WO2022183585A1 - 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯 - Google Patents

利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯 Download PDF

Info

Publication number
WO2022183585A1
WO2022183585A1 PCT/CN2021/091671 CN2021091671W WO2022183585A1 WO 2022183585 A1 WO2022183585 A1 WO 2022183585A1 CN 2021091671 W CN2021091671 W CN 2021091671W WO 2022183585 A1 WO2022183585 A1 WO 2022183585A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
graphene
waste
negative electrode
anode
Prior art date
Application number
PCT/CN2021/091671
Other languages
English (en)
French (fr)
Inventor
许建锋
林倩
吴小锋
王苑
阮丁山
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2022183585A1 publication Critical patent/WO2022183585A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of recycling and processing waste lithium battery materials, and in particular relates to a method for preparing graphene by utilizing waste and used negative electrode graphite of lithium batteries and graphene.
  • Lithium-ion batteries have been on the market for nearly 30 years, from portable electronic equipment to power units, and their products affect all aspects of people's production and life. With the rapid development of lithium-ion batteries, the issue of battery retirement has attracted much attention from battery and equipment manufacturers. Due to the low value of anode materials for lithium-ion batteries, their recycling and reuse have not been focused on. Therefore, increasing the added value of waste anode graphite is the key to realizing a win-win situation of resource regeneration and economic benefits. As a new type of nano-carbon material, graphene has huge market application value due to its excellent optical, electrical, thermal and other excellent properties. But its cost and quality have become the key factors restricting its further development.
  • a method for recycling negative electrode materials of waste lithium ion batteries is disclosed.
  • the negative electrode graphite material of the waste lithium ion battery is immersed in an aqueous solution containing a certain concentration of H + for up-and-down vibration washing or backflow cycle washing. While recovering lithium resources, the graphite interlayers were expanded, and the graphene material was prepared by liquid-phase mechanical exfoliation. This method can simultaneously recover the graphite negative electrode and the lithium source, but the process is complicated, time-consuming, and the rate of return is low.
  • the related art also discloses a method for recycling and regenerating graphene from waste lithium-ion batteries.
  • the cathode and anode coatings are separated from the current collector and the outer packaging to obtain cathode and anode blended materials; after crushing and classification, the intercalated graphite powder is used as the raw material , graphene is prepared by redox method or ultrasonic exfoliation method.
  • the method uses the redox method to exfoliate to prepare graphene, which requires high cost of raw materials and equipment, and the redox process seriously damages the intrinsic structure of graphite.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a method and graphene for preparing graphene by utilizing waste and old negative electrode graphite of lithium ion batteries.
  • the method realizes the conversion of waste and old negative electrode graphite in lithium ion batteries from waste to "black gold", and the waste and old negative electrode graphite of lithium ion batteries is converted into "black gold”.
  • the recovery rate is greater than 80%, and the conversion rate of waste anode graphite to graphene is greater than 99%.
  • the present invention adopts the following technical solutions:
  • a method for preparing graphene by utilizing waste and old anode graphite of lithium battery comprising the following steps:
  • step (3) taking out the electrolytic graphite, washing, ultrasonically dispersing, centrifuging and drying to obtain the graphene; in step (2), the electrolyte is a sulfuric acid type ammonium salt.
  • the method further includes simultaneously re-clamping the electrolytic residue obtained by centrifugal classification into the conductive wire mesh, and performing electrolysis again.
  • the conductive wire mesh can be reused.
  • the present invention develops a method for preparing graphene by confinement-molten salt electrolysis. After electrolysis, metal impurities in waste and old negative electrode graphite are enriched at the cathode, and the graphene of anode electrolysis is purified.
  • the conductive wire mesh is one of molybdenum wire mesh, titanium wire mesh, alloy wire mesh or polypyrrole wire mesh.
  • the mesh number of the conductive wire mesh is greater than the mesh number of the graphite powder.
  • the cathode is an inert electrode
  • the material of the inert electrode is one of platinum, gold, titanium, titanium alloy or tungsten.
  • the sulfated ammonium salt is at least one of ammonium sulfate, ammonium hydrogen sulfate, and ammonium sulfite.
  • Anions in the electrolyte move to the anode, release electrons, and oxidation occurs, and this process is the key to the intercalation and exfoliation of anode graphite.
  • the reason for using sulfate-type ammonium salts is that such electrolytes can ionize sulfate ions.
  • the size of SO 4 2- (0.46nm) is similar to the graphite interlayer spacing (0.335nm). At the melting temperature, the van der Waals force between the graphite layers is weakened and the interlayer spacing is enlarged.
  • SO 4 2- is easier to insert between the graphite layers than other anions, and SO 4 2- 4 2-
  • the SO gas released from decomposition plays an important role in the expansion and exfoliation of graphite.
  • the temperature for heating to melting is 100°C-500°C, and the holding time is 5-120 min.
  • the standing time is 20-40min.
  • the current is 1-150A, and the voltage is 1-300V; the electrolysis time is 5-120min.
  • step (3) the washing is performed with deionized water until the pH is neutral.
  • the power of the ultrasonic dispersion is 600-1200W, and the time of the ultrasonic dispersion is 20-40min.
  • the rotational speed of the centrifugation is 1800-2500rmp, and the centrifugation time is 1-5min.
  • a graphene is prepared by the above method, the graphene has a specific surface area of 200-600 m 2 ⁇ g -1 , and the number of layers is 3-10.
  • the invention uses waste graphite as the anode, so the anodic oxidation stripping method is adopted.
  • the expansion force of the gas generated by the GIC oxidation or reduction reaction preferentially opens the grain boundaries, edges and other defect sites with weak van der Waals forces between the graphite layers, so that the microstructure of the graphite layer expands and effectively exfoliates, and finally realizes the preparation of graphene.
  • Most of the recycled negative graphite is powder, and there is no conductive bridge between particles.
  • the electrolysis process requires graphite as a conductor, similar to a conductive rod/block. The easiest way is to fix the negative graphite powder with a conductive wire mesh, and conduct electricity during the electrolysis process.
  • the wire mesh and graphite form conductive paths to form a complete anode. Since the material of the conductive wire mesh is related to the activity of the metal, the active metal, as the conductive wire mesh, will be ionized into the electrolyte and cannot fix the graphite. Therefore, for the selection of the anode electrode material, the anode is required to be not easily ionized, and Inert metal with electrical conductivity.
  • the waste and old negative electrode graphite powder is clamped in the conductive wire mesh by means of confinement, which can fix the negative electrode graphite, and saves the step of preparing the waste and old negative electrode graphite powder into a graphite block for subsequent electrolysis, which simplifies craft.
  • the present invention uses molten salt as the electrolyte to continuously electrolyze the waste and old negative electrode graphite, and the metal impurities in the waste and old negative electrode graphite are beneficial to improve the electrical conductivity of the waste and old negative electrode graphite.
  • the graphite interlayer spacing expands at the melting temperature, which is conducive to the intercalation and exfoliation of graphite by anions entering the graphite interlayer spacing during the electrolysis process.
  • the recovery rate of negative electrode graphite for waste lithium-ion batteries is greater than 80%, and the conversion rate of waste negative electrode graphite to graphene is greater than 99%. %.
  • the specific surface area of the obtained graphene is 200-600 m 2 ⁇ g -1 , and the number of layers is 3-10 layers.
  • the high-value recycling and reuse of the anode graphite in the waste lithium-ion battery material can not only solve the pollution problem of electronic waste, but also extract the waste anode graphite as a raw material to prepare graphene, and realize the waste lithium-ion battery anode material. resource utilization.
  • Fig. 1 is the process flow diagram of embodiment 1 of the present invention.
  • FIG. 2 is a structural diagram of a device for electrolysis of waste anode graphite molten salt according to Example 1 of the present invention.
  • 1 is the cathode
  • 2 is the electrolytic cell
  • 3 is the molten electrolyte
  • 4 is the waste anode graphite powder
  • 5 is the conductive wire mesh
  • 6 is the DC power supply.
  • the graphene of this embodiment has a specific surface area of 420 m 2 ⁇ g -1 and a number of layers of 5-8 layers measured by a physical adsorption method, and the recovery rate of the negative electrode graphite of the waste lithium ion battery is 80% (the recovery rate refers to the The extraction rate of anode to anode graphite), and the conversion rate of waste anode graphite to graphene is greater than 99%.
  • the graphene of the present embodiment has a specific surface area of 350 m 2 ⁇ g -1 and a number of layers of 5-10 as measured by a physical adsorption method, and the recovery rate of the negative electrode graphite of the waste lithium ion battery is 80%.
  • the conversion rate is greater than 99%.
  • the graphene of the present embodiment has a specific surface area of 382 m 2 ⁇ g -1 and a number of layers of 5-10 as measured by a physical adsorption method, and the recovery rate of the negative electrode graphite of the waste lithium ion battery is 80%. The conversion rate is greater than 99%. Comparative Example 1
  • the method for preparing graphene by using lithium battery waste anode graphite in this comparative example includes the following steps:
  • the graphene of this comparative example has a specific surface area of 60 m 2 ⁇ g -1 measured by physical adsorption method, and the number of layers is more than 10 layers.
  • the recovery rate of the anode graphite of the waste lithium ion battery is 80%. rate is less than 60%. Since ammonium bicarbonate has a melting point of 105°C and is easily decomposed into water and carbon dioxide when heated, the effect of using ammonium bicarbonate as an electrolyte is worse than that of ammonium bicarbonate as an electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

涉及回收处理废旧锂电池材料的技术领域,提供了一种利用锂电池废旧负极石墨制备石墨烯的方法,包括以下步骤:(1)将废旧电池中回收的石墨粉夹装于导电网中,接入直流电源的阳极;(2)将电解槽中的电解质加热至熔融,保温,将直流电源的阳极、阴极浸入电解质中,静置,打开直流电源进行电解,得到电解石墨;(3)取出电解石墨,进行洗涤、超声分散、离心,干燥,即得石墨烯。通过限域的方式将废旧负极石墨粉夹装于导电丝网中,该方式可以固定负极石墨,省去了将废旧负极石墨粉制备为石墨块体再进行后续电解的步骤,简化工艺。

Description

利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯 技术领域
本发明属于回收处理废旧锂电池材料的技术领域,具体涉及一种利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯。
背景技术
锂离子电池已经上市近30年,从便携式电子设备发展到动力装置,其产品影响着人们生产、生活的方方面面。在锂离子电池迅速发展的同时,电池退役问题备受电池、设备厂商关注。由于锂离子电池负极材料的价值较低,其回收及再利用方面一直未被重点关注。因而,将废旧负极石墨高附加值化,是实现资源再生与经济效益双赢的关键。石墨烯作为一种新型纳米碳材料,因其优异的光、电、热等优异特性,具有巨大的市场应用价值。但其成本、质量成为限制其进一步发展的关键因素。因而,从废旧负极石墨到石墨烯,可同时解决废旧负极的回收、石墨烯低成本制备的问题。对于相关技术,公开了一种废旧锂离子电池负极材料资源化的方法。该方法将废旧锂离子电池负极石墨材料浸在含有一定浓度H +的水溶液中进行上下震荡洗涤或回流循环洗涤。在回收锂资源的同时,使石墨层间膨胀,利用液相机械剥离的方法制备了石墨烯材料。该方法可以同时回收石墨负极及锂源,但工艺复杂,耗时长,回报率较低。相关技术还公开了一种废旧锂离子电池回收再生石墨烯的方法。该方法将废旧锂离子电池进行预充电或预放电处理后,将阴阳极涂层与集流体、外包装分离开来,得到阴阳极共混物料;经粉碎分级后,插层化石墨粉作为原料,采用氧化还原法或超声剥离法制备获得石墨烯。该方法使用氧化还原法剥离制备石墨烯,需要投入的原料、设备成本高,且氧化还原过程对石墨本征结构破坏严重。
因此,亟需研发一种结合现有的废旧锂离子电池拆解工艺,并根据回收的废旧负极石墨的特点进行开发制备石墨烯的方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯,该方法实现了锂离子电池中废旧 负极石墨由废料到“黑金”的转化,且废旧锂离子电池负极石墨的回收率大于80%,废旧负极石墨到石墨烯的转化率大于99%。
为实现上述目的,本发明采用以下技术方案:
一种利用锂电池废旧负极石墨制备石墨烯的方法,包括以下步骤:
(1)将废旧电池中回收的石墨粉夹装于导电丝网中,接入直流电源的阳极;
(2)将电解槽中的电解质加热至熔融,保温,将所述直流电源的阳极、阴极浸入电解质中,静置,打开直流电源进行电解,得到电解石墨;
(3)取出电解石墨,进行洗涤、超声分散、离心、干燥,即得所述石墨烯;步骤(2)中,所述电解质为硫酸型铵盐。
优选地,步骤(3)中,还包括同时将离心分级所得电解渣重新夹装于导电丝网中,再次进行电解,在循环过程中,导电丝网可以重复使用。
锂离子电池中的负极石墨经过无数次的循环充放电后,石墨层间距被逐渐扩大,有利于插层化合物进入石墨层间。此外,负极石墨在拆解过程中残留金属杂质(铝、铜等)及金属化合物(镍、钴、锰等)可提高废旧负极石墨的电导性。根据废旧负极石墨的上述特性,本发明开发出限域-熔盐电解制备石墨烯的方法,电解后,废旧负极石墨中的金属杂质在阴极富集,纯化了阳极电解的石墨烯。
优选地,步骤(1)中,所述导电丝网为钼丝网、钛丝网、合金丝网或聚吡咯丝织网中的一种。
更优选地,所述导电丝网的目数大等于石墨粉的目数。
优选地,步骤(2)中,所述阴极为惰性电极,所述惰性电极的材料为铂、金、钛、钛合金或钨中的一种。
优选地,步骤(2)中,所述硫酸型铵盐为硫酸铵、硫酸氢铵、亚硫酸酸铵中的至少一种。
电解质中的阴离子移向阳极,放出电子,发生氧化作用,该过程是阳极石墨进行插层剥离的关键。采用硫酸类铵盐的原因是该类电解质可以电离出硫酸根离子。SO 4 2-的大小(0.46nm)与石墨层间距(0.335nm)相近,熔融温度下,石墨层间范德华力减弱,层间距扩大,SO 4 2-较其他阴离子更易插入石墨层间,且SO 4 2-分解逸出的SO 2气体在石墨膨胀和剥离中起重要作用。
优选地,步骤(2)中,所述加热至熔融的温度为100℃-500℃,保温的时间为5-120min。
优选地,步骤(2)中,所述静置的时间为20-40min。
优选地,步骤(2)中,所述电解的过程中,电流为1-150A,电压为1-300V;所述电解的时间为5-120min。
优选地,步骤(3)中,所述洗涤的是采用去离子水进行洗涤,洗至pH为中性。
优选地,步骤(3)中,所述超声分散的功率为600-1200W,超声分散的时间为20-40min。
优选地,步骤(3)中,所述离心的转速为1800-2500rmp,离心的时间为1-5min。
一种石墨烯,是由上述方法制得,所述石墨烯的比表面积为200-600m 2·g -1,层数为3-10层。
本发明的原理:
本发明以废旧石墨为阳极,因而采用的是阳极氧化剥离法,其基本的原理是:通过施加外来电压驱动电解质中阴离子有效嵌入石墨阳极层间,形成石墨插层复合物(GIC),并通过GIC氧化或还原反应产生气体的膨胀力优先打开石墨层间范德华力较弱的晶界、边缘和其他缺陷位置,使石墨层微观结构大比例膨胀和有效剥落,最终实现石墨烯的制备。回收的负极石墨多为粉体,颗粒间无导电桥梁,电解过程需要石墨作为一个导电体,类似导电棒/块,最简便的方法就是将负极石墨粉体用导电丝网固定,电解过程中导电丝网与石墨形成导电通路,形成一个完整的阳极。由于导电丝网材质与金属活泼性有关,活泼金属作为导电丝网,将会离子化至电解质中,对石墨无法起到固定作用,因而对于阳极电极材料的选择,要求阳极为不易离子化,且具有导电性的惰性金属。
相对于现有技术,本发明的有益效果如下:
1.本发明通过限域的方式将废旧负极石墨粉夹装于导电丝网中,该方式可以固定负极石墨,省去了将废旧负极石墨粉制备为石墨块体再进行后续电解的步骤,简化工艺。
2.本发明用熔融盐作为电解质,对废旧负极石墨进行持续电解,废旧负极石墨中的金属杂质,有利于提高废旧负极石墨的导电性。熔融温度下石墨层间距扩大,有利于电解过程中阴离子进入石墨层间距对石墨进行插层、剥离,废旧锂离子电池负极石墨的回收率大于80%,废旧负极石墨到石墨烯的转化率大于99%。,所得石墨烯的比表面积为200-600m 2·g -1、层数为3-10层。
3.对废弃锂离子电池材料中的负极石墨进行高赋值化回收再用,既可以解决电子废弃物的污染问题,又能提取废旧负极石墨作为原料制备石墨烯,实现了废旧锂离子电池负极材料的资源化利用。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明的实施例1的工艺流程图;
图2为本发明的实施例1的废旧负极石墨熔盐电解的装置结构图。
图2中:1为阴极,2为电解槽,3为熔融电解质,4为废旧负极石墨粉,5为导电丝网,6为直流电源。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例的利用锂电池废旧负极石墨制备石墨烯的方法,包括以下步骤:
(1)取5g废旧锂离子电池负极石墨,过400目筛网,将筛上石墨粉或块体夹装于400目、面积为20cm 2的双层不锈钢导电丝网(牌号:316L)中,并将其作为阳极,使用面积为20cm 2的钵片作为阴极;
(2)打开加热器,设定温度为150℃,将电解槽中的硫酸氢铵加热至熔融,并保持恒温,待硫酸氢铵全部熔融后,将上述准备的阴、阳电极浸于熔融电解质中,静置0.5h,使石墨粉被电解质完全浸润,将阴阳极接入直流电源,电流密度3A·dm -2,持续电解2h后,关闭电源,得到电解石墨,电解装置如图二所示;
(3)取出电解石墨,对其进行水洗,使产物的pH为中性,获得悬浮液,进行1000W超声处理30min,在2000rmp下离心2min,提取上层液,获得石墨烯分散液,冷冻干燥24h获得石墨烯,(下层物经80℃,3h真空干燥后,返回第一步作为电解原料继续电解)。
本实施例的石墨烯,通过物理吸附法测得比表面积为420m 2·g -1,层数为5-8层,废旧锂离子电池负极石墨的回收率为80%(回收率是指电池中的负极到负极石墨的提取 率),废旧负极石墨到石墨烯的转化率大于99%。
实施例2
本实施例的利用锂电池废旧负极石墨制备石墨烯的方法,包括以下步骤:
(1)取5g废旧锂离子电池负极石墨,过400目筛网,将筛上石墨粉或块体夹装于400目、面积为20cm 2的双层不锈钢导电丝网(牌号:316L)中,并将其作为阳极,使用面积为20cm 2的钵片作为阴极;
(2)打开加热器,设定温度为250℃,将电解槽中的硫酸铵加热至熔融,并保持恒温,待硫酸氢铵全部熔融后,将上述准备的阴、阳电极浸于熔融电解质中,静置0.5h,使石墨粉被电解质完全浸润,将阴阳极接入直流电源,电流密度3A·dm -2,持续电解2h后,关闭电源,得到电解石墨;
(3)取出电解石墨,对其进行水洗,使产物的pH为中性,获得悬浮液,进行600W超声处理30min,在2000rmp下离心2min,提取上层液,获得石墨烯分散液,进行冷冻干燥24h获得石墨烯(下层物经80℃,3h真空干燥后,返回第一步作为电解原料继续电解)。
本实施例的石墨烯,通过物理吸附法测得比表面积为350m 2·g -1,层数为5-10层,废旧锂离子电池负极石墨的回收率为80%,废旧负极石墨到石墨烯的转化率大于99%。
实施例3
本实施例的利用锂电池废旧负极石墨制备石墨烯的方法,包括以下步骤:
(1)取5g废旧锂离子电池负极石墨,过500目筛网,将筛上石墨粉或块体夹装于500目、面积为20cm 2的双层不锈钢导电丝网(牌号:316L)中,并将其作为阳极,使用面积为20cm 2的钵片作为阴极;
(2)打开加热器,设定温度为150℃,将电解槽中的硫酸氢铵加热至熔融,并保持恒温,待硫酸氢铵全部熔融后,将上述准备的阴、阳电极浸于熔融电解质中,静置0.5h,使石墨粉被电解质完全浸润,将阴阳极接入直流电源,电流密度6A·dm -2,持续电解1h后,关闭电源,得到电解石墨;
(3)取出电解石墨,对其进行水洗,使产物的pH为中性,获得悬浮液,进行1000W超声处理30min,在2000rmp下离心2min,提取上层液,获得石墨烯分散液,再进行喷雾干燥获得石墨烯(下层物经80℃,3h真空干燥后,返回第一步作为电解原料继续电 解)。
本实施例的石墨烯,通过物理吸附法测得比表面积为382m 2·g -1,层数为5-10层,废旧锂离子电池负极石墨的回收率为80%,废旧负极石墨到石墨烯的转化率大于99%。对比例1
本对比例的利用锂电池废旧负极石墨制备石墨烯的方法,包括以下步骤:
(1)取5g废旧锂离子电池负极石墨,过400目筛网,将筛上石墨粉或块体夹装于400目、面积为20cm 2的双层不锈钢导电丝网(牌号:316L)中,并将其作为阳极,使用面积为20cm 2的钵片作为阴极;
(2)打开加热器,设定温度为110℃,将电解槽中的碳酸氢铵加热至熔融,并保持恒温,待碳酸氢铵全部熔融后,将上述准备的阴、阳电极浸于熔融电解质中,静置0.5h,使石墨粉被电解质完全浸润,将阴阳极接入直流电源,电流密度3A·dm -2,持续电解2h后,得到电解石墨,关闭电源;
(3)取出电解石墨,对其进行水洗,使产物的pH为中性,获得悬浮液,进行1000W超声处理30min,在2000rmp下离心2min,提取上层液,获得石墨烯分散液,再进行冷冻干燥24h获得石墨烯(下层物经80℃,3h真空干燥后,返回第一步作为电解原料继续电解)。
本对比例的石墨烯,通过物理吸附法测得比表面积为60m 2·g -1,层数大于10层,废旧锂离子电池负极石墨的回收率为80%,废旧负极石墨到石墨烯的转化率小于60%。由于碳酸氢铵熔点为105℃,加热易分解为水和二氧化碳,因此,用碳酸氢铵作为电解质的效果比硫酸氢铵作为电解质的效果差。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种利用锂电池废旧负极石墨制备石墨烯的方法,其特征在于,包括以下步骤:
    (1)将废旧电池中回收的石墨粉夹装于导电丝网中,接入直流电源的阳极;
    (2)将电解槽中的电解质加热至熔融,保温,将所述直流电源的阳极、阴极浸入电解质中,静置,打开直流电源进行电解,得到电解石墨;
    (3)取出电解石墨,进行洗涤、超声分散、离心、干燥,即得所述石墨烯;步骤(2)中,所述电解质为硫酸型铵盐。
  2. 根据权利要求1所述的方法,其特征在于,步骤(1)中,所述导电丝网为钼丝网、钛丝网、合金丝网或聚吡咯丝织网中的一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述阴极为惰性电极,所述惰性电极的材料为铂、金、钛、钛合金或钨中的一种。
  4. 根据权利要求1所述的方法,其特征在于,所述硫酸型铵盐为硫酸氢铵、硫酸氨或亚硫酸氨中的至少一种。
  5. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述加热至熔融的温度为100℃-500℃,保温的时间为5-120min。
  6. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述电解的过程中,电流为1-150A,电压为1-300V;所述电解的时间为5-120min。
  7. 根据权利要求1所述的方法,其特征在于,步骤(2)中,所述静置的时间为20-40min。
  8. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述超声分散的功率为600-1200W,超声分散的时间为20-40min。
  9. 根据权利要求1所述的方法,其特征在于,步骤(3)中,所述离心的转速为1800-2500rmp,离心的时间为1-10min。
  10. 一种石墨烯,其特征在于,是由权利要求1-9任一项所述的方法制得,所述石墨烯的比表面积为200-600m 2·g -1,层数为3-10层。
PCT/CN2021/091671 2021-03-04 2021-04-30 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯 WO2022183585A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110240504.0 2021-03-04
CN202110240504.0A CN112938949A (zh) 2021-03-04 2021-03-04 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯

Publications (1)

Publication Number Publication Date
WO2022183585A1 true WO2022183585A1 (zh) 2022-09-09

Family

ID=76247632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091671 WO2022183585A1 (zh) 2021-03-04 2021-04-30 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯

Country Status (2)

Country Link
CN (1) CN112938949A (zh)
WO (1) WO2022183585A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113881851B (zh) * 2021-09-28 2022-09-06 华东理工大学 采用多层电极结构同时回收锂离子电池正极和负极的方法
CN113881850B (zh) * 2021-09-28 2022-09-06 华东理工大学 同时回收锂离子电池正极和负极的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868006A (zh) * 2012-09-21 2013-01-09 华东理工大学 一种通过废旧锂电池制备石墨烯的方法
CN104291327A (zh) * 2014-09-24 2015-01-21 北京化工大学常州先进材料研究院 一种熔盐电化学剥离石墨制备石墨烯的方法
CN107572511A (zh) * 2017-09-15 2018-01-12 兰州大学 一种绿色规模化生产石墨烯的方法
CN109704314A (zh) * 2019-02-28 2019-05-03 嘉兴学院 一种连续制备石墨烯的方法
CN209442654U (zh) * 2018-10-31 2019-09-27 安阳工学院 一种制备二维纳米材料的桶状惰性电极
CN112239203A (zh) * 2019-07-16 2021-01-19 中国科学院上海微系统与信息技术研究所 一种多孔石墨烯分散液的电化学制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102868006A (zh) * 2012-09-21 2013-01-09 华东理工大学 一种通过废旧锂电池制备石墨烯的方法
CN104291327A (zh) * 2014-09-24 2015-01-21 北京化工大学常州先进材料研究院 一种熔盐电化学剥离石墨制备石墨烯的方法
CN107572511A (zh) * 2017-09-15 2018-01-12 兰州大学 一种绿色规模化生产石墨烯的方法
CN209442654U (zh) * 2018-10-31 2019-09-27 安阳工学院 一种制备二维纳米材料的桶状惰性电极
CN109704314A (zh) * 2019-02-28 2019-05-03 嘉兴学院 一种连续制备石墨烯的方法
CN112239203A (zh) * 2019-07-16 2021-01-19 中国科学院上海微系统与信息技术研究所 一种多孔石墨烯分散液的电化学制备方法

Also Published As

Publication number Publication date
CN112938949A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
CN108470951B (zh) 一种废旧镍钴锰三元锂离子电池中有价金属的回收方法
WO2022183585A1 (zh) 利用锂电池废旧负极石墨制备石墨烯的方法和石墨烯
CN102534643B (zh) 一种废旧电池碳棒再生为石墨烯的方法
CN105088309B (zh) 一种压铸铝合金的高效节能阳极氧化处理方法
CN108840327B (zh) 一种制备氮掺杂石墨烯材料的电化学方法
CN110316729B (zh) 一种基于高浓度有机盐水溶液电化学插层制备石墨烯的方法
CN107317048A (zh) 从废旧锂离子电池负极材料中回收铜箔和石墨的方法
CN105914375B (zh) 一种钼或钨的二硫化物与石墨烯复合材料的制备方法
CN113060722A (zh) 一种高质量石墨烯材料的电化学制备方法
CN109825846A (zh) 一种熔融碱电解再生废旧锂离子电池正极材料的方法
CN104505262B (zh) 一种石墨烯铅复合材料和使用该材料制备的石墨烯铅碳电极
CN112593084B (zh) 一种废旧质子交换膜燃料电池铂催化剂的回收方法
CN105810949A (zh) 一种高比表面积集流体的制备方法
CN113200541A (zh) 一种回收废旧电池石墨负极的方法
WO2024066184A1 (zh) 一种磷酸铁锂电池的回收方法
CN103633393A (zh) 一种锂离子电池正极废片活性物质的再生工艺
CN115432699B (zh) 废旧负极基再生石墨材料及其制备和应用
CN114695866B (zh) 一种锂离子电池双过渡金属氧化物负极材料的制备方法
KR100475588B1 (ko) 전극코팅용 고분자물질의 제거방법 및 양극산화물의회수방법
CN112151902B (zh) 一种电极材料与集流体快速分离及高值化利用的方法
CN113716556A (zh) 一种制备锂离子筛和氧化石墨烯的方法
CN113249741A (zh) 一种石墨烯的制备方法及石墨烯
TW201818595A (zh) 廢鋰鐵電池中正極材料資源回收方法
US1314632A (en) Pbocess fob the electrolytic tbeatment of cabboit
CN114142076B (zh) 提高钒电池电解液电化学活性的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928666

Country of ref document: EP

Kind code of ref document: A1