WO2024066184A1 - 一种磷酸铁锂电池的回收方法 - Google Patents

一种磷酸铁锂电池的回收方法 Download PDF

Info

Publication number
WO2024066184A1
WO2024066184A1 PCT/CN2023/077937 CN2023077937W WO2024066184A1 WO 2024066184 A1 WO2024066184 A1 WO 2024066184A1 CN 2023077937 W CN2023077937 W CN 2023077937W WO 2024066184 A1 WO2024066184 A1 WO 2024066184A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
leaching
iron phosphate
copper
battery
Prior art date
Application number
PCT/CN2023/077937
Other languages
English (en)
French (fr)
Inventor
谭明亮
李长东
阮丁山
周游
邓书媛
班伊文
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024066184A1 publication Critical patent/WO2024066184A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present application relates to the technical field of recycling lithium iron phosphate batteries, and in particular to a recycling method for lithium iron phosphate batteries.
  • Lithium iron phosphate cathode material has the advantages of low price, good cycle performance, high theoretical specific capacity (170mAh/g), superior thermal stability, safety and reliability.
  • Lithium iron phosphate batteries are widely used in large electric vehicles, hybrid electric vehicles and other fields.
  • the cycle life of lithium-ion power batteries is generally 3 to 5 years. With the rapid development of the new energy vehicle industry, a large number of waste power batteries are scrapped, which is bound to cause a huge waste of resources and serious environmental pollution. Recycling and utilizing waste lithium iron phosphate power batteries is of great significance to achieving the sustainable development of my country's new energy electric vehicle industry.
  • the methods for recycling lithium iron phosphate include direct repair and wet selective leaching.
  • Chinese patent CN113683073A discloses a method for recycling lithium iron phosphate in waste lithium-ion batteries. The main steps are to use microwave roasting to recrystallize the lithium iron phosphate and regenerate the lithium iron phosphate positive electrode material.
  • Chinese patent CN201710282875.9 discloses a green repair and regeneration technology for lithium iron phosphate materials in waste batteries. It adjusts the ratio of lithium iron phosphate and adds a carbon source to the ball milling atmosphere to roast and repair the regenerated lithium iron phosphate positive electrode powder.
  • the quality requirements of the lithium iron phosphate positive electrode powder used for repair are very high.
  • the aluminum content in the positive electrode powder is less than 0.02%; the carbon content is less than 2%.
  • the battery black powder obtained by large-scale crushing and screening of waste lithium iron phosphate batteries is difficult to reach the quality of direct repair.
  • Cikon patent CN110331288B discloses a method for selectively extracting lithium from waste lithium iron phosphate materials, comprising the following steps: immersing the waste lithium iron phosphate materials in a sodium hydroxide solution, performing alkaline leaching to remove aluminum, filtering, drying the filtered aluminum-removed material to obtain lithium iron phosphate powder, and recovering the filtered sodium aluminate filtrate; placing the lithium iron phosphate powder in a heating furnace, introducing a selective lithium extraction gas, and then roasting.
  • iron phosphate and lithium compounds Obtain iron phosphate and lithium compounds; add the iron phosphate and lithium compounds into a ball mill, perform wet ball milling, filter, and obtain iron phosphate solid and lithium-containing solution respectively; adjust the pH value of the lithium-containing solution to 9.0-11.0, remove impurities, and obtain a pure lithium solution; add sodium carbonate solution to the pure lithium solution for reaction, filter, wash and dry the filtered solid to obtain lithium carbonate.
  • the direct yield of lithium carbonate is low, the lithium content in the sodium carbonate lithium precipitation tail liquid and washing water is 1-3g/L, and the direct yield of lithium is only 60-70%.
  • the lithium in the precipitation tail liquid must be enriched by evaporation and crystallization before continuing to precipitate lithium.
  • the sodium salt will co-precipitate with the lithium salt during the evaporation process, and this part of lithium co-precipitated with the sodium salt is basically difficult to recover. Therefore, the traditional wet leaching of lithium sodium carbonate precipitation and the evaporation and crystallization of lithium enrichment process have the problems of long process flow, high energy consumption, and low comprehensive yield of lithium.
  • the purpose of the present application is to overcome the deficiencies of the prior art and provide a method for recycling lithium iron phosphate batteries, which solves the problems of long process flow, high energy consumption and low comprehensive lithium yield in the traditional wet leaching of lithium sodium carbonate precipitation and evaporation crystallization lithium enrichment process.
  • the technical solution adopted by the present application is: to provide a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S5 coating the second leached residue on the electrode plate, drying to obtain a cathode plate, placing the cathode plate and the anode plate in an electrolytic cell, using the precipitated tail liquid obtained in step S4 and the washing water as electrolytes, performing electrolysis to obtain lithium iron phosphate; returning the lithium iron phosphate to step S2.
  • the primary leaching reaction includes the following steps: immersing the positive and negative electrode powders of the battery in a sulfuric acid solution, adding a first oxidant, and leaching for 1-4 hours under the conditions of pH 3.5-6, temperature 60-90°C, and liquid-to-solid ratio of 3-6:1.
  • the mass of the first oxidant is 0.2-1 times the mass of the positive and negative electrode powders of the battery.
  • the secondary leaching reaction includes the following steps: immersing the first leaching residue in a sulfuric acid solution, adding a second oxidant, and leaching for 1-4 hours under the conditions of pH 0.5-2.5, temperature 60-90°C, and liquid-to-solid ratio of 3-6:1.
  • the mass of the second oxidant is 0.2-1 times the mass of the first leaching residue.
  • the first oxidant and the second oxidant are each independently selected from H 2 O 2 , NaClO 3 , KClO 3 , and KMnO 4 .
  • the electrolysis parameters are: the distance between the positive and negative plates of the electrolytic cell is 5-10 mm, the cell voltage is 0.8-2 V, and the current density is 14-20 A/m 2 .
  • the anode plate is one of a graphite plate, a titanium plate, and a lead-tin-calcium alloy plate.
  • the present application adopts selective step-by-step leaching of lithium and copper and aluminum, which prevents copper and aluminum impurities from entering the lithium leaching solution.
  • the lithium leaching solution can be directly precipitated to prepare lithium carbonate products, avoiding the loss of lithium due to precipitation of copper and aluminum impurities. Affects the recovery rate of lithium.
  • the present application utilizes the iron phosphate and graphite in the second leaching residue as the negative electrode, and adopts the electrolytic method to enrich the lithium in the lithium precipitation tail liquid and the washing water.
  • the enriched lithium iron phosphate is then returned to the selective lithium leaching process.
  • This process solves the following problems existing in the traditional evaporation crystallization lithium enrichment and sodium carbonate lithium precipitation process: a. Acid needs to be added before evaporation crystallization to remove carbonate ions, which consumes acid; b. Evaporation crystallization has high energy consumption; c. Sodium sulfate crystals precipitated during the evaporation process will take away part of the lithium salt, causing lithium loss, resulting in a low overall lithium yield.
  • FIG1 is a process flow chart of lithium iron phosphate battery recycling in Example 1 of the present application.
  • the present application provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • the discharge can release the remaining power in the waste lithium iron phosphate battery, so as to safely perform subsequent operations.
  • the discharge method is not particularly limited, and the discharge operation can be performed according to the actual situation using a method known to those skilled in the art.
  • the waste lithium iron phosphate battery is placed in a discharge device for discharge until the voltage is below 1.5V and then enters the crushing and screening process.
  • the steps of the crushing and screening process are: the discharged battery is crushed for the first time with a crusher to obtain 2-5 cm fragments, and then the fragments are crushed for the second time with a crusher, and sieved with a 20-mesh sieve to obtain the first sieved material and copper and aluminum foil, and the first sieved material is sieved with a 100-mesh sieve to obtain battery positive and negative electrode powder and copper and aluminum chips.
  • Crushing and screening can separate most of the copper and aluminum in the battery, reducing the copper and aluminum content in the positive and negative electrode powders of the battery.
  • the primary leaching reaction includes the following steps: immersing the positive and negative electrode powders of the battery in a sulfuric acid solution, adding a first oxidant, and leaching for 1-4 hours under the conditions of pH 3.5-6, temperature 60-90°C, and liquid-to-solid ratio of 3-6:1.
  • the primary leaching reaction described in this application is not a term commonly used in the art. In this application, it refers to the reaction that occurs when the positive and negative electrode powders of the battery are in contact with sulfuric acid and an oxidant.
  • the chemical reaction is as follows: LiFePO 4 + oxidant + H 2 SO 4 ⁇ Li 2 SO 4 + FePO 4 .
  • the positive and negative electrode powders of the battery are first immersed in a sulfuric acid solution, and then the first oxidant is added.
  • the primary leaching reaction is performed by controlling the parameters, and lithium can be selectively leached. Specifically, the pH value of the primary leaching reaction is 3.5-6.
  • the lithium iron phosphate can be fully dissolved into an ionic state, and the iron ions are preferably oxidized to form iron phosphate precipitates, thereby separating from the lithium ion solution; if the pH is too low, the copper and aluminum in the battery powder will be leached, affecting the recovery of lithium ions; if the pH is too high, the divalent iron becomes a precipitate and cannot be oxidized into trivalent iron, and cannot be used in subsequent processes. At the same time, there are no hydrogen ions in the system, and lithium cannot be leached.
  • the pH value of the primary leaching reaction is 4-5.
  • the first oxidant is one of H 2 O 2 , NaClO 3 , KClO 3 , and KMnO 4 , and the mass of the first oxidant is 0.2-1 times of the positive and negative electrode powders of the battery.
  • the lithium iron phosphate is preferably completely oxidized to form a precipitate, thereby being separated from the lithium ion solution.
  • the secondary leaching reaction includes the following steps: immersing the first leaching residue in a sulfuric acid solution, adding a second oxidant, and leaching for 1-4 hours under the conditions of pH 0.5-2.5, temperature 60-90°C, and liquid-to-solid ratio 3-6:1.
  • the secondary leaching reaction described in the present application is not a term commonly used in the art. In the present application, it refers to the reaction occurring when the first leaching residue is contacted with sulfuric acid and an oxidant.
  • the chemical reaction includes the following: Al + H2SO4 ⁇ Al2 ( SO4 ) 3 + H2 ; Cu+ H2SO4 + oxidant ⁇ CuSO4 .
  • the first leaching residue mainly contains iron phosphate, graphite, copper and aluminum; within the pH range of 0.5-1, copper and aluminum can be fully dissolved into ionic state, thereby obtaining a second leaching solution containing copper and aluminum, and a second leaching residue containing iron phosphate and graphite.
  • the second oxidant is one of H2O2 , NaClO3 , KClO3 , KMnO4 , and the mass of the second oxidant is 0.2-1 times the mass of the first leached residue.
  • the oxidant can completely oxidize copper and aluminum into ions, thereby separating them from iron phosphate and graphite.
  • the amount of sodium carbonate used is not limited as long as the reaction purpose of the present application can be achieved.
  • the mass of sodium carbonate used in the lithium concentrate and alkali contact step is 1.2-1.6 times the theoretical amount of the reaction, for example, 1.1, 1.2, 1.3, 1.4, 1.5, and the above-mentioned Each numerical value is independently and freely combinable to form a single range.
  • the specific conditions of the lithium precipitation reaction are not limited, and those skilled in the art can adjust them according to the specific reactants used and the reaction purpose to be achieved.
  • the step of "contacting the lithium concentrate with a base” is performed at a temperature of 55 to 95°C for 1 to 4 hours.
  • the step of "contacting the lithium concentrate with a base” is performed at a temperature of 75 to 95°C for 1 to 4 hours.
  • the solubility of sodium carbonate, lithium sulfate and lithium carbonate decreases with increasing temperature. At the same temperature, the solubility of lithium carbonate is much smaller than that of sodium carbonate and lithium sulfate. Therefore, reacting at a temperature of 75-95°C can reduce the content of impurities in the lithium carbonate precipitate, improve the lithium precipitation efficiency and the purity of lithium carbonate.
  • the step of "washing the lithium carbonate precipitate” is performed by washing with hot pure water for multiple times.
  • the solubility of lithium carbonate in hot water is very low, and washing the lithium carbonate with hot pure water can remove impurities attached to the surface of the lithium carbonate precipitate as much as possible, further improving the purity of the lithium carbonate product.
  • the direct recovery rate of lithium in the lithium leaching solution is 60-70%, and 30-40% of lithium remains in the precipitation tail liquid and washing water.
  • the precipitation tail liquid and the washing water are mixed to obtain a mixed liquid, in which the concentration of lithium ions is 2-3 g/L.
  • step S5 coating the second leached residue on the electrode plate, drying to obtain a cathode plate, placing the cathode plate and the anode plate in an electrolytic cell, using the precipitated tail liquid obtained in step S4 and the washing water as electrolytes, performing electrolysis to obtain lithium iron phosphate; returning the lithium iron phosphate to step S2.
  • the second leached residue is coated on an electrode plate, and then dried at 100-200°C, and then covered with a filter bag to serve as an electrolytic cathode plate, and placed in an electrolytic cell with an anode plate, and the precipitation tail liquid obtained in step S4 and washing water are added as electrolytes to enrich lithium in the electrolyte by electrolytic deposition.
  • the iron phosphate of the cathode plate serves as a lithium adsorbent
  • graphite serves as a conductive agent.
  • the electrochemical reactions occurring during the electrolytic deposition process are as follows: cathode: Li + +FePO 4 +e - ⁇ LiFePO 4 ; anode: 4OH - -e - ⁇ 2H 2 O+O 2 .
  • Electrolytic deposition After the process is completed, the lithium iron phosphate powder on the cathode plate is peeled off by mechanical stripping, and then crushed and sent to step S2 for further recovery.
  • the lithium content of the obtained lithium iron phosphate powder is about 2-4%.
  • the electrolysis parameters are: the distance between the positive and negative plates of the electrolytic cell is 5-10 mm, the cell voltage is 0.8-2 V, and the current density is 14-24 A/m 2 .
  • the cell voltage affects the effect of electrolysis.
  • the cell voltage is less than 0.8V, lithium ions cannot be embedded in the iron phosphate negative electrode through electrolysis.
  • the voltage exceeds 2V the anode plate will be corroded, affecting the electrolysis effect.
  • increasing the voltage will increase the current density, increase the output power, and increase the electrolysis embedding rate of lithium ions.
  • the anode plate is one of a graphite plate, a titanium plate, and a lead-tin-calcium alloy plate.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • S3 Place the first leached residue in a beaker, add 1000 mL of water and heat to 80°C. Sulfuric acid is added to adjust the leaching pH to 1, and then 20 mL of hydrogen peroxide is slowly added to leach for 1 hour, and the copper-aluminum leaching solution and the second leaching residue are obtained by filtering and washing; the copper-aluminum leaching rate is greater than 98%, and the contents of copper and aluminum in the second leaching residue are both less than 0.1%;
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 21 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 8mm, adjusting the cell voltage to 0.8V, the current density to 18A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 12h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 21 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 8mm, adjusting the cell voltage to 1.2V, the current density to 22A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 8h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 18 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 The second leached residue is coated on a stainless steel plate, and then dried at 150°C, and then covered with a filter bag, as the cathode plate of the electrolytic cell, and the graphite plate is used as the anode plate of the electrolytic cell.
  • the mixed solution obtained in step S4 is used as the electrolyte.
  • the distance between the cathode plate and the anode plate in the electrolytic cell is 5mm.
  • the cell voltage is adjusted to 1V, the current density is 14A/ m2 , and lithium is enriched by electrolysis.
  • the concentration of lithium ions in the electrolyte is reduced to 0.1g/L; the coating slag on the cathode plate is peeled off from the stainless steel plate with a shovel, and the obtained coating slag is crushed to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 25 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 10mm, adjusting the cell voltage to 0.8V, the current density to 18A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 12h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S4 The lithium leaching solution obtained in step S2 is heated and evaporated to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, The concentration of lithium ions in the concentrated solution is 21 g/L; 190 g of sodium carbonate is added to the obtained concentrated solution to carry out lithium precipitation reaction, and 86 g of lithium carbonate precipitate and precipitate tail liquid are obtained; the obtained lithium carbonate precipitate is washed twice with hot pure water to obtain 78 g of lithium carbonate product and washing water; the precipitate tail liquid and the washing water are mixed to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 8mm, adjusting the cell voltage to 0.8V, the current density to 18A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 12h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • S3 Place the first leached residue in a beaker, add 1000 mL of water and heat to 80°C. Sulfuric acid is added to adjust the leaching pH to 1, and then 20 mL of hydrogen peroxide is slowly added to leach for 1 hour, and the copper-aluminum leaching solution and the second leaching residue are obtained by filtering and washing; the copper-aluminum leaching rate is greater than 98%, and the contents of copper and aluminum in the second leaching residue are both less than 0.1%;
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 21 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 8mm, adjusting the cell voltage to 0.8V, the current density to 18A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 12h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 21 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 8mm, adjusting the cell voltage to 0.8V, the current density to 18A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 12h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.
  • This embodiment provides a method for recycling lithium iron phosphate batteries, comprising the following steps:
  • step S4 heating and evaporating the lithium leaching solution obtained in step S2 to obtain a concentrated solution, the volume of the concentrated solution is 600 mL, and the concentration of lithium ions in the concentrated solution is 21 g/L; adding 190 g of sodium carbonate to the obtained concentrated solution for lithium precipitation reaction to obtain 86 g of lithium carbonate precipitate and precipitate tail liquid; washing the obtained lithium carbonate precipitate with hot pure water twice to obtain 78 g of lithium carbonate product and washing water; mixing the precipitate tail liquid and the washing water to obtain a mixed solution, the volume of the mixed solution is 2600 mL, and the concentration of lithium ions in the mixed solution is 2.4 g/L;
  • step S5 coating the second leached residue on a stainless steel plate, and then drying it at a temperature of 150°C, and then putting a filter bag on it to serve as the cathode plate of the electrolytic cell, and the graphite plate as the anode plate of the electrolytic cell, using the mixed solution obtained in step S4 as the electrolyte, the spacing between the cathode plate and the anode plate in the electrolytic cell is 8mm, adjusting the cell voltage to 0.8V, the current density to 18A/ m2 , electrolytically enriching lithium, and the concentration of lithium ions in the electrolyte is reduced to 0.1g/L after electrolysis for 12h; peeling the coating residue on the cathode plate from the stainless steel plate with a shovel, and crushing the obtained coating residue to obtain lithium iron phosphate powder, the lithium content in the lithium iron phosphate powder is 3%, and the obtained lithium iron phosphate powder is returned to step S2 to continue to recover lithium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本申请公开了一种磷酸铁锂电池的回收方法,属于磷酸铁锂电池回收技术领域。本申请采用选择性分步浸出锂和铜铝,避免了铜铝杂质进入锂的浸出液,锂的浸出液可以直接沉淀制备产品碳酸锂,避免了因沉淀铜铝除杂损失锂,影响锂的回收率。本申请利用第二浸出渣中的磷酸铁和石墨做负极,采用电积的方法富集沉锂尾液和洗涤水中的锂,富集后的磷酸铁锂再返回选择性浸出锂工序,该工序解决了传统蒸发结晶富集锂再碳酸钠沉锂工艺中存在的以下几个问题:a、蒸发结晶之前需要加酸除碳酸根需耗酸;b、蒸发结晶能耗高;c、蒸发过程中析出的硫酸钠晶体会带走部分锂盐造成锂损失,使得锂的综合收率不高。

Description

一种磷酸铁锂电池的回收方法 技术领域
本申请涉及磷酸铁锂电池的回收技术领域,具体涉及一种磷酸铁锂电池的回收方法。
背景技术
磷酸铁锂正极材料具有价格低廉、循环性能好、理论比容量高(170mAh/g)、热稳定性能优越、安全可靠等优点。磷酸铁锂电池广泛应用于大型电动车辆、混合动力电动车等领域。锂离子动力电池的循环寿命一般为3~5年。随着新能源汽车产业的迅速发展,废旧动力电池大量报废,势必造成资源的巨大浪费和环境的严重污染。回收利用废旧磷酸铁锂动力电池,对于实现我国新能源电动汽车产业的可持续发展,具有重要意义。
目前回收磷酸铁锂的方法有直接修复法和湿法选择性浸出。中国专利CN113683073A公开了一种废旧锂离子电池中的磷酸铁锂回收再生的方法,主要步骤为采用微波焙烧使磷酸铁锂重结晶,再生磷酸铁锂正极材料。中国专利CN201710282875.9公开了一种废旧电池中磷酸铁锂材料的绿色修复再生技术,其通过调整磷铁锂的比例,加入碳源球磨气氛焙烧修复再生磷酸铁锂正极粉。然而修复使用的磷酸铁锂正极粉品质要求很高,正极粉中铝含量低于0.02%;碳含量低于2%,通过大规模破碎筛分废旧磷酸铁锂电池得到的电池黑粉很难达到直接修复的品质。
中国专利CN110331288B公开了一种废旧磷酸铁锂材料选择性提锂的方法,包括以下步骤:将废旧磷酸铁锂材料浸入氢氧化钠溶液中,进行碱浸除铝,过滤,对过滤得到的除铝后料进行干燥,得到磷酸铁锂粉料,并将过滤出的铝酸钠滤液回收;将磷酸铁锂粉料放入加热炉,通入选择性提锂气体,再进行焙烧, 得到磷酸铁和锂的化合物;将磷酸铁和锂的化合物加入球磨机,进行湿法球磨,过滤,分别得到磷酸铁固体和含锂溶液;将含锂溶液的pH值调节至9.0-11.0,除杂,得到纯净的锂溶液;将碳酸钠溶液加入纯净的锂溶液中反应,过滤,对过滤得到的固体进行洗涤、干燥,得到碳酸锂。上述制备提纯碳酸锂的工艺中,碳酸锂的直收率低,碳酸钠沉锂尾液和洗涤水中锂含量为1-3g/L,锂的直收率只有60-70%,沉尾液中的锂又要通过蒸发结晶富集以后再继续沉锂,蒸发过程中钠盐的析除会带着锂盐一起共析,与钠盐共析的这部分锂基本上难以回收。因此,用传统的湿法浸出锂碳酸钠沉淀,蒸发结晶富集锂工艺存在工艺流程长、能耗高、锂的综合收率低的问题。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于克服现有技术的不足,提供一种磷酸铁锂电池的回收方法,解决了用传统的湿法浸出锂碳酸钠沉淀,蒸发结晶富集锂工艺中工艺流程长、能耗高、锂的综合收率低的问题。
为实现上述目的,本申请采取的技术方案为:提供一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池经放电、破碎筛分,得到铜铝箔和电池正负极粉;
S2:将所述电池正负极粉进行一级浸出反应,分离得到锂浸出液和第一浸出渣;
S3:将所述第一浸出渣进行二级浸出反应,分离得到铜铝浸出液和第二浸出渣;
S4:将所述锂浸出液与碱接触,得到碳酸锂沉淀和沉淀尾液,将所述碳酸 锂沉淀进行洗涤,得到碳酸锂产品和洗涤水;
S5:将第二浸出渣涂覆在电极板上,烘干后得到阴极板,将所述阴极板和阳极板置于电解槽中,以步骤S4所得沉淀尾液和洗涤水作为电解质,进行电解,得到磷酸铁锂;将所述磷酸铁锂返回至步骤S2中。
作为本申请所述回收方法的优选实施方式,S2步骤中,所述一级浸出反应包括以下步骤:将所述电池正负极粉浸入硫酸溶液中,并加入第一氧化剂,在pH为3.5-6、温度为60-90℃、液固比为3-6:1的条件下浸出1-4h。
作为本申请所述回收方法的优选实施方式,所述第一氧化剂的质量为电池正负极粉质量的0.2-1倍。
作为本申请所述回收方法的优选实施方式,S3步骤中,所述二级浸出反应包括以下步骤:将所述第一浸出渣浸入硫酸溶液中,并加入第二氧化剂,在pH为0.5-2.5、温度为60-90℃、液固比为3-6:1的条件下浸出1-4h。
作为本申请所述回收方法的优选实施方式,所述第二氧化剂的质量为第一浸出渣质量的0.2-1倍。
作为本申请所述回收方法的优选实施方式,所述第一氧化剂和第二氧化剂各自独立选自H2O2、NaClO3、KClO3、KMnO4
作为本申请所述回收方法的优选实施方式,S5步骤中,所述电解的参数为:电解槽阴阳极板的间距为5-10mm,槽电压为0.8-2V,电流密度为14-20A/m2
作为本申请所述回收方法的优选实施方式,S5步骤中,所述阳极板为石墨板、钛板、铅锡钙合金板中的一种。
与现有技术相比,本申请的有益效果为:
1、本申请采用选择性分步浸出锂和铜铝,避免了铜铝杂质进入锂的浸出液,锂的浸出液可以直接沉淀制备产品碳酸锂,避免了因沉淀铜铝除杂损失锂,影 响锂的回收率。
2、本申请利用第二浸出渣中的磷酸铁和石墨做负极,采用电积的方法富集沉锂尾液和洗涤水中的锂,富集后的磷酸铁锂再返回选择性浸出锂工序,该工序解决了传统蒸发结晶富集锂再碳酸钠沉锂工艺中存在的以下几个问题:a、蒸发结晶之前需要加酸除碳酸根需耗酸;b、蒸发结晶能耗高;c、蒸发过程中析出的硫酸钠晶体会带走部分锂盐造成锂损失,使得锂的综合收率不高。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请实施例1磷酸铁锂电池回收的工艺流程图。
具体实施方式
为更好的说明本申请的目的、技术方案和优点,下面将结合具体实施例和附图对本申请作进一步的说明。如无特别说明,本申请中所有原料和试剂均为市购常规的原料、试剂。
本申请提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池经放电、破碎筛分,得到铜铝箔和电池正负极粉;
需要说明的是,所述放电可以将废旧磷酸铁锂电池中的剩余电量释放,从而安全的进行后续操作。所述放电的方式没有特别限制,可以采用本领域技术人员一直的方法根据实际情况进行放电操作。
具体的,将废旧磷酸铁锂电池放置在放电装置中放电,放电至电压为1.5V以下进入破碎筛分工序。
具体的,所述破碎筛分工序的步骤为:将放电后的电池用破碎机进行第一次破碎,得到2-5cm的碎块,然后将碎块用破碎机进行第二次破碎,用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑。
破碎筛分可以将电池中大部分的铜铝分离出来,减少电池正负极粉中的铜铝含量。
S2:将所述电池正负极粉进行一级浸出反应,分离得到锂浸出液和第一浸出渣;
具体的,S2步骤中,所述一级浸出反应包括以下步骤:将所述电池正负极粉浸入硫酸溶液中,再加入第一氧化剂,在pH为3.5-6、温度为60-90℃、液固比为3-6:1的条件下浸出1-4h。
本申请所述的一级浸出反应不是本领域通常采用的术语,在本申请中该属于是指将所述电池正负极粉与硫酸和氧化剂接触所发生的反应,通常该化学反应如下:LiFePO4+氧化剂+H2SO4→Li2SO4+FePO4
在本申请中,先将所述电池正负极粉浸入硫酸溶液中,再加入第一氧化剂,通过控制参数进行一级浸出反应,可以选择性的浸出锂。具体的,所述一级浸出反应的pH值为3.5-6,在该范围内,保证了磷酸铁锂能够充分溶解变成离子状态,并且较好的将铁离子氧化形成磷酸铁沉淀,从而与锂离子溶液分离;pH太低会导致电池粉末中的铜、铝会浸出,影响锂离子的回收;pH太高的情况下,二价铁变成沉淀,无法被氧化成三价铁,无法在后续的工艺中使用,同时体系中没有氢离子,锂无法浸出。可选地,所述一级浸出反应的pH值为4-5。
在本申请中,所述第一氧化剂为H2O2、NaClO3、KClO3、KMnO4中的一种,所述第一氧化剂的质量为电池正负极粉的0.2-1倍。在上述范围内,氧化剂可以 较好的将磷酸铁锂完全氧化,形成沉淀,从而与锂离子溶液分离。
S3:将所述第一浸出渣进行二级浸出反应,分离得到铜铝浸出液和第二浸出渣;
具体的,S3步骤中,所述二级浸出反应包括以下步骤:将所述第一浸出渣浸入硫酸溶液中,并加入第二氧化剂,在pH为0.5-2.5、温度为60-90℃、液固比为3-6:1的条件下浸出1-4h。
本申请所述的二级浸出反应不是本领域通常采用的术语,在本申请中该属于是指将所述第一浸出渣与硫酸和氧化剂接触所发生的反应,通常该化学反应包括如下:Al+H2SO4→Al2(SO4)3+H2;Cu+H2SO4+氧化剂→CuSO4
需要说明的是,第一浸出渣主要为磷酸铁、石墨、铜、铝;在pH值为0.5-1的范围内,铜和铝能够充分溶解变成离子状态,从而得到含铜和铝的第二浸出液、含磷酸铁和石墨的第二浸出渣。
在本申请中,所述第二氧化剂为H2O2、NaClO3、KClO3、KMnO4中的一种,所述第二氧化剂的质量为第一浸出渣质量的0.2-1倍。在上述范围内,氧化剂可以较好的将铜铝完全氧化变成离子状态,从而与磷酸铁、石墨分离。
S4:将所述锂浸出液与碱接触,得到碳酸锂沉淀和沉淀尾液,将所述碳酸锂沉淀进行洗涤,得到碳酸锂产品和洗涤水;
在本申请中,锂浸出液经过蒸发浓缩得到锂浓缩液,所述锂浓缩液中的锂含量为18-25g/L,将所述锂浓缩液与碱接触进行沉锂反应,沉锂反应可以如下表示:Li2SO4+Na2CO3=Li2CO3+Na2SO4
在沉锂反应中,采用的碳酸钠的量没有限制,只要能够达到本申请的反应目的即可。在一些实施方式中,所述锂浓缩液与碱接触步骤中使用的碳酸钠的质量为反应理论量的1.2-1.6倍,例如为1.1、1.2、1.3、1.4、1.5,以上所述的 各个数值各自独立地自由组合形成单独的范围。
在本申请中,沉锂反应的具体条件没有限制,本领域技术人员可以根据所采用的具体反应物和所要达到的反应目的进行调整。在一种特别有利的实施方式中,“将所述锂浓缩液与碱接触”步骤在55~95℃的温度进行1~4h。可选地的,“将所述锂浓缩液与碱接触”步骤在75~95℃的温度进行1~4h。
碳酸钠、硫酸锂以及碳酸锂的溶解度均随着温度升高而降低,在相同温度下,碳酸锂的溶解度远远小于碳酸钠和硫酸锂,因此在75~95℃的温度下进行反应,可以减少碳酸锂沉淀中杂质的含量,提高沉锂效率以及碳酸锂纯度。
可选地,“将所述碳酸锂沉淀进行洗涤”步骤采用热纯水多次洗涤。碳酸锂在热水中的溶解度很小,采用热纯水对碳酸锂进行洗涤能够将附着在碳酸锂沉淀表面的杂质尽可能的去除,进一步提高碳酸锂产品的纯度。
经过S4步骤后,锂浸出液中锂的直收率为60-70%,还有30-40%的锂残留在沉淀尾液和洗涤水中。
将沉淀尾液和洗涤水混合得到混合液,所述混合液中锂离子的浓度为2-3g/L。
S5:将第二浸出渣涂覆在电极板上,烘干后得到阴极板,将所述阴极板和阳极板置于电解槽中,以步骤S4所得沉淀尾液和洗涤水作为电解质,进行电解,得到磷酸铁锂;将所述磷酸铁锂返回至步骤S2中。
具体的,将第二浸出渣涂覆在电极板上,然后在100-200℃下烘干后,套上滤袋,作为电积阴极板,与阳极板置于电解槽中,加入以步骤S4所得沉淀尾液和洗涤水作为电解质,通过电解沉积富集电解质中的锂,电解沉积过程中,阴极板的磷酸铁作为锂吸附剂,石墨作为导电剂,电积过程中发生的电化学反应如下:阴极:Li++FePO4+e-→LiFePO4;阳极:4OH--e-→2H2O+O2。电积 结束后,通过机械剥离将阴极板上的磷酸铁锂粉末剥离,然后进行破碎后进入S2步骤中继续回收。所得磷酸铁锂粉末中的锂含量约为2-4%。
可选地,S5步骤中,所述电解的参数为:电解槽阴阳极板的间距为5-10mm,槽电压为0.8-2V,电流密度为14-24A/m2
槽电压影响电积的效果,当槽电压小于0.8V时,锂离子无法通过电积镶嵌到磷酸铁负极上,电压超过2V时,会使阳极板被腐蚀,影响电积效果。在槽电压为0.8-2.0V的范围内,调高电压,电流密度也会增大,电的输出功率增大,锂离子的电积镶嵌速率也会增大。
在一些实施方式中,S5步骤中,所述阳极板为石墨板、钛板、铅锡钙合金板中的一种。
通过以下实施例,可以进一步理解本申请。
实施例1
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃,加入硫酸调节浸出pH=4,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为98.5%,锂浸出液中锂含量为8g/L,铜、铝含量都小于20mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加 入硫酸调节浸出pH=1,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为21g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为8mm,调节槽电压为0.8V,电流密度为18A/m2,电积富集锂,电积12h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
表1
实施例2
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用 100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃,加入硫酸调节浸出pH=3.5,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为99%,锂浸出液中锂含量为8g/L,铜、铝含量都小于30mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加入硫酸调节浸出pH=1.5,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为21g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为8mm,调节槽电压为1.2V,电流密度为22A/m2,电积富集锂,电积8h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
实施例3
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1300mL水加热升温至60℃,加入硫酸调节浸出pH=5,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为98.5%,锂浸出液中锂含量为8g/L,铜、铝含量都小于20mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至60℃,加入硫酸调节浸出pH=0.5,然后缓慢加入20ml双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为18g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为5mm,调节槽电压为1V,电流密度为14A/m2,电积富集锂,电积16h后电解液中锂离子的浓度降低至 0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
实施例4
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃,加入硫酸调节浸出pH=6,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为98.5%,锂浸出液中锂含量为8g/L,铜、铝含量都小于20mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加入硫酸调节浸出pH=2.5,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为25g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为10mm,调节槽电压为0.8V,电流密度为18A/m2,电积富集锂,电积12h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
对比例1
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃,加入硫酸调节浸出pH=3,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为98.5%,锂浸出液中锂含量为8g/L,铜含量都小于20mg/L,铝含量为280mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加入硫酸调节浸出pH=1,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL, 浓缩液中锂离子的浓度为21g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为8mm,调节槽电压为0.8V,电流密度为18A/m2,电积富集锂,电积12h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
对比例2
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃,加入硫酸调节浸出pH=6.5,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为88.5%,锂浸出液中锂含量为6g/L,铜、铝含量都小于20mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加 入硫酸调节浸出pH=1,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为21g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为8mm,调节槽电压为0.8V,电流密度为18A/m2,电积富集锂,电积12h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
对比例3
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃, 加入硫酸调节浸出pH=4,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为98.5%,锂浸出液中锂含量为8g/L,铜、铝含量都小于20mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加入硫酸调节浸出pH=0.3,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率大于98%,第二浸出渣中铜和铝的含量都小于0.1%;磷铁的浸出率为25%。
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为21g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为8mm,调节槽电压为0.8V,电流密度为18A/m2,电积富集锂,电积12h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
对比例4
本实施例提供了一种磷酸铁锂电池的回收方法,包括以下步骤:
S1:将废旧磷酸铁锂电池用导线连接正负极短路放电,放电至电池电压小于1v,用鄂式破碎机破碎成2-5cm的电池块,再用细破碎机将电池块进行第二 次破碎,然后用20目筛筛分得到第一次筛分料和铜铝箔,将第一次筛分料用100目筛筛分得得到电池正负极粉和铜铝屑;所得电池正负极粉中各组分的含量如表1所示;
S2:取500g电池正负极粉置于烧杯中,加入1500mL水加热升温至80℃,加入硫酸调节浸出pH=4,然后缓慢加入200mL双氧水浸出1h,过滤洗涤得到1600mL锂浸出液和第一浸出渣,锂浸出率为98.5%,锂浸出液中锂含量为8g/L,铜、铝含量都小于20mg/L;
S3:将所述第一浸出渣置于烧杯中,加入1000mL水升温加热至80℃,加入硫酸调节浸出pH=3,然后缓慢加入20mL双氧水浸出1h,过滤洗涤得到铜铝浸出液和第二浸出渣;铜铝浸出率为88%,第二浸出渣中铜和铝的含量都为0.4%;
S4:将步骤S2所得锂浸出液加热蒸发得到浓缩液,浓缩液的体积为600mL,浓缩液中锂离子的浓度为21g/L;向所得浓缩液中加入190g碳酸钠进行沉锂反应,得到86g的碳酸锂沉淀和沉淀尾液;所得碳酸锂沉淀用热纯水洗涤2次,得到78g的碳酸锂产品和洗涤水;将沉淀尾液和洗涤水混合得到混合液,混合液的体积为2600mL,混合液中锂离子的浓度为2.4g/L;
S5:将第二浸出渣涂覆不锈钢板上,然后在150℃的温度下烘干,接着套上滤袋,作为电解槽的阴极板,石墨板作为电解槽的阳极板,以步骤S4所得混合液作为电解液,电解槽中阴极板和阳极板的间距为8mm,调节槽电压为0.8V,电流密度为18A/m2,电积富集锂,电积12h后电解液中锂离子的浓度降低至0.1g/L;将阴极板上的涂覆渣用铲子从不锈钢板上剥离下来,所得涂覆渣破碎后得到磷酸铁锂粉末,磷酸铁锂粉末中的锂含量为3%,所得磷酸铁锂粉末返回步骤S2中继续回收锂。
最后所应当说明的是,以上实施例用以说明本申请的技术方案而非对本申 请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者同等替换,而不脱离本申请技术方案的实质和范围。

Claims (8)

  1. 一种磷酸铁锂电池的回收方法,其中,包括以下步骤:
    S1:将废旧磷酸铁锂电池经放电、破碎筛分,得到铜铝箔和电池正负极粉;
    S2:将所述电池正负极粉进行一级浸出反应,分离得到锂浸出液和第一浸出渣;
    S3:将所述第一浸出渣进行二级浸出反应,分离得到铜铝浸出液和第二浸出渣;
    S4:将所述锂浸出液与碱接触,得到碳酸锂沉淀和沉淀尾液,将所述碳酸锂沉淀进行洗涤,得到碳酸锂产品和洗涤水;
    S5:将第二浸出渣涂覆在电极板上,烘干后得到阴极板,将所述阴极板和阳极板置于电解槽中,以步骤S4所得沉淀尾液和洗涤水作为电解质,进行电解,得到磷酸铁锂;将所得磷酸铁锂返回至步骤S2中。
  2. 如权利要求1所述的回收方法,其中,S2步骤中,所述一级浸出反应包括以下步骤:将所述电池正负极粉浸入硫酸溶液中,再加入第一氧化剂,在pH为3.5-6、温度为60-90℃、液固比为3-6:1的条件下浸出1-4h。
  3. 如权利要求2所述的回收方法,其中,所述第一氧化剂的质量为电池正负极粉质量的0.2-1倍。
  4. 如权利要求1所述的回收方法,其中,S3步骤中,所述二级浸出反应包括以下步骤:将所述第一浸出渣浸入硫酸溶液中,并加入第二氧化剂,在pH为0.5-2.5、温度为60-90℃、液固比为3-6:1的条件下浸出1-4h。
  5. 如权利要求4所述的回收方法,其中,所述第二氧化剂的质量为第一浸出渣质量的0.2-1倍。
  6. 如权利要求2或4所述的回收方法,其中,所述第一氧化剂和第二氧化剂各自独立选自H2O2、NaClO3、KClO3、KMnO4
  7. 如权利要求1所述的回收方法,其中,S5步骤中,所述电解的参数为:电解槽阴阳极板的间距为5-10mm,槽电压为0.8-2V,电流密度为14-24A/m2
  8. 如权利要求1所述的回收方法,其中,S5步骤中,所述阳极板为石墨板、钛板、铅锡钙合金板中的一种。
PCT/CN2023/077937 2022-09-27 2023-02-23 一种磷酸铁锂电池的回收方法 WO2024066184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211186486.3 2022-09-27
CN202211186486.3A CN115367776B (zh) 2022-09-27 2022-09-27 一种磷酸铁锂电池的回收方法

Publications (1)

Publication Number Publication Date
WO2024066184A1 true WO2024066184A1 (zh) 2024-04-04

Family

ID=84072566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077937 WO2024066184A1 (zh) 2022-09-27 2023-02-23 一种磷酸铁锂电池的回收方法

Country Status (3)

Country Link
CN (1) CN115367776B (zh)
FR (1) FR3140212A1 (zh)
WO (1) WO2024066184A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115367776B (zh) * 2022-09-27 2024-01-09 广东邦普循环科技有限公司 一种磷酸铁锂电池的回收方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187913A (zh) * 2020-02-20 2020-05-22 广东省稀有金属研究所 一种选择性回收废旧磷酸铁锂电池中锂和铜的方法
CN113737018A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种废旧电池正极原料的回收方法
CN113912032A (zh) * 2021-09-16 2022-01-11 湖北锂宝新材料科技发展有限公司 一种从废旧磷酸铁锂电池正极粉中回收制备电池级碳酸锂和磷酸铁的方法
US20220204355A1 (en) * 2019-11-28 2022-06-30 Contemporary Amperex Technology Co., Limited Method for producing lithium iron phosphate precursor by using retired lithium iron phosphate battery as raw material
CN115367776A (zh) * 2022-09-27 2022-11-22 广东邦普循环科技有限公司 一种磷酸铁锂电池的回收方法
CN115784267A (zh) * 2022-11-15 2023-03-14 江西飞宇新能源科技有限公司 一种从废旧磷酸铁锂正极材料中回收铁锂磷的工艺方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400983B (zh) * 2013-07-29 2015-07-08 海门容汇通用锂业有限公司 一种常压水相合成纳米无结晶水磷酸亚铁锂的方法
CN105024106B (zh) * 2015-07-31 2018-01-12 合肥国轩高科动力能源有限公司 一种从废旧锂离子电池及报废正极片中回收磷酸铁的方法
CN106910889B (zh) * 2017-02-27 2019-07-23 中南大学 一种从废旧磷酸铁锂电池中再生正极活性物质的方法
WO2018209164A1 (en) * 2017-05-11 2018-11-15 Worcester Polytechnic Institute Method and apparatus for recycling lithium iron phosphate batteries
CN112441572B (zh) * 2019-08-27 2022-11-11 比亚迪股份有限公司 一种废旧磷酸铁锂正极材料的回收方法
CN113501510A (zh) * 2021-07-13 2021-10-15 郑州中科新兴产业技术研究院 一种废旧磷酸铁锂电池正极材料的回收再生方法
CN113772649B (zh) * 2021-10-26 2024-04-12 中南大学 一种废旧磷酸铁锂正极粉回收再生制备电池级磷酸铁的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220204355A1 (en) * 2019-11-28 2022-06-30 Contemporary Amperex Technology Co., Limited Method for producing lithium iron phosphate precursor by using retired lithium iron phosphate battery as raw material
CN111187913A (zh) * 2020-02-20 2020-05-22 广东省稀有金属研究所 一种选择性回收废旧磷酸铁锂电池中锂和铜的方法
CN113737018A (zh) * 2021-08-25 2021-12-03 金川集团股份有限公司 一种废旧电池正极原料的回收方法
CN113912032A (zh) * 2021-09-16 2022-01-11 湖北锂宝新材料科技发展有限公司 一种从废旧磷酸铁锂电池正极粉中回收制备电池级碳酸锂和磷酸铁的方法
CN115367776A (zh) * 2022-09-27 2022-11-22 广东邦普循环科技有限公司 一种磷酸铁锂电池的回收方法
CN115784267A (zh) * 2022-11-15 2023-03-14 江西飞宇新能源科技有限公司 一种从废旧磷酸铁锂正极材料中回收铁锂磷的工艺方法

Also Published As

Publication number Publication date
FR3140212A1 (fr) 2024-03-29
CN115367776B (zh) 2024-01-09
CN115367776A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN107267759B (zh) 一种锂离子电池正极材料的综合回收方法
CN108470951B (zh) 一种废旧镍钴锰三元锂离子电池中有价金属的回收方法
JP4144820B2 (ja) リチウムイオン2次電池からの正極活物質の再生方法
CN107653378A (zh) 一种废旧镍钴锰锂离子电池中有价金属的回收方法
CN110343864B (zh) 微波焙烧辅助回收废旧电极材料中锂和钴的方法
CN113912032A (zh) 一种从废旧磷酸铁锂电池正极粉中回收制备电池级碳酸锂和磷酸铁的方法
CN113737018A (zh) 一种废旧电池正极原料的回收方法
CN110112481A (zh) 废旧磷酸铁锂电池循环利用制备磷酸铁锂正极材料的方法
CN102030375A (zh) 一种直接用失效锂离子电池制备钴酸锂的方法
CN113072052B (zh) 一种废磷酸铁锂补锂修复方法和应用
CN113896211A (zh) 一种废旧磷酸铁锂电池资源化的处理方法
CN109626350A (zh) 一种废旧磷酸铁锂电池正极片制备电池级磷酸铁的方法
CN111254294A (zh) 一种废锂离子电池粉末选择性提锂及电解分离回收二氧化锰的方法
JP7271833B2 (ja) リチウムの回収方法
KR20230156432A (ko) 폐 리튬이온 배터리에서 유가금속을 회수하는 방법
WO2024066184A1 (zh) 一种磷酸铁锂电池的回收方法
CN108933308B (zh) 一种报废锂电池正负极的综合回收利用方法
CN108264068A (zh) 一种回收含锂电池废料中锂的方法
CN111517340B (zh) 一种从废弃三元锂离子电池的ncm111正极材料中回收碳酸锂的方法
Duan et al. Recycling and direct-regeneration of cathode materials from spent ternary lithium-ion batteries by hydrometallurgy: Status quo and recent developments: Economic recovery methods for lithium nickel cobalt manganese oxide cathode materials
CN110176647B (zh) 一种废旧锂离子电池负极材料梯级利用方法
CN109524735B (zh) 一种废旧磷酸铁锂-钛酸锂电池的回收方法
CN115149140B (zh) 一种从废旧磷酸铁锂电池中回收铁和锂的方法
TWI625882B (zh) 廢鋰鐵電池中正極材料資源回收方法
CN114875240A (zh) 处理废旧锂电池铜钴合金的方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869447

Country of ref document: EP

Kind code of ref document: A1