AU2006294414B2 - Chain extenders - Google Patents

Chain extenders Download PDF

Info

Publication number
AU2006294414B2
AU2006294414B2 AU2006294414A AU2006294414A AU2006294414B2 AU 2006294414 B2 AU2006294414 B2 AU 2006294414B2 AU 2006294414 A AU2006294414 A AU 2006294414A AU 2006294414 A AU2006294414 A AU 2006294414A AU 2006294414 B2 AU2006294414 B2 AU 2006294414B2
Authority
AU
Australia
Prior art keywords
polyurethane
chain extender
diol
formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2006294414A
Other versions
AU2006294414A1 (en
Inventor
Raju Adhikari
Pathiraja Arachchillage Gunatillake
Timothy Graeme Moore
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polynovo Biomaterials Pty Ltd
Original Assignee
Polynovo Biomaterials Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005905192A external-priority patent/AU2005905192A0/en
Application filed by Polynovo Biomaterials Pty Ltd filed Critical Polynovo Biomaterials Pty Ltd
Priority to AU2006294414A priority Critical patent/AU2006294414B2/en
Priority claimed from PCT/AU2006/001380 external-priority patent/WO2007033418A1/en
Publication of AU2006294414A1 publication Critical patent/AU2006294414A1/en
Application granted granted Critical
Publication of AU2006294414B2 publication Critical patent/AU2006294414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The present invention relates to chain extenders, processes for their preparation and their use in the preparation of biocompatible biodegradable polyurethanes and polyurethane ureas for biomedical applications such as stents, scaffolds for tissue engineering. The chain extenders comprise a compound of formula (I)

Description

WO 2007/033418 PCT/AU2006/001380 CHAIN EXTENDERS FIELD 5 The present invention relates to chain extenders, processes for their preparation and their use in the preparation of biocompatible biodegradable polyurethanes and polyurethane ureas for biomedical applications such as stents, orthopaedic fixation scaffolds and scaffolds for tissue engineering. 10 BACKGROUND Biodegradable polyurethanes and polyurethane ureas are typically formulated using polyester polyols, aliphatic diisocyanates and diol or diamine chain extenders. The polyester polyol forms the 'soft' segment of the polymer 5 while the diisocyanate and the chain extender form the hard segment. The hard segment forms ordered domains due to hydrogen bonding and imparts high mechanical strength to the material. The soft domains are formed largely by the polyester polyol and provides elastic properties to the polymer. Polyester polyols such as polycaprolactone, polyglycolide and polylactide are the most 20 widely used polyols in biodegradable polyurethanes. The biodegradation of these polymers occur largely due to the hydrolytic degradation of the ester, urethane and urea linkages of the polymer. The soft segment of the polyurethane degrades significantly faster than the hard segment. This is largely due to the presence of relatively easily hydrolysable ester linkages and 25 the amorphous nature of the soft segment. The hard segment of biodegradable polyurethanes is formed from diisocyanates such as hexamethylene diisocyanate (HDI), butane diisocyanate (BDI), lysine diisocyanate ethyl ester and lysine diisocyanate methyl ester. The chain extenders are low molecular weight (typically MW < 400) diols or diamines. Examples include 1,4 30 butanediol, ethylene glycol, ethylene diamine and water. The diols and diisocyanates react to form urethane linkages in the hard segment of the polyurethane. The diamine chain extenders and water react to form urea linkages. The urethane or urea linkages in the hard segment also degrade by hydrolysis but at a significantly slower rate than ester linkages. 35 An important consideration in the design of biodegradable polymers is the choice of precursors that would lead to polyurethanes with backbone functional groups susceptible to one or more degradation pathways in the body, 2 such as hydrolytic or enzymatic degradation. Such polyurethanes degrade to low molecular weight products which are either bioresorbed or released from the body through one of the waste disposal pathways in the body. The use of conventional diisocyanates and chain extenders such as ethylene glycol or ethylene diamine leads to 5 polyurethane with hard segments with urethane, urea or a combination of such functional groups. Because of the relatively slow degradation rates of these linkages compared with ester linkages, the polymer degradation may lead to oligomers containing mainly hard segments. This becomes a major concern, particularly when polyurethanes are formulated with a higher percentage of hard segment (longer hard segment lengths). 10 Accordingly, it is desirable if the hard segments also break down rapidly to low molecular weight compounds for rapid release from the body. This also broadens the formulation options for the design of biodegradable polyurethanes with degradation rates tailored to specific applications. Chain extenders which break down to biocompatible compounds such as amino 15 acids have been used for formulating biodegradable polyurethanes. The chain extenders are diamines based on cyclohexane dimethanol and phenyl alanine and are generally too high in molecular weight (MW 438) to be considered as chain extenders. The high molecular weight combined with the bulky benzyl pendant groups leads to polyurethanes with disrupted hard segments, limiting the range of properties that can be achieved using 20 such chain extenders in polyurethanes. SUMMARY The present invention relates to chain extenders with one or more hydrolysable 25 (degradable) functional groups in the backbone. The chain extenders are based on ester diols of hydroxy acids or dicarboxylic acids which optionally contain a free radically polymerisable functional group(s) in the backbone. According to one aspect of the present invention there is provided a compound of 30 formula (la) or (Ib) when used as a chain extender to produce a biocompatible, biodegradable polyurethane or polyurethane urea, HO 0 OH 0 (Ia) 3 HO R 0 OH Ri 0 0 (Ib) wherein R 1 , R 2 and R 3 are independently selected from optionally substituted Cl20 alkylene and optionally substituted C2-20 alkenylene, both of which may be optionally interrupted by optionally substituted aryl or optionally substituted heterocycle, and wherein in formula (la) when R, is (CH 2 )2, then R 2 is not CH 2 , CHCH 3 or (CH2)3. Some of the compounds of formula (la) and (Ib) are novel per se and form part of the invention such as E-caprolactone and ethylene glycol dimer (CL-EG). The present invention also provides a process for the preparation of the compound of the formula (la) or (lb) defined above which comprises the step of transesterfication of a compound of formula (1l) or (ll): WO 2007/033418 PCT/AU2006/001380 -4 0 HO R H INOIN0 R2 OH \ n 00 n or (II) (III) in which R 2 and n are as defined above 5 with a compound of formula (IV)
HOR
1 OH (IV) in which R 1 is as defined above. It will be appreciated that the compound of formula (I) may be used in combination with a conventional chain extender. 10 According to another aspect of the present invention there is provided a chain extender composition comprising the compound formula (1) defined above and a conventional chain extender. The chain extender and chain extender composition are particularly useful in preparing biocompatible biodegradable polyurethane or polyurethane is ureas for biomedical applications. According to a still further aspect of the present invention there is provided a biocompatible biodegradable polyurethane or polyurethane urea comprising a segment formed from the chain extender or chain extender composition defined above. 20 In one embodiment the biocompatible biodegradable polyurethane or polyurethane urea comprises a reaction product of an isocyanate, polyol and the chain extender or chain extender composition defined above. In another embodiment, the biocompatible biodegradable polyurethane or polyurethane urea may also be prepared using only an isocyanate and a 25 chain extender or chain extender composition defined above. The chain extender in this instance has a dual functionality as both a chain extender and a polyol. The biocompatible biodegradable polyurethanes or polyurethane ureas are particularly useful as scaffolds for coronary artery, blood vessels or cardiac 30 tissue, wound repair, plastic or cosmetic surgery, nerve regeneration, spinal disc repair or augmentation, orthopaedic or tissue engineering applications.
WO 2007/033418 PCT/AU2006/001380 -5 Thus, the present invention also provides a biocompatible biodegradable polymeric scaffold comprising a cross-linked or linear polyurethane or polyurethane urea as defined above. In one embodiment, the scaffold is a stent; stent coating; bone 5 substitute; bone filler; bone cement; an orthopaedic fixation scaffold such as a screw, pin, plate or spinal cage or a dart arrow, pin or adhesive for soft tissue repair including meniscal and articular cartilage, tendons ligaments and connective tissue; or a filler for vertobroplasty or kyphoplasty. The present invention further provides a medical device or composition 10 which is wholly or partly composed of the scaffold defined above. DETAILED DESCRIPTION Chain Extender The term "chain extender" refers to a lower molecular weight compound 15 having two or more functional groups that are reactive towards isocyanate and having a molecular weight of less than 400. The chain extenders of the present invention have one or more hydrolysable (degradable) functional groups in the backbone. The term "hydrolysable (degradable) functional group" refers to any molecular moiety 20 which may be part of the chain extender and is preferably biocompatible and bioresorbable on in vivo degradation of the biocompatible biodegradable polyurethane or polyurethane urea which is formed from the chain extender. The chain extenders of the present invention are based on ester diols of a-hydroxy acids or dicarboxylic acids which optionally contain free radically 25 polymerisable functional group(s) in the backbone. When these chain extenders are used either alone or in combination with conventional chain extenders to form polyurethanes or polyurethane ureas, the polyurethanes degrade at faster rates than those based on conventional chain extenders. Furthermore, the polyurethanes or polyurethane ureas degrade to low molecular weight 30 compounds due to the degradation of the hard segment which is formed from the chain extenders of the present invention at rates comparable to that of the soft segment which results in minimum levels of oligomeric hard segment species among the degradation products. The chain extenders based on ester diols of dicarboxylic acids provide two hydrolysable (degradable) functional 35 groups within the chain extender backbone to facilitate even faster break down of the hard segment structure. The presence of a free radically poymerisable functional group in the backbone also facilitates cross linking of the hard WO 2007/033418 PCT/AU2006/001380 - 6 segment. Polyurethanes or polyurethane ureas based on these chain extenders can be processed and subsequently cross linked to form network structures with improved mechanical properties. Preferred chain extenders of formula (1) have the formula (la) and (Ib) 5 shown below. HO 0 R O OH 0 (la) HO 0 R2 0 OH 15 0 0 (Ib) 20 in which R 1 to R 3 are as defined above, preferably optionally substituted C 1
-
6 alkylene or optionally substituted C 2
-
6 alkenylene. Representative examples of a compound of formula (la) are as follows: 0 HOO HOO OH Hydroxy-acetic acid 3-hydroxy-propyl ester (GA-1,3-PD) 0 30 HO O OH 6-hydroxy-hexanoic acid 2-hydroxyethyl ester (CL-EG) 0 HO OOH 6-hydroxy-hexanoic acid 4-hydroxybutyl ester (CL-BDO) 35 Representative examples of a compound of formula (lb) are as follows: 0 OH O0 0 OH 0 40 Ethylene glycol succinic acid diester diol (EG-Suc-EG) (Succinic acid bis-(2-hydroxy-ethyl) ester) WO 2007/033418 PCT/AU2006/001380 -7 0 5HO OH 0 10 Ethylene glycol fumaric acid diester diol (EG-Fum-EG) (Trans-but-2-enedioic acid bis-(2-hydroxy-ethyl) ester) The terms "C 1
..
20 alkylene" and "C 2
-
20 alkenylene" are the divalent radical equivalents of the terms "C..
20 alkyl" and "C2-20 alkenyl" respectively. The two 15 bonds connecting the alkylene or alkenylene to the adjacent groups may come from the same carbon atom or different carbon atoms in the divalent radical. The term "C1.20 alkyl" refers to linear, branched or cyclic hydrocarbon groups having from 1 to 20 carbon atoms, preferably from 1 to 6 carbon atoms. Illustrative of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, sec 20 butyl, tert-butyl, pentyl, neopentyl, hexyl, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. The term "alkenyl" refers to linear or branched hydrocarbon groups having at least one carbon-carbon double bond of 2 to 20 carbon atoms, preferably from 2 to 6 carbon atoms. Examples of alkenyl include ethenyl, 25 propenyl, allyl, propenyl, butenyl and 4-methylbutenyl. The term "aryl" refers to a carbocyclic aromatic system containing one, two or three rings wherein such rings may be attached together in a pendent manner or may be fused. The term "aryl" embraces aromatic radicals such as phenyl, naphthyl, tetrahydronaphthyl, indane and biphenyl. 30 The term "heterocyclyl" refers to saturated or unsaturated, monocyclic or polycyclic hydrocarbon group containing at least one heteroatom selected from nitrogen, sulphur and oxygen Suitable heterocyclic groups include N-containing heterocyclic groups, such as, unsaturated 3 to 6-membered heteromonocyclic groups 35 containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl or tetrazolyl; saturated 3 to 6-membered heteromonocyclic groups containing 1 to 4 nitrogen atoms, such as, pyrrolidinyl, imidazolidinyl, piperidino or piperazinyl; 40 unsaturated condensed heterocyclic groups containing I to 5 nitrogen atoms, such as indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl or tetrazolopyridazinyl; WO 2007/033418 PCT/AU2006/001380 -8 unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, such as, pyranyl or furyl; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulphur atoms, such as, thienyl; 5 unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as, oxazolyl, isoxazolyl or oxadiazolyl; saturated 3 to 6-membered heteromonocyclic group containing I to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as, morpholinyl; 10 unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as, benzoxazolyl or benzoxadiazolyl; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulphur atoms and 1 to 3 nitrogen atoms, such as, thiazolyl or 15 thiadiazolyl; saturated 3 to 6-membered heteromonocyclic group containing I to 2 sulphur atoms and 1 to 3 nitrogen atoms, such as, thiazolidinyl; and unsaturated condensed heterocyclic group containing 1 to 2 sulphur atoms and 1 to 3 nitrogen atoms, such as, benzothiazolyl or 20 benzothiadiazolyl. The term "optionally substituted" refers to a group may or may not be further substituted with one or more groups selected from C 1
.
6 alkyl, C 2
-
6 alkenyl, C 2
-
6 alkynyl, aryl, halo, halo C 1
-
6 alkyl, halo C 2
-
6 alkenyl, haloC 2
-
6 alkynyl, haloaryl, hydroxy, C 1
.
6 alkoxy, C2-6alkenyloxy, C 1
-
6 aryloxy, benzyloxy, 25 halo C 1 .Ealkoxy, haloalkenyloxy, haloaryloxy, nitro, nitroC 1
-
6 alkyl, nitroC 2 6 alkenyl, nitroC 2
-
6 alkynyl, nitroaryl, nitroheterocyclyl, amino, C1- 6 alkylamino,
C
1
-
6 dialkylamino, C 2
-
6 alkenylamino, C2- 6 alkynylamino, arylamino, diarylamino, benzylamino, dibenzylamino, acyl, alkenylacyl, alkynylacyl, arylacyl, acylamino, diacylamino, acyloxy, C 1
.
6 alkylsulphonyloxy, arylsulphenyloxy, heterocyclyl, 30 heterocyclyloxy, heterocyclylamino, haloheterocyclyl, C 1
.
6 alkylsulphenyl, arylsulphenyl, carboalkoxy, carboaryloxy, mercapto, C 1 -ralkylthio, benzylthio, acylthio, phosphorus-containing groups and the like. Preferred optional substituents are methyl, ethyl, propyl, butyl, and phenyl. Process 35 The chain extenders may be prepared by transesterification of an x-hydroxy acid or dicarboxylic acid polymer of formula (11) with an alkane diol of formula (111) which is preferably present in an excess amount. Examples of a- Received 20/07/ 2007 9 hydroxy acids include glycolic acid, L-Lactic acid, D,L-lactic acid, 3-hydroxy propionic acid, 4-hydroxy butyric acid, 3- hydroxy butyric acid and 5-hydroxy pentanoic acid. Examples of dicarboxylic acids include succinic acid, fumaric and rnaleic acid. Examples of alkane diols~include ethylene glycol, propylene glycol, 5 butane diol, pentane diol and hexane diol. The chain extender prepared by this process may then be purified' using any suitable known technique such as fractional distillation, solvent fractionation, chromatographic separation such as preparative gel permeation or high performance liquid chromatography. Chain Extender Composition 10 The conventional chain extender is preferably difunctional and may be diols, dithiols, diamines, amino acids or dicarboxylic acids. Examples include diols such as ethylene glycol, diethylene glycol, tetraethylene glycol, 1,3-propane diol, 1,4-butane diol and 1,6-hexane diol; diamines such as butane diamine, ethanolamine, glycine and lysine; and dithiols such as alkyldithiols, i.e. ethane or 15 propane dithiol. Polyurethane or Polyurethane Ureas The biocompatible biodegradable polyurethanes or polyurethane ureas of the present invention are preferably prepared by reacting an isocyanate, polyol and the chain extender or chain extender composition defined above. 20 Preferably the polyurethanes or polyurethane ureas are thermoplastic and of the general formula: H H ~ H H O, O N N1 ,.-- I N N ..... ' Ry Rx Rz Rx L 0q_0 r 25 in which R, is from the isocyanate, Ry is from the chain extender and R, is from the soft segment polyol. The pronumeral 'q' represents the average number of repeat units in the hard segment. The pronumeral r' represents the average number of repeat units in the soft segment. The pronumeral 's' is proportional to Amended Sheet
IPEA/AT
Received 20/07/ 2007 9/1 the molecular weight of the polymer and includes both the hard segments repeat units and the soft segment. 'q' is an integer between 1 and 100; 'r' is an integer between 0 and 100, and '' is an integer between 1 and 500. Isocyanates suitable for preparation of the polyurethanes or polyurethane 5 ureas of the invention are those which are selected from the group consisting of optionally substituted aliphatic, aromatic and hindered isocyanates or isothiocyanates. Preferably the isocyanate is a diisocyanate. Amended Sheet
IPEA/AU
WO 2007/033418 PCT/AU2006/001380 - 10 Examples include isophorone diisocyanate, cyclohexane diisocyanate and the following: ONO 5 1ON NCO MLDI - lysine diisocyanate methyl ester 0 0 10 OCN NCO ELDI - lysine diisocyanate ethyl ester 15 OCN BDI - Butane diisocyanate 20 OCN NNO HDI - hexamethylene diisocyanate 2 5 CON H 2 NCO
H
12 MDI - 4,4' - methylene-bis(cyclohexyl isocyanate) SCN NCS 3 0 Dicyclohexylmethane diiso(thio) cyanate SCN Butanediiso(thio)cyanate WO 2007/033418 PCT/AU2006/001380 - 11 NCS SCN Hexane diiso(thio)cyanate The term "polyol" refers to a molecule which has at least two or more 5 functional hydroxyl groups that can react with isocyanate groups to form urethane groups. Examples of polyols include but are not limited to diols, triols, and macromers such as macrodiols. Preferably the polyol has a molecular weight of 200-5000, more preferably 200-2000, and even more preferably 200 1000, The polyol may be terminated by, for example, a hydroxyl, thiol or 10 carboxylic acid group. The structure of the polyol is preferably: 15 4 R 5 h {R6 R5 R7 00 in which h and/or k can equal 0 (as is the case of the dimer, eg, h = 0, j = 1 and k = 1) or are integers as is j and R 4 and R 7 are independently selected from hydrogen, hydroxyl, alkyl, aminoalkyl, (both primary and secondary) and 20 carboxy alkyl and R 6 and R 5 cannot be hydrogen, but can independently be a linear or branched alkyl, alkenyl, aminoalkyl, alkoxy or aryl. The molecular weight of the entire structure is preferably 120 to 400. Less preferably the molecular weight can be up to 2000 and much less preferably above 2000. Four examples of suitable soft segments are as follows: 25 0 Poly(E-caprolactone) diol, MW 400: in which R 6 is (CH 2
-CH
2 ), R 5 is
(CH
2
)
5 , R 4 and R 7 are both H, and j = 1 and (h+k)=2.96 e (Glycolic acid - ethylene glycol) dimer: in which R 6 is (CH 2
-CH
2 ), R 5 is
(CH
2 ), R 4 and R 7 are both H, j=1 and (h+k)=1 * Poly(ethylene glycol), MW 400: in which h=0, k=0, j=-13, R 6 is (CH 2 30 CH 2 ), R 4 and R 7 are both H * Poly(ethylene glycol) bis(3-aminopropyl) terminated (Aldrich); in which R is (CH 2
-CH
2 ), R 4 and R 7 are both -(CH 2
)
2
NH
2 , j=34 and (h+k) = 0 Either or both R 6 and R 7 can contain nonlinear structures, for example where R' =(CH 2
CHCH
3 ) which is lactic acid. However, the R 6 and R 7 should 35 preferably not contain groups such as OH and NH 2 which are likely to cause crosslinking. Suitable compounds include but are not limited to the following polyester polyols: WO 2007/033418 PCT/AU2006/001380 - 12 o_ 0 j0 H 0 0 OH PGA - Poly-(glycolic acid) diol, in which R is typically -(CH 2
CH
2
)
5 0 1 0 H -1 O--h R O1 H PLA - Poly-(lactic acid)diol, in which R is typically -(CH 2
CH
2
)
10 o 0 H O O--R--O O- H PCL-Poly-(s-caprolactone) diol, in which R is typically -(CH 2
CH
2
)
15 H k OH PEG - Poly-(ethylene glycol) 20 Examples of other polyols which may act as soft segments include poly (4-hydroxybutyrate) diol (P4HB diol), poly-(3-hydroxybutyrate) diol (P3HB diol), polypropylene glycol and any copolymers thereof including PLGA diol, P(LA/CL) diol and P(3HB/4HB) diol. Polymeric Scaffolds 25 Polyols with hydroxyl functionalities greater than 2 can be used when preparing thermoset (cross linked) polymers. It has been found that the polyurethanes or polyurethane ureas according to the invention form porous and non-porous cross-linked or linear polymers which can be used as tissue engineering scaffolds. It has also been 30 found that certain of the biodegradable polyurethanes or polyurethane ureas WO 2007/033418 PCT/AU2006/001380 - 13 according to the invention exhibit a glass transition between room temperature and 370C. This property can be used to extrude hard materials on FDM apparatus (going in at 20*C) which will soften and even become elastomeric in vivo or while groups cells on scaffolds in a bioreactor at physiological 5 temperatures of 37*C. This is also a very useful property for soft tissue applications. The polymers in both cross linked and linear form can be used to fabricate various types of scaffolds. For example, the linear polymers can be fabricated to form fibres using techniques such as reactive extrusion. The 10 fibres can be woven or knitted to fabricate membranes useful in applications such as wound repair. Likewise, polymers in both form can be machined or lathed to form orthopaedic fixation scaffolds such as screws, pins, plates and spinal cages. Such devices are typically prepared by compression moulding the polymers as a solid or porous block and machined to form the appropriate is scaffold structure. The polyurethanes or polyurethane ureas can be sterilized without risk to their physical and chemical characteristics, preferably using gamma radiation to ensure sterility. The polyurethanes or polyurethane ureas may incorporate biological and 20 inorganic components selected for their ability to aid tissue repair in vivo. When cured, the polyurethanes or polyurethane ureas according to the invention form a biodegradable biocompatible scaffold which may be porous and contain interpenetrating polymer networks so as to enable the inclusion of biological and inorganic components. These biological and inorganic components which 25 are preferably selected from the groups consisting of cells, progenitor cells, growth factors, other components for supporting cell growth, drugs, calcium phosphate, hydroxyapatite, hyaluronic acid, nonparticulate tricalcium phosphate and hydroxyapatite type fillers, radio opaque substances including barium sulfate and barium carbonate, adhesives including fibrin, collagen and 30 transglutaminase systems, surfactants including siloxane surfactants, silica particles, powdered silica, hollow fibres which may be used to seed cells in the polyurethanes, and other porogens including for example, gelatin beads. The biological and inorganic components may be present in quantities according to need, especially in the case of the living additives such as cells and progenitor 35 cells. Amounts of up to a least 20%w/w may be acceptable. The scaffolds may preferably incorporate biological and inorganic components which are desirably selected from the group consisting of cells, WO 2007/033418 PCT/AU2006/001380 - 14 progenitor cells, growth factors, other components for supporting cells growth, drugs, calcium phosphate, hydroxyapatite, hyaluronic acid, non particulate tricalcium phosphate and hydroxyapatite type fillers, adhesives including fibrin, collagen and transglutaminase systems, surfactants including siloxane 5 surfactants, silica particles, powdered silica, hollow fibres which may be used to seed cells in the polyurethanes or polyurethane ureas, and other porogens including, for example, gelatin beads. The biological and inorganic components may be present in quantities according to need, especially in the case of the living additives such as cells and progenitor cells. Amounts of up to at least 10 20% w/w may be acceptable. Preferably the cured scaffolds according to this aspect of the invention have a compressive strength in the range of 0.05-200 MPa The compressive strength of the scaffold will vary according to its porosity and according to the biological components added. Preferably the scaffolds have pores in the size 15 range of 100-500 micron, more preferably 150-300 micron. More preferably the porous scaffolds are seeded with living biological components or drugs selected so as to aid the tissue repair process in the patient being treated. The biological components so selected may be cells, progenitor cells, growth factors and other components for supporting cell 20 growth. Suitable cells may include osteoblasts, chondrocytes, fibroblasts or other precursor cells. Suitable drugs are any which assist in the tissue engineering application of interest. Preferably the scaffold is a biodegradable stent useful in treatment of coronary heart disease. In another aspect of the invention, the biodegradable 25 biocompatible polyurethanes or polyurethane ureas of the invention are used as stent coatings in the treatment of coronary heart disease. There is also provided a use of polyurethanes or polyurethane ureas according to the invention in tissue repair or engineering comprising inserting in a subject in need of such treatment a scaffold comprising a cross-linked or 30 linear biocompatible biodegradable polyurethane or polyurethane urea according to the invention. In the description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an 35 inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.
WO 2007/033418 PCT/AU2006/001380 - 15 DETAILED DESCRIPTION OF THE DRAWINGS in the Examples, reference will be made to the accompanying drawings in which: 5 Figure 1 is an IR Spectrum of GA-1,3-PD, NaCl plate; Figure 2 is a 'HNMR Spectrum of GA-1,3-PD in deuterated DMSO; 10 Figure 3 is a 13 CNMR Spectrum of GA-1,3-PD in deuterated DMSO; Figure 4 is a 'HNMR Spectrum of CL-EG Dimer; and 15 Figure 5 is a 1 HNMR Spectrum of CL-BDO Dimer. EXAMPLES EXAMPLE I - Preparation of glycolic acid-1,3-propanediol ester diol (GA 20 1,3-PD) Step one - polycondensation or dehydration - 56.7g of glycolic acid was heated at 2200C to remove water for 5 hours under nitrogen out gassing in a large round-bottomed flask equipped with a magnetic stirrer bead, a still-head 25 sidearm and condenser to collect the water runoff. The resulting product was polyglycolic acid (PGA), a white solid polymer. Step two - transesterification - To approximately 43g of white solid PGA was added 283.6g of 1,3-propane diol (five to one mole ratio) and the 30 temperature set at 2000C for a period of 17 hours and 30 minutes of transesterification. The glycolic acid ester diol was purified by fractional distillation as outlined below. Step three - Purification by fractional distillation - The dimer-containing 35 liquid was then heated on the Kugelrohr at 50'C under vacuum (0.01-0.001torr) to remove unreacted 1,3-propane diol and then the temperature was increased to 700C to distil the dimer. The dimer fraction was collected and then distilled a WO 2007/033418 PCT/AU2006/001380 - 16 second time to remove any 1,3-propane diol present. The GA-1,3-PD was a white somewhat slurry-like solid. In total there was 53g GA-1,3-PD dimer (53% yield). 5 The chemical structure and properties of the ester diol prepared are summarised in Table 1 below: Table 1: Properties of GA-1,3-PD Abbreviation Chemical Structure Characterisation GA-1,3-PD 0 0 IR, 'HNMR. 13 CNMR HO O H (Figures 1 to 3) 10 EXAMPLE 2 - Preparation of dicarboxylic ester diol chain extenders Step one - Condensation - 23.6g of succinic acid (a diacid) was heated with 248g of ethylene glycol (1:10 mole ratio) to 1700C for 20 hours under is nitrogen out gassing in a round-bottomed flask equipped with a magnetic stirrer bead, a still-head sidearm and condenser to collect the water runoff. Step two - Purification by fractional distillation - The product from step one was then heated under vacuum (0.01 torr) on the Kugelrohr to remove 20 ethylene glycol at 40-50*C and then increased to 1200C to distil the EG-Suc-EG trimer which came over as a colourless liquid. Yield was 22.7g, (55.1% yield). Table 2: Properties of dicarboxylic acid ester diols Chemical Structure Characterisation EG-Suc-EG HO o IR, 1 HNMR, O OH 1 CNMR 0p EG-Fum-EG HO o IR, 1 HNMR, 0OH 13 CNMR 25 EXAMPLE 3 - Preparation of polyurethanes using chain extenders of Examples I and 2 Materials: Poly(E-caprolactone), (PCL), soft segments (molecular weight 426) were dried at 900C for 4 hours under vacuum (0.1 torr). HDI (Aldrich) was used WO 2007/033418 PCT/AU2006/001380 - 17 as received (colourless). Stannous octoate (Aldrich) was kept moisture free and used as received. The chain extender was synthesised and distilled then kept sealed, refrigerated and dry until use. Method: A mixture of PCL soft segment diol (35.000g), chain extender 5 (21.311g) and stannous octoate (0.050g) were weighed into a 100 ml predried polypropylene beaker, covered with aluminium foil and heated to 700C under nitrogen in a laboratory oven. HDI (43.689g) was weighed in a separate wet tared predried polypropylene beaker and also heated to 70 0 C. The HDI was then added to the diol/EG/stannous octoate beaker and stirred manually until 10 gelation occurred, at which time the hot viscous mixture was poured onto a Teflon@ coated metal tray to cure at 100*C for a period of about 18 hours. The resulting polymer was clear and colourless. Table 3: Composition of polyurethanes containing degradable chain extenders 15 Polyurethane Hard segment Chain extender, HDI (g) PCL-426 (g) Stannous % (g) Octoate (g) 1 65 GA-1,3PD, 42.306 35.000 0.050 22.694 2 65 EG-Suc-EG, 15.782 15.000 0.043 12.075 3 65 EG-Fum-EG, 15.835 15.000 0.043 12.022 4* 65 EG, 36.732 25.000 0.071 9.696 5* 35 EG, 10.121 20.000 0.031 0.648 * Comparative polyurethanes formed using the non-degradable chain extender EG Degradation was conducted on 1mm thick melt-pressed specimens in 20 PBS buffer pH7.4 for 3 months at 371C. The method for degradation was as per ASTM International standard F 1635: Standard Test Method for In vitro Degradation Testing of Poly (L-lactic Acid) Resin and Fabricated Form for Surgical Implants. In short, the conditions were: Polymers were meltpressed to 100-200pm thick and strips were cut 5mm WO 2007/033418 PCT/AU2006/001380 - 18 x 45mm, buffer was 0.1M PBS pH 7.4, temperature was 370C, solution:specimen ratio was between 100:1 and 300:1, 0.1% sodium azide was added as antimicrobial, samples were all placed in a 50rpm agitated incubator, 6 specimens per material and only one specimen per jar. 5 Table 4: Mass loss and GPC molecular weights before and after degradation of the polyurethanes of Table 3 Pre Degradation Post Degradation PU % Mass Mn Mw PD Mn Mw PD %AMn Loss 1 0.88± 0.1 28,096 46,838 1.67 18,596 31,122 1.67 66.2 2 2.82± 0.2 15,802 26,973 1.71 13,071 20,673 1.58 82.7 3 0.51± 0.2 34,123 91,025 2.67 19,281 38,163 1.98 56.5 4* 0.42±0.2 121,842 443,397 3.64 118,803 531,502 4.47 2.5 5* 1.91 ±0.2 16,953 29,660 1.75 16,920 29,013 1.71 0.2 10 EXAMPLE 4 - Preparation of CL-EG dimer s-caprolactone (114.14g) and ethylene glycol (310.35g) were added to a round-bottomed flask and heated to 1900C overnight with a vertical condenser to avoid loss of reagents. The ethylene glycol was removed on the Kugelrohr (0.01-0.001 torr) at 15 40-500C and then the CL-EG dimer was distilled at 10*C. CL-EG dimer was collected and this was redistilled to remove ethylene glycol, giving 120g of CL EG dimer. The dimer was a colourless low-viscosity liquid. Characterisation was by 'HNMR (Figure 4). 20 EXAMPLE 5 - Preparation of CL-BDO dimer E-caprolactone (79.83g) and 1,4-butane diol (450.60g) were added to a round-bottomed flask and heated to 1800C over the weekend (-66 hours) with a 25 vertical condenser to avoid loss of reagents. The 1,4-butane diol was removed on the Kugelrohr (0.01-0.001 torr) at 800C and then the CL-BDO dimer was distilled at 110C. CL-BDO dimer was collected and redistilled to remove BDO, giving 63.75g of CL-BDO dimer. The WO 2007/033418 PCT/AU2006/001380 - 19 dimer was a colourless low-viscosity liquid. Characterisation was by 1 HNMR (Figure 5). EXAMPLE 6 - Comparative hydrolysis at 100 0 C 5 Two polymers from Table 3 can be compared for hydrolytic degradation at 1000C and measured by change in concentration of amine in solution (due to urethane hydrolysis). Approximately 5g of polymer is weighed out and placed in a round-bottomed flask. Distilled water is then added to the flask containing the sample such that the sample to water ratio is approximately 1:50 (to obtain 10 concentrated degradation products). The round-bottomed flask is then placed in an oil bath set to 1300C and refluxed for 24 hours with a vertical condenser. The degradation products are collected and subjected to the Ninhydrin Assay. Ninhydrin Assay: Ninhydrin Reagent Solution is obtained from Sigma, product code number N 7285. The protocol on the product information sheet is followed 15 with regard to the assay as well as the preparation of the standard curve. EXAMPLE 7 - Preparation of cross linked polymers incorporating degradable chain extenders. A prepolymer of pentaerythritol (PE) with ELDI (2.0g) is weighed into a 20 glass vial. Degassed and dried dimer from Table 3 0.461 g (MW 120) is added to the prepolymer. The mixture is manually stirred using a spatula for 3 minutes with stannous 2-ethyl hexanoate catalyst (0.002g, 0.1% based on based on total weight of prepolymer) and is degassed under a vacuum for 5 min. The viscous mixture is taken into a 2.5 ml syringe and dispensed 0.33 g into each 25 cylindrical cavity(6 mm D x 12 mm L) in a multi-cavity Teflon mould and cured overnight at 380C to give cylindrical polymer test specimens. A second polymer is prepared by incorporating 5 wt-% of P-tricalcium phosphate (TCP, 5 micron particle size). TCP is added to the reactant mixture and stirred using a high speed mechanical stirrer for uniform distribution. 30 The cured polymer samples is tested using Instron (Model 5568) for compressive strength and modulus according to ASTM method F451-756. EXAMPLE 8 35 Materials: Poly(ethylene glycol (PEG) (molecular weight 1000) is dried at 900C for 4 hours under vacuum (0.1 torr). HDI (Aldrich) is used as received.
WO 2007/033418 PCT/AU2006/001380 - 20 Stannous octoate (Aldrich) is kept moisture free and used as received. The chain extender is synthesised using the procedure described in Example 1. The distilled product is kept sealed under refrigerated and dry conditions until use. 5 Method: The polymer is prepared using the method described in Example 3. A mixture of polyethylene glycol (10.000g), chain extender (1.713 g), EG (1.330 g) and stannous octoate (0.010g) are weighed into a 100 ml predried polypropylene beaker, covered with aluminium foil and heated to 70*C 10 under nitrogen in a laboratory oven. HDI (7.862g) is weighed in a separate wet tared predried polypropylene beaker and heated to 70'C. HDI is then added to the polyol/chain extender mixture in a beaker and stirred manually for 3 min. The viscous mixture is then poured onto a Teflon@ coated metal tray and cured at 1000C for a period of about 18 hours in a nitrogen circulating oven. 15 It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of 20 the inventive concept disclosed in this specification. 25 30 35

Claims (25)

1. A compound of formula (la) or (Ib) when used as a chain extender to produce a biocompatible, biodegradable polyurethane or polyurethane urea, HO / R2 O OH 0 (1a) HO 0 R2 O OH 0 0 (Ib) wherein R 1 , R 2 and R 3 are independently selected from optionally substituted C1.20 alkylene and optionally substituted C2-20 alkenylene, both of which may be optionally interrupted by optionally substituted aryl or optionally substituted heterocycle, and wherein in formula (la) when R 1 is (CH 2 ) 2 , then R 2 is not CH 2 , CHCH 3 or (CH 2 ) 3 .
2. The use according to claim 1 in which R 1 to R 3 are independently selected from optionally substituted C1-6 alkylene and optionally substituted C2-6 alkenylene.
3. The use according to claim 1 or claim 2 wherein the compound of formula (la) is as follows: 0 HO Hydroxy-acetic acid 3-hydroxy-propyl ester (GA-1,3-PD) 0 OO
6-hydroxy-hexanoic acid 2-hydroxyethyl ester(CL-EG) 0 OO 6-hydroxy-hexanoic acid 4-hydroxybutyl ester(CL-BDO) 4. The use according to claim 1 or claim 2 wherein the compound of formula (Ib) is as follows: 0 OHO 0 Ethylene glycol succinic acid diester diol (EG-Suc-EG) (Succinic acid bis-(2-hydroxy-ethyl) ester) 0 HOO OOH 0 Ethylene glycol furnaric acid diester diol (EG-Fum-EG) (Trans-but-2-enedioic acid bis-(2-hydroxy-ethyl) ester) 5. The use according to any one of claims 1 to 4 wherein the chain extender has a molecular weight of less than 400. 6. The use according to claim 1 wherein the compound of formula (la) is E caprolactone and ethylene glycol dimer (CL-EG).
7. The use according to any one of claims I to 5 wherein the chain extender comprising the compound of formula (la) or (Ib) comprises another chain extender.
8. The use according to claim 7 wherein the other chain extender is a diol, dithiol, diamine, amino acid or dicarboxylic acid.
9. The use according to any one of claims 1 to 8 wherein the preparation of the compound of formula (la) or (I b) comprises the step of transesterification of a compound of formula (II) or (111): 0 O R H R2 eOH n -L.. n or (II) (Ill) in which R 2 is as defined in claim 1 with a compound of formula (IV) HOR 1 OH (IV) in which R 1 is as defined in claim 1.
10. A biocompatible biodegradable polyurethane or polyurethane urea comprising a segment formed from the chain extender as used in any one of claims 1 to 8.
11. A biocompatible biodegradable polyurethane or polyurethane urea which comprises a reaction product of an isocyanate, polyol and the chain extender as used in any one of claims 1 to 8.
12. A polyurethane or polyurethane urea according to claim 11 in which the polyurethane or polyurethane urea is thermoplastic and of the general formula: H H H H I I I 0 R o N N.."" RX_- o o -N RZ1- " N yRX Rz Rx 0 0 q 0 0 r n wic in which Rx is from the isocyanate, Ry is from the chain extender and R7 is from the soft segment polyol; q' is the average number of repeat units in the hard segment; 'r' is the average number of repeat units in the soft segment; and 's' is proportional to the molecular weight of the polymer and includes both the hard segments repeat units and the soft segment; and in which 'q' is an integer between 1 and 100, 'r' is an integer between 0 and 100, and 's' is an integer between 1 and 500.
13. A polyurethane or polyurethane urea according to claim 12, in which the isocyanate is a diisocyanate.
14. A polyurethane or polyurethane urea according to claim 12, in which the polyol is a diol, triol, tetrol, hexol or macrodiol.
15. A polyurethane or polyurethane urea according to claim 12, in which the polyol is terminated by a hydroxyl, thiol or carboxylic acid group.
16. A polyurethane or polyurethane urea according to claim 12, in which the polyol is: R4 O R5 O 0R5 O R7 04 " h { R 6 1 {j R BR 0 in which h and/or k can equal 0 (as is the case of the dimer, eg, h = 0,1 = 1 and k = 1) or are integers as is j, and R 4 and R 7 are independently selected from hydrogen, hydroxyl, alkyl, aminoalkyl, (both primary and secondary) and carboxy alkyl and R 6 and R 5 cannot be hydrogen, but can independently be a linear or branched alkyl, alkenyl, aminoalkyl, alkoxy or aryl.
17. A polyurethane or polyurethane urea according to claim 16, in which the polyol is selected from the group consisting of: poly(s-caprolactone) diol, MW 400: in which R 6 is (CH 2 -CH 2 ), R 5 is (CH 2 ) 5 , R 4 and R 7 are both H, and j = 1 and (h+k)=2.96; (glycolic acid - ethylene glycol) dimer: in which R 6 is (CH 2 -CH 2 ), R 5 is (CH 2 ), R 4 and R 7 are both H, j=1 and (h+k)=1; poly(ethylene glycol), MW 400: in which h=0, k=Q, j=-1 3, R 6 is (CH-CH 2 ), R 4 and R 7 are both H; and poly(ethylene glycol) bis(3-aminopropyl) terminated (Aldrich); in which R is (CH 2 -CH 2 ), R 4 and R 7 are both -(CH 2 ) 2 NH 2 , j=34 and (h+k) = 0.
18. A polyurethane or polyurethane urea according to claim 16 in which the polyol is selected from the group consisting of: 0 0 H O R O O H PGA - Poly-(glycolic acid) diol, in which R is -(CH 2 CH 2 ) H h R 0 k H PLA - Poly-(lactic acid)diol, in which R is -(CH 2 CH 2 ) 0 0 H O OR, O H PCL-Poly-(s-caprolactone) diol, in which R is -(CH 2 CH 2 ) HI k OH PEG - Poly-(ethylene glycol)
19. A polyurethane or polyurethane urea according to claim 11, in which the polyol has a molecular weight of 200-5000, 200-2000 or 200-1000.
20. A biocompatible biodegradable polyurethane or polyurethane urea which comprises a reaction product of an isocyanate and a chain extender as used in any one of claims 1 to 8.
21. A biocompatible biodegradable polymeric scaffold comprising a cross-linked or linear polyurethane or polyurethane urea as defined in claim 11 or 20.
22. A scaffold according to claim 21, in which the polyurethane or polyurethane urea includes biological and inorganic components.
23. A scaffold according to claim 21 having a compressive strength of 0.05-200 MPa.
24. A scaffold according to claim 21 which is used in coronary, artery, blood vessels or cardiac tissue, wound repair, plastic or cosmetic surgery, nerve regeneration, spinal disc repair or augmentation or orthopaedic or tissue engineering applications.
25. A scaffold according to claim 21 which is a stent, stent coating, bone substitute, bone filler, bone cement or orthopaedic fixation scaffold or a filler for vertobroplasty or kyphoplasty.
26. A scaffold according to claim 23 in which the orthopaedic fixation scaffold is a screw, pin, plate or spinal cage or a dart, arrow, pin or adhesive for soft tissue repair.
27. A medical device or composition which is wholly or partly composed of the scaffold according to claim 21.
AU2006294414A 2005-09-20 2006-09-20 Chain extenders Active AU2006294414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006294414A AU2006294414B2 (en) 2005-09-20 2006-09-20 Chain extenders

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2005905192A AU2005905192A0 (en) 2005-09-20 Chain Extenders
AU2005905192 2005-09-20
PCT/AU2006/001380 WO2007033418A1 (en) 2005-09-20 2006-09-20 Chain extenders
AU2006294414A AU2006294414B2 (en) 2005-09-20 2006-09-20 Chain extenders

Publications (2)

Publication Number Publication Date
AU2006294414A1 AU2006294414A1 (en) 2007-03-29
AU2006294414B2 true AU2006294414B2 (en) 2012-05-24

Family

ID=39338379

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2006294414A Active AU2006294414B2 (en) 2005-09-20 2006-09-20 Chain extenders

Country Status (1)

Country Link
AU (1) AU2006294414B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979912B (en) * 2021-02-25 2022-07-12 苏州大学 Ultra-high-toughness polylactic acid-based polyurethane urea and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007899A (en) * 1958-07-16 1961-11-07 Union Carbide Corp Polyurethane (ester glycol) compositions
WO2002009655A2 (en) * 2000-07-27 2002-02-07 L'oreal Reshapable hair styling composition comprising polyurethane dispersions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3007899A (en) * 1958-07-16 1961-11-07 Union Carbide Corp Polyurethane (ester glycol) compositions
WO2002009655A2 (en) * 2000-07-27 2002-02-07 L'oreal Reshapable hair styling composition comprising polyurethane dispersions

Also Published As

Publication number Publication date
AU2006294414A1 (en) 2007-03-29

Similar Documents

Publication Publication Date Title
US10844158B2 (en) Chain extenders
AU2008307139B2 (en) High modulus polyurethane and polyurethane/urea compositions
JP4335448B2 (en) Biomedical polyurethane, its preparation and use
JP5496457B2 (en) Biodegradable polyurethane and polyurethaneurea
US4804691A (en) Method for making a biodegradable adhesive for soft living tissue
AU734927B2 (en) Silicon-based polycarbonates
Park et al. Catalyst-free synthesis of high elongation degradable polyurethanes containing varying ratios of isosorbide and polycaprolactone: physical properties and biocompatibility
WO2013155173A2 (en) Methods and compositions relating to biodegradable epoxy elastomers
Khan et al. Manipulation of polycarbonate urethane bulk properties via incorporated zwitterionic polynorbornene for tissue engineering applications
AU2006294414B2 (en) Chain extenders
US6143893A (en) 1,4-bis{β-[N-methyl-N-(2-hydroxyethyl)amino]propionyl}piperazine and process for its preparation
AU2005223917B2 (en) Biodegradable polyurethane and polyurethane ureas
Herath Synthesis and characterization of novel biodegradable crosslinked polyesters
JP2008120888A (en) Biodegradable copolymer and method for producing the same
Jamiolkowski et al. The Poly (a-Esters)
US20110105633A1 (en) Functionalized stilbene-polyalkylene oxide prepolymers

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)