業株式会社 複合基板の製造方法
JP2011233861A (ja) * 2010-04-09 2011-11-17 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法、エピ成長用積層支持基板およびデバイス用積層支持基板
JP2013542608A (ja) * 2010-11-02 2013-11-21 コーニンクレッカ フィリップス エヌ ヴェ 複合基板の形成方法
JP2013247362A (ja) * 2012-05-29 2013-12-09 Samsung Corning Precision Materials Co Ltd 半導体素子用薄膜貼り合わせ基板の製造方法
WO2016007582A1 (en) * 2014-07-11 2016-01-14 Gtat Corporation Support substrate for ion beam exfoliation of a crystalline lamina
JP2019527477A (ja) * 2016-07-12 2019-09-26 キューエムエイティ・インコーポレーテッド ドナー基材を再生するための方法
JP2020035829A (ja) 2018-08-28 2020-03-05 株式会社ディスコ 光デバイスウェーハの加工方法
JP2020100528A (ja) 2018-12-21 2020-07-02 住友金属鉱山株式会社 積層体、積層体の製造方法および炭化珪素多結晶基板の製造方法
WO2021250991A1 (ja) * 2020-06-09 2021-12-16 信越化学工業株式会社 Iii族窒化物系エピタキシャル成長用基板とその製造方法
WO2022070699A1 (ja) * 2020-09-30 2022-04-07 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハ、紫外線発光素子用金属貼り合わせ基板の製造方法、紫外線発光素子の製造方法、及び紫外線発光素子アレイの製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001501778A (ja) * 1996-10-01 2001-02-06 シーメンス アクチエンゲゼルシヤフト 2つの材料層を相互に分離する方法及びこの方法により製造された電子部品
JP2006210660A (ja) * 2005-01-28 2006-08-10 Hitachi Cable Ltd 半導体基板の製造方法
US20100127353A1 (en) * 2008-11-26 2010-05-27 S.O.I.Tec Silicon On Insulator Technologies, S.A. Strain engineered composite semiconductor substrates and methods of forming same
JP2011233861A (ja) * 2010-04-09 2011-11-17 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法、エピ成長用積層支持基板およびデバイス用積層支持基板
WO2011132654A1 (ja) * 2010-04-20 2011-10-27 住友電気工業株式会社 複合基板の製造方法
JP2013542608A (ja) * 2010-11-02 2013-11-21 コーニンクレッカ フィリップス エヌ ヴェ 複合基板の形成方法
JP2013247362A (ja) * 2012-05-29 2013-12-09 Samsung Corning Precision Materials Co Ltd 半導体素子用薄膜貼り合わせ基板の製造方法
WO2016007582A1 (en) * 2014-07-11 2016-01-14 Gtat Corporation Support substrate for ion beam exfoliation of a crystalline lamina
JP2019527477A (ja) * 2016-07-12 2019-09-26 キューエムエイティ・インコーポレーテッド ドナー基材を再生するための方法
JP2020035829A (ja) 2018-08-28 2020-03-05 株式会社ディスコ 光デバイスウェーハの加工方法
JP2020100528A (ja) 2018-12-21 2020-07-02 住友金属鉱山株式会社 積層体、積層体の製造方法および炭化珪素多結晶基板の製造方法
WO2021250991A1 (ja) * 2020-06-09 2021-12-16 信越化学工業株式会社 Iii族窒化物系エピタキシャル成長用基板とその製造方法
WO2022070699A1 (ja) * 2020-09-30 2022-04-07 信越半導体株式会社 紫外線発光素子用エピタキシャルウェーハ、紫外線発光素子用金属貼り合わせ基板の製造方法、紫外線発光素子の製造方法、及び紫外線発光素子アレイの製造方法

Also Published As

Publication number Publication date
TW202237911A (zh) 2022-10-01
CN116964759A (zh) 2023-10-27
JP2022134799A (ja) 2022-09-15
EP4303940A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
JP5277270B2 (ja) 結晶成長方法および半導体素子
TWI445052B (zh) 藉由金屬有機化學氣相沈積(MOCVD)於多孔性氮化鎵(GaN)模板上氮化銦鎵(InGaN)之生長
US20230343890A1 (en) Epitaxial wafer for ultraviolet light emitting device, method for producing metal bonded substrate for ultraviolet light emitting device, method for producing ultraviolet light emitting device, and method for producing ultraviolet light emitting device array
JP2010272808A (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP2006310850A (ja) 窒化ガリウム系半導体の製造方法
JP3729065B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法及び窒化物半導体エピタキシャルウェハ
JP2010073750A (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
KR101852519B1 (ko) 광학 소자의 제조 방법
JP2001119104A (ja) 半導体の製造方法
JP4633962B2 (ja) 窒化物半導体基板の製造方法
CN210120150U (zh) 采用2d材料磊晶去疵单晶基板
JP2011051849A (ja) 窒化物半導体自立基板とその製造方法
WO2009119159A1 (ja) 光デバイス用基板及びその製造方法
WO2022185906A1 (ja) 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法、紫外線発光素子用エピタキシャルウェーハ及び紫外線発光素子用基板
JP7484773B2 (ja) 紫外線発光素子用エピタキシャルウェーハの製造方法、紫外線発光素子用基板の製造方法及び紫外線発光素子用エピタキシャルウェーハ
JP2007103955A (ja) 窒化物半導体素子および窒化物半導体結晶層の成長方法
WO2023286574A1 (ja) 紫外線発光素子用エピタキシャルウェーハ及びその製造方法
US20240136466A1 (en) Method for manufacturing epitaxial wafer for ultraviolet ray emission device, method for manufacturing substrate for ultraviolet ray emission device, epitaxial wafer for ultraviolet ray emission device, and substrate for ultraviolet ray emission device
JP4192430B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法
JP2005005723A (ja) 窒化物半導体エピタキシャルウェハの製造方法及び窒化物半導体エピタキシャルウェハ
JP2012012233A (ja) 窒化物半導体結晶構造及び窒化物半導体自立基板の製造方法
JP3946448B2 (ja) 窒化物半導体基板の製造方法
JP2002343717A (ja) 半導体結晶の製造方法
JP4186076B2 (ja) 窒化物半導体基板の製造方法
CN117096229A (zh) 一种用于深紫外发光二极管的AlN本征层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18279579

Country of ref document: US

Ref document number: 202280018054.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022762963

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762963

Country of ref document: EP

Effective date: 20231004