WO2022183776A1 - 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用 - Google Patents

含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用 Download PDF

Info

Publication number
WO2022183776A1
WO2022183776A1 PCT/CN2021/131146 CN2021131146W WO2022183776A1 WO 2022183776 A1 WO2022183776 A1 WO 2022183776A1 CN 2021131146 W CN2021131146 W CN 2021131146W WO 2022183776 A1 WO2022183776 A1 WO 2022183776A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
absorbing material
wave
preparation
solution
Prior art date
Application number
PCT/CN2021/131146
Other languages
English (en)
French (fr)
Inventor
龚强
Original Assignee
苏州立昂新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州立昂新材料有限公司 filed Critical 苏州立昂新材料有限公司
Priority to JP2023546136A priority Critical patent/JP2024504492A/ja
Publication of WO2022183776A1 publication Critical patent/WO2022183776A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3441Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a technology in the field of molecular sieves, in particular to a composite A-type molecular sieve raw powder containing a wave-absorbing material, a full zeolite molecular sieve, and a preparation method and application thereof.
  • Lithium-ion batteries are mainly composed of positive electrodes, negative electrodes and electrolytes, which must be charged and discharged only by the intercalation and removal of lithium ions between the positive and negative electrodes through the electrolyte.
  • the reaction occurs between the liquid and the electrode material to form a solid electrolyte interfacial film (SEI), which has an important impact on the performance of lithium-ion batteries.
  • SEI solid electrolyte interfacial film
  • the electrolyte will inevitably be mixed with a small amount of impurities such as water, acid and alcohol during the production process.
  • molecular sieves Because of its strong hygroscopic ability and superior performance, molecular sieves can be used for dehydration of almost all kinds of solvents, so they have been widely used in laboratories and industries.
  • suitable molecular sieves are used as raw materials to make lithium-type molecular sieves, which can effectively remove trace water and small molecular impurities such as hydrogen fluoride and methanol with similar molecular sizes to water.
  • Patent application CN200810050070.2 (2008) discloses a preparation method of Li-LSX molecular sieve. The method is to obtain K + -LSX through multiple exchange of potassium ion aqueous solution to LSX, and then through multiple exchange of ammonium ion aqueous solution to obtain NH 4 -LSX, Finally, Li-LSX is obtained by lithium exchange. In the process of lithium exchange, NH 3 needs to be recovered to promote Li exchange; this method adopts the exchange method of NH 4 + transition to improve the utilization rate of Li.
  • the lithium-ion non-aqueous electrolyte deeply adsorbs a small amount of water, the ion exchange in the binder and other materials will also bring about secondary pollution of other ions, especially the sodium ion pollution is fatal to the lithium-ion non-aqueous electrolyte.
  • the present invention is derived from this.
  • A-type molecular sieves are easy to prepare and inexpensive, and 3A, 4A, and 5A molecular sieves can be obtained by exchanging with different ions, thereby achieving sieving, separation, and adsorption effects for molecules of different sizes.
  • the present invention proposes a composite A-type molecular sieve original powder containing a wave absorbing material and a full zeolite molecular sieve, their preparation method and application, and the prepared full zeolite molecular sieve can be deeply adsorbed. specific molecules, and can be rapidly regenerated by microwave heating to improve the activation and regeneration efficiency.
  • the first aspect of the present invention provides a composite A-type molecular sieve original powder containing a wave-absorbing material, including a micro-nano-sized wave-absorbing material, and an A-type molecular sieve obtained by in-situ growth with the micro-nano-sized wave-absorbing material as a crystal seed.
  • Type molecular sieve coated absorbing material is
  • the micro- and nano-sized wave absorbing materials include one or more of silicon carbide particles, silicon carbide fibers, carbon fibers, graphene, carbon nanotubes, and carbon black;
  • the A-type molecular sieve is LTA (Linde Type A) One of the type molecular sieves, typically, such as 3A molecular sieve, 4A molecular sieve, and 5A molecular sieve.
  • the size of the wave absorbing material is 1 nm-100 ⁇ m, more preferably 10 nm-10 ⁇ m.
  • the second aspect of the present invention provides a method for preparing the above-mentioned composite A-type molecular sieve raw powder containing an absorbing material. Reaction; in the process of microwave heating, the absorbing material is selectively heated, and under the action of the particle surface effect, the A-type molecular sieve is grown in situ as a seed crystal for the growth of the molecular sieve, and the synthesized A-type molecular sieve coats the absorbing material; after the reaction is completed and drying to obtain the original powder of the composite type A molecular sieve containing the wave absorbing material.
  • the A-type molecular sieve precursor reaction solution is an alkaline silicon-alumina reaction solution
  • the material composition molar ratio of the reaction solution is xM 2 O:ySiO 2 :Al 2 O 3 :zH 2 O, wherein M is an alkali metal
  • M is an alkali metal
  • the microwave heating output power is 0.1-2kW
  • the reaction temperature is 40-110 ° C
  • the reaction time is 1-48h
  • drying temperature is 80-120°C.
  • the heating temperature is 60-100°C
  • the reaction time is 1-24h.
  • a third aspect of the present invention provides a method for preparing a whole zeolite molecular sieve containing a wave-absorbing material, comprising the following steps:
  • step S2 crystallizing: drying the shaped granular material obtained in step S1 and then placing it in an alkaline solution, heating, and carrying out a crystallization reaction, so that the binder in the shaped granular material is converted into zeolite crystals to obtain a full zeolite molecular sieve;
  • step S3 the whole zeolite molecular sieve obtained in step S2 is soaked in water after absorbing moisture, transported into the ion exchange column through a peristaltic pump, heated to the ion exchange temperature, and then introduced into the target ion solution for ion exchange, ion exchange After the reaction, rinse with deionized water, then dehydrate, and collect the target ion-modified whole zeolite molecular sieve;
  • step S4 activation: pre-drying the target ion-modified whole zeolite molecular sieve obtained in step S3, after pre-drying, the semi-product is sent to the activation furnace for calcination, and after the calcination is finished, it is cooled down to the discharge temperature and discharged, and then passed through a sieve
  • the whole zeolite molecular sieve product containing the wave absorbing material is obtained by fractionation; if necessary, the sieving is carried out under the protection of nitrogen or dry air.
  • the weight ratio of the binder in the shaped particle material is 5%-20%; the binder is one or more of kaolin, halloysite, and allophane.
  • step S1 one or more additives are also added, and the additives are used to optimize various properties of the shaped particulate material, such as increasing strength, reducing wear, increasing porosity, etc.; additives include water glass, aluminum sol, silica sol, One or more of silicone resin emulsion, pyrophosphate, aluminum hydrogen phosphate, cellulose and its derivatives, tannin extract, etc.
  • the molding state can be spherical, strip, etc., which needs to be designed according to specific application scenarios.
  • the alkaline solution is at least one of sodium hydroxide solution, potassium hydroxide solution, and calcium hydroxide solution, and the mass percentage concentration of the solution is 1%-40%, preferably 1%-15%; the heating temperature is 65-125°C, preferably 75-95°C.
  • the target ion solution is at least one of soluble chloride solution, hydroxide solution, sulfate solution and nitrate solution containing target ions, and the mass percentage concentration of the solution is 1%-40%;
  • the pH value is controlled within the range of 6-12; the temperature of the deionized water used for rinsing is 60-90°C.
  • step S4 the drying temperature is controlled between 80-220° C., and the moisture content of the product after drying is controlled at 5%-15%; the activation furnace is preheated with drying gas, and then the target ion obtained in step S3 is modified and fully modified.
  • the zeolite molecular sieve is roasted; the preheating temperature is 400-800°C, the roasting temperature is 500-580°C, the roasting time is 3-5 hours, and the discharge temperature is 50-20°C.
  • the drying gas is preferably pure nitrogen or dry compressed air with a dew point ranging from -50°C to -90°C.
  • the fourth aspect of the present invention provides a whole zeolite molecular sieve containing a wave absorbing material, which is prepared by the above preparation method; the particle size distribution of the whole zeolite molecular sieve containing a wave absorbing material is 0.1-5.0 mm, the degree of ion exchange in the process is ⁇ 95%, and the static water adsorption ⁇ 20wt%, water content ⁇ 1.5wt%, wear rate ⁇ 1.5wt%.
  • the whole zeolite molecular sieve containing the wave absorbing material is activated and regenerated by microwave heating after adsorption. That is, after the molecular sieve has completed adsorption, the molecular sieve is cleaned, and then activated by microwave heating to realize the dehydration and regeneration of the molecular sieve, and the adsorption capacity of the molecular sieve is restored, so as to realize the recycling of the molecular sieve; The temperature is raised to 100-250°C, and the treatment is carried out for 1-40min to complete the activation and regeneration.
  • the fifth aspect of the present invention provides an application of a whole zeolite molecular sieve containing a wave-absorbing material as an adsorbent in impurity removal, especially in the application of lithium ion non-aqueous electrolyte in impurity removal.
  • the molecular diameters of trace amounts of water, hydrogen fluoride, methanol and other impurities in the lithium ion non-aqueous electrolyte are basically less than 0.4 nm, while the molecular radius of the organic solvent in the electrolyte is very large; therefore, a 4A pore size absorbing material containing zeolite lithium is used Type molecular sieve can remove impurities, while ensuring that the organic solvent will not be adsorbed and removed; if the 3A or 5A pore size absorbing material containing all zeolite lithium molecular sieve is used, the impurity removal effect is slightly worse; Zeolite lithium molecular sieve can avoid secondary pollution caused by ion exchange in the process of impurity removal.
  • the present invention has the following technical effects:
  • the molecular sieve is in After adsorbing small molecular substances such as water in the electrolyte, the adsorbed small molecular substances can be removed by microwave heating with high efficiency and low energy consumption.
  • the heating and regeneration time can be compressed from several hours to about half an hour, or even several minutes.
  • the original powder of type A molecular sieve containing absorbing materials is synthesized without adding organic or inorganic template agents and then removing them.
  • the process is simple, and the function of absorbing functional materials is also similar to that of template agents. different effects;
  • the passing performance of the electrolyte in the adsorption process can be improved, thereby improving the adsorption treatment efficiency.
  • the filtration time can be compressed from the hour level to the minute level;
  • the binder with non-zeolite crystal structure is transformed into zeolite crystals, thereby improving the adsorption performance of the molecular sieve. 5%-20%; and the whole zeolite molecular sieve can be obtained without repeated hydrothermal exchange, and the structural stability has been effectively improved;
  • the prepared full zeolite molecular sieve containing the wave absorbing material can give full play to the deep water removal characteristics of the molecular sieve, simplify the water removal process, improve the water removal efficiency, and improve the quality of the electrolyte; and if the full zeolite lithium molecular sieve containing the wave absorbing material is used , Na + , K + content is very low, when adsorbing trace water, hydrogen fluoride and methanol and other molecules in the electrolyte, it will not exchange with Li + to affect the purity of Li + in the electrolyte, especially will not produce secondary pollution, thus Ensure the cycle performance of lithium-ion batteries.
  • This embodiment relates to a method for preparing a whole zeolite lithium-type molecular sieve containing a wave absorbing material, including steps S1-S5.
  • the shaped particles are placed in a vacuum muffle furnace and calcined at 350-550° C. for 2-3 hours to obtain spherical particles.
  • the spherical granular material was taken and cooled to room temperature in a drying dish, and the static water adsorption was measured by sampling, and the static water adsorption amount reached 21.7 wt%.
  • the temperature was raised to 95°C, placed in a solution tank, and the crystallization reaction was carried out for 3 hours.
  • Test conditions 25°C, RH50, water absorption for 24 hours; Result: 21.7 wt% before crystallization reaction, 24.5 wt% after crystallization reaction.
  • the crystallization reaction molecular sieve ball (4A molecular sieve) absorbs moisture, is loaded into the lithium exchange equipment and immersed in water, and the material in the equipment is heated and maintained at 85-90 ° C; % lithium sulfate solution, and the pH is controlled between 6-12; after a period of time, the ion concentration in the liquid is detected from the sampling outlet of the equipment, and when the ion concentration in the liquid reaches a certain value, the lithium cross-reaction ends, and the full zeolite lithium molecular sieve is obtained; Rinse the whole zeolite lithium type molecular sieve in the equipment with deionized water. After the washing is qualified, the material is discharged and dehydrated to collect the whole zeolite lithium type molecular sieve.
  • the whole zeolite lithium molecular sieve is slowly added to the belt oven for pre-drying treatment, the temperature in the oven is controlled between 80-220 °C, the moisture content of the material after drying is controlled at 5%-15%, and the material is collected in the container;
  • the dried material is loaded into the vertical activation furnace, and pure nitrogen or dry compressed air with a dew point of -70 °C is heated to 450-600 °C by an electric heater; the hot gas is passed into the vertical activation furnace to heat the material to 500 °C Roasting at -580°C, holding for 3-5 hours, to obtain the finished product of full zeolite lithium molecular sieve containing silicon carbide wave absorbing material;
  • the finished product containing the whole zeolite lithium type molecular sieve containing wave absorbing material was tested.
  • the static water adsorption was 23.6wt%
  • the Li exchange degree was 96.6%
  • the bulk density was 0.69g/ml
  • the abrasion rate was 0.09wt%
  • the average particle size was 1.38mm
  • the sieve The particle size ( ⁇ 1.00) is 0.1wt%
  • the sieving particle size (>1.70) is 0.1wt%
  • the water content is 0.952wt%
  • the performance is excellent
  • the finished product has good sphericity, uniform particle size, and can obtain good stacking effect, To meet the impurity removal needs of lithium-ion battery electrolyte.
  • the present embodiment relates to a preparation method of an all-zeolite lithium-type molecular sieve, including steps S1-S4.
  • the shaped particles are placed in a vacuum muffle furnace and calcined at 350-550° C. for 2-3 hours to obtain spherical particles.
  • the spherical granular material was taken and cooled to room temperature in a drying dish, and the static water adsorption was measured by sampling, and the static water adsorption amount was 20.0 wt%.
  • the temperature was raised to 95°C, placed in a solution tank, and the crystallization reaction was carried out for 3 hours.
  • Test conditions 25°C, RH50, water absorption for 24 hours; Result: 20.0 wt% before crystallization reaction, 22.3 wt% after crystallization reaction.
  • the crystallization reaction molecular sieve ball (4A molecular sieve) absorbs moisture, is loaded into the lithium exchange equipment and immersed in water, and the material in the equipment is heated and maintained at 85-90 ° C; % lithium sulfate solution, and the pH is controlled between 6-12; after a period of time, the ion concentration in the liquid is detected from the sampling outlet of the equipment, and when the ion concentration in the liquid reaches a certain value, the lithium cross-reaction ends, and the full zeolite lithium molecular sieve is obtained; Rinse the whole zeolite lithium type molecular sieve in the equipment with deionized water. After the washing is qualified, the material is discharged and dehydrated to collect the whole zeolite lithium type molecular sieve.
  • the whole zeolite lithium molecular sieve is slowly added to the belt oven for pre-drying treatment, the temperature in the oven is controlled between 80-220 °C, the moisture content of the material after drying is controlled at 5%-15%, and the material is collected in the container;
  • the dried material is loaded into the vertical activation furnace, and pure nitrogen or dry compressed air with a dew point of -70 °C is heated to 450-600 °C by an electric heater; the hot gas is passed into the vertical activation furnace to heat the material to 500 °C Roasting at -580°C, holding for 3-5 hours to obtain the finished product of full zeolite lithium molecular sieve;
  • the finished product of full zeolite lithium-type molecular sieve in the vertical furnace is cooled to 20-50 °C by a cooler, and then sieved under the protection of nitrogen or qualified dry air, and packed into packaging barrels.
  • the finished product was tested, the static water adsorption was 22.5wt%, the Li exchange degree was 94.0%, the bulk density was 0.70g/ml, the abrasion rate was 0.15wt%, the average particle size was 1.34mm, and the sieving particle size ( ⁇ 1.00) was 0.5wt% , sieving particle size (>1.70) 0.5wt%, water content 0.952wt%, excellent performance; the finished product has good sphericity, uniform particle size, can obtain good stacking effect, and meets the requirements of lithium-ion battery electrolyte. need.
  • This embodiment relates to a preparation method of a whole zeolite calcium type molecular sieve containing a wave absorbing material, including steps S1-S5.
  • the shaped granular material is taken and placed in a vacuum muffle furnace, and calcined at 350-550° C. for 2-3 hours to obtain spherical granular material.
  • the spherical granular material was taken and cooled to room temperature in a drying dish, and the static water adsorption was measured by sampling, and the static water adsorption amount was 25.2 wt%.
  • the temperature was raised to 95°C, placed in a solution tank, and the crystallization reaction was carried out for 3 hours;
  • Test conditions 25°C, RH50, water absorption for 24 hours; Result: 25.2 wt% before crystallization reaction, 28.0 wt% after crystallization reaction.
  • the crystallization reaction molecular sieve ball (4A molecular sieve) absorbs moisture, is loaded into the calcium exchange equipment and immersed in water, and the material in the equipment is heated and maintained at 85-90 °C; % calcium chloride solution, the pH is controlled between 6-9; after a period of time, the ion concentration in the liquid is detected from the sampling outlet of the equipment, and when the ion concentration in the liquid reaches a certain value, the calcium cross-reaction ends, and the whole zeolite calcium type molecular sieve is obtained.
  • (5A molecular sieve) Rinse the whole zeolite calcium type molecular sieve in the equipment with deionized water. After the washing is qualified, the material is discharged and dehydrated to collect the whole zeolite calcium type molecular sieve.
  • the whole zeolite calcium molecular sieve is slowly added to the belt oven for pre-drying treatment, the temperature in the oven is controlled between 80-220 °C, the moisture content of the material after drying is controlled at 5%-15%, and the material is collected in the container;
  • the dried material is loaded into the vertical activation furnace, and pure nitrogen or dry compressed air with a dew point of -70 °C is heated to 450-600 °C by an electric heater; the hot gas is passed into the vertical activation furnace to heat the material to 500 °C Roasting at -580°C, keeping the temperature for 3-5 hours, to obtain the finished product of whole zeolite calcium type molecular sieve containing wave absorbing material;
  • the finished product was tested, the static water adsorption was 24.1wt%, the calcium exchange degree was 95.2%, the bulk density was 0.69g/ml, the abrasion rate was 0.07wt%, the average particle size was 1.31mm, and the sieving particle size ( ⁇ 1.00) was 0.4wt% , sieving particle size (>1.70) 0.3wt%, water content 0.952wt%, excellent performance; the finished product has good sphericity, uniform particle size, can obtain good stacking effect, and meets the requirements of lithium-ion battery electrolyte. need.
  • This embodiment relates to a preparation method of a whole zeolite calcium type molecular sieve, including steps S1-S4.
  • the shaped particles are placed in a vacuum muffle furnace and calcined at 350-550° C. for 2-3 hours to obtain spherical particles.
  • the spherical granular material was taken and cooled to room temperature in a drying dish, and the static water adsorption was measured by sampling, and the static water adsorption amount was 22.7 wt%.
  • the temperature was raised to 95°C, placed in a solution tank, and the crystallization reaction was carried out for 3 hours.
  • Test conditions 25°C, RH50, water absorption for 24 hours; Result: 22.7 wt% before crystallization reaction, 25.2 wt% after crystallization reaction.
  • the crystallization reaction molecular sieve ball (4A molecular sieve) absorbs moisture, is loaded into the calcium exchange equipment and soaked in water, and the material in the equipment is heated and maintained at 85-90 °C;
  • the calcium chloride solution is controlled between 6-9; after a period of time, the ion concentration in the liquid is detected from the sampling outlet of the equipment, and after the ion concentration in the liquid reaches a certain value, the calcium cross-reaction ends, and the whole zeolite calcium type molecular sieve ( 5A molecular sieve); rinse the whole zeolite calcium type molecular sieve in the equipment with deionized water, after the washing is qualified, discharge the material and dehydrate to collect the whole zeolite calcium type molecular sieve.
  • the whole zeolite calcium molecular sieve is slowly added to the belt oven for pre-drying treatment, the temperature in the oven is controlled between 80-220°C, the moisture content of the material after drying is controlled at 5%-15%, and the material is collected in the container;
  • the dried material is loaded into the vertical activation furnace, and pure nitrogen or dry compressed air with a dew point of -70 °C is heated to 450-600 °C by an electric heater; the hot gas is passed into the vertical activation furnace to heat the material to 500 °C Roasting at -580°C, holding for 3-5 hours to obtain the finished product of whole zeolite calcium type molecular sieve;
  • the whole zeolite calcium type molecular sieve product in the vertical furnace is cooled to 50°C-20°C by a cooler, and then sieved under the protection of nitrogen or qualified dry air, and packed into a packaging barrel.
  • the finished product was tested, the static water adsorption was 22.1wt%, the calcium exchange degree was 94.3%, the bulk density was 0.69g/ml, the abrasion rate was 0.07wt%, the average particle size was 1.31mm, and the sieving particle size ( ⁇ 1.00) was 0.4wt% , sieving particle size (>1.70) 0.3wt%, water content 0.952wt%, excellent performance; the finished product has good sphericity, uniform particle size, can obtain good stacking effect, and meets the requirements of lithium-ion battery electrolyte. need.
  • the molecular sieve absorbs water in the electrolyte and reaches saturation or the adsorption capacity drops to a certain value, the molecular sieve is cleaned, and then the molecular sieve that has absorbed water is dehydrated and regenerated by the microwave high-temperature activation process of the present invention, which can restore the adsorption capacity of the molecular sieve. So as to realize the recycling of molecular sieve.
  • Example 2 and Example 4 The whole zeolite molecular sieves prepared in Example 2 and Example 4 were placed under the conditions of 25°C and RH50, and after absorbing water for 24 hours, they were put into an oven for desorption and regeneration; dried at 150°C for 2 hours, the oven power was 2kW, and the water content decreased. If it does not exceed 10%, the estimated power consumption is 4kW ⁇ h; if microwave heating is used to reduce the water content to 10%, and the microwave power is 1kW, it will take 1h, and the estimated power consumption is 1kW ⁇ h;
  • the whole zeolite molecular sieve containing the wave-absorbing material prepared in Example 1 and Example 3 was placed under the conditions of 25 ° C and RH50, and after absorbing water for 24 hours, put into a microwave heater for desorption and regeneration;
  • the water content can be reduced to less than 10%, and the estimated power consumption is 0.5kW ⁇ h;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种含吸波材料复合A型分子筛原粉及全沸石分子筛、它们的制备方法与应用,属于分子筛技术领域。该含吸波材料复合A型分子筛原粉包括微纳米尺寸的吸波材料,及以吸波材料为晶种原位生长得到的A型分子筛;通过成型、转晶、离子交换和活化工序能够将该含吸波材料复合A型分子筛原粉制成含吸波材料全沸石分子筛。上述制得的含吸波材料全沸石分子筛能够深度吸附特异性分子,并经过微波加热快速再生。

Description

含吸波材料复合A型分子筛原粉及全沸石分子筛、它们的制备方法与应用 技术领域
本发明涉及的是一种分子筛领域的技术,具体是一种含吸波材料复合A型分子筛原粉及全沸石分子筛、它们的制备方法与应用。
背景技术
锂离子电池主要由正极、负极和电解液组成,必须依靠锂离子通过电解液在正负极间所进行的嵌脱,才能充放电;在锂离子电池的首次充放电过程中,还会在电解液和电极材料间发生反应,形成固体电解质相界面膜(SEI),此膜对锂离子电池的性能具有重要影响。但电解液在生产过程中会不可避免的混入微量的水、酸和醇类等杂质,即使是性能优异的商品化电解液,这些杂质的含量也有约0.001%,但这些微量杂质仍会破坏和改变SEI膜的性质,从而降低电池的可逆容量与循环性能;此外,微量水会使电解液中的六氟磷酸锂盐发生分解,还可能与电解液中的有机溶剂反应生成醇,同时造成锂离子电池在充放电时消耗锂离子,生成LiOH、Li 2O、HF等物质,这些物质均可使锂离子电池性能恶化。因此电解液的纯度对锂离子电池的电化学性能具有重要影响。
由于分子筛吸湿能力强,性能优越,几乎可以用于各种溶剂的脱水,因此在实验室和工业上都得到了广泛的应用。对于锂离子非水电解液,理论上以合适的分子筛为原料制成锂型分子筛,可以有效地去除其中的微量水,以及与水分子尺寸相近的氟化氢和甲醇等小分子杂质。
专利申请CN200810050070.2(2008)公开了Li-LSX分子筛制备方法,该方法是通过钾离子水溶液对LSX多次交换得到K +-LSX,再通过铵根离子水溶液多次交换得到NH 4-LSX,最后锂交得到Li-LSX,锂交过程中需要回收NH 3促进Li交换;该方法采用NH 4 +过渡的交换方法提高了Li的利用率,处理流程较为复杂,且由于低硅铝分子筛骨架自身较差的水热稳定性,在频繁的水热离子交换过程中存在破坏分子筛骨架的可能,致使最终的成品无法用于锂离子非水电解液除杂。该申请制得的Li-LSX无法用于锂离子非水电解液除杂的另一方面原因在于,其涉及的是分子筛原粉的制备,但在实际使用中,分子筛原粉往往须经过制球工艺制成小球才能正常使用;在制球工艺中,不可避免要加入粘结剂和其它添加物,所以即使前期Li交换度很高,经制球工艺过程以后,锂离子的含量必然会相应降低,同时在锂离子非水电解液深度吸附微量水时因粘结剂等材料中离子交换还会带来其它离子的二次 污染,尤其钠离子污染对于锂离子非水电解液是致命的。
除了上述问题,大量锂离子非水电解液除杂过程中,还面临吸附了杂质的分子筛如何高效脱附再生的问题,以及控制吸附剂制造成本的问题。
为了解决现有技术存在的上述问题,本发明由此而来。
发明内容
在诸多类型的分子筛中A型分子筛制取容易,成本廉价,更是可以通过与不同离子交换得到3A、4A、5A分子筛,进而实现针对不同尺寸分子的筛分、分离、吸附效果。有鉴于此,本发明针对现有技术存在的上述不足,提出了一种含吸波材料复合A型分子筛原粉及全沸石分子筛、它们的制备方法与应用,制得的全沸石分子筛能够深度吸附特异性分子,并经过微波加热快速再生,提高活化再生效率。
本发明第一方面提供一种含吸波材料复合A型分子筛原粉,包括微纳米尺寸的吸波材料,以及以微纳米尺寸的吸波材料为晶种原位生长得到的A型分子筛,A型分子筛包覆吸波材料。
在一些技术方案中,微纳米尺寸的吸波材料包括碳化硅颗粒、碳化硅纤维、碳纤维、石墨烯、碳纳米管、炭黑中一种或多种;A型分子筛为LTA(Linde Type A)型分子筛中的一种,典型地,如3A分子筛、4A分子筛、5A分子筛。
优选地,吸波材料的尺寸为1nm-100μm,进一步优选10nm-10μm。
本发明第二方面提供一种上述含吸波材料复合A型分子筛原粉的制备方法,称取微纳米尺寸的吸波材料粉体,置于A型分子筛前驱体反应溶液中,之后微波加热进行反应;微波加热过程中,吸波材料受到选择性加热,在粒子表面效应作用下,作为分子筛生长的晶种原位生长合成A型分子筛,合成的A型分子筛包覆吸波材料;反应结束后干燥得到含吸波材料复合A型分子筛原粉。
在一些技术方案中,A型分子筛前驱体反应溶液为碱性硅铝反应液,反应液物料组成摩尔比为xM 2O:ySiO 2:Al 2O 3:zH 2O,其中,M为碱金属离子、有机铵离子中一种或多种,x为2-12,y为1.5-6.5,z为30-400;微波加热出功率为0.1-2kW,反应温度为40-110℃,反应时间为1-48h,干燥温度为80-120℃。优选地,加热温度为60-100℃,反应时间为1-24h。
本发明第三方面提供一种含吸波材料全沸石分子筛的制备方法,包括以下步骤:
S1,成型:将含吸波材料复合A型分子筛原粉、粘结剂按比例均匀混合,经混碾后在制粒机中成型,再经干燥、焙烧得到成型颗粒物料;
S2,转晶:将步骤S1制得的成型颗粒物料烘干后置于碱性溶液中,加热,进行晶化反应,使成型颗粒物料中粘结剂转为沸石晶体,得到全沸石分子筛;
S3,离子交换:将步骤S2制得的全沸石分子筛吸潮后浸泡在水中,通过蠕动泵输送到离子交换柱内,并加热到离子交换温度后,通入目标离子溶液进行离子交换,离子交换反应结束后用去离子水冲洗,再脱水,收集得到目标离子改性全沸石分子筛;
S4,活化:对步骤S3制得的目标离子改性全沸石分子筛进行预烘干处理,预烘干后半产品送入活化炉焙烧,焙烧结束后冷却降温至出料温度出料,再经过筛分得到含吸波材料全沸石分子筛成品;必要时筛分在氮气或干燥空气保护下进行。
优选地,成型颗粒物料中粘结剂的重量比例为5%-20%;粘结剂为高岭土、埃洛石、水铝英石中的一种或多种。
步骤S1中,还添加有一种或一种以上的添加剂,添加剂用于优化成型颗粒物料的各种性能,比如增加强度,降低磨耗,提高孔隙率等;添加剂包括水玻璃、铝溶胶、硅溶胶、有机硅树脂乳液、焦磷酸盐、磷酸氢铝盐、纤维素类及其衍生物、栲胶等中一种或多种。成型状态可以是球形、条状等,这个需要根据具体的应用场景进行设计。
步骤S2中,碱性溶液为氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液中的至少一种,溶液的质量百分比浓度为1%-40%,优选1%-15%;加热温度为65-125℃,优选为75-95℃。
步骤S3中,目标离子溶液为含目标离子的可溶性氯化物溶液、氢氧化物溶液、硫酸盐溶液、硝酸盐溶液中的至少一种,溶液的质量百分比浓度为1%-40%;离子交换温度为50-130℃,离子交换反应过程中控制pH值在6-12范围内;冲洗采用的去离子水的温度为60-90℃。
步骤S4中,烘干温度控制在80-220℃之间,干燥后产品水分控制在5%-15%;活化炉先采用干燥气体预热,之后再对步骤S3制得的目标离子改性全沸石分子筛焙烧;预热温度为400-800℃,焙烧温度为500-580℃,焙烧时间为3-5小时,出料温度为50-20℃。干燥气体优选为纯氮气或露点范围为-50℃到-90℃的干燥压缩空气。
本发明第四方面提供一种含吸波材料全沸石分子筛,采用上述制备方法制成;含吸波材料全沸石分子筛粒径分布0.1-5.0mm,工艺中离子交换度≥95%,静态水吸附≥20wt%,含水量≤1.5wt%,磨损率<1.5wt%。
在一些技术方案中,含吸波材料全沸石分子筛在吸附后通过微波加热活化再生。即当分子筛完成吸附后,对分子筛进行清洗,然后微波加热活化实现分子筛脱水再生,恢复分子筛的吸附能力,从而实现分子筛的循环利用;微波加热输出功率为0.5-2kW,含吸波材料全沸石分子筛温度升高到100-250℃,处理1-40min,完成活化再生。
本发明第五方面提供一种含吸波材料全沸石分子筛作为吸附剂在除杂中的应用,特别是在锂离子非水电解液除杂中的应用。
锂离子非水电解液中微量的水、氟化氢和甲醇等杂质分子直径基本上均小于0.4nm,而电解液中的有机溶剂分子半径很大;因此采用孔径为4A的含吸波材料全沸石锂型分子筛可以去除杂质,而保证有机溶剂不会被吸附去除;若采用孔径为3A或5A的含吸波材料全沸石锂型分子筛,除杂效果稍差;上述应用中,采用含吸波材料全沸石锂型分子筛可以避免除杂过程中离子交换造成的二次污染。
技术效果
与现有技术相比,本发明具有如下技术效果:
1)通过加入具有吸波功能的微纳米材料,加速分子筛合成,提升分子筛合成效率,合成含吸波材料复合A型分子筛原粉,进一步制备得到具备高效微波加热功能的全沸石分子筛;该分子筛在吸附电解液中水等小分子物质后,可以通过微波加热高效、低能耗地脱除已经吸附的小分子物质,加热再生时间可以从数小时级别压缩到半小时左右,甚至达到数分钟级别,实现了分子筛的快速循环利用,甚至是在线快速再生;虽然与其他分子筛脱附再生相似地,含吸波材料全沸石分子筛也可以采用高温气流加热活化,但是,该活化再生过程难以发挥吸波材料的作用,以及无法实现在线活化;
2)基于微波加热过程中吸波功能材料的表面效应,合成含吸波材料复合A型分子筛原粉,无需添加有机或无机模板剂再去除,工艺简单,吸波功能材料的作用也与模板剂的作用不同;
3)通过将分子筛粉体制成颗粒状,能够提高吸附工艺中电解液的通过性能,从而提高吸附处理效率,相对于传统粉状分子筛,过滤时间可以从小时级别压缩到分钟级别;
4)通过将成型工序中添加的粘结剂进行转晶处理,使得非沸石晶体结构的粘结剂转变为沸石晶体,从而提高了分子筛的吸附性能,相对于未转晶分子筛,吸附能力可提高5%-20%;且无需通过反复水热交换才能制得全沸石分子筛,结构稳定性得到了有效提高;
5)制得的含吸波材料全沸石分子筛能够充分发挥分子筛深度除水的特性,简化除水工艺,提高除水效率,提升电解液的品质;且如果采用含吸波材料全沸石锂型分子筛,Na +、K +含量极低,在吸附电解液中微量水、氟化氢和甲醇等分子时,不会与Li +交换而影响电解液中的Li +纯度,尤其不会产生二次污染,从而保证锂离子电池的循环性能。
具体实施方式
下面结合具体实施方式对本发明进行详细描述。实施例中未注明具体条件的实验方法,按照常规方法和条件进行。
实施例1
本实施例涉及一种含吸波材料全沸石锂型分子筛的制备方法,包括步骤S1-S5。
S1,原位合成具有吸波功能的复合A型分子筛原粉:
按物料摩尔配比3Na 2O:2SiO 2:Al 2O 3:128H 2O,称取硅酸钠和铝酸钠,分别配成溶液,再分别向两溶液加入氢氧化钠,然后将两溶液混合均匀;
称取1kg碳化硅粉末加入碱性硅铝溶胶反应液(按照9kg的A型分子筛理论产量投料),放入微波反应器,100W反应10min,得到含有碳化硅吸波材料的复合4A分子筛原粉。
S2,制球:
称取制好的含有碳化硅吸波材料的复合4A分子筛原粉8kg(干基),高岭土2kg,置于Φ500mm的混合机中,混合30分钟,得到混合料;
称取5kg(折合成干基的重量)混合料,放入EIRICH自动成型机中,注入混合溶液,用于成型,成型颗粒直径1.2-1.8mm;
将成型颗粒置入真空马弗炉中,在350-550℃中焙烧2-3小时,得到球形颗粒物料。
取球形颗粒物料放在干燥皿中冷却至室温,取样测静态水吸附,静态水吸附量达21.7wt%。
S3,转晶:
称取球形颗粒物料3kg,置入去离子水中后称重为4.84kg;按配置完成得到的晶化反应溶液与球形颗粒物料重量比3.5:1的比例,向质量百分比浓度为8%的氢氧化钠溶液中加入球形颗粒物料3kg,得到晶化反应溶液;
升温至95℃,置入溶液槽,晶化反应3小时。
晶化反应结束后先50升冷水清洗,接着10升70℃热水洗两遍,再用冷水洗至pH=8(试纸测),得到晶化反应分子筛球;取样分析pH值,达到10.45。
对晶化反应分子筛球做吸水测试:
测试条件:25℃、RH50条件下,吸水24小时;结果:晶化反应前21.7wt%,晶化反应后24.5wt%。
S4,锂交:
转晶后晶化反应分子筛球(4A分子筛)吸潮,装入锂交换设备并浸泡在水中,将设备中物料加热并维持在85-90℃;往设备中通入质量百分比浓度1%-8%的硫酸锂溶液,控制pH在6-12之间;一段时间后从设备取样出口检测液体中离子浓度,待液体中离子浓度到达一定值后,锂交反应结束,得到全沸石锂型分子筛;用去离子水对设备中全沸石锂型分子筛进行冲洗,冲洗合格后,卸出物料并脱水收集全沸石锂型分子筛。
S5,活化:
将全沸石锂型分子筛慢慢加入带式烘箱进行预烘干处理,烘箱内温度控制在80-220℃之间,干燥后物料水分控制在5%-15%,物料收集在容器中;
干燥好的物料装入立式活化炉中,并且将纯氮气或露点-70℃的干燥压缩空气通过电加热器加热到450-600℃;热气体通入立式活化炉,将物料加热到500-580℃焙烧,保温3-5小时,得到含碳化硅吸波材料全沸石锂型分子筛成品;
之后采用冷却器将立式炉中含吸波材料全沸石锂型分子筛成品降温到50℃-20℃后,再在氮气或合格干燥空气保护下进行筛分,装入包装桶。
对制成的含吸波材料全沸石锂型分子筛成品进行检测,静态水吸附23.6wt%,Li交换度96.6%,堆积密度0.69g/ml,磨耗率0.09wt%,平均粒径1.38mm,筛分粒度(<1.00)0.1wt%,筛分粒度(>1.70)0.1wt%,含水量0.952wt%,性能优异;成品具有较好的球形度,粒径均匀,能够获得较好的堆积效果,满足锂离子电池电解液的除杂需要。
实施例2
本实施例涉及一种全沸石锂型分子筛的制备方法,包括步骤S1-S4。
S1,制球:
称取8kg(干基)商品化的4A分子筛(化学式为3Na 2O:2SiO 2:Al 2O 3:128H 2O)原粉,高岭土2kg,置于Φ500mm的混合机中,混合30分钟;
称取5kg混合料,放入EIRICH自动成型机中,注入混合溶液,用于成型,成型颗粒直径1.2-1.8mm;
将成型颗粒置入真空马弗炉中,在350-550℃中焙烧2-3小时,得到球形颗粒物料。
取球形颗粒物料放在干燥皿中冷却至室温,取样测静态水吸附,静态水吸附量达20.0wt%。
S2,转晶:
按配置完成得到的晶化反应溶液与球形颗粒物料重量比3.5:1的比例,向质量百分比浓度为8%的氢氧化钠溶液中加入球形颗粒物料3kg,得到晶化反应溶液;
升温至95℃,置入溶液槽,晶化反应3小时。
晶化反应结束后先50升冷水清洗,接着10升70℃热水洗两遍,再用冷水洗至pH=8(试纸测),得到晶化反应分子筛球;取样分析pH值,达到10.45。
对晶化反应分子筛球做吸水测试:
测试条件:25℃、RH50条件下,吸水24小时;结果:晶化反应前20.0wt%,晶化反应后22.3wt%。
S3,锂交:
转晶后晶化反应分子筛球(4A分子筛)吸潮,装入锂交换设备并浸泡在水中,将设备中物料加热并维持在85-90℃;往设备中通入质量百分比浓度1%-8%的硫酸锂溶液,控制pH在 6-12之间;一段时间后从设备取样出口检测液体中离子浓度,待液体中离子浓度到达一定值后,锂交反应结束,得到全沸石锂型分子筛;用去离子水对设备中全沸石锂型分子筛进行冲洗,冲洗合格后,卸出物料并脱水收集全沸石锂型分子筛。
S4,活化:
将全沸石锂型分子筛慢慢加入带式烘箱进行预烘干处理,烘箱内温度控制在80-220℃之间,干燥后物料水分控制在5%-15%,物料收集在容器中;
干燥好的物料装入立式活化炉中,并且将纯氮气或露点-70℃的干燥压缩空气通过电加热器加热到450-600℃;热气体通入立式活化炉,将物料加热到500-580℃焙烧,保温3-5小时,得到全沸石锂型分子筛成品;
之后采用冷却器将立式炉中全沸石锂型分子筛成品降温到20-50℃后,再在氮气或合格干燥空气保护下进行筛分,装入包装桶。
对制成的成品进行检测,静态水吸附22.5wt%,Li交换度94.0%,堆积密度0.70g/ml,磨耗率0.15wt%,平均粒径1.34mm,筛分粒度(<1.00)0.5wt%,筛分粒度(>1.70)0.5wt%,含水量0.952wt%,性能优异;成品具有较好的球形度,粒径均匀,能够获得较好的堆积效果,满足锂离子电池电解液的除杂需要。
实施例3
本实施例涉及一种含吸波材料全沸石钙型分子筛的制备方法,包括步骤S1-S5。
S1,原位合成具有吸波功能的复合A型分子筛原粉:
按物料摩尔配比12M 2O:60SiO 2:Al 2O 3:400H 2O,称取硅酸钠与水混匀配置成溶液,以及称取四甲基氢氧化铵溶液后加入异丙醇铝和氢氧化钠配置成溶液;将两种溶液混合均匀,混合液中四甲基氢氧化铵(TMA)与钠离子摩尔比为1.675;
称取0.5kg碳化硅粉末加入碱性硅铝溶胶反应液(按照9.5kg的A型分子筛理论产量投料),放入微波反应器,100W反应60min,得到含有碳化硅吸波材料的复合4A分子筛原粉。
S2,制球:
称取制好的含有碳化硅吸波材料的复合4A分子筛原粉9kg(干基),埃洛石1kg,置于Φ500mm的混合机中,混合30分钟;
称取5kg(折合成干基的重量)混合料,放入EIRICH自动成型机中,注入混合溶液,用于成型,成型颗粒直径1.2-1.8mm;
取成型颗粒物料置入真空马弗炉中,在350-550℃中焙烧2-3小时,得到球形颗粒物料。
取球形颗粒物料放在干燥皿中冷却至室温,取样测静态水吸附,静态水吸附量达25.2wt%。
S3,转晶:
按配置完成得到的晶化反应溶液与球形颗粒物料重量比3.5:2的比例,向质量百分比浓度为8%的氢氧化钠溶液中加入球形颗粒物料3kg,得到晶化反应溶液;
升温至95℃,置入溶液槽,晶化反应3小时;
晶化反应结束后先50升冷水清洗,接着10升70℃热水洗两遍,再用冷水洗至pH=8(试纸测),得到晶化反应分子筛球;取样分析pH值,达到10.45。
对晶化反应分子筛球做吸水测试:
测试条件:25℃、RH50条件下,吸水24小时;结果:晶化反应前25.2wt%,晶化反应后28.0wt%。
S4,钙交:
转晶后晶化反应分子筛球(4A分子筛)吸潮,装入钙交换设备并浸泡在水中,将设备中物料加热并维持在85-90℃;往设备中通入质量百分比浓度2%-10%的氯化钙溶液,控制pH在6-9之间;一段时间后从设备取样出口检测液体中离子浓度,待液体中离子浓度到达一定值后,钙交反应结束,得到全沸石钙型分子筛(5A分子筛);用去离子水对设备中全沸石钙型分子筛进行冲洗,冲洗合格后,卸出物料并脱水收集全沸石钙型分子筛。
S5,活化:
将全沸石钙型分子筛慢慢加入带式烘箱进行预烘干处理,烘箱内温度控制在80-220℃之间,干燥后物料水分控制在5%-15%,物料收集在容器中;
干燥好的物料装入立式活化炉中,并且将纯氮气或露点-70℃的干燥压缩空气通过电加热器加热到450-600℃;热气体通入立式活化炉,将物料加热到500-580℃焙烧,保温3-5小时,得到含吸波材料全沸石钙型分子筛成品;
之后采用冷却器将立式炉中含吸波材料全沸石钙型分子筛降温到50℃-20℃后,再在氮气或合格干燥空气保护下对成品进行筛分,装入包装桶。
对制成的成品进行检测,静态水吸附24.1wt%,钙交换度95.2%,堆积密度0.69g/ml,磨耗率0.07wt%,平均粒径1.31mm,筛分粒度(<1.00)0.4wt%,筛分粒度(>1.70)0.3wt%,含水量0.952wt%,性能优异;成品具有较好的球形度,粒径均匀,能够获得较好的堆积效果,满足锂离子电池电解液的除杂需要。
实施例4
本实施例涉及一种全沸石钙型分子筛的制备方法,包括步骤S1-S4。
S1,制球:
称取9kg(干基)商品化的4A分子筛(化学式为12M 2O·60SiO 2·Al 2O 3·400H 2O,M为 四甲基铵离子)原粉,埃洛石1kg,置于Φ500mm的混合机中,混合30分钟;
称取5kg(折合成干基的重量)混合料,放入EIRICH自动成型机中,注入混合溶液,用于成型,成型颗粒直径1.2-1.8mm;
将成型颗粒置入真空马弗炉中,在350-550℃中焙烧2-3小时,得到球形颗粒物料。
取球形颗粒物料放在干燥皿中冷却至室温,取样测静态水吸附,静态水吸附量达22.7wt%。
S2,转晶:
按配置完成得到的晶化反应溶液与球形颗粒物料重量比3.5:2的比例,向质量百分比浓度为8%的氢氧化钠溶液中加入球形颗粒物料3kg,得到晶化反应溶液;
升温至95℃,置入溶液槽,晶化反应3小时。
晶化反应结束后先50升冷水清洗,接着10升70℃热水洗两遍,再用冷水洗至pH=8(试纸测),得到晶化反应分子筛球;取样分析pH值,达到10.45。
对晶化反应分子筛球做吸水测试:
测试条件:25℃、RH50条件下,吸水24小时;结果:晶化反应前22.7wt%,晶化反应后25.2wt%。
S3,钙交:
转晶后晶化反应分子筛球(4A分子筛)吸潮,装入钙交换设备并浸泡在水中,将设备中物料加热并维持在85-90℃;往设备中通入质量百分比浓度2-10%的氯化钙溶液,控制pH在6-9之间;一段时间后从设备取样出口检测液体中离子浓度,待液体中离子浓度到达一定值后,钙交反应结束,得到全沸石钙型分子筛(5A分子筛);用去离子水对设备中全沸石钙型分子筛进行冲洗,冲洗合格后,卸出物料并脱水收集全沸石钙型分子筛。
S4,活化:
将全沸石钙型分子筛慢慢加入带式烘箱进行预烘干处理,烘箱内温度控制在80-220℃之间,干燥后物料水分控制在5%-15%,物料收集在容器中;
干燥好的物料装入立式活化炉中,并且将纯氮气或露点-70℃的干燥压缩空气通过电加热器加热到450-600℃;热气体通入立式活化炉,将物料加热到500-580℃焙烧,保温3-5小时,得到全沸石钙型分子筛成品;
之后采用冷却器将立式炉中全沸石钙型分子筛成品降温到50℃-20℃后,再在氮气或合格干燥空气保护下进行筛分,装入包装桶。
对制成的成品进行检测,静态水吸附22.1wt%,钙交换度94.3%,堆积密度0.69g/ml,磨耗率0.07wt%,平均粒径1.31mm,筛分粒度(<1.00)0.4wt%,筛分粒度(>1.70) 0.3wt%,含水量0.952wt%,性能优异;成品具有较好的球形度,粒径均匀,能够获得较好的堆积效果,满足锂离子电池电解液的除杂需要。
当分子筛在电解液中吸附水达到饱和或吸附能力下降到一定值以后,对分子筛进行清洗,之后采用本发明中的微波高温活化工艺将吸过水的分子筛脱水再生,可恢复分子筛的吸附能力,从而实现分子筛的循环利用。
比较实施例1-2,实施例3-4,可以发现,采用普通的商业化A型分子筛经制球、晶化、转晶、活化工序也能够制成全沸石分子筛,继而对锂离子非水电解液除杂;但是实施例1和实施例3采用微波加热合成复合A型分子筛原粉反应快捷,能耗低,继而制成含吸波材料全沸石分子筛,在静态水吸附性能等方面有了进一步提升。
将实施例2和实施例4制得的全沸石分子筛,放于25℃、RH50条件下,吸水24小时后,放入烘箱进行脱附再生;150℃烘干2h,烘箱功率2kW,含水量降低至不超过10%,耗电估值4kW·h;如采用微波加热将含水量降至10%,微波功率1kW,需要耗时1h,耗电估值1kW·h;
将实施例1和实施例3制得的含吸波材料全沸石分子筛,放于25℃、RH50条件下,吸水24小时后,放入微波加热器进行脱附再生;微波开启30min,功率1kW,含水量可降至10%以下,耗电估值0.5kW·h;
可以发现,对实施例1和实施例3制得的含吸波材料全沸石分子筛进行微波加热活化再生可以实现分子筛的快速循环利用,且能耗成本大幅将低。
需要强调的是:以上仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (15)

  1. 一种含吸波材料复合A型分子筛原粉的制备方法,其特征在于,称取微纳米尺寸的吸波材料粉体,置于A型分子筛前驱体反应溶液中,之后微波加热进行反应;微波加热过程中,吸波材料受到选择性加热,在粒子表面效应作用下,作为分子筛生长的晶种原位生长合成A型分子筛,合成的A型分子筛包覆吸波材料;反应结束后干燥得到含吸波材料复合A型分子筛原粉。
  2. 根据权利要求1所述制备方法,其特征是,所述A型分子筛前驱体反应溶液为碱性硅铝反应液,反应液物料组成摩尔比为xM 2O:ySiO 2:Al 2O 3:zH 2O,其中,M为碱金属离子、有机铵离子中一种或多种,x为2-12,y为1.5-6.5,z为30-400;微波加热输出功率为0.1-2kW,反应温度为40-110℃,反应时间为1-48h,干燥温度为80-120℃。
  3. 根据权利要求1所述制备方法,其特征是,所述微纳米尺寸的吸波材料包括碳化硅颗粒、碳化硅纤维、碳纤维、石墨烯、碳纳米管、炭黑中一种或多种;所述A型分子筛为LTA型分子筛中的一种。
  4. 根据权利要求1所述制备方法,其特征是,所述吸波材料的尺寸为1nm-100μm。
  5. 根据权利要求1所述制备方法,其特征是,所述吸波材料的尺寸为10nm-10μm。
  6. 一种含吸波材料复合A型分子筛原粉,其特征在于,基于权利要求1-5任一项所述制备方法制成;包括微纳米尺寸的吸波材料,以及以微纳米尺寸的吸波材料为晶种原位生长得到的A型分子筛,A型分子筛包覆吸波材料。
  7. 一种含吸波材料全沸石分子筛的制备方法,其特征在于,包括以下步骤:
    S1,成型:将含吸波材料复合A型分子筛原粉、粘结剂按比例均匀混合,经混碾后在制粒机中成型,再经干燥、焙烧得到成型颗粒物料;
    S2,转晶:将步骤S1制得的成型颗粒物料烘干后置于碱性溶液中,加热,进行晶化反应,使成型颗粒物料中粘结剂转为沸石晶体,得到全沸石分子筛;
    S3,离子交换:将步骤S2制得的全沸石分子筛吸潮后浸泡在水中,通过蠕动泵输送到离子交换柱内,并加热到离子交换温度后,通入目标离子溶液进行离子交换,离子交换反应结束后用去离子水冲洗,再脱水,收集得到目标离子改性全沸石分子筛;
    S4,活化:对步骤S3制得的目标离子改性全沸石分子筛进行预烘干处理,预烘干后半产品送入活化炉焙烧,焙烧结束后冷却降温至出料温度出料,再经过筛分得到含吸波材料全沸石分子筛成品。
  8. 根据权利要求7所述制备方法,其特征是,所述成型颗粒物料中粘结剂的重量比例为5%-20%;粘结剂为高岭土、埃洛石、水铝英石中的一种或多种。
  9. 根据权利要求7所述制备方法,其特征是,步骤S1中,还添加有一种或一种以上的添加 剂,添加剂包括水玻璃、铝溶胶、硅溶胶、有机硅树脂乳液、焦磷酸盐、磷酸氢铝盐、纤维素类及其衍生物、栲胶中一种或多种。
  10. 根据权利要求7所述制备方法,其特征是,步骤S2中,碱性溶液为氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液中的至少一种,溶液的质量百分比浓度为1%-40%;加热温度为65-125℃。
  11. 根据权利要求7所述制备方法,其特征是,步骤S3中,目标离子溶液为含目标离子的可溶性氯化物溶液、氢氧化物溶液、硫酸盐溶液、硝酸盐溶液中的至少一种,溶液的质量百分比浓度为1%-40%;离子交换温度为50-130℃,离子交换反应过程中控制pH值在6-12范围内;冲洗采用的去离子水的温度为60-90℃。
  12. 根据权利要求7所述制备方法,其特征是,步骤S4中,烘干温度控制在80-220℃之间,干燥后产品水分控制在5%-15%;活化炉先采用干燥气体预热,之后再对步骤S3制得的目标离子改性全沸石分子筛焙烧;预热温度为400-800℃,焙烧温度为500-580℃,焙烧时间为3-5小时,出料温度为50-20℃。
  13. 一种含吸波材料全沸石分子筛,其特征在于,采用权利要求7-12任一项所述制备方法制成;含吸波材料全沸石分子筛粒径分布0.1-5.0mm,工艺中离子交换度≥95%,静态水吸附≥20wt%,含水量≤1.5wt%,磨损率<1.5wt%。
  14. 根据权利要求13所述含吸波材料全沸石分子筛,其特征是,所述含吸波材料全沸石分子筛在吸附后通过微波加热活化再生;微波加热输出功率为0.5-2kW,含吸波材料全沸石分子筛温度升高到100-250℃,处理1-40min,完成活化再生。
  15. 权利要求14所述含吸波材料全沸石分子筛作为吸附剂在除杂中的应用。
PCT/CN2021/131146 2021-03-03 2021-11-17 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用 WO2022183776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023546136A JP2024504492A (ja) 2021-03-03 2021-11-17 電波吸収材料を含有する複合a型分子篩原料粉末、オールゼオライト分子篩、これらの製造方法、及び使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110232361.9 2021-03-03
CN202110232361.9A CN112588258B (zh) 2021-03-03 2021-03-03 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022183776A1 true WO2022183776A1 (zh) 2022-09-09

Family

ID=75210131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131146 WO2022183776A1 (zh) 2021-03-03 2021-11-17 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用

Country Status (3)

Country Link
JP (1) JP2024504492A (zh)
CN (1) CN112588258B (zh)
WO (1) WO2022183776A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433016A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种高效5a分子筛吸附剂及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112588258B (zh) * 2021-03-03 2021-05-25 苏州立昂新材料有限公司 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用
CN113797709B (zh) * 2021-10-28 2024-06-25 江西省杰夫环保科技有限公司 一种高效脱除VOCs的微晶转轮沸石分子筛及其制备方法
CN116135300A (zh) * 2021-11-16 2023-05-19 香港城市大学深圳研究院 一种选择性捕集co2的吸附剂及其制备与应用
CN116750776A (zh) * 2023-05-15 2023-09-15 洛阳新翎微纳新材料有限公司 用于锂电解液的Li-A型分子筛及其制备方法、应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054549A1 (en) * 2000-03-11 2001-12-27 Korea Research Institute Of Chemical Technology Continuous process and apparatus for preparing inorganic materials employing microwave
CN101524637A (zh) * 2009-04-23 2009-09-09 中国海洋石油总公司 一种富含lsx分子筛的无粘结剂吸附剂的制备方法
CN101531517A (zh) * 2009-04-18 2009-09-16 中国科学院山西煤炭化学研究所 一种生物形貌碳化硅与分子筛复合材料的制备方法
CN107107022A (zh) * 2014-12-31 2017-08-29 艾可普罗有限公司 具有微波吸收性能的吸附剂
CN108786767A (zh) * 2018-04-28 2018-11-13 中国石油大学(华东) 一种纳米尺度分子筛@氧化石墨烯耦合材料的制备方法
CN109261195A (zh) * 2018-09-29 2019-01-25 南昌大学 一种高介电复合介孔分子筛催化剂的制备方法
CN112588258A (zh) * 2021-03-03 2021-04-02 苏州立昂新材料有限公司 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184435A (en) * 1981-05-07 1982-11-13 Mitsubishi Heavy Ind Ltd Adsorbent for adsorbing and desorbing gas
CN1128004C (zh) * 1999-03-17 2003-11-19 中国科学院大连化学物理研究所 微波加热合成分子筛膜
CN100337918C (zh) * 2004-11-17 2007-09-19 中国科学院大连化学物理研究所 一种原位老化-微波加热合成分子筛膜的方法
CN101289196B (zh) * 2008-06-13 2010-06-30 洛阳市建龙化工有限公司 一种LiLSX分子筛的制备方法
CN101683620B (zh) * 2008-09-27 2013-04-10 北京石油化工学院 具有微孔孔道的立方介孔分子筛催化剂及制备方法和用途
CN101746776A (zh) * 2009-10-27 2010-06-23 华南理工大学 一种在α-Al2O3中空纤维表面合成NaA型分子筛膜的方法
CN104556131B (zh) * 2013-10-28 2017-04-19 中国石油化工股份有限公司 微波合成ZSM‑5/Silicalite‑1核壳分子筛的方法
CN103818922A (zh) * 2014-02-27 2014-05-28 同济大学 一种微波加热合成uzm-8分子筛的方法
CN104477937A (zh) * 2014-12-05 2015-04-01 上海绿强新材料有限公司 介孔x型分子筛、基于该分子筛的吸附剂及其制备与应用
CN106190021A (zh) * 2016-07-10 2016-12-07 上海大学 一种沸石吸波材料的制备方法
CN110156037A (zh) * 2018-02-13 2019-08-23 中国石油天然气股份有限公司 一种β分子筛的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054549A1 (en) * 2000-03-11 2001-12-27 Korea Research Institute Of Chemical Technology Continuous process and apparatus for preparing inorganic materials employing microwave
CN101531517A (zh) * 2009-04-18 2009-09-16 中国科学院山西煤炭化学研究所 一种生物形貌碳化硅与分子筛复合材料的制备方法
CN101524637A (zh) * 2009-04-23 2009-09-09 中国海洋石油总公司 一种富含lsx分子筛的无粘结剂吸附剂的制备方法
CN107107022A (zh) * 2014-12-31 2017-08-29 艾可普罗有限公司 具有微波吸收性能的吸附剂
CN108786767A (zh) * 2018-04-28 2018-11-13 中国石油大学(华东) 一种纳米尺度分子筛@氧化石墨烯耦合材料的制备方法
CN109261195A (zh) * 2018-09-29 2019-01-25 南昌大学 一种高介电复合介孔分子筛催化剂的制备方法
CN112588258A (zh) * 2021-03-03 2021-04-02 苏州立昂新材料有限公司 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433016A (zh) * 2020-10-31 2022-05-06 中国石油化工股份有限公司 一种高效5a分子筛吸附剂及其制备方法

Also Published As

Publication number Publication date
CN112588258A (zh) 2021-04-02
JP2024504492A (ja) 2024-01-31
CN112588258B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022183776A1 (zh) 含吸波材料复合a型分子筛原粉及全沸石分子筛、它们的制备方法与应用
CN101524637B (zh) 一种富含lsx分子筛的无粘结剂吸附剂的制备方法
US20210391568A1 (en) Method for preparing high-voltage cathode material by body modification and regeneration of waste lithium cobaltate material
CN105140471B (zh) 一种MoS2/C锂离子电池负极复合材料及其制备方法
WO2020164353A1 (zh) 一种金属原子掺杂多孔碳纳米复合材料及其制备方法和应用
CN110581026B (zh) 一种过渡金属硒化物/有序多孔石墨烯气凝胶复合电极材料及其制备方法
CN112794324B (zh) 一种高介孔率木质素多级孔碳材料及其制备方法与应用
CN113231009B (zh) 一种氨气吸附剂及其制备方法
CN102500315A (zh) 一种LiX分子筛吸附剂及其制备方法
CN108383128A (zh) 一种稻壳基微纳结构多孔二氧化硅的制备方法
CN111250036A (zh) 一种钠离子吸附剂、其制备方法及其应用
CN102502694A (zh) 一种Li改性X分子筛及其制备方法
CN110156013B (zh) 一种活性炭表面造孔方法
CN110180489B (zh) 一种掺硫富锂锰系锂吸附剂及其制备方法和应用
CN103441249B (zh) 一种纳米SnO2修饰锂离子电池三元正极材料及其制备方法
CN117894964A (zh) 一种碳包覆电极材料及其制备方法
CN116406314A (zh) 固态胺co2吸附剂及其制备方法
WO2024060547A1 (zh) 一种废旧三元正极材料的再生方法
CN110713187A (zh) 一种硅材料的制备方法及其在锂离子电池负极的应用
CN107879342B (zh) 一种高吸附型多孔活性炭的制备方法
CN114618440B (zh) 一种锂盐吸附剂前驱体的合成工艺
CN111276683A (zh) 一种富含铝羟基的二氧化硅硫正极及其制备方法
CN117550871B (zh) 一种导热材料及其制备方法和应用
CN115414909B (zh) 一种锂离子电池电解液溶剂除水剂及其制备方法和应用
CN115414906B (zh) 一种锂离子电池电解液溶剂除水剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546136

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928848

Country of ref document: EP

Kind code of ref document: A1