WO2022178915A1 - 超强韧聚乳酸基聚氨酯脲及其制备方法 - Google Patents

超强韧聚乳酸基聚氨酯脲及其制备方法 Download PDF

Info

Publication number
WO2022178915A1
WO2022178915A1 PCT/CN2021/079284 CN2021079284W WO2022178915A1 WO 2022178915 A1 WO2022178915 A1 WO 2022178915A1 CN 2021079284 W CN2021079284 W CN 2021079284W WO 2022178915 A1 WO2022178915 A1 WO 2022178915A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
based polyurethane
chain extender
polyurethane urea
diol
Prior art date
Application number
PCT/CN2021/079284
Other languages
English (en)
French (fr)
Inventor
郭明雨
张�浩
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2022178915A1 publication Critical patent/WO2022178915A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/428Lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • C08G18/6644Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203 having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/06Polyurethanes from polyesters

Definitions

  • the invention relates to the field of polymer synthesis, in particular to a super-strong and tough polylactic acid-based polyurethane urea and a preparation method thereof.
  • Polyurethane (PU) and polyurethaneurea (PUU) are a kind of multi-block copolymers formed by polycondensation of hydroxyl-terminated oligomer diols, small molecular diols or diamines and diisocyanates. Its molecular chain is composed of soft segments and hard segments alternately, the soft segment is composed of low molecular weight polyether or polyester, and the hard segment is composed of a small molecular chain extender reacted with diisocyanate.
  • Polyurethane materials usually have higher toughness and elongation at break, better biocompatibility and degradability. Due to their good properties, polyurethane materials have been widely used in the field of biomedical materials, such as drug release carriers, sutures, artificial skin, vascular stents, etc., but their defects are also very prominent, such as their modulus and yield strength are relatively high. Low, it is difficult to meet the requirements of hard tissue materials, especially bone tissue materials.
  • PLA Polylactic acid
  • PLA-based polyurethane/polyurethane urea based on traditional synthesis methods are still brittle and rarely reported in literature. Therefore, when PLA is used as the soft segment to synthesize polyurethane, other flexible polyether or polyester diol usually needs to be added for copolymerization to improve the toughness of the obtained PU or PUU, but its tensile strength is still low ( ⁇ 40MPa ), which cannot meet the needs of many practical applications. At present, there are no reports in the literature on super-tough PU or PUU-based materials based on pure PLA.
  • the purpose of the present invention is to provide a super tough polylactic acid-based polyurethane urea and a preparation method thereof. Better biocompatibility.
  • a polylactic acid-based polyurethane urea which comprises a polylactic acid diol, at least two diisocyanates, a small molecule polyol chain extender and a polymerized unit of water; wherein, the polylactic acid diol The molecular weight is 500 ⁇ 10000g/mol, the diisocyanate is selected from at least two kinds of aliphatic, alicyclic or aromatic diisocyanates containing 4-18 carbon atoms in the molecule, and the small molecule polyol expands Chain agents are dihydric and/or trihydric alcohols containing 2-12 carbon atoms in the molecule.
  • polylactic acid diol is d-polylactic acid diol (PDLA diol), left-handed polylactic acid diol (PLLA diol), racemic polylactic acid diol (PDLLA diol), non-optically active polylactic acid.
  • PDLA diol d-polylactic acid diol
  • PLLA diol left-handed polylactic acid diol
  • PLLA diol racemic polylactic acid diol
  • non-optically active polylactic acid One or more of diols.
  • diols Meso-PLA diol
  • the polylactic acid diol is L-polylactic acid diol.
  • the small molecule polyol chain extender is a dihydric alcohol, and the structural formula of the dihydric alcohol is selected from one or more of the following structural formulas:
  • the glycol chain extender is 1,4-butanediol (BDO).
  • the polylactic acid-based polyurethane urea is a linear molecule, which has good mechanical properties, low softening temperature, easy processing and molding, and has both degradability and good biocompatibility. .
  • the small molecule polyol chain extender also includes a trihydric alcohol in addition to the dihydric alcohol, and the structural formula of the trihydric alcohol is selected from one or more of the following structural formulas:
  • the trihydric alcohol is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the small-molecule polyol chain extender includes a triol
  • the polylactic acid-based polyurethane urea is a partially cross-linked but still soluble, thermoplastic, higher-strength polyurethane urea.
  • the small molecule polyol chain extender is a mixture of diols and triols.
  • Another diisocyanate B is selected from one or more of the following structural formulas:
  • diisocyanate A is isophorone diisocyanate (IPDI).
  • the diisocyanate B is L-lysine diisocyanate (LDI).
  • the molar ratio of diisocyanate A and diisocyanate B is 5:1-1:5.
  • the polyurethane material synthesized by using the two diisocyanates of the present invention has lower modulus and higher elongation at break than other polyurethane materials.
  • the reason is that the diisocyanate B has a side group, which destroys the regularity of the polymer chain, making it impossible to form a strong hydrogen bond between the molecular chains, resulting in a relatively weak interaction between the soft and hard segments and between the hard segments and the hard segments.
  • Weak there is no strong hard segment microdomain or soft and hard segment microphase separation, so that the obtained polyurethane urea material has lower hardness and better toughness. Therefore, by introducing such diisocyanates into PLA-based PUU, its mechanical properties can be flexibly adjusted, thereby obtaining PLA-based PUU materials with high strength and toughness at the same time.
  • the elongation at break of the above-mentioned polylactic acid-based polyurethane urea is 15-55%, and the tensile strength at break is 80-104 MPa.
  • the present invention selects a PLA diol with excellent performance as a soft segment, and adjusts the strength of intermolecular hydrogen bonds by introducing a diisocyanate with a huge side group into the system, thereby obtaining a PLA diol with high performance at the same time.
  • PLA based polyurethane urea for strength and toughness. Adjusting the type of chain extender in the system, such as adding a triol chain extender to the system and introducing a small amount of covalent bonds between molecular chains, can further improve the mechanical strength of the polyurethane urea and obtain a partially cross-linked thermoplastic super tough PLA based polyurethane urea.
  • the linear polyurethane urea provided by the present invention is a copolymer of oligomer diol, diisocyanate and small molecular polyol chain extender, is soluble in many organic solvents, and has a low softening temperature, which can be heated at 130° C. Compression molding greatly facilitates its processing and application; at least two different diisocyanates are used in the synthesis, and the strength of intermolecular hydrogen bonds can be adjusted by adjusting the ratio between the two, thereby controlling the mechanical properties of the material.
  • the invention also discloses a preparation method of the above-mentioned polylactic acid-based polyurethane urea, comprising the following steps:
  • the prepolymer is polymerized with water, and after the reaction is completed, the polylactic acid-based polyurethane urea is obtained.
  • the molar ratio of the polylactic acid diol, the small molecule polyol chain extender and the diisocyanate is (2-20):(1-10):(3-30).
  • step (1) the reaction temperature is 20-100°C; the reaction time is 1-10h.
  • the added amount of the catalyst is 0.01%-0.1% of the total mass of the polylactic acid diol, diisocyanate and small molecular polyol chain extender.
  • the organic solvent is dichloromethane, chloroform, 1,2-dichloroethane, acetone, dimethyl sulfoxide (DMSO), N,N-dimethylformamide One or more of (DMF), N,N-dimethylacetamide (DMAc), etc.
  • the catalyst is one of tin 2-ethylhexanoate, dibutyltin dilaurate and organic bismuth catalyst.
  • step (2) the reaction temperature is 20-100° C., and the reaction time is 12-72 h.
  • step (2) after the reaction is completed, the product is precipitated with a precipitating agent, the solvent is removed, and the step of drying the polylactic acid-based polyurethaneurea (PUU) is included.
  • POU polylactic acid-based polyurethaneurea
  • the precipitating agent is a poor solvent of PUU, and the precipitating agent is selected from one or more of water, n-hexane, n-heptane, isohexane, isoheptane, cyclohexane, petroleum ether, diethyl ether and ethanol.
  • the dried polyurethane urea can be dissolved in a certain amount of organic solvent, poured into a mold for molding, and after the solvent is volatilized and dried, the residual trace solvent can be completely removed in a vacuum oven. , a polyurethane urea film was obtained.
  • the organic solvent is dichloromethane, chloroform, 1,2-dichloroethane, acetone, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), N,N- One or more of dimethylacetamide (DMAc) and the like.
  • the present invention has at least the following advantages:
  • the PLA-based polyurethane urea provided by the invention has super toughness (elongation at break is 15-55%, tensile strength at break is 80-104 MPa), low molding temperature (hot pressing at 130°C), and adjustable mechanical properties. , good biocompatibility, degradable characteristics, can be used in biomedical materials and other fields.
  • Fig. 1 is the infrared spectrogram of the polyurethaneurea prepared by the embodiment of the present invention 1;
  • Fig. 2 is the stress-strain diagram of the tensile test of three kinds of polyurethaneureas prepared in Example 1 of the present invention
  • Fig. 3 is the dynamic thermomechanical analysis curve of the polyurethaneurea prepared in Example 1 of the present invention.
  • Fig. 4 is the stress-strain diagram of the tensile test of four kinds of polyurethaneureas prepared in Example 2 of the present invention.
  • Fig. 5 is the stress-strain diagram of the tensile test of four kinds of super tough polyurethaneureas prepared in Example 3 of the present invention.
  • Fig. 6 is the thermogravimetric analysis diagram of the super tough polyurethane urea prepared by Example 3 of the present invention.
  • Example 7 is a photograph of a hot-pressed film obtained at 130° C. of the super-tough polyurethane urea prepared in Example 5 of the present invention.
  • the present embodiment provides three kinds of polyurethaneureas and synthetic methods, and the concrete steps are as follows:
  • L-polylactic acid diol PLLAdiol
  • BDO 1,4-butanediol
  • IPDI isophorone diisocyanate
  • L-lysine diisocyanate L-lysine diisocyanate
  • DBTDL catalyst dibutyltin dilaurate
  • the molar ratio of IPDI and LDI is fixed at 2:1, and the value of n is 12.
  • the temperature was lowered to 50° C., and 2(n-3) mol of H 2 O was added to continue the reaction for 48 h.
  • the reaction solution was slowly poured into diethyl ether to obtain a white blocky precipitate.
  • the precipitate was cut into pieces, replaced with ether and ultrasonicated for 45 minutes (in order to fully replace the high-boiling DMAc), and then dried in a vacuum oven at 70° C. for 12 hours to obtain the product PUU. Name this PUU PLAU12-1.
  • PLAU15-1 and PLAU18-1 could be synthesized by changing the n values to 15 and 18, respectively.
  • Fig. 1 is the infrared spectrogram of PLAU15-1 provided by the present embodiment; as seen in the figure, 2940cm -1 : methylene peak; 1743cm -1 : carbamate carbonyl; 1663cm -1 : urea carbonyl; 1558cm -1 : Amide II has characteristic vibrational peaks.
  • FIG. 2 is the stress-strain curves of PLAU12-1, PLAU15-1 and PLAU18-1 provided in this embodiment. It can be seen that the stress ranges from 30 to 79 MPa and the strain ranges from 15 to 443%. With the increase of hard segment content, the tensile strength of the material increases and the elongation at break decreases. This is because with the increase of the hard segment content, the content of urethane group and urea group on the molecular chain increases, the intermolecular force continues to increase, and the strength of the material is significantly improved. The macroscopic mechanical properties of polyurethane urea gradually changed from close to elastomer to hard plastic, and obvious yield phenomenon occurred.
  • FIG. 3 is a dynamic thermomechanical analysis image of PLAU15-1 provided in this example. It can be seen from the figure that the storage modulus of polyurethane urea begins to decrease when it is close to 50 °C, and when the temperature reaches 160 °C, its storage modulus decreases to close to 0, which indicates that the softening temperature of polyurethane urea is low. , which can be thermoformed at lower temperatures.
  • the present embodiment provides four kinds of polyurethaneureas and synthetic methods, and the concrete steps are as follows:
  • DBTDL catalyst dibutyltin dilaurate
  • x represents the mole number of IPDI
  • y represents the mole number of LDI
  • the temperature was lowered to 50 °C, and 24 mol of H 2 O was added to continue the reaction for 48 h.
  • the reaction solution was slowly poured into diethyl ether to obtain a white blocky precipitate. The precipitate was cut into pieces, replaced with ether and sonicated for 45 min, and then dried in a vacuum oven at 70° C. for 12 h to obtain the product PUU. Name this PUU PLAU15-1.
  • PLAU15-2, PLAU15-3 and PLAU15-4 were synthesized by changing the ratio of x and y to 1:1, 1:2 and 1:3 in turn.
  • FIG. 4 is the stress-strain curves of PLAU15-1, PLAU15-2, PLAU15-3 and PLAU15-4 provided in this embodiment. It can be seen that the stress ranges from 34 to 61 MPa and the strain ranges from 52 to 432%. With the increase of LDI content, the tensile strength of the material decreases and the elongation at break increases. This is due to the large side groups of LDI and the inability to form strong hydrogen bonds between molecules, resulting in a low interaction force between the soft and hard segments and between the hard segments and the hard segments, and there is no strong hard segment interval.
  • This example provides a kind of synthetic method of part cross-linked thermoplastic super tough polyurethane urea, and its concrete synthetic steps are as follows:
  • reaction solution was cooled to room temperature, the reaction solution was slowly poured into the ether of 10 times the volume of the reaction solvent and precipitated to obtain a massive solid, which was then cut into pieces, and the ether was ultrasonicated for 45min (in order to fully convert the high-boiling DMAc replaced). The solid was then dried in a vacuum oven at 70° C. for 12 h to obtain a PUU polymer.
  • the feature of this embodiment is that by replacing 50% of the small molecule diol chain extender with a small molecule triol chain extender, the original linear polyurethane urea becomes a partially cross-linked polyurethane urea, which ensures the solubility of the material. Under the premise of being fusible, the tensile strength is greatly improved. According to the amount of the chain extender added, the polyurethane urea prepared in the above steps was named PLAU15-C1.
  • the moles of each raw material were changed according to Table 1, and PLAU15-C2, PLAU18-C1 and PLAU18-C2 were synthesized respectively.
  • Table 1 The amount of raw materials used to synthesize different polyurethane ureas
  • FIG. 5 is the stress-strain curves of PLAU15-C1, PLAU15-C2, PLAU18-C1 and PLAU18-C2 provided in this embodiment. It can be seen that after adding a certain amount of chain extender, the strength of polyurethane urea is greatly improved, the maximum stress is 81-104MPa, and the elongation at break is 17-53%. With the increase of the triol content of the chain extender, the breaking strength of the polyurethane urea increases, and the elongation at break decreases. This is because trifunctional small molecules are introduced into the system, forming a partial cross-linked structure, and some molecular chains are covalently bonded, which greatly enhances the force between the molecular chains and greatly improves its performance. The breaking strength and elongation at break also decreased accordingly.
  • FIG. 6 is a thermogravimetric analysis image of PLAU18-C1 polyurethaneurea provided in this example. It can be seen from the figure that the material begins to lose weight significantly when the temperature reaches 250 °C. This shows that the thermal stability of polyurethane urea is very good, and thermal processing will not cause obvious influence on it.
  • the present example provides a method for producing a partially cross-linked thermoplastic super-tough polyurethane urea film based on the above-mentioned polyurethane urea, and its specific production steps are as follows:
  • Dissolve 4g of PLAU15-C1 in 12mL of DMAc After fully dissolving, pour the solution into a polytetrafluoroethylene mold, dry it in a blast drying oven at 70°C for 24h, and then dry it in a vacuum drying oven at 80°C for 24h. After volatilization and drying, a polyurethaneurea film was obtained.
  • the present example provides a method for producing a partially cross-linked thermoplastic super-tough polyurethane urea film based on the above-mentioned polyurethane urea, and its specific production steps are as follows:
  • PLAU18-C1 powder Take 4g of PLAU18-C1 powder, pour it into a square mold of 40mm ⁇ 40mm, put the mold into a hot press, and press at 130 ° C and a certain pressure for 10 minutes to obtain a polyurethane urea hot-pressed film with a thickness of about 2 mm.
  • FIG. 7 is a digital photo of the hot-pressed film of PCLAU18-C1 provided in this example. It can be seen that the film is completely transparent, indicating that the polyurethane urea can be well thermoplastically formed at 130°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明涉及一种超强韧聚乳酸基聚氨酯脲及其制备方法,聚乳酸基聚氨酯脲包括聚乳酸二元醇、至少两种二异氰酸酯、小分子多元醇扩链剂和水的聚合单元;其中,二异氰酸酯选自分子中含有4-18个碳原子的脂肪基、脂环基或芳香基的二异氰酸酯中的至少两种,小分子多元醇扩链剂为分子中含有2-12个碳原子的二元醇和/或三元醇。可通过调节反应原料的种类和比例,进而调控超强韧聚氨酯脲材料的力学强度。本发明的PLA基聚氨酯脲具有超强韧(断裂伸长率为15-55%,断裂拉伸强度为80-104MPa)、低成型温度(130℃即可热压成型)、机械性能可调、生物相容性好、可降解的特点,可应用于生物医用材料等领域。

Description

超强韧聚乳酸基聚氨酯脲及其制备方法 技术领域
本发明涉及高分子合成领域,尤其涉及一种超强韧聚乳酸基聚氨酯脲及其制备方法。
背景技术
聚氨酯(PU)和聚氨酯脲(PUU)是一类由端羟基的低聚物二醇、小分子二醇或二胺和二异氰酸酯缩聚而成的多嵌段共聚物。其分子链由软段和硬段交替组成,软段由低分子量的聚醚或聚酯构成,硬段由小分子扩链剂和二异氰酸酯反应构成。
聚氨酯材料通常有着较高的韧性和断裂伸长率,较好的生物相容性和可降解性。由于具备良好的性能,聚氨酯类材料已被广泛应用于生物医学材料领域,如药物缓释载体、缝合线、人造皮肤、血管支架等,但其缺陷也极为突出,例如其模量和屈服强度较低,难以满足硬组织材料,尤其是骨组织材料的要求。
聚乳酸(PLA)有着良好的机械强度、可降解性和生物相容性,但其固有的脆性大大限制了其应用。基于传统合成方法的PLA基聚氨酯/聚氨酯脲仍较脆,罕见文献报道。因此目前在以PLA为软段合成聚氨酯时,通常需要加入其他柔性的聚醚或聚酯二醇进行共聚,以改善所得到的PU或PUU的韧性,但其拉伸强度仍然偏低(<40MPa),无法满足诸多实际应用需求。目前基于纯PLA的超强韧PU或PUU类材料尚未见文献报道。
发明内容
为解决上述技术问题,本发明的目的是提供一种超强韧聚乳酸基聚氨酯脲及其制备方法,本发明的聚乳酸基聚氨酯脲的机械强度较好,成型加工温度较低,可降解,生物相容性较好。
本发明一方面要求保护一种聚乳酸基聚氨酯脲,其包括聚乳酸二元醇、至少两种二异氰酸酯、小分子多元醇扩链剂和水的聚合单元;其中,所述聚乳酸二元醇的分子量为500~10000g/mol,所述二异氰酸酯选自分子中含有4-18个碳原子的脂肪基、脂环基或芳香基的二异氰酸酯中的至少两种,所述小分子多元醇扩链剂为分子中含有2-12个碳原子的二元醇和/或三元醇。
进一步地,聚乳酸二元醇为右旋聚乳酸二元醇(PDLA diol),左旋聚乳酸二元醇(PLLA diol),外消旋聚乳酸二元醇(PDLLA diol),非旋光性聚乳酸二元醇(Meso-PLA diol)中的一种或 几种。
优选地,聚乳酸二元醇为左旋聚乳酸二元醇。
进一步地,小分子多元醇扩链剂为二元醇,所述二元醇的结构式选自如下结构式中的一种或几种:
Figure PCTCN2021079284-appb-000001
优选地,二元醇扩链剂为1,4-丁二醇(BDO)。
当小分子多元醇扩链剂仅为二元醇时,聚乳酸基聚氨酯脲为线性分子,其机械性能好,软化温度低,易加工成型,且同时具有可降解性和良好的生物相容性。
进一步地,小分子多元醇扩链剂除了二元醇之外还包括三元醇,所述三元醇的结构式选自如下结构式中的一种或几种:
Figure PCTCN2021079284-appb-000002
优选地,三元醇为
Figure PCTCN2021079284-appb-000003
当小分子多元醇扩链剂包括三元醇时,聚乳酸基聚氨酯脲为部分交联但仍可溶解、具有热塑性的更高强度的聚氨酯脲。优选地,小分子多元醇扩链剂为二元醇和三元醇的混合物。
进一步地,其中一种二异氰酸酯A的结构式选自如下结构式中的一种或几种:
Figure PCTCN2021079284-appb-000004
Figure PCTCN2021079284-appb-000005
另一种二异氰酸酯B选自如下结构式中的一种或几种:
Figure PCTCN2021079284-appb-000006
优选地,二异氰酸酯A为异佛尔酮二异氰酸酯(IPDI)。
优选地,二异氰酸酯B为L-赖氨酸二异氰酸酯(LDI)。
进一步地,二异氰酸酯A和二异氰酸酯B的摩尔比为5∶1-1∶5。
采用本发明的两种二异氰酸酯合成的聚氨酯材料具有比其他聚氨酯类材料更低的模量和更高的断裂伸长率。其原因在于二异氰酸酯B具有侧基,破坏了高分子链的规整性,使得分子链间无法形成强的氢键,从而导致软硬段之间以及硬段与硬段之间的相互作用力较弱,没有很强的硬段微区或软硬段微相分离,从而使所得聚氨酯脲材料的硬度较低而韧性较好。因此,通过在PLA基PUU中引入此类二异氰酸酯,可以灵活的调节其机械性能,从而获得能够同时具有高强度和韧性的PLA基PUU材料。
进一步地,上述聚乳酸基聚氨酯脲的断裂伸长率为15-55%,断裂拉伸强度为80-104MPa。
本发明从分子设计的角度出发,选用了性能优良的PLA二元醇为软段,通过在体系中引入具有庞大侧基的二异氰酸酯,来调节分子间氢键的强弱,得到了同时具有高强度和韧性的PLA基聚氨酯脲。调节体系中扩链剂的类型,如通过在体系中加入三元醇扩链剂,在分子链间引入少量共价键,可以进一步提高聚氨酯脲的机械强度,得到部分交联的热塑性超强韧PLA基聚氨酯脲。
本发明所提供的线性聚氨酯脲为低聚物二醇、二异氰酸酯和小分子多元醇扩链剂的共聚物,可溶于诸多有机溶剂,且其软化温度较低,在130℃下即可热压成型,大大方便了其加工应用;合成中使用了至少两种不同的二异氰酸酯,通过调节两者之间的比例,来调节分子 间氢键的强弱,从而控制材料的机械性能。
本发明还公开了一种上述聚乳酸基聚氨酯脲的制备方法,包括以下步骤:
(1)将聚乳酸二元醇、至少两种二异氰酸酯和小分子多元醇扩链剂在催化剂的作用下,在有机溶剂中进行预聚反应,反应完全后得到预聚物;
(2)将所述预聚物与水进行聚合反应,反应完全后,得到所述聚乳酸基聚氨酯脲。
进一步地,在步骤(1)中,所述聚乳酸二元醇、小分子多元醇扩链剂和二异氰酸酯的摩尔比为(2-20)∶(1-10)∶(3-30)。通过调节聚乳酸二元醇和二异氰酸酯的比例、不同二异氰酸酯之间的比例和小分子多元醇扩链剂的种类和比例,进而可调控超强韧聚氨酯脲材料的力学强度。
进一步地,在步骤(1)中,反应温度为20-100℃;反应时间为1-10h。
进一步地,在步骤(1)中,催化剂的加入量为聚乳酸二元醇、二异氰酸酯和小分子多元醇扩链剂总质量的0.01%-0.1%。
进一步地,在步骤(1)中,有机溶剂为二氯甲烷、三氯甲烷、1,2-二氯乙烷、丙酮、二甲基亚砜(DMSO),N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)等中的一种或几种。
进一步地,在步骤(1)中,催化剂为2-乙基己酸锡、二月桂酸二丁基锡和有机铋催化剂中的一种。
进一步地,在步骤(2)中,反应温度为20-100℃,反应时间为12-72h。
进一步地,在步骤(2)中,反应完全后还包括用沉淀剂沉淀产物,除去溶剂后并干燥后得到聚乳酸基聚氨酯脲(PUU)的步骤。
进一步地,沉淀剂为PUU的不良溶剂,沉淀剂选自水、正己烷、正庚烷、异己烷、异庚烷、环己烷、石油醚、乙醚和乙醇中的一种或几种。
进一步地,在步骤(2)中,水作为间接扩链剂,其加入的摩尔量n(水)=2[n(二异氰酸酯)–n(聚乳酸二元醇)–n(小分子二元醇)]。
进一步地,上述聚乳酸基聚氨酯脲在应用时,可将干燥的聚氨酯脲溶解于一定量有机溶剂中,倒入模具中成型,溶剂挥发晾干后,在真空烘箱中完全除去残余的痕量溶剂,得到聚氨酯脲薄膜。其中,有机溶剂为二氯甲烷、三氯甲烷、1,2-二氯乙烷、丙酮、二甲基亚砜(DMSO),N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)等中的一种或几种。
借由上述方案,本发明至少具有以下优点:
本发明提供的PLA基聚氨酯脲具有超强韧(断裂伸长率为15-55%,断裂拉伸强度为80-104MPa)、低成型温度(130℃即可热压成型)、机械性能可调、生物相容性好、可降解 的特点,可应用于生物医用材料等领域。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1是本发明实施例1制备的聚氨酯脲的红外谱图;
图2是本发明实施例1制备的三种聚氨酯脲的拉伸试验的应力-应变图;
图3是本发明实施例1制备的聚氨酯脲的动态热机械分析曲线;
图4是本发明实施例2制备的四种聚氨酯脲的拉伸试验的应力-应变图;
图5是本发明实施例3制备的四种超强韧聚氨酯脲的拉伸试验的应力-应变图;
图6是本发明实施例3制备的超强韧聚氨酯脲的热重分析图;
图7是本发明实施例5制备的超强韧聚氨酯脲在130℃下得到的热压薄膜的照片。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,均可从商业途径得到。
实施例1
本实施例提供了三种聚氨酯脲及合成方法,具体步骤如下:
将分子量为2000g/mol的左旋聚乳酸二醇(PLLAdiol)与1,4-丁二醇(BDO)、异佛尔酮二异氰酸酯(IPDI)、L-赖氨酸二异氰酸酯(LDI)溶于DMAc溶液中,再加入10μL催化剂二月桂酸二丁基锡(DBTDL),70℃下反应4h。控制反应物的摩尔比,即PLA:BDO:(IPDI+LDI)=2mol:1mol:nmol。本实施例中,固定IPDI和LDI的摩尔比为2:1,n值取12。反应结束后降温至50℃,加入2(n-3)mol的H 2O继续反应48h。反应结束后将反应液缓慢倒入乙醚中,得到白色块状沉淀。将沉淀剪碎,换乙醚超声45min(为了充分将高沸点的DMAc置换出来),然后在70℃真空烘箱中干燥12h,得到产物PUU。将此PUU命名为PLAU12-1。
按照上述方法制备另外两种PUU,通过改变n值分别为15和18,可分别合成出PLAU15-1和PLAU18-1。
图1是本实施例提供的PLAU15-1的红外谱图;图中可见,2940cm -1:亚甲基峰;1743cm -1:氨基甲酸酯羰基;1663cm -1:脲羰基;1558cm -1:酰胺Ⅱ带特征振动峰。
图2是本实施例提供的PLAU12-1、PLAU15-1和PLAU18-1的应力-应变曲线。可以看出,其应力为30~79MPa,应变为15~443%。随着硬段含量的提高,材料的拉伸强度提高,断裂伸长率下降。这是由于随着硬段含量的提高,分子链上的氨基甲酸酯基和脲基含量增大,分子间作用力不断提高,材料的强度得到显著提升。聚氨酯脲的宏观力学性能从接近弹性体逐渐向硬塑料转变,发生了明显的屈服现象。
图3是本实施例提供的PLAU15-1的动态热机械分析图像。从图中可以看出,在接近50℃时聚氨酯脲的储能模量就开始下降,当温度达到160℃时,其储能模量降至接近为0,这说明聚氨酯脲的软化温度较低,可以在较低的温度下进行热塑成型。
实施例2
本实施例提供了四种聚氨酯脲及合成方法,具体步骤如下:
将分子量为2000g/mol的左旋聚乳酸二醇(PLLA diol)与1,4-丁二醇(BDO)、异佛尔酮二异氰酸酯(IPDI)、L-赖氨酸二异氰酸酯(LDI)溶于DMAc溶液中,再加入10μL催化剂二月桂酸二丁基锡(DBTDL),70℃下反应4h。控制反应物的摩尔比,即PLA:BDO:(IPDI+LDI)=2mol:1mol:(x+y)mol。本实施例中,x代表IPDI的摩尔数,y代表LDI的摩尔数,x和y的总值取15,x∶y=2∶1。反应结束后降温至50℃,加入24mol H 2O继续反应48h。反应结束后将反应液缓慢倒入乙醚中,得到白色块状沉淀。将沉淀剪碎,换乙醚超声45min,然后在70℃真空烘箱中干燥12h,得到产物PUU。将此PUU命名为PLAU15-1。
按照上述方法制备另外三种PUU,通过改变x和y的比值依次为1∶1、1∶2和1∶3,可分别合成出PLAU15-2、PLAU15-3和PLAU15-4。
图4是本实施例提供的PLAU15-1、PLAU15-2、PLAU15-3和PLAU15-4应力-应变曲线。可以看出,其应力为34~61MPa,应变为52~432%。随着LDI含量的提高,材料的拉伸强度降低,断裂伸长提高。这是由于LDI侧基较大,分子间不能形成很强的氢键,从而导致软硬段之间以及硬段与硬段之间的相互作用力较低,没有很强的硬段区间。随着L-赖氨酸二异氰酸酯含量的增大,分子间的较弱氢键比例不断增大,分子间作用力也不断降低,材料的强度下降,但断裂伸长率也就是韧性得到了很大的提高。聚氨酯脲的宏观力学性能由硬塑料向靠近弹性体的方向转变,屈服现象越来越不明显。
实施例3
本实例提供一种部分交联热塑性超强韧聚氨酯脲的合成方法,其具体合成步骤如下:
1)称量4.000g(2mmol)的PLA(M n=2000g/mol)于250mL三口烧瓶中,将其放置于80℃真空烘箱中干燥一晚,同时在真空烘箱中放有少量五氧化二磷以便除尽水分。干燥结束后, 取出三口烧瓶,将其放置在室温的油浴锅中,用量筒向三口烧瓶中加入10mL预先用无水硫酸钠干燥好的DMAc,加入磁力搅拌子进行搅拌。再加入0.046g(0.5mmol)1,4-丁二醇(BDO),0.031g(0.33mmol)甘油,2.245g(10mmol)的异佛尔酮二异氰酸酯(IPDI),1.1907g(5mmol)的L-赖氨酸二异氰酸酯(LDI)和20μL的二月桂酸二丁锡(催化剂)。
2)将以上混合物升温至70℃后加热搅拌反应4h,然后将反应体系降温至50℃,加入432μL(24mmol)的H 2O继续搅拌反应。加入水后,随着反应的进行,溶液粘度不断增大,反应过程中不断补加DMAc(大约60-65mL)来控制溶液的浓度,防止体系凝胶化,反应24h后,停止反应并降温。
3)待反应液冷却到室温后,将反应液缓慢倒入反应溶剂10倍体积量的乙醚中沉淀,得到块状固体,再将其剪碎,换乙醚超声45min(为了充分将高沸点的DMAc置换出来)。再将固体放置在70℃的真空烘箱中干燥12h,得到PUU聚合物。
本实施例的特点是通过将50%的小分子二元醇扩链剂替换为小分子三元醇扩链剂,使得原本的线性聚氨酯脲变成部分交联的聚氨酯脲,在保证材料可溶可熔的前提下,大大提高了其拉伸强度。根据加入扩链剂的量,将以上步骤制得的聚氨酯脲命名为PLAU15-C1。
按照上述方法,按照表1改变各原料的摩尔数,分别合成出PLAU15-C2、PLAU18-C1和PLAU18-C2。
表1:合成不同聚氨酯脲的原料用量
  BDO(mmol) 甘油(mmol) IPDI(mmol) LDI(mmol)
PLAU15-C2 0.25 0.75 10 5
PLAU18-C1 0.5 0.5 12 6
PLAU18-C2 0.25 0.75 12 6
图5是本实施例提供的PLAU15-C1、PLAU15-C2、PLAU18-C1和PLAU18-C2的应力-应变曲线。可以看出,加入一定量扩链剂后,聚氨酯脲的强度大大提高,其最大应力为81~104MPa,断裂伸长率为17~53%。随着扩链剂三醇含量的提高,聚氨酯脲的断裂强度上升,断裂伸长率下降。这是因为体系中引入了三官能度小分子,形成了部分交联结构,部分分子链之间有了共价键键接,大大增强了分子链之间的作用力,极大的提高了其断裂强度,断裂伸长率也相应的下降。
图6是本实施例提供的PLAU18-C1聚氨酯脲的热重分析图像。从图中可以看出温度达到250℃时材料才开始有明显的失重。这说明聚氨酯脲的热稳定性极好,热加工成型不会对其造成明显的影响。
实施例4
本实例提供一种基于上述聚氨酯脲的部分交联热塑性超强韧聚氨酯脲薄膜的制作方法,其具体制作步骤如下:
取4g的PLAU15-C1溶于12mL DMAc中,充分溶解后将溶液倒入聚四氟乙烯模具中,于70℃鼓风干燥箱中干燥24h,之后在80℃真空干燥箱中干燥24h,待溶剂挥发干燥后,得到聚氨酯脲薄膜。
实施例5
本实例提供一种基于上述聚氨酯脲的部分交联热塑性超强韧聚氨酯脲薄膜的制作方法,其具体制作步骤如下:
取4g的PLAU18-C1粉末,倒入40mm×40mm的正方形模具中,将模具放入热压机中,在130℃和一定压力下热压10min,得到厚度约为2mm的聚氨酯脲热压薄膜。
图7是本实施例提供的PCLAU18-C1的热压薄膜的数码照片。可以看出该膜呈完全透明,说明该聚氨酯脲在130℃下即可很好的热塑成型。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种聚乳酸基聚氨酯脲,其特征在于:包括聚乳酸二元醇、至少两种二异氰酸酯、小分子多元醇扩链剂和水的聚合单元;其中,所述聚乳酸二元醇的分子量为500~10000g/mol,所述二异氰酸酯选自分子中含有4-18个碳原子的脂肪基、脂环基或芳香基的二异氰酸酯中的至少两种,所述小分子多元醇扩链剂为分子中含有2-12个碳原子的二元醇和/或三元醇。
  2. 根据权利要求1所述的聚乳酸基聚氨酯脲,其特征在于:所述聚乳酸二元醇为右旋聚乳酸二元醇、左旋聚乳酸二元醇、外消旋聚乳酸二元醇和非旋光性聚乳酸二元醇中的一种或几种。
  3. 根据权利要求1所述的聚乳酸基聚氨酯脲,其特征在于,所述小分子多元醇扩链剂为二元醇,所述二元醇的结构式选自如下结构式中的一种或几种:
    Figure PCTCN2021079284-appb-100001
  4. 根据权利要求1所述的聚乳酸基聚氨酯脲,其特征在于,所述小分子多元醇扩链剂包括三元醇,所述三元醇的结构式选自如下结构式中的一种或几种:
    Figure PCTCN2021079284-appb-100002
  5. 根据权利要求1所述的聚乳酸基聚氨酯脲,其特征在于,其中一种二异氰酸酯的结构式选自如下结构式中的一种或几种:
    Figure PCTCN2021079284-appb-100003
    另一种二异氰酸酯选自如下结构式中的一种或几种:
    Figure PCTCN2021079284-appb-100004
  6. 一种权利要求1-5中任一项所述的聚乳酸基聚氨酯脲的制备方法,其特征在于,包括以下步骤:
    (1)将聚乳酸二元醇、至少两种二异氰酸酯和小分子多元醇扩链剂在催化剂的作用下,在有机溶剂中进行预聚反应,反应完全后得到预聚物;
    (2)将所述预聚物与水进行聚合反应,反应完全后,得到所述聚乳酸基聚氨酯脲。
  7. 根据权利要求6所述的制备方法,其特征在于:在步骤(1)中,所述聚乳酸二元醇、小分子多元醇扩链剂和二异氰酸酯的摩尔比为(2-20)∶(1-10)∶(3-30)。
  8. 根据权利要求6所述的制备方法,其特征在于:在步骤(1)中,反应温度为20-100℃;反应时间为1-10h。
  9. 根据权利要求6所述的制备方法,其特征在于:在步骤(1)中,催化剂的加入量为聚乳酸二元醇、二异氰酸酯和小分子多元醇扩链剂总质量的0.01%-0.1%。
  10. 根据权利要求6所述的制备方法,其特征在于:在步骤(2)中,反应温度为20-100℃,反应时间为12-72h。
PCT/CN2021/079284 2021-02-25 2021-03-05 超强韧聚乳酸基聚氨酯脲及其制备方法 WO2022178915A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110212527.0 2021-02-25
CN202110212527.0A CN112979912B (zh) 2021-02-25 2021-02-25 超强韧聚乳酸基聚氨酯脲及其制备方法

Publications (1)

Publication Number Publication Date
WO2022178915A1 true WO2022178915A1 (zh) 2022-09-01

Family

ID=76350793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079284 WO2022178915A1 (zh) 2021-02-25 2021-03-05 超强韧聚乳酸基聚氨酯脲及其制备方法

Country Status (2)

Country Link
CN (1) CN112979912B (zh)
WO (1) WO2022178915A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774460A (zh) * 2002-07-23 2006-05-17 联邦科学和工业研究组织 生物可降解的聚氨酯/聚脲组合物
CN101550615A (zh) * 2008-04-04 2009-10-07 株式会社晓星 具有改进伸长率和粘合强度的聚氨酯脲弹性纱线及其制备方法
CN105457092A (zh) * 2015-10-12 2016-04-06 圆容生物医药无锡有限公司 一种弹性模量可调聚氨酯组合物及其在医用植入材料中的应用
CN105693987A (zh) * 2014-11-25 2016-06-22 江苏华信新材料股份有限公司 可降解水性聚氨酯及其制备方法和应用
CN107778446A (zh) * 2017-10-18 2018-03-09 圆容生物医药无锡有限公司 降解时间可控、断裂伸长率可调的医用可降解聚氨酯
CN108290999A (zh) * 2015-10-01 2018-07-17 路博润先进材料公司 用于固体自由形式制造的热塑性聚氨酯组合物
CN109456716A (zh) * 2018-11-13 2019-03-12 宁波惠之星新材料科技有限公司 一种光学复合膜及其制备方法
CN110627996A (zh) * 2019-10-08 2019-12-31 苏州大学 聚氨酯脲、其制备方法及基于其的超强韧聚氨酯脲

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003122001A (ja) * 2001-10-15 2003-04-25 Nippon Kayaku Co Ltd 感光性樹脂、及びそれを用いた感光性樹脂組成物、並びにその硬化物
CN1166715C (zh) * 2002-08-23 2004-09-15 清华大学 一种可生物降解聚氨酯弹性体的合成
AU2006294414B2 (en) * 2005-09-20 2012-05-24 Polynovo Biomaterials Pty Limited Chain extenders
ES2727010T3 (es) * 2006-09-29 2019-10-11 Total Research & Tech Feluy Sa Copolímeros de polilactida-uretano
CN100523036C (zh) * 2006-12-30 2009-08-05 四川大学 水性无毒可降解聚氨酯弹性体的制备方法
CN101602840A (zh) * 2009-07-22 2009-12-16 重庆大学 基于d,l-聚乳酸的生物可降解形状记忆材料及其制备方法
CN101899139B (zh) * 2010-07-23 2012-02-29 同济大学 一种聚乳酸基高弹性共聚物的制备方法
CN101885826B (zh) * 2010-07-28 2012-03-28 重庆大学 基于哌嗪嵌段d,l-聚乳酸的生物可降解聚氨酯材料及制备方法
CN103992458A (zh) * 2014-06-11 2014-08-20 苏州大学 一种超高强度的聚氨酯脲超分子水凝胶及其制备方法
WO2017054433A1 (zh) * 2015-09-30 2017-04-06 圆容生物医药无锡有限公司 弹性模量可调的聚氨酯组合物、支架复合物及其制备方法
CN107815056A (zh) * 2016-09-12 2018-03-20 翁秋梅 一种动态聚合物热塑性弹性体及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774460A (zh) * 2002-07-23 2006-05-17 联邦科学和工业研究组织 生物可降解的聚氨酯/聚脲组合物
CN101550615A (zh) * 2008-04-04 2009-10-07 株式会社晓星 具有改进伸长率和粘合强度的聚氨酯脲弹性纱线及其制备方法
CN105693987A (zh) * 2014-11-25 2016-06-22 江苏华信新材料股份有限公司 可降解水性聚氨酯及其制备方法和应用
CN108290999A (zh) * 2015-10-01 2018-07-17 路博润先进材料公司 用于固体自由形式制造的热塑性聚氨酯组合物
CN105457092A (zh) * 2015-10-12 2016-04-06 圆容生物医药无锡有限公司 一种弹性模量可调聚氨酯组合物及其在医用植入材料中的应用
CN107778446A (zh) * 2017-10-18 2018-03-09 圆容生物医药无锡有限公司 降解时间可控、断裂伸长率可调的医用可降解聚氨酯
CN109456716A (zh) * 2018-11-13 2019-03-12 宁波惠之星新材料科技有限公司 一种光学复合膜及其制备方法
CN110627996A (zh) * 2019-10-08 2019-12-31 苏州大学 聚氨酯脲、其制备方法及基于其的超强韧聚氨酯脲

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN HAILIANG, ZHANG FANG, CHEN WEI: "Application of Mixed Diisocyanate in Polyurethane Elastomer", POLYURETHANE INDUSTRY, vol. 25, no. 4, 28 August 2010 (2010-08-28), pages 32 - 35, XP055962433, ISSN: 1005-1902 *
LIU LIANGBING, LIU HONG-MEI,JIA LIN-CAI: "Study on Mechanical Properties of PBA/MDI Type Polyurethane Elastomer", CHINA ADHESIVES, SHANGHAI : SHANGHAI-SHI HECHENG SHUZHI YANJIUSUO, CN, vol. 16, no. 9, 30 September 2007 (2007-09-30), CN , pages 5 - 7, XP055962440, ISSN: 1004-2849, DOI: 10.13416/j.ca.2007.09.003 *
LU CONGCONG: "Preparation and Properties of Conductive Hybrid Isocyanate Polyurethane Materials", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 1, 5 January 2021 (2021-01-05), CN , XP055962424, ISSN: 1674-0246 *
XU QIANWEI, XIAO SHI-YING: "Study on the Cross-linked Polyurethane(PU) Elastomers", SHANGHAI PLASTICS, SHANGHAI SOCIETY OF PLASTICS ENGINEERING TECHNOLOGY; SHANGHAI INSTITUTE OF CHEMICAL INDUSTRY, vol. 1, no. 137, 30 March 2007 (2007-03-30), pages 14 - 17, XP055962419, ISSN: 1009-5993, DOI: 10.16777/j.cnki.issn.1009-5993.2007.01.005 *
ZHAO HONGXIANG, YUXIANG JIANG;TIANBAO ZHAO;MINGYAN LUO;JINGFU ZHOU;ZAIFENG LI: "Correlation Among the Structure of Hard Segment Micro-Phase,Mechanical Properties and Heat Resistance for PUU Elastomers", GAOFENZI-CAILIAO-KEXUE-YU-GONGCHENG = POLYMER MATERIALS SCIENCE AND ENGINEERING, CHENGDU KEJI DAXUE GAOFENZI YANJIUSUO, CN, vol. 33, no. 6, 25 June 2017 (2017-06-25), CN , XP055962436, ISSN: 1000-7555, DOI: 10.16865/j.cnki.1000-7555.2017.06.018 *

Also Published As

Publication number Publication date
CN112979912B (zh) 2022-07-12
CN112979912A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
KR102012761B1 (ko) 자가치유 탄성체, 자가치유 복합체 및 자가치유 필름
JP5638003B2 (ja) ポリイソブチレン系ポリウレタン
JP2980913B2 (ja) 吹込フィルム用法のための軟質熱可塑性ポリウレタン
US5811506A (en) Extrudable thermoplastic elastomeric urea-extended polyurethane
EP2184307B1 (en) Producing method for polylactic acid-based copolymer
US20060293487A1 (en) Polyurethanes, polyurethaneureas and polyureas and use thereof
EP2997063A2 (en) Thermoplastic polyurethane from low free monomer prepolymer
CN109749694B (zh) 一种医用聚氨酯粘合剂及其制备方法
CN108264623B (zh) 一种聚酯型聚氨酯形状记忆材料及其制备方法
JPH07509274A (ja) 4,4’−メチレン−ビス(3−クロロ−2,6−ジエチルアニリン)によって硬化したポリウレタン
JP2002517577A (ja) 生体医用ポリウレタン、その調製方法及び使用方法
CN112126036A (zh) 基于二硫键的生物基可降解交联自修复聚氨酯及其制备方法
CN107033563B (zh) 一种增强增韧聚乳酸材料及其制备方法
CN108503783B (zh) 热塑性聚氨酯弹性体及其制备方法
JPWO2011125540A1 (ja) 熱可塑性ポリウレタン樹脂および成形品
JPS6410542B2 (zh)
JP2000511231A (ja) 押出可能で熱可塑性で弾性のあるウレア伸長ポリウレタン
US3635907A (en) Process for the production of polyurethanes
WO2022178915A1 (zh) 超强韧聚乳酸基聚氨酯脲及其制备方法
CN111574684B (zh) 二氧化碳基聚氨酯预聚体、其制备方法及应用
KR102261016B1 (ko) 폴리카프로락톤 기반의 폴리우레탄 나노복합체 및 이의 제조방법
CN115572366B (zh) 耐压温敏型热塑性聚乳酸基聚氨酯弹性体及其制法与应用
CN110627996A (zh) 聚氨酯脲、其制备方法及基于其的超强韧聚氨酯脲
JP5263471B2 (ja) 生分解性エラストマー及びその製造方法
Mustapha et al. Enhancing mechanical properties of polyurethane with cellulose acetate as chain extender

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927349

Country of ref document: EP

Kind code of ref document: A1