WO2022174624A1 - 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法 - Google Patents

一种耐高温抗氧化轻质隔热泡沫材料及其制备方法 Download PDF

Info

Publication number
WO2022174624A1
WO2022174624A1 PCT/CN2021/128855 CN2021128855W WO2022174624A1 WO 2022174624 A1 WO2022174624 A1 WO 2022174624A1 CN 2021128855 W CN2021128855 W CN 2021128855W WO 2022174624 A1 WO2022174624 A1 WO 2022174624A1
Authority
WO
WIPO (PCT)
Prior art keywords
sihfbcn
sibcn
foam material
room temperature
precursor
Prior art date
Application number
PCT/CN2021/128855
Other languages
English (en)
French (fr)
Inventor
陈治宇
李俊宁
许艺芬
孙陈诚
胡继东
胡子君
冯志海
Original Assignee
航天材料及工艺研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天材料及工艺研究所 filed Critical 航天材料及工艺研究所
Priority to EP21926338.1A priority Critical patent/EP4151611A4/en
Publication of WO2022174624A1 publication Critical patent/WO2022174624A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/486Boron containing organic compounds, e.g. borazine, borane or boranyl
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6028Shaping around a core which is removed later
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Definitions

  • the invention belongs to the technical field of high-temperature thermal insulation materials, in particular to a high-temperature, oxidation-resistant, lightweight thermal insulation foam material and a preparation method thereof, and more particularly to a SiBCN foam material, SiHfBCN foam material or SiBCN/C composite foam material, SiHfBCN/C composite foam material and preparation method thereof.
  • Foam materials with high porosity, low density and low thermal conductivity are common thermal insulation materials, such as polyurethane foam, alumina foam, silicon carbide foam, carbon foam, etc.
  • foam materials light carbon foam with three-dimensional network structure has broad application prospects in the field of thermal insulation due to its advantages of low density, low thermal conductivity, low thermal expansion coefficient, and good high temperature stability.
  • carbon foam can be used in an inert environment at a temperature of up to 2000 °C, it is easily oxidized in an aerobic environment. The long-term use temperature in the air is only 350 °C, and its mechanical strength is low, which limits its application. Therefore, the development of a lightweight foam insulation material with high temperature resistance and anti-oxidation functions has important application value.
  • the present invention aims to provide a high-temperature, oxidation-resistant, lightweight thermal insulation foam material and a preparation method thereof.
  • the SiBCN foam material, SiHfBCN foam material or SiBCN/C composite material prepared by the present invention Foam material, SiHfBCN/C composite foam material has the advantages of high temperature resistance, low thermal conductivity, oxidation resistance, low density and high strength.
  • the first aspect of the present invention provides a high-temperature, oxidation-resistant and lightweight thermal insulation foam material, which adopts the following technical solutions:
  • the foam material is one of SiBCN foam material, SiHfBCN foam material, SiBCN/C composite foam material or SiHfBCN/C composite foam material, the foam material is composed of a precursor
  • the bulk solution is prepared through template dipping, curing, drying and cracking processes;
  • the precursor solution is SiBCN precursor solution or SiHfBCN precursor solution
  • the template is polyurethane foam or organic carbon modified polyurethane foam
  • the SiBCN precursor used for preparing the SiBCN precursor solution is polyborosilazane
  • the SiHfBCN precursor used for preparing the SiHfBCN precursor solution is hafnium-containing polyborosilazane.
  • SiBCN/C composite foam material is a composite foam material formed by attaching SiBCN material to the surface of C layer
  • SiHfBCN/C composite foam material is a composite foam material formed by attaching SiHfBCN material to the surface of C layer.
  • the polyurethane foam is used as the template
  • the SiBCN precursor solution or the SiHfBCN precursor solution is the dipping solution
  • the steps of dipping, curing, drying and cracking are sequentially performed to obtain the SiBCN foam material or the SiHfBCN foam material, wherein, the polyurethane foam is selected as the template
  • the main purpose is that the polyurethane foam material has a unique pore structure, and the raw materials are easily available and low in cost.
  • the polyurethane foam material will be ablated and there will be no residue, so as to obtain a SiBCN foam material with a porous structure or SiHfBCN foam material;
  • the main purpose of selecting the SiBCN precursor solution as the impregnation solution is that the free carbon of the SiBCN precursor will combine with BN during the solidification and cracking (ie, the ceramic conversion process) to form a BNC x structure, which can greatly reduce the free carbon.
  • the reaction activity and the diffusion rate of atoms in the system hinder the carbothermal reduction reaction of free carbon and Si 3 N 4 in SiBCN foam materials .
  • the SiBCN foam material has good high temperature resistance and oxidation resistance; the main purpose of selecting the SiHfBCN precursor solution as the impregnation solution is that the high temperature element Hf in the SiHfBCN precursor can further improve the high temperature resistance of the foam material.
  • the Si x O y Hf z structure can prevent the diffusion of oxygen atoms, so that the SiHfBCN ceramic foam also has good oxidation resistance.
  • the organic carbon modified polyurethane foam is used as a template, and the SiBCN precursor solution or the SiHfBCN precursor solution is used as the dipping solution, and the steps of dipping, curing, drying and cracking are sequentially performed to obtain the SiBCN/C composite foam material or the SiHfBCN/C composite foam.
  • the material, wherein the organic carbon modified polyurethane foam is selected as the template the main purpose is to use the organic carbon source to modify the polyurethane foam, so as to obtain a polyurethane foam material with a carbon skeleton, and then in the subsequent cracking process, the polyurethane foam material will be Ablation without residue, thus realizing the composite of carbon skeleton and SiBCN foam material to obtain SiBCN/C multilayer skeleton foam material, and the composite of carbon skeleton and SiHfBCN foam material to obtain SiHfBCN/C multilayer skeleton foam material.
  • Carbon has a higher temperature resistance rating, and the foam material with the C layer has higher temperature resistance performance, and the strength retention rate of the foam material with the C layer is higher under high temperature conditions.
  • the density of the SiBCN foam material is greater than or equal to 0.07g/cm 3 , the compressive strength at room temperature is greater than or equal to 0.3MPa, and the thermal conductivity at room temperature is greater than or equal to 0.046W /(m ⁇ K); the density of the SiHfBCN foam material is greater than or equal to 0.11g/cm 3 , the compressive strength at room temperature is greater than or equal to 0.45MPa, and the thermal conductivity at room temperature is greater than or equal to 0.053W/(m ⁇ K); the SiBCN/C composite foam The density of the material is greater than or equal to 0.09g/cm 3 , the compressive strength at room temperature is greater than or equal to 0.38MPa, and the thermal conductivity at room temperature is greater than or equal to 0.052W/(m ⁇ K); the density of the SiHfBCN/C composite foam material is greater than or equal to 0.13
  • the second aspect of the present invention provides a preparation method of a high temperature resistant and oxidation resistant lightweight thermal insulation foam material, comprising the following steps:
  • SiBCN precursor solution or SiHfBCN precursor solution are dipping solution, and successively carry out dipping operation, curing operation, drying operation, cracking operation to obtain high temperature resistant lightweight thermal insulation foam material;
  • the SiBCN precursor solution or the SiHfBCN precursor solution is obtained by dissolving the SiBCN precursor or the SiHfBCN precursor in an organic solvent, adding a catalyst and mixing evenly, and the SiBCN precursor is polyborosilazane; the SiHfBCN precursor The body is hafnium-containing polyborosilazane.
  • the dipping process means that the template is completely dipped into the dipping solution for adsorption, and the dipping process is completed when the template adsorption is saturated; influential.
  • the mass fraction of the SiBCN precursor in the SiBCN precursor solution or the mass fraction of the SiHfBCN precursor in the SiHfBCN precursor solution is 5% to 80% (such as 7%, 25%). , 38%, 46%, 57%, 68%, 75%), the mass of the catalyst is 0.5% to 5% of the mass of the SiBCN precursor or the SiHfBCN precursor (such as 0.8%, 1.5%, 2.5%, 3.5%, 4.5%); preferably, the mass fraction of the SiBCN precursor in the SiBCN precursor solution or the mass fraction of the SiHfBCN precursor in the SiHfBCN precursor solution is 10% to 30% (such as 12%, 15%, 18% %, 22%, 25%).
  • the mass fraction of the SiBCN precursor solution or the SiHfBCN precursor solution has an influence on the microstructure, density, strength and thermal conductivity of the obtained foam material.
  • the higher the mass fraction of the SiBCN precursor solution or the SiHfBCN precursor solution The higher the density, the higher the strength and the higher the thermal conductivity of the obtained foam material; the purpose of adding a catalyst to the SiBCN precursor solution or SiHfBCN precursor solution is to catalyze the curing reaction in the curing process. If the concentration of the catalyst added If the concentration is too high, the reaction rate will be too high, which is not conducive to the formation of a uniform porous structure of the foam; if the concentration of the catalyst added is too low, the reaction will be too slow.
  • the organic solvent is a liquid alkane, preferably, the organic solvent is selected from hexane, heptane, octane, nonane, decane, undecane, dodecane , at least one of tridecane and their isomers; more preferably, the organic solvent is at least one of n-hexane, n-octane and n-nonane.
  • the main purpose of selecting the above-mentioned organic solvent is that such solvent can dissolve SiBCN precursor or SiHfBCN precursor, and at the same time will not dissolve polyurethane foam material, can be compatible with polyurethane foam material, and the above-mentioned organic solvent is non-toxic or low-toxic. When used, it will not cause harm to human health.
  • the catalyst is dicumyl peroxide, dibenzoyl peroxide, azobisisobutyronitrile, azobisisoheptanenitrile, and divinylbenzene. at least one; preferably, the catalyst is at least one of dicumyl peroxide and divinylbenzene.
  • the organic carbon-modified polyurethane foam is prepared by immersing the polyurethane foam in an organic carbon source, and then curing the organic carbon source attached to the polyurethane foam;
  • the organic carbon source is selected from furfuryl alcohol, phenolic resin or resorcinol-formaldehyde sol; more preferably, in the process of preparing the organic carbon-modified polyurethane foam, the curing is performed under nitrogen or argon.
  • the temperature rises from room temperature to 50°C at a heating rate of 0.01 to 10°C/min (such as 0.05°C/min, 0.5°C/min, 1°C/min, 5°C/min, 8°C/min). After ⁇ 200°C (eg 80°C, 100°C, 120°C, 140°C), keep the temperature for 2-96h (eg 5h, 20h, 45h, 62h, 85h) to cross-link and solidify the organic carbon source to obtain the organic carbon modification.
  • 2-96h eg 5h, 20h, 45h, 62h, 85h
  • the organic carbon source when it is furfuryl alcohol, it also includes adding formic acid or methyl p-toluenesulfonate as a catalyst to the furfuryl alcohol; preferably, when the catalyst is formic acid (formic acid)
  • the concentration of formic acid that is, the ratio of formic acid quality to furfuryl alcohol volume is 40-65g/L (such as 45g/L, 48g/L, 52g/L, 58g/L, 62g/L);
  • the catalyst is methyl p-toluenesulfonate
  • the mass ratio of the methyl p-toluenesulfonate and the furfuryl alcohol is (0.004-0.08): 1 (such as 0.008: 1, 0.01: 1, 0.03: 1, 0.05: 1, 0.078:1).
  • the organic carbon source when it is a phenolic resin, it also includes adding hexamethylenetetramine as a catalyst to the phenolic resin, and adding absolute ethanol as a solvent; preferably , the mass ratio of the hexamethylenetetramine to the phenolic resin is 1:(4-9) (such as 1:5, 1:6, 1:7, 1:8); preferably, the phenolic resin
  • the resin concentration that is, the ratio of the mass of the phenolic resin to the volume of anhydrous ethanol, is 0.1 to 0.2 g/mL (for example, 0.12 g/mL, 0.14 g/mL, 0.16 g/mL, 0.18 g/mL).
  • the organic carbon source when it is a resorcinol-formaldehyde sol, it also includes adding sodium carbonate, sodium hydroxide, hydrogen as a catalyst to the resorcinol-formaldehyde sol.
  • At least one of barium oxide, and adding deionized water as a solvent preferably, the mol ratio of the resorcinol to the formaldehyde is 1:2; preferably, the resorcinol and the The molar ratio of the catalyst is (50 ⁇ 1000):1 (such as 100:1, 300:1, 500:1, 700:1, 900:1); the molar ratio of the resorcinol to deionized water is ( 0.01 ⁇ 0.5):1 (such as 0.05:1, 0.20:1, 0.35:1, 0.45:1).
  • the purpose of adding a catalyst at the same time is to catalyze the curing reaction of the organic carbon source.
  • the polyurethane foam used is a reticulated open-cell structure, and the average pore size is 1 ⁇ m-1mm (such as 20 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 800 ⁇ m); preferably, the density of the polyurethane foam is 0.025-0.1 g/cm 3 (such as 0.030 g/cm 3 , 0.040 g/cm 3 , 0.050 g/cm 3 , 0.070 g/cm 3 , 0.090 g /cm 3 ), the porosity is above 92%.
  • the average pore size of the polyurethane foam is too small, which is unfavorable for the preparation of block materials, and the obtained foam material is easy to crack;
  • the vacuum degree of the impregnation is 10Pa ⁇ 105Pa (such as 100Pa, 500Pa, 103Pa , 104Pa ), the immersion time is 0.1-2h (such as 0.5h, 0.8h, 1.2h, 1.5h).
  • the polyurethane foam directly used as a template has a reticulated open-cell structure, with an average pore size of 1 ⁇ m-1 mm (such as 20 ⁇ m, 100 ⁇ m, 300 ⁇ m, 500 ⁇ m, 800 ⁇ m); preferably,
  • the density of the polyurethane foam is 0.025-0.1 g/cm 3 (such as 0.030 g/cm 3 , 0.040 g/cm 3 , 0.050 g/cm 3 , 0.070 g/cm 3 , 0.090 g/cm 3 ), and the porosity is 92% or more.
  • the vacuum degree of the impregnation is 10Pa ⁇ 105Pa (such as 100Pa, 500Pa, 103Pa , 104Pa ), and the impregnation time is 0.1 ⁇ 105Pa 2h (eg 0.5h, 0.8h, 1.2h, 1.5h).
  • the curing process is performed under non-oxygen sealing conditions (non-oxygen, non-gas circulation conditions) at a temperature of 0.01 to 5°C/min (such as 0.05°C/min, 0.5°C/min. min, 1°C/min, 2°C/min, 4°C/min) from room temperature to 100-280°C (such as 120°C, 150°C, 220°C, 240°C), and then hold for 2-8h (such as 3h, 4h, 5h, 6h, 7h).
  • non-oxygen sealing conditions non-oxygen, non-gas circulation conditions
  • the heating rate is too large, the obtained foam material is easy to crack, and if the heating rate is too small, the curing process cycle will be too long and the energy consumption will be high.
  • the drying process is performed in an inert environment of nitrogen or argon (non-oxygen, gas flow) at a temperature of 0.01 to 1 °C/min (such as 0.03 °C/min, 0.08 °C /min, 0.1°C/min, 0.5°C/min, 0.8°C/min) heating rate from room temperature to 100-280°C (such as 120°C, 150°C, 220°C, 240°C), then keep for 4-24h (eg 5h, 10h, 15h, 18h, 22h).
  • nitrogen or argon non-oxygen, gas flow
  • the main purpose of carrying out the drying process is to remove the organic solvent in the system; in the drying process, if the heating rate is too large, the obtained foam material is easy to crack, and if the heating rate is too small, the drying process cycle will be shortened. Too long and high energy consumption.
  • the cracking process is carried out in an inert environment of nitrogen or argon at a temperature of 0.1 to 5 °C/min (such as 0.3 °C/min, 0.5 °C/min, 1 °C/min. min, 2°C/min, 4°C/min) heating rate from room temperature to 800-1500°C (eg 1000°C, 1100°C, 1200°C, 1300°C, 1400°C), keep for 2-8h (eg 3h) , 4h, 5h, 6h, 7h).
  • a temperature of 0.1 to 5 °C/min such as 0.3 °C/min, 0.5 °C/min, 1 °C/min. min, 2°C/min, 4°C/min
  • the heating rate in the cracking process, if the heating rate is too large, the obtained foam material is easy to crack; if the heating rate is too small, the cracking process cycle will be too long and the energy consumption will be high; If the temperature is too high, the thermal conductivity of the obtained foam will be too high, and if the cracking temperature is too low, the cracking will be insufficient.
  • the present invention has the following beneficial effects:
  • the SiBCN foam material and SiHfBCN foam material prepared by the invention have the advantages of light weight and high strength, excellent oxidation resistance and low thermal conductivity, and SiBCN, SiHfBCN and carbon have good compatibility, and the prepared SiBCN/C composite foam
  • the material or SiHfBCN/C composite foam material has the advantages of light weight and high strength, high temperature resistance, low thermal conductivity and oxidation resistance.
  • Fig. 1 is a flow chart of the preparation process of SiBCN foam material or SiHfBCN foam material
  • Fig. 2 is a flow chart of the preparation process of SiBCN/C syntactic foam material or SiHfBCN/C syntactic foam material;
  • FIG. 3 is an infrared spectrum of the SiBCN foam material sample prepared in Example 1 of the present application.
  • FIG. 4 is the XRD pattern of the SiHfBCN foam material sample prepared in Example 2 of the present application.
  • FIG. 5 is a microscopic topography diagram of the SiBCN foam material sample prepared in Example 1 of the present application.
  • FIG. 6 is a microscopic topography diagram of the SiBCN foam material sample prepared in Example 5 of the present application.
  • FIG. 7 is a microscopic topography diagram of the SiBCN foam material sample prepared in Example 6 of the present application.
  • the SiBCN precursor used in the following examples is polyborosilazane, which was purchased from the Institute of Chemistry, Chinese Academy of Sciences or Shandong Zibo Qiquan Industry and Trade Co., Ltd. (the number-average molecular weight of polyborosilazane is 400-600 g/mol, and the viscosity at 80° C.
  • the SiHfBCN precursor used (500-1000g/mol of hafnium-containing polyborosilazane, and the room temperature viscosity is 100-500cp) is self-made in the laboratory (see the following for the specific preparation method), wherein the polysilazane HTT1800 It is a polysilazane containing vinyl active groups (its molecular structure is as follows), purchased from Guangzhou Honghai Chemical Technology Co., Ltd., and the rest of the raw materials can be purchased from the market.
  • SiHfBCN precursor At room temperature, toluene solvent was pre-added in a Schlenk reactor filled with an inert gas atmosphere, and polysilazane HTT1800 was dissolved in toluene to prepare a solution with a volume fraction of 40%; then the volume fraction was 6 % Hf(NEt 2 ) 4 toluene solution was added dropwise to the Schlenk reactor (wherein the volume ratio of Hf(NEt 2 ) 4 and polysilazane HTT1800 was 1:9), and stirred for 2 h after mixing; the reaction system was cooled down After reaching -50°C, a 6% volume fraction of borane dimethyl sulfide BH 3 ⁇ (CH 3 ) 2 S toluene solution was added dropwise to the mixture (wherein BH 3 ⁇ (CH 3 ) 2 S and poly The volume ratio of silazane HTT1800 was 1:18), and stirred for 2 hours; then the reaction system was heated to room temperature for 24
  • a specific embodiment of the present invention provides a light-weight thermal insulation foam material with high temperature resistance and oxidation resistance, wherein, the preparation method of SiBCN foam material or SiHfBCN foam material, referring to FIG. 1, includes the following steps:
  • Preparation of precursor solution Dissolve the SiBCN precursor in an organic solvent to prepare a 5wt%-80wt% SiBCN precursor solution, add 0.5% to 5% catalyst of the SiBCN precursor mass, and stir for a period of time until Mix evenly; or, dissolve the SiHfBCN precursor in an organic solvent to prepare a 5wt%-80wt% SiHfBCN precursor solution, add 0.5% to 5% of the SiHfBCN precursor mass to the catalyst, and stir for a period of time until the mixture is uniform;
  • Impregnation process immerse the polyurethane foam template with an average pore size of 1 ⁇ m-1mm in the above-mentioned SiBCN precursor solution or SiHfBCN precursor solution, the immersion vacuum degree is 10Pa ⁇ 105Pa, and the immersion time is 0.1 ⁇ 2h;
  • SiBCN pre-solid foam or SiHfBCN pre-solid foam is raised from room temperature to 800-1500° C. at a heating rate of 0.1-5° C./min under an inert environment of nitrogen or argon, and then kept at a temperature of 0.1-5° C./min.
  • SiBCN foam material or SiHfBCN foam material is obtained.
  • Another specific embodiment of the present invention provides a high temperature resistant and oxidation resistant lightweight thermal insulation foam material, wherein the preparation method of SiBCN/C composite foam material or SiHfBCN/C composite foam material, see FIG. 2 , includes the following steps:
  • Preparation of precursor solution Dissolve the SiBCN precursor in an organic solvent to prepare a 5wt%-80wt% SiBCN precursor solution, add 0.5%-5% catalyst of the SiBCN precursor mass, and stir for a period of time until Mix evenly; or, dissolve the SiHfBCN precursor in an organic solvent to prepare a 5wt%-80wt% SiHfBCN precursor solution, add 0.5% to 5% of the SiHfBCN precursor mass to the catalyst, and stir for a period of time until the mixture is uniform;
  • Impregnation process the above-mentioned organic carbon modified polyurethane foam template is dipped in SiBCN precursor solution or SiHfBCN precursor solution, the vacuum degree of dipping is 10Pa ⁇ 105Pa, and the dipping time is 0.1 ⁇ 2h;
  • SiBCN/C pre-solid foam or SiHfBCN/C pre-solid foam is raised from room temperature to 800-1500 °C at a heating rate of 0.1-5 °C/min under an inert environment of nitrogen or argon. After °C, the temperature is kept for 2 to 8 hours to obtain SiBCN/C composite foam material or SiHfBCN/C composite foam material.
  • Embodiment 1 SiBCN foam material its preparation method comprises the steps:
  • Impregnation process The polyurethane foam template with a size of 200mm ⁇ 200mm ⁇ 35mm, an average pore diameter of 300 ⁇ m, a density of 0.032g/cm 3 and a porosity of 92.6% is immersed in the above-mentioned precursor solution at normal pressure, and the immersion time is 10min;
  • the density test is carried out in accordance with GB/T 17911-2006 (Test method for refractory ceramic fiber products); the room temperature compressive strength test is carried out in accordance with GB/T 1453-2005 (Sandwich structure or core flat compression performance test method); The thermal conductivity test was carried out in accordance with GB/T 10295-2008 (thermal flow meter method for the determination of steady-state thermal resistance and related properties of thermal insulation materials).
  • the microscopic morphology of the prepared SiBCN foam material sample is shown in Figure 5.
  • the material density is 0.17g/cm 3
  • the room temperature compressive strength is 0.8MPa
  • the room temperature thermal conductivity is 0.06W/(m ⁇ K).
  • Heat treatment in air at 1500°C for 20min the weight loss rate is 1.01%
  • the linear shrinkage rate is 0.67%.
  • Embodiment 2 SiHfBCN foam material its preparation method comprises the steps:
  • precursor solution Dissolve the SiHfBCN precursor in n-tridecane, prepare a 10wt% SiHfBCN precursor solution, add 0.5% SiHfBCN precursor mass dicumyl peroxide catalyst, seal and stir 10min to mix evenly;
  • Impregnation process The polyurethane foam template with a size of 200mm ⁇ 200mm ⁇ 35mm, an average pore diameter of 400 ⁇ m, a density of 0.026g/cm 3 , and a porosity of 94.2% was vacuum-dipped in the above SiHfBCN precursor solution, and the degree of vacuum was 10 3 Pa, the immersion time is 30min;
  • the microscopic morphology of the prepared SiHfBCN foam sample is not much different from that in Figure 5.
  • the material density is 0.21 g/cm 3
  • the room temperature compressive strength is 1.1 MPa
  • the room temperature thermal conductivity is 0.067 W/(m ⁇ K).
  • the weight loss rate was 1.69% and the linear shrinkage rate was 1.36% when treated in air at 1600°C for 1000s.
  • Embodiment 3 SiBCN/C syntactic foam material its preparation method comprises the steps:
  • organic carbon-modified polyurethane foam template Mix furfuryl alcohol and formic acid to form an organic carbon source solution with a formic acid concentration of 50 g/L and stir evenly, so that the size is 200 mm ⁇ 200 mm ⁇ 35 mm, the average pore size is 400 ⁇ m, and the density is 400 ⁇ m.
  • a polyurethane foam template with a porosity of 0.026 g/cm 3 and a porosity of 94.2% was immersed in the above organic carbon source at normal pressure for 60 min; and then in an argon inert gas environment, the temperature was increased from the chamber at a heating rate of 1 °C/min. After the temperature was raised to 100 °C, the temperature was kept for 1 h to cross-link and solidify the organic carbon source to obtain the organic carbon modified polyurethane foam;
  • precursor solution Dissolve SiBCN precursor in n-octane to prepare 10wt% SiBCN precursor solution, add 0.5% SiBCN precursor mass dicumyl peroxide catalyst into it, seal and stir for 10min until evenly mixed;
  • the microscopic morphology of the prepared SiBCN/C porous composite foam material is not much different from that in Figure 5.
  • the material density is 0.23 g/cm 3
  • the room temperature compressive strength is 1.0 MPa
  • the room temperature thermal conductivity is 0.067 W/(m ⁇ K)
  • the material was treated at 1500°C for 20min
  • the weight loss rate was 1.32%
  • the linear shrinkage was 0.96%.
  • Embodiment 4 SiHfBCN/C syntactic foam material its preparation method comprises the steps:
  • organic carbon-modified polyurethane foam template Mix furfuryl alcohol and formic acid to form an organic carbon source solution with a formic acid concentration of 50 g/L and stir evenly, so that the size is 200 mm ⁇ 200 mm ⁇ 35 mm, the average pore size is 400 ⁇ m, and the density is 400 ⁇ m.
  • the polyurethane foam template with a porosity of 0.026 g/cm 3 and a porosity of 94.2% was immersed in the above organic carbon source solution at normal pressure for 60 minutes; After the room temperature was raised to 80 °C, the temperature was kept for 2 h to cross-link and solidify the organic carbon source to obtain the organic carbon modified polyurethane foam;
  • the microscopic morphology of the prepared SiBCN/C porous composite foam material is not much different from that in Figure 5.
  • the material density is 0.26 g/cm 3
  • the compressive strength at room temperature is 1.5 MPa
  • the room temperature thermal conductivity is 0.074 W/(m ⁇ K).
  • the material was treated in air at 1600°C for 1000s, the weight loss rate was 2.08%, and the linear shrinkage rate was 1.63%.
  • Example 5 and Example 1 are the same as Example 1 except that the preparation of the precursor solution in S1 is different,
  • Example 5 the preparation of the precursor solution: the SiBCN precursor was dissolved in n-nonane to prepare a 20wt% SiBCN precursor solution, and 2.5% of the SiBCN precursor mass was added with dicumyl peroxide. Catalyst, seal and stir for 20 minutes until the mixture is uniform;
  • the microscopic morphology of the prepared SiBCN foam material sample is shown in Figure 6.
  • the material density is 0.32g/cm 3
  • the room temperature compressive strength is 3.83MPa
  • the room temperature thermal conductivity is 0.08W/(m ⁇ K).
  • Heat treatment in air at 1500°C for 20min the weight loss rate is 0.95%
  • the linear shrinkage rate is 0.68%.
  • Example 6 is the same as Example 1 except that the preparation of the precursor solution in S1 is different from Example 1,
  • Example 6 the preparation of the precursor solution: the SiBCN precursor was dissolved in n-nonane to prepare a 30wt% SiBCN precursor solution, and 5% by mass of the SiBCN precursor was added with dicumyl peroxide. Catalyst, seal and stir for 30 minutes until the mixture is uniform;
  • the microscopic morphology of the prepared SiBCN foam material sample is shown in Figure 7.
  • the material density is 0.6g/cm 3
  • the room temperature compressive strength is 7.2MPa
  • the room temperature thermal conductivity is 0.18W/(m ⁇ K).
  • Heat treatment in air at 1500°C for 20min the weight loss rate is 0.84%
  • the linear shrinkage rate is 0.59%.
  • Example 7 and Example 2 are the same as Example 2 except that the preparation of the precursor solution in S1 is different,
  • Example 7 the preparation of the precursor solution: the SiHfBCN precursor was dissolved in n-tridecane to prepare a 20wt% SiHfBCN precursor solution, and the SiHfBCN precursor mass 2.5% of diisopropyl peroxide was added to it. Benzene catalyst, seal and stir for 20min until the mixture is uniform;
  • the microscopic morphology of the prepared SiHfBCN foam material sample is not much different from that in Figure 6.
  • the material density is 0.36 g/cm 3
  • the room temperature compressive strength is 4.09 MPa
  • the room temperature thermal conductivity is 0.1 W/(m ⁇ K).
  • the weight loss rate was 1.53% and the linear shrinkage rate was 1.19% when treated in air at 1600°C for 1000s.
  • Example 8 and Example 2 are the same as Example 2 except that the preparation of the precursor solution in S1 is different,
  • Example 8 the preparation of the precursor solution: the SiHfBCN precursor was dissolved in n-tridecane to prepare a 30wt% SiHfBCN precursor solution, and 5% of the SiHfBCN precursor mass was added with diisopropyl peroxide. Benzene catalyst, seal and stir for 30min until the mixture is uniform;
  • the microscopic morphology of the prepared SiHfBCN foam sample is not much different from that in Figure 7.
  • the material density is 0.78 g/cm 3
  • the room temperature compressive strength is 7.6 MPa
  • the room temperature thermal conductivity is 0.22 W/(m ⁇ K).
  • the weight loss rate was 1.07% and the linear shrinkage rate was 0.85% when treated in air at 1600°C for 1000s.
  • Example 9 and Example 3 are the same as Example 3 except that the preparation of the precursor solution in S2 is different,
  • Example 9 the preparation of S2 and precursor solution: the SiBCN precursor was dissolved in n-octane to prepare a 20wt% SiBCN precursor solution, and 2.5% of the SiBCN precursor mass was added with dicumyl peroxide. Catalyst, seal and stir for 20 minutes until the mixture is uniform;
  • the microscopic morphology of the prepared SiBCN/C porous composite foam material is not much different from that in Figure 6.
  • the material density is 0.37 g/cm 3
  • the room temperature compressive strength is 3.91 MPa
  • the room temperature thermal conductivity is 0.09 W/(m ⁇ K)
  • the material was treated at 1500°C for 20min
  • the weight loss rate was 1.21%
  • the linear shrinkage was 0.92%.
  • Example 10 and Example 3 are the same as Example 3 except that the preparation of the precursor solution in S2 is different,
  • precursor solution Dissolve the SiBCN precursor in n-octane to prepare a 30wt% SiBCN precursor solution, add a dicumyl peroxide catalyst with 5% by weight of the SiBCN precursor, and seal and stir for 30min until evenly mixed;
  • the microscopic morphology of the prepared SiBCN/C porous composite foam material is not much different from that in Figure 7.
  • the material density is 0.68 g/cm 3
  • the room temperature compressive strength is 7.4 MPa
  • the room temperature thermal conductivity is 0.19 W/(m ⁇ K)
  • the material was treated at 1500°C for 20min
  • the weight loss rate was 1.08%
  • the linear shrinkage was 0.77%.
  • Example 11 and Example 4 are the same as Example 4 except that the preparation of the precursor solution in S2 is different,
  • Example 11 the preparation of S2 and precursor solution: the SiHfBCN precursor was dissolved in n-nonane to prepare a 20wt% SiHfBCN precursor solution, and 2.5% of the SiHfBCN precursor mass was added with dicumyl peroxide. Catalyst, seal and stir for 20 minutes until the mixture is uniform;
  • the microscopic morphology of the prepared SiBCN/C porous composite foam material is not much different from that in Figure 6.
  • the material density is 0.41 g/cm 3
  • the room temperature compressive strength is 4.15 MPa
  • the room temperature thermal conductivity is 0.12 W/(m ⁇ K).
  • the material was treated in air at 1600°C for 1000s, the weight loss rate was 1.87%, and the linear shrinkage rate was 1.46%.
  • Example 12 and Example 4 are the same as Example 4 except that the preparation of the precursor solution in S2 is different,
  • Example 12 the preparation of S2 and the precursor solution: the SiHfBCN precursor was dissolved in n-nonane to prepare a 30wt% SiHfBCN precursor solution, and dicumyl peroxide with 5% by mass of the SiHfBCN precursor was added to it. Catalyst, seal and stir for 30 minutes until the mixture is uniform;
  • the microscopic morphology of the prepared SiBCN/C porous composite foam material is not much different from that in Figure 7.
  • the material density is 0.82 g/cm 3
  • the room temperature compressive strength is 8.63 MPa
  • the room temperature thermal conductivity is 0.25 W/(m ⁇ K).
  • the material was treated in air at 1600°C for 1000s, the weight loss rate was 1.59%, and the linear shrinkage rate was 1.37%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

一种耐高温抗氧化轻质隔热泡沫材料及其制备方法,所述泡沫材料为SiBCN泡沫材料、SiHfBCN泡沫材料、SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料中的一种,所述泡沫材料由前驱体溶液经模板浸渍、固化、干燥、裂解工序制备得到;其中,所述前驱体溶液为SiBCN前驱体溶液或SiHfBCN前驱体溶液;所述模板为聚氨酯泡沫或者有机碳改性聚氨酯泡沫;制备得到的SiBCN泡沫材料、SiHfBCN泡沫材料或者SiBCN/C复合泡沫材料、SiHfBCN/C复合泡沫材料具有耐高温、低热导率、抗氧化、密度低、强度高的优点。

Description

一种耐高温抗氧化轻质隔热泡沫材料及其制备方法 技术领域
本发明属于高温隔热材料技术领域,具体涉及一种耐高温抗氧化轻质隔热泡沫材料及其制备方法,更具体地涉及一种SiBCN泡沫材料、SiHfBCN泡沫材料或者SiBCN/C复合泡沫材料、SiHfBCN/C复合泡沫材料及其制备方法。
背景技术
泡沫材料孔隙率高、密度小、热导率低,是常见的隔热材料,如聚氨酯泡沫、氧化铝泡沫、碳化硅泡沫、碳泡沫等。在上述泡沫材料中,具有三维网状结构的轻质碳泡沫因具有密度小、热导率低、热膨胀系数低、高温稳定性好等优点使其在隔热领域有着广阔的应用前景。然而,碳泡沫虽然在惰性环境下使用温度可达2000℃,但却在有氧环境下极易氧化,空气中长时间使用温度仅为350℃,且力学强度偏低从而导致其应用受到限制。因此,研制一种具有耐高温和抗氧化功能的轻质泡沫隔热材料具有重要的应用价值。
发明内容
针对现有技术存在的不足及缺陷,本发明旨在提供一种耐高温抗氧化轻质隔热泡沫材料及其制备方法,通过本发明制备得到的SiBCN泡沫材料、SiHfBCN泡沫材料或者SiBCN/C复合泡沫材料、SiHfBCN/C复合泡沫材料具有耐高温、低热导率、抗氧化、密度低、强度高的优点。
为了实现上述目的,本发明第一方面提供了一种耐高温抗氧化轻质隔热泡沫材料,采用如下技术方案:
一种耐高温抗氧化轻质隔热泡沫材料,所述泡沫材料为SiBCN泡沫材料、SiHfBCN泡沫材料、SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料中的一种,所述泡沫材料由前驱体溶液经模板浸渍、固化、干燥、裂解工 序制备得到;
其中,所述前驱体溶液为SiBCN前驱体溶液或SiHfBCN前驱体溶液;所述模板为聚氨酯泡沫或者有机碳改性聚氨酯泡沫;用于制备SiBCN前驱体溶液的SiBCN前驱体为聚硼硅氮烷;用于制备SiHfBCN前驱体溶液的SiHfBCN前驱体为含铪聚硼硅氮烷。
SiBCN/C复合泡沫材料是SiBCN材料附着在C层表面上形成的复合泡沫材料;SiHfBCN/C复合泡沫材料是SiHfBCN材料附着在C层表面上形成的复合泡沫材料。
本发明中,以聚氨酯泡沫为模板,SiBCN前驱体溶液或SiHfBCN前驱体溶液为浸渍液,依次进行浸渍、固化、干燥、裂解工序得到SiBCN泡沫材料或SiHfBCN泡沫材料,其中,选取聚氨酯泡沫为模板,主要目的在于聚氨酯泡沫材料有着独特的孔结构,且原料易得、成本低,在裂解工序中,聚氨酯泡沫材料会被烧蚀掉且不会有残留,从而制得具有多孔结构的SiBCN泡沫材料或SiHfBCN泡沫材料;选取SiBCN前驱体溶液为浸渍液的主要目的在于,SiBCN前驱体在经固化、裂解(即陶瓷转化过程)中自由碳与BN结合会形成BNC x结构,能够极大降低自由碳的反应活性以及体系中原子的扩散速率,从而阻碍SiBCN泡沫材料中自由碳与Si 3N 4发生碳热还原反应,同时泡沫材料中特殊的SiO xN 4-x结构也会阻止氧原子的扩散,使得SiBCN泡沫材料具有良好的耐高温性能和抗氧化性能;选取SiHfBCN前驱体溶液为浸渍液的主要目的在于,SiHfBCN前驱体中的高温元素Hf能够进一步提高泡沫材料的耐高温性能,以及氧化后形成的Si xO yHf z结构能够阻止氧原子扩散,从而使得SiHfBCN陶瓷泡沫也具有良好的抗氧化性能。
本发明中,以有机碳改性聚氨酯泡沫为模板,SiBCN前驱体溶液或SiHfBCN前驱体溶液为浸渍液,依次进行浸渍、固化、干燥、裂解工序得到SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料,其中,选取有机碳改性聚氨酯泡沫为模板,主要目的在于利用有机碳源将聚氨酯泡沫进行改性,从而得到具有碳骨架的聚氨酯泡沫材料,然后在后续裂解工序中,聚氨酯泡沫材料会被烧蚀掉且不会有残留,从而实现碳骨架与SiBCN泡沫材料复合制得SiBCN/C多层骨架泡沫材料,碳骨架与SiHfBCN泡沫材料复合制得SiHfBCN/C多层骨架泡沫材料。碳的耐温等级更高,具有C层的泡沫材 料具有更高的耐温性能,另外高温条件下具有C层的泡沫材料的强度保留率更高。
在上述耐高温抗氧化轻质隔热泡沫材料中,作为一种优选实施方式,所述SiBCN泡沫材料的密度≥0.07g/cm 3,常温压缩强度≥0.3MPa,室温热导率≥0.046W/(m·K);所述SiHfBCN泡沫材料的密度≥0.11g/cm 3,常温压缩强度≥0.45MPa,室温热导率≥0.053W/(m·K);所述SiBCN/C复合泡沫材料的密度≥0.09g/cm 3,常温压缩强度≥0.38MPa,室温热导率≥0.052W/(m·K);所述SiHfBCN/C复合泡沫材料的密度≥0.13g/cm 3,常温压缩强度≥0.68MPa,室温热导率≥0.062W/(m·K);优选地,所述SiBCN泡沫材料的密度为0.17-0.6g/cm 3(比如0.25g/cm 3、0.32g/cm 3、0.45g/cm 3、0.50g/cm 3、0.58g/cm 3),常温压缩强度为0.8-7.2MPa(比如1.2MPa、3.5MPa、4.8MPa、5.6MPa、6.8MPa),室温热导率为0.06-0.18W/(m·K)(比如0.08W/(m·K)、0.10W/(m·K)、0.12W/(m·K)、0.15W/(m·K));所述SiHfBCN泡沫材料的密度为0.21-0.78g/cm 3(比如0.25g/cm 3、0.32g/cm 3、0.45g/cm 3、0.50g/cm 3、0.68g/cm 3),常温压缩强度为1.1-7.6MPa(比如1.5MPa、3.5MPa、4.8MPa、5.6MPa、6.8MPa),室温热导率为0.067-0.22W/(m·K)(比如0.08W/(m·K)、0.10W/(m·K)、0.15W/(m·K)、0.18W/(m·K));所述SiBCN/C复合泡沫材料的密度为0.23-0.68g/cm 3(比如0.25g/cm 3、0.32g/cm 3、0.45g/cm 3、0.50g/cm 3、0.58g/cm 3),常温压缩强度为1.0-7.4MPa(比如1.2MPa、3.5MPa、4.8MPa、5.6MPa、6.8MPa),室温热导率为0.067-0.19W/(m·K)(比如0.08W/(m·K)、0.10W/(m·K)、0.15W/(m·K)、0.18W/(m·K));所述SiHfBCN/C复合泡沫材料的密度为0.26-0.82g/cm 3(比如0.28g/cm 3、0.32g/cm 3、0.45g/cm 3、0.62g/cm 3、0.78g/cm 3),常温压缩强度为1.5-8.63MPa(比如1.8MPa、3.5MPa、5.6MPa、6.8MPa、8.0MPa),室温热导率为0.074-0.25W/(m·K)(比如0.08W/(m·K)、0.15W/(m·K)、0.18W/(m·K)、0.20W/(m·K)、0.22W/(m·K))。
本发明第二面提供了一种耐高温抗氧化轻质隔热泡沫材料的制备方法,包括以下步骤:
以聚氨酯泡沫或者有机碳改性聚氨酯泡沫为模板,SiBCN前驱体溶液或者SiHfBCN前驱体溶液为浸渍液,依次进行浸渍工序、固化工序、干燥 工序、裂解工序得到耐高温轻质隔热泡沫材料;
其中,所述SiBCN前驱体溶液或者SiHfBCN前驱体溶液通过将SiBCN前驱体或者SiHfBCN前驱体溶解于有机溶剂中,加入催化剂混合均匀得到,所述SiBCN前驱体为聚硼硅氮烷;所述SiHfBCN前驱体为含铪聚硼硅氮烷。
本发明中,浸渍工序是指将模板完全浸渍到浸渍液中进行吸附,模板吸附饱和则浸渍工序完成;模板的结构不同,对于制得的泡沫材料的微观结构、密度、强度、热导率都有影响。
上述制备方法中,作为一种优选实施方式,所述SiBCN前驱体溶液中SiBCN前驱体的质量分数或者SiHfBCN前驱体溶液中SiHfBCN前驱体的质量分数为5%~80%(比如7%、25%、38%、46%、57%、68%、75%),所述催化剂的质量为所述SiBCN前驱体或者SiHfBCN前驱体质量的0.5%~5%(比如0.8%、1.5%、2.5%、3.5%、4.5%);优选地,所述SiBCN前驱体溶液中SiBCN前驱体的质量分数或者SiHfBCN前驱体溶液中SiHfBCN前驱体的质量分数为10%~30%(比如12%、15%、18%、22%、25%)。
本发明中,SiBCN前驱体溶液或者SiHfBCN前驱体溶液的质量分数对制得的泡沫材料的微观结构、密度、强度、热导率都有影响,SiBCN前驱体溶液或者SiHfBCN前驱体溶液的质量分数越大,制得的泡沫材料的密度越大、强度越高、热导率越高;SiBCN前驱体溶液或者SiHfBCN前驱体溶液中加入催化剂的目的在于催化固化工序中的固化反应,若加入催化剂的浓度过高,则会使得反应速率过高,从而不利于泡沫材料均匀多孔结构的形成;若加入催化剂的浓度过低,则会使得反应太慢。
上述制备方法中,作为一种优选实施方式,所述有机溶剂为液态烷烃,优选地,所述有机溶剂选自己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、十三烷及它们的同分异构体中的至少一种;更优选地,所述有机溶剂为正己烷、正辛烷、正壬烷中的至少一种。
本发明中,选择上述有机溶剂的主要目的在于此类溶剂能够溶解SiBCN前驱体或者SiHfBCN前驱体,同时不会溶解聚氨酯泡沫材料,能够和聚氨酯泡沫材料兼容且上述有机溶剂无毒或低毒性,在使用时,不会对人体健康造成伤害。
上述制备方法中,作为一种优选实施方式,所述催化剂为过氧化二异丙苯、过氧化二苯甲酰、偶氮二异丁腈、偶氮二异庚腈、二乙烯基苯中的至少一种;优选地,所述催化剂为过氧化二异丙苯、二乙烯基苯中的至少一种。
上述制备方法中,作为一种优选实施方式,所述有机碳改性聚氨酯泡沫是通过将聚氨酯泡沫浸渍于有机碳源中,然后再将附着于聚氨酯泡沫上的有机碳源固化而制得的;优选地,所述有机碳源选自糠醇、酚醛树脂或间苯二酚-甲醛溶胶中的一种;更优选地,在有机碳改性聚氨酯泡沫制备过程中,所述固化为在氮气或氩气的惰性气体环境中,以0.01~10℃/min(比如0.05℃/min、0.5℃/min、1℃/min、5℃/min、8℃/min)的升温速率从室温升至50~200℃(比如80℃、100℃、120℃、140℃)后,保温2~96h(比如5h、20h、45h、62h、85h),使有机碳源交联固化,得到所述有机碳改性聚氨酯泡沫。
上述制备方法中,作为一种优选实施方式,所述有机碳源为糠醇时,还包括向糠醇中加入作为催化剂的甲酸或对甲苯磺酸甲酯;优选地,所述催化剂为甲酸时(甲酸为分析纯甲酸),甲酸的浓度即甲酸质量与糠醇体积的比值为40-65g/L(比如45g/L、48g/L、52g/L、58g/L、62g/L);优选地,所述催化剂为对甲苯磺酸甲酯时,所述对甲苯磺酸甲酯与所述糠醇的质量比为(0.004-0.08):1(比如0.008:1、0.01:1、0.03:1、0.05:1、0.078:1)。
上述制备方法中,作为一种优选实施方式,所述有机碳源为酚醛树脂时,还包括向酚醛树脂中加入作为催化剂的六亚甲基四胺,以及加入作为溶剂的无水乙醇;优选地,所述六亚甲基四胺与所述酚醛树脂的质量比为1:(4-9)(比如1:5、1:6、1:7、1:8);优选地,所述酚醛树脂浓度即酚醛树脂质量与无水乙醇体积的比值为为0.1~0.2g/mL(比如0.12g/mL、0.14g/mL、0.16g/mL、0.18g/mL)。
上述制备方法中,作为一种优选实施方式,所述有机碳源为间苯二酚-甲醛溶胶时,还包括向间苯二酚-甲醛溶胶中加入作为催化剂的碳酸钠、氢氧化钠、氢氧化钡中的至少一种,以及加入作为溶剂的去离子水;优选地,所述间苯二酚与所述甲醛的摩尔比为1:2;优选地,所述间苯二酚与所述催化剂的摩尔比为(50~1000):1(比如100:1、300:1、500:1、700:1、900:1);所述间苯二酚与去离子水的摩尔比为(0.01~0.5):1(比如 0.05:1、0.20:1、0.35:1、0.45:1)。
本发明中,在有机碳源浸渍聚氨酯泡沫时,同时加入催化剂的目的在于催化有机碳源发生固化反应。
上述制备方法中,作为一种优选实施方式,在所述有机碳改性聚氨酯泡沫制备过程中,使用的聚氨酯泡沫为网状开孔结构,平均孔径为1μm-1mm(比如20μm、100μm、300μm、500μm、800μm);优选地,所述聚氨酯泡沫的密度为0.025-0.1g/cm 3(比如0.030g/cm 3、0.040g/cm 3、0.050g/cm 3、0.070g/cm 3、0.090g/cm 3),孔隙率在92%以上。
本发明中,聚氨酯泡沫的平均孔径太小,不利于块状材料的制备,制得的泡沫材料容易开裂;平均孔径太大,制得的泡沫材料热导率太大、强度也较低。
上述制备方法中,作为一种优选实施方式,在所述有机碳改性聚氨酯泡沫制备过程中,所述浸渍的真空度为10Pa~10 5Pa(比如100Pa、500Pa、10 3Pa、10 4Pa),浸渍时间为0.1~2h(比如0.5h、0.8h、1.2h、1.5h)。
上述制备方法中,作为一种优选实施方式,直接作为模板使用的所述聚氨酯泡沫为网状开孔结构,平均孔径为1μm-1mm(比如20μm、100μm、300μm、500μm、800μm);优选地,所述聚氨酯泡沫的密度为0.025-0.1g/cm 3(比如0.030g/cm 3、0.040g/cm 3、0.050g/cm 3、0.070g/cm 3、0.090g/cm 3),孔隙率在92%以上。
上述制备方法中,作为一种优选实施方式,所述浸渍工序中,所述浸渍的真空度为10Pa~10 5Pa(比如100Pa、500Pa、10 3Pa、10 4Pa),浸渍时间为0.1~2h(比如0.5h、0.8h、1.2h、1.5h)。
上述制备方法中,作为一种优选实施方式,所述固化工序是在非氧密封条件下(非氧、非气体流通条件),以0.01~5℃/min(比如0.05℃/min、0.5℃/min、1℃/min、2℃/min、4℃/min)的升温速率从室温升至100~280℃(比如120℃、150℃、220℃、240℃)后,保温2~8h(比如3h、4h、5h、6h、7h)。
本发明中,在固化工序中,若升温速率过大,则制得的泡沫材料容易开裂,若升温速率过小,则会使得固化工序周期太长、能耗高。
上述制备方法中,作为一种优选实施方式,所述干燥工序是在氮气或氩 气的惰性环境下(非氧、气体流通),以0.01~1℃/min(比如0.03℃/min、0.08℃/min、0.1℃/min、0.5℃/min、0.8℃/min)的升温速率从室温升至100~280℃(比如120℃、150℃、220℃、240℃)后,保温4~24h(比如5h、10h、15h、18h、22h)。
本发明中,进行干燥工序的主要目的在于脱除体系中的有机溶剂;干燥工序中,若升温速率过大,则制得的泡沫材料容易开裂,若升温速率过小,则会使得干燥工序周期太长、能耗高。
上述制备方法中,作为一种优选实施方式,所述裂解工序是在氮气或氩气的惰性环境下进行,以0.1~5℃/min(比如0.3℃/min、0.5℃/min、1℃/min、2℃/min、4℃/min)的升温速率从室温升至800~1500℃(比如1000℃、1100℃、1200℃、1300℃、1400℃)后,保温2~8h(比如3h、4h、5h、6h、7h)。
本发明中,裂解工序中,若升温速率过大,则制得的泡沫材料容易开裂,若升温速率过小,则会使得裂解工序周期太长、能耗高;若裂解工序中,裂解温度过高,则会使制得的泡沫材料的热导率过高,若裂解温度过低,则会导致裂解不充分。
本发明与现有技术相比,具有如下有益效果:
本发明制备得到的SiBCN泡沫材料、SiHfBCN泡沫材料具有轻质高强、抗氧化性能优异、热导率低的优点,且SiBCN、SiHfBCN与碳均有良好的兼容性,制备得到的SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料兼具轻质高强,耐高温,低热导率,抗氧化的优点。
附图说明
图1为SiBCN泡沫材料或SiHfBCN泡沫材料制备工艺流程图;
图2为SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料制备工艺流程图;
图3为本申请实施例1制备得到的SiBCN泡沫材料样品的红外谱图。
图4为本申请实施例2制备得到的SiHfBCN泡沫材料样品的XRD图。
图5为本申请实施例1制备得到的SiBCN泡沫材料样品的微观形貌图。
图6为本申请实施例5制备得到的SiBCN泡沫材料样品的微观形貌图。
图7为本申请实施例6制备得到的SiBCN泡沫材料样品的微观形貌图。
具体实施方式
下面结合附图和实施例对本发明的耐高温抗氧化轻质隔热泡沫材料及其制备方法进行说明。应理解,这些实施例仅用于解释本发明而不用于限制本发明的范围。对外应理解,在阅读了本发明的内容之后,本领域技术人员对本发明作各种改动和修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下实施例中所用SiBCN前驱体为聚硼硅氮烷,购买自中科院化学研究所或山东淄博齐泉工贸有限公司(聚硼硅氮烷的数均分子量为400-600g/mol,80℃粘度为100~300cp);所用SiHfBCN前驱体(含铪聚硼硅氮烷500-1000g/mol,室温粘度为100-500cp)为实验室自制(具体制备方法见下述),其中聚硅氮烷HTT1800是含乙烯基活性基团的聚硅氮烷(其分子结构式如下),购买自广州弘海化工科技有限公司,其余原料均可以从市场上购得。
聚硅氮烷HTT1800的分子结构式
Figure PCTCN2021128855-appb-000001
SiHfBCN前驱体的制备:室温下,在充满惰性气体氛围的Schlenk反应器中预先加入甲苯溶剂,将聚硅氮烷HTT1800溶解于甲苯中配制成体积分数为40%的溶液;然后将体积分数为6%的Hf(NEt 2) 4甲苯溶液逐滴加入到Schlenk反应器中(其中Hf(NEt 2) 4与聚硅氮烷HTT1800的体积比为1:9),混合后搅拌2h;将反应体系降温至-50℃后再将体积分数为6%的硼烷二甲基硫醚BH 3·(CH 3) 2S甲苯溶液逐滴加入混合液中(其中BH 3·(CH 3) 2S与聚硅 氮烷HTT1800的体积比为1:18),并搅拌2h;之后将反应体系升温至室温下反应24h;最后,真空状态下50-60℃蒸发除去甲苯后即可得到SiHfBCN前驱体。
本发明的具体实施方式提供一种耐高温抗氧化轻质隔热泡沫材料,其中,SiBCN泡沫材料或SiHfBCN泡沫材料的制备方法,参见图1,包括如下步骤:
S1、前驱体溶液的制备:将SiBCN前驱体溶解于有机溶剂中,配制成5wt%-80wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量0.5%~5%的催化剂,搅拌一段时间至混合均匀;或者,将SiHfBCN前驱体溶解于有机溶剂中,配制成5wt%-80wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量0.5%~5%的催化剂,搅拌一段时间至混合均匀;
S2、浸渍工序:将平均孔径为1μm-1mm聚氨酯泡沫模板浸渍于上述SiBCN前驱体溶液或SiHfBCN前驱体溶液中,浸渍的真空度为10Pa~10 5Pa,浸渍时间为0.1~2h;
S3、固化工序:在非氧密封条件下,以0.01~5℃/min的升温速率从室温升至100~280℃后,保温2~8h进行固化;
S4、干燥工序:在氮气或氩气的惰性环境下,以0.01~1℃/min的升温速率从室温升至100~280℃后,保温4~24h进行干燥,脱除有机溶剂,得到SiBCN预固物泡沫或SiHfBCN预固物泡沫;
S5、裂解工序:将上述SiBCN预固物泡沫或SiHfBCN预固物泡沫在氮气或氩气的惰性环境下,以0.1~5℃/min的升温速率从室温升至800~1500℃后,保温2~8h,制得SiBCN泡沫材料或SiHfBCN泡沫材料。
本发明的另一具体实施方式提供一种耐高温抗氧化轻质隔热泡沫材料,其中,SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料的制备方法,参见图2,包括如下步骤:
S1、有机碳改性聚氨酯泡沫模板的制备:通过将平均孔径为1μm-1mm的聚氨酯泡沫浸渍于有机碳源中,浸渍的真空度为10Pa~10 5Pa,浸渍时间为0.1~2h,再在氮气或氩气的惰性气体环境中,以0.01~10℃/min的升温速率从室温升至50~200℃后,保温2~96h,使有机碳源交联固化,得到所述有机碳改性聚氨酯泡沫;
S2、前驱体溶液的制备:将SiBCN前驱体溶解于有机溶剂中,配制成5wt%-80wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量0.5%~5%的催化剂,搅拌一段时间至混合均匀;或者,将SiHfBCN前驱体溶解于有机溶剂中,配制成5wt%-80wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量0.5%~5%的催化剂,搅拌一段时间至混合均匀;
S3、浸渍工序:将上述有机碳改性聚氨酯泡沫模板浸渍于SiBCN前驱体溶液或SiHfBCN前驱体溶液中,浸渍的真空度为10Pa~10 5Pa,浸渍时间为0.1~2h;
S4、固化工序:在非氧密封条件下,以0.01~5℃/min的升温速率从室温升至100~280℃后,保温2~8h进行固化;
S5、干燥工序:在氮气或氩气的惰性环境下,以0.01~1℃/min的升温速率从室温升至100~280℃后,保温4~24h进行干燥,脱除有机溶剂,得到SiBCN/C预固物泡沫或SiHfBCN/C预固物泡沫;
S5、裂解工序:将上述SiBCN/C预固物泡沫或SiHfBCN/C预固物泡沫在氮气或氩气的惰性环境下,以0.1~5℃/min的升温速率从室温升至800~1500℃后,保温2~8h,制得SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料。
实施例1 SiBCN泡沫材料,其制备方法包含如下步骤:
S1:前驱体溶液的制备:将SiBCN前驱体溶解于正壬烷中,配制成10wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量0.5%的过氧化二异丙苯催化剂,密封搅拌10min至混合均匀;
S2、浸渍工序:将尺寸为200mm×200mm×35mm,平均孔径为300μm,密度为0.032g/cm 3,孔隙率92.6%的聚氨酯泡沫模板常压浸渍于上述前驱体溶液中,浸渍时间为10min;
S3、固化工序:在非氧密封条件下,以0.5℃/min的升温速率从室温升至160℃后保温4h进行固化;
S4、干燥工序:在氩气的惰性环境下,以0.5℃/min的升温速率从室温升至150℃后,保温24h进行干燥,脱除溶剂正壬烷,得到SiBCN预固物泡沫;
S5、裂解工序:将上述SiBCN预固物泡沫在氩气的惰性环境下,以0.5℃/min的升温速率从室温升至900℃后,保温8h,制得SiBCN泡沫材料。
下述材料性能测试,密度试验按照GB/T 17911-2006(耐火材料陶瓷纤维制品试验方法)进行;室温压缩强度试验按照GB/T 1453-2005(夹层结构或芯子平压性能试验方法)进行;热导率试验按照GB/T 10295-2008(绝热材料稳态热阻及有关特性的测定热流计法)进行。
制备得到的SiBCN泡沫材料样品的微观形貌图如图5所示,材料密度为0.17g/cm 3,常温压缩强度为0.8MPa,室温热导率为0.06W/(m·K),材料在1500℃空气中热处理20min,失重率为1.01%,线收缩率为0.67%。
实施例2 SiHfBCN泡沫材料,其制备方法包含如下步骤:
S1、前驱体溶液的制备:将SiHfBCN前驱体溶解于正十三烷中,配制成10wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量0.5%的过氧化二异丙苯催化剂,密封搅拌10min至混合均匀;
S2、浸渍工序:将尺寸为200mm×200mm×35mm,平均孔径为400μm,密度为0.026g/cm 3,孔隙率94.2%的聚氨酯泡沫模板真空浸渍于上述SiHfBCN前驱体溶液中,浸渍真空度为10 3Pa,浸渍时间为30min;
S3、固化工序:在非氧密封条件下,以1℃/min的升温速率从室温升至230℃后保温2h进行固化;
S4、干燥工序:在氩气的惰性环境下,1℃/min的升温速率从室温升至230℃后,保温8h进行干燥,脱除溶剂正十三烷,得到SiHfBCN预固物泡沫;
S5、裂解工序:将上述SiHfBCN预固物泡沫在氩气的惰性环境下,以1℃/min的升温速率从室温升至1200℃后,保温4h,制得SiBHfCN泡沫材料。
制备得到的SiHfBCN泡沫材料样品的微观形貌与图5差别不大,材料密度为0.21g/cm 3,常温压缩强度为1.1MPa,室温热导率为0.067W/(m·K),材料在空气中1600℃处理1000s,失重率为1.69%,线收缩率为1.36%。
实施例3 SiBCN/C复合泡沫材料,其制备方法包含如下步骤:
S1、有机碳改性聚氨酯泡沫模板的制备:将糠醇和甲酸混合,配置成甲酸浓度为50g/L的有机碳源溶液并搅拌均匀,使尺寸为200mm×200mm×35mm,平均孔径为400μm、密度为0.026g/cm 3,孔隙率94.2%的聚氨酯泡沫模板常压浸渍于上述有机碳源中,浸渍时间为60min;再在氩气的惰性气体环境中,以1℃/min的升温速率从室温升至100℃后,保温1h,使有机碳源交联固化,得到有机碳改性聚氨酯泡沫;
S2、前驱体溶液的制备:将SiBCN前驱体溶解于正辛烷中,配制成10wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量0.5%的过氧化二异丙苯催化剂,密封搅拌10min至混合均匀;
S3、浸渍工序:将上述有机碳改性聚氨酯泡沫模板真空浸渍于SiBCN前驱体溶液中,浸渍真空度为10Pa,保持50min;
S4、固化工序:在非氧密封条件下,以5℃/min的升温速率从室温升至120℃后保温8h进行固化;
S5、干燥工序:在氩气的惰性环境下,以0.2℃/min的升温速率从室温升至120℃后,保温24h后进行干燥,脱除溶剂正辛烷,得到SiBCN/C预固物泡沫;
S6、裂解工序:将上述SiBCN/C预固物泡沫在氩气的惰性环境下,以0.5℃/min的升温速率从室温升至1500℃后,保温2h,制得SiBCN/C泡沫材料。
制备得到的SiBCN/C多孔复合泡沫材料样品的微观形貌与图5差别不大,材料密度为0.23g/cm 3,常温压缩强度为1.0MPa,室温热导率为0.067W/(m·K),材料在1500℃处理20min,失重率为1.32%,线收缩为0.96%。
实施例4 SiHfBCN/C复合泡沫材料,其制备方法包含如下步骤:
S1、有机碳改性聚氨酯泡沫模板的制备:将糠醇和甲酸混合,配置成甲酸浓度为50g/L的有机碳源溶液并搅拌均匀,使尺寸为200mm×200mm×35mm,平均孔径为400μm,密度为0.026g/cm 3,孔隙率94.2%的聚氨酯泡沫模板常压浸渍于上述有机碳源溶液中,浸渍时间为 60min;再在氩气的惰性气体环境中,以0.5℃/min的升温速率从室温升至80℃后,保温2h,使有机碳源交联固化,得到有机碳改性聚氨酯泡沫;
S2:前驱体溶液的制备:将SiHfBCN前驱体溶解于正壬烷中,配制成10wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量0.5%的过氧化二异丙苯催化剂,密封搅拌10min至混合均匀;
S3、浸渍工序:将上述有机碳改性聚氨酯泡沫模板常压浸渍于SiHfBCN前驱体溶液常压浸渍于中,保持20min;
S4、固化工序:在非氧密封条件下,以5℃/min的升温速率从室温升至120℃后保温4h进行固化;
S4、干燥工序:在氩气的惰性环境下,以0.2℃/min的升温速率从室温升至120℃后,保温24h进行干燥,脱除溶剂正壬烷,得到SiHfBCN/C预固物泡沫;
S5、裂解工序:将上述SiHfBCN/C预固物泡沫在氩气的惰性环境下,以3℃/min的升温速率从室温升至1500℃后,保温2h,制得SiHfBCN/C泡沫材料。
制备得到的SiBCN/C多孔复合泡沫材料样品的微观形貌与图5差别不大,材料密度为0.26g/cm 3,常温压缩强度为1.5MPa,室温热导率为0.074W/(m·K)。材料在空气中1600℃处理1000s,失重率为2.08%,线收缩率为1.63%。
实施例5 SiBCN泡沫材料
实施例5与实施例1除了S1中前驱体溶液的制备不同以外,其余均与实施例1相同,
实施例5中,S1、前驱体溶液的制备:将SiBCN前驱体溶解于正壬烷中,配制成20wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量2.5%的过氧化二异丙苯催化剂,密封搅拌20min至混合均匀;
制备得到的SiBCN泡沫材料样品的微观形貌图如图6所示,材料密度为0.32g/cm 3,常温压缩强度为3.83MPa,室温热导率为0.08W/(m·K),材料在1500℃空气中热处理20min,失重率为0.95%,线收缩率为0.68%。
实施例6 SiBCN泡沫材料
实施例6与实施例1除了S1中前驱体溶液的制备不同以外,其余均与实施例1相同,
实施例6中,S1、前驱体溶液的制备:将SiBCN前驱体溶解于正壬烷中,配制成30wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量5%的过氧化二异丙苯催化剂,密封搅拌30min至混合均匀;
制备得到的SiBCN泡沫材料样品的微观形貌图如图7所示,材料密度为0.6g/cm 3,常温压缩强度为7.2MPa,室温热导率为0.18W/(m·K),材料在1500℃空气中热处理20min,失重率为0.84%,线收缩率为0.59%。
实施例7 SiHfBCN泡沫材料
实施例7与实施例2除了S1中前驱体溶液的制备不同以外,其余均与实施例2相同,
实施例7中,S1、前驱体溶液的制备:将SiHfBCN前驱体溶解于正十三烷中,配制成20wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量2.5%的过氧化二异丙苯催化剂,密封搅拌20min至混合均匀;
制备得到的SiHfBCN泡沫材料样品的微观形貌与图6差别不大,材料密度为0.36g/cm 3,常温压缩强度为4.09MPa,室温热导率为0.1W/(m·K),材料在空气中1600℃处理1000s,失重率为1.53%,线收缩率为1.19%。
实施例8 SiHfBCN泡沫材料
实施例8与实施例2除了S1中前驱体溶液的制备不同以外,其余均与实施例2相同,
实施例8中,S1、前驱体溶液的制备:将SiHfBCN前驱体溶解于正十三烷中,配制成30wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量5%的过氧化二异丙苯催化剂,密封搅拌30min至混合均匀;
制备得到的SiHfBCN泡沫材料样品的微观形貌与图7差别不大,材料密度为0.78g/cm 3,常温压缩强度为7.6MPa,室温热导率为0.22W/(m·K),材料在空气中1600℃处理1000s,失重率为1.07%,线收缩率为0.85%。
实施例9 SiBCN/C复合泡沫材料
实施例9与实施例3除了S2中前驱体溶液的制备不同以外,其余均与实施例3相同,
实施例9中,S2、前驱体溶液的制备:将SiBCN前驱体溶解于正辛烷中,配制成20wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量2.5%的过氧化二异丙苯催化剂,密封搅拌20min至混合均匀;
制备得到的SiBCN/C多孔复合泡沫材料样品的微观形貌与图6差别不大,材料密度为0.37g/cm 3,常温压缩强度为3.91MPa,室温热导率为0.09W/(m·K),材料在1500℃处理20min,失重率为1.21%,线收缩为0.92%。
实施例10 SiBCN/C复合泡沫材料
实施例10与实施例3除了S2中前驱体溶液的制备不同以外,其余均与实施例3相同,
S2、前驱体溶液的制备:将SiBCN前驱体溶解于正辛烷中,配制成30wt%的SiBCN前驱体溶液,向其中加入SiBCN前驱体质量5%的过氧化二异丙苯催化剂,密封搅拌30min至混合均匀;
制备得到的SiBCN/C多孔复合泡沫材料样品的微观形貌与图7差别不大,材料密度为0.68g/cm 3,常温压缩强度为7.4MPa,室温热导率为0.19W/(m·K),材料在1500℃处理20min,失重率为1.08%,线收缩为0.77%。
实施例11 SiHfBCN/C复合泡沫材料
实施例11与实施例4除了S2中前驱体溶液的制备不同以外,其余均与实施例4相同,
实施例11中,S2、前驱体溶液的制备:将SiHfBCN前驱体溶解于正壬烷中,配制成20wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量2.5%的过氧化二异丙苯催化剂,密封搅拌20min至混合均匀;
制备得到的SiBCN/C多孔复合泡沫材料样品的微观形貌与图6差别不大,材料密度为0.41g/cm 3,常温压缩强度为4.15MPa,室温热导率为 0.12W/(m·K)。材料在空气中1600℃处理1000s,失重率为1.87%,线收缩率为1.46%。
实施例12 SiHfBCN/C复合泡沫材料
实施例12与实施例4除了S2中前驱体溶液的制备不同以外,其余均与实施例4相同,
实施例12中,S2、前驱体溶液的制备:将SiHfBCN前驱体溶解于正壬烷中,配制成30wt%的SiHfBCN前驱体溶液,向其中加入SiHfBCN前驱体质量5%的过氧化二异丙苯催化剂,密封搅拌30min至混合均匀;
制备得到的SiBCN/C多孔复合泡沫材料样品的微观形貌与图7差别不大,材料密度为0.82g/cm 3,常温压缩强度为8.63MPa,室温热导率为0.25W/(m·K)。材料在空气中1600℃处理1000s,失重率为1.59%,线收缩率为1.37%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均在本发明待批权利要求保护范围之内。

Claims (10)

  1. 一种耐高温抗氧化轻质隔热泡沫材料,其特征在于,所述泡沫材料为SiBCN泡沫材料、SiHfBCN泡沫材料、SiBCN/C复合泡沫材料或SiHfBCN/C复合泡沫材料中的一种,所述泡沫材料由前驱体溶液经模板浸渍、固化、干燥、裂解工序制备得到;
    其中,所述前驱体溶液为SiBCN前驱体溶液或SiHfBCN前驱体溶液;所述模板为聚氨酯泡沫或者有机碳改性聚氨酯泡沫;用于制备SiBCN前驱体溶液的SiBCN前驱体为聚硼硅氮烷;用于制备SiHfBCN前驱体溶液的SiHfBCN前驱体为含铪聚硼硅氮烷。
  2. 根据权利要求1所述的耐高温抗氧化轻质隔热泡沫材料,其特征在于,所述SiBCN泡沫材料的密度≥0.07g/cm 3,常温压缩强度≥0.3MPa,室温热导率≥0.046W/(m·K);所述SiHfBCN泡沫材料的密度≥0.11g/cm 3,常温压缩强度≥0.45MPa,室温热导率≥0.053W/(m·K);所述SiBCN/C复合泡沫材料的密度≥0.09g/cm 3,常温压缩强度≥0.38MPa,室温热导率≥0.052W/(m·K);所述SiHfBCN/C复合泡沫材料的密度≥0.13g/cm 3,常温压缩强度≥0.68MPa,室温热导率≥0.062W/(m·K);优选地,所述SiBCN泡沫材料的密度为0.17-0.6g/cm 3,常温压缩强度为0.8-7.2MPa,室温热导率为0.06-0.18W/(m·K);所述SiHfBCN泡沫材料的密度为0.21-0.78g/cm 3,常温压缩强度为1.1-7.6MPa,室温热导率为0.067-0.22W/(m·K);所述SiBCN/C复合泡沫材料的密度为0.23-0.68g/cm 3,常温压缩强度为1.0-7.4MPa,室温热导率为0.067-0.19W/(m·K);所述SiHfBCN/C复合泡沫材料的密度为0.26-0.82g/cm 3,常温压缩强度为1.5-8.63MPa,室温热导率为0.074-0.25W/(m·K)。
  3. 一种耐高温抗氧化轻质隔热泡沫材料的制备方法,其特征在于,包括以下步骤:
    以聚氨酯泡沫或者有机碳改性聚氨酯泡沫为模板,SiBCN前驱体溶液 或者SiHfBCN前驱体溶液为浸渍液,依次进行浸渍工序、固化工序、干燥工序、裂解工序得到所述泡沫材料;
    其中,所述SiBCN前驱体溶液或者SiHfBCN前驱体溶液通过将SiBCN前驱体或者SiHfBCN前驱体溶解于有机溶剂中,加入催化剂混合均匀得到;所述SiBCN前驱体为聚硼硅氮烷;所述SiHfBCN前驱体为含铪聚硼硅氮烷。
  4. 根据权利要求3所述的制备方法,其特征在于,所述SiBCN前驱体溶液中SiBCN前驱体的质量分数或者SiHfBCN前驱体溶液中SiHfBCN前驱体的质量分数为5%~80%,所述催化剂的质量为所述SiBCN前驱体或者SiHfBCN前驱体质量的0.5%~5%;优选地,所述SiBCN前驱体溶液中SiBCN前驱体的质量分数或者SiHfBCN前驱体溶液中SiHfBCN前驱体的质量分数为10%~30%。
  5. 根据权利要求3或4所述的制备方法,其特征在于,所述有机溶剂为液态烷烃;优选地,所述有机溶剂选自己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、十三烷及它们的同分异构体中的至少一种;更优选地,所述有机溶剂为正己烷、正辛烷、正壬烷中的至少一种;
    优选地,所述催化剂为过氧化二异丙苯、过氧化二苯甲酰、偶氮二异丁腈、偶氮二异庚腈、二乙烯基苯中的至少一种;更优选地,所述催化剂为过氧化二异丙苯、二乙烯基苯中的至少一种。
  6. 根据权利要求3-5中任一项所述的制备方法,其特征在于,所述有机碳改性聚氨酯泡沫是通过将聚氨酯泡沫浸渍于有机碳源中,然后再将附着于聚氨酯泡沫上的有机碳源固化而制得的;优选地,所述有机碳源选自糠醇、酚醛树脂或间苯二酚-甲醛溶胶中的一种;更优选地,在有机碳改性聚氨酯泡沫制备过程中,所述固化为在氮气或氩气的惰性气体环境中,以0.01~10℃/min的升温速率从室温升至50~200℃后,保温2~96h,使有机碳源交联固化,得到所述有机碳改性聚氨酯泡沫。
  7. 根据权利要求6所述的制备方法,其特征在于,所述有机碳源为糠醇时,还包括向糠醇中加入作为催化剂的甲酸或对甲苯磺酸甲酯;优选地,所述催化剂为甲酸时,甲酸的浓度即甲酸质量与糠醇体积的比值为40-65g/L;优选地,所述催化剂为对甲苯磺酸甲酯时,所述对甲苯磺酸甲酯与所述糠醇的质量比为(0.004-0.08):1;
    所述有机碳源为酚醛树脂时,还包括向酚醛树脂中加入作为催化剂的六亚甲基四胺,以及加入作为溶剂的无水乙醇;优选地,所述六亚甲基四胺与所述酚醛树脂的质量比为1:(4-9);优选地,所述酚醛树脂浓度即酚醛树脂质量与无水乙醇体积的比值为0.1~0.2g/mL;
    所述有机碳源为间苯二酚-甲醛溶胶时,还包括向间苯二酚-甲醛溶胶中加入作为催化剂的碳酸钠、氢氧化钠、氢氧化钡中的至少一种,以及加入作为溶剂的去离子水;优选地,所述间苯二酚与所述甲醛的摩尔比为1:2;优选地,所述间苯二酚与所述催化剂的摩尔比为(50~1000):1;所述间苯二酚与去离子水的摩尔比为(0.01~0.5):1。
  8. 根据权利要求6或7所述的制备方法,其特征在于,在所述有机碳改性聚氨酯泡沫制备过程中,使用的聚氨酯泡沫为网状开孔结构,平均孔径为1μm-1mm;优选地,所述聚氨酯泡沫的密度为0.025-0.1g/cm 3,孔隙率在92%以上;优选地,在所述有机碳改性聚氨酯泡沫制备过程中,所述浸渍的真空度为10Pa~10 5Pa,浸渍时间为0.1~2h。
  9. 根据权利要求3-5中任一项所述的制备方法,其特征在于,直接作为模板使用的所述聚氨酯泡沫为网状开孔结构,平均孔径为1μm-1mm;优选地,所述聚氨酯泡沫的密度为0.025-0.1g/cm 3,孔隙率在92%以上。
  10. 根据权利要求3-9中任一项所述的制备方法,其特征在于,所述浸渍工序中,浸渍的真空度为10Pa~10 5Pa,浸渍时间为0.1~2h;优选地,所述固化工序是在非氧密封条件下,以0.01~5℃/min的升温速率从室温升至100~280℃后,保温2~8h;优选地,所述干燥工序是在氮气或氩气的惰性环境下,以0.01~1℃/min的升温速率从室温升至100~280℃后,保温4~24h; 优选地,所述裂解工序是在氮气或氩气的惰性环境下进行,以0.1~5℃/min的升温速率从室温升至800~1500℃后,保温2~8h。
PCT/CN2021/128855 2021-11-02 2021-11-05 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法 WO2022174624A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21926338.1A EP4151611A4 (en) 2021-11-02 2021-11-05 HIGH TEMPERATURE RESISTANT AND OXIDATION RESISTANT LIGHTWEIGHT THERMAL INSULATION FOAM MATERIAL AND PREPARATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111289414 2021-11-02
CN202111289414.7 2021-11-02

Publications (1)

Publication Number Publication Date
WO2022174624A1 true WO2022174624A1 (zh) 2022-08-25

Family

ID=79193500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128855 WO2022174624A1 (zh) 2021-11-02 2021-11-05 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法

Country Status (3)

Country Link
EP (1) EP4151611A4 (zh)
CN (1) CN113896539A (zh)
WO (1) WO2022174624A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023150A (zh) * 2023-01-19 2023-04-28 天津大学 一种耐高温过渡金属碳(氮)化物/硅硼碳氮复合陶瓷气凝胶及制备方法
CN116444299A (zh) * 2023-06-20 2023-07-18 中南大学 一种梯度防隔热一体化材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022174624A1 (zh) * 2021-11-02 2022-08-25 航天材料及工艺研究所 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279737A (en) * 1990-06-13 1994-01-18 University Of Cincinnati Process for producing a porous ceramic and porous ceramic composite structure utilizing combustion synthesis
CN102491780A (zh) * 2011-12-14 2012-06-13 天津大学 多孔前驱体陶瓷及其制备方法
CN104311139A (zh) * 2014-10-22 2015-01-28 山东理工大学 一种氮化硅、碳化硅结合硼化铪泡沫陶瓷的制备方法
CN108147835A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种以细菌纤维素为生物模板制备具有多级孔结构的陶瓷块体的方法
CN112960982A (zh) * 2021-02-25 2021-06-15 西北工业大学 一种SiHfBCN吸波陶瓷的制备方法
CN113135742A (zh) * 2021-04-21 2021-07-20 广东工业大学 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN113896539A (zh) * 2021-11-02 2022-01-07 航天材料及工艺研究所 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705340B1 (fr) * 1993-05-13 1995-06-30 Pechiney Recherche Fabrication de mousse de carbure de silicium à partir d'une mousse de polyuréthane imprégnée de résine contenant du silicium.
CN103044057B (zh) * 2013-01-14 2015-03-18 航天材料及工艺研究所 一种炭泡沫原位增强炭气凝胶高温隔热材料及其制备方法
CN104446656B (zh) * 2014-12-15 2016-10-05 航天特种材料及工艺技术研究所 一种多孔碳材料抗氧化涂层的制备方法
CN107337468A (zh) * 2016-12-23 2017-11-10 辽宁卓异新材料有限公司 一种泡沫陶瓷多孔燃烧介质的制备方法及应用
CN108727059A (zh) * 2018-07-09 2018-11-02 宁波设会物联网科技有限公司 一种以可热固化聚碳硅烷制备碳化硅泡沫陶瓷的制备方法
CN108752038A (zh) * 2018-07-09 2018-11-06 宁波设会物联网科技有限公司 一种以可热固化聚碳硅烷制备的碳化硅泡沫陶瓷
CN111943726B (zh) * 2020-08-11 2022-10-04 航天特种材料及工艺技术研究所 一种高性能C/SiBCN复合材料及其制备方法和应用
CN113121253B (zh) * 2021-04-02 2022-10-14 航天材料及工艺研究所 一种超高温C/SiHfBCN陶瓷基复合材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279737A (en) * 1990-06-13 1994-01-18 University Of Cincinnati Process for producing a porous ceramic and porous ceramic composite structure utilizing combustion synthesis
CN102491780A (zh) * 2011-12-14 2012-06-13 天津大学 多孔前驱体陶瓷及其制备方法
CN104311139A (zh) * 2014-10-22 2015-01-28 山东理工大学 一种氮化硅、碳化硅结合硼化铪泡沫陶瓷的制备方法
CN108147835A (zh) * 2017-12-29 2018-06-12 华南理工大学 一种以细菌纤维素为生物模板制备具有多级孔结构的陶瓷块体的方法
CN112960982A (zh) * 2021-02-25 2021-06-15 西北工业大学 一种SiHfBCN吸波陶瓷的制备方法
CN113135742A (zh) * 2021-04-21 2021-07-20 广东工业大学 一种通过陶瓷前驱体骨架成型的精细陶瓷材料及其制备方法和应用
CN113896539A (zh) * 2021-11-02 2022-01-07 航天材料及工艺研究所 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOUSAALYA ADHIMOOLAM BAKTHAVACHALAM; KUMAR RAVI; SRIDHAR B.T.N.: "Thermal conductivity of precursor derived Si-B-C-N ceramic foams using Metroxylon sagu as sacrificial template", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM., NL, vol. 41, no. 1, 18 September 2014 (2014-09-18), NL , pages 1163 - 1170, XP029092712, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2014.09.044 *
See also references of EP4151611A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023150A (zh) * 2023-01-19 2023-04-28 天津大学 一种耐高温过渡金属碳(氮)化物/硅硼碳氮复合陶瓷气凝胶及制备方法
CN116023150B (zh) * 2023-01-19 2024-01-23 天津大学 一种耐高温过渡金属碳(氮)化物/硅硼碳氮复合陶瓷气凝胶及制备方法
CN116444299A (zh) * 2023-06-20 2023-07-18 中南大学 一种梯度防隔热一体化材料及其制备方法
CN116444299B (zh) * 2023-06-20 2023-08-22 中南大学 一种梯度防隔热一体化材料及其制备方法

Also Published As

Publication number Publication date
EP4151611A4 (en) 2024-01-10
CN113896539A (zh) 2022-01-07
EP4151611A1 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
WO2022174624A1 (zh) 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法
CN101698591B (zh) 一种纤维复合炭气凝胶材料的制备方法
CN103467126B (zh) 一种SiC纳米线改性C/C复合材料的制备方法
CN107604634A (zh) 一种二次复合的气凝胶纤维毡及其制备方法
CN109251005B (zh) 一种增强二氧化硅气凝胶材料的制备方法
CN114524674B (zh) 一种防热-隔热-承载一体化轻质碳-陶复合材料及其制备方法
CN101692487A (zh) 一种燃料电池用低透气型质子交换膜的制备方法
CN110510617B (zh) 一种大尺寸氧化铝-二氧化硅气凝胶的常压干燥制备方法
CN102351506A (zh) 一种块状耐高温硅-炭复合气凝胶材料的制备方法
CN104478475A (zh) 一种耐高温高强度SiC包覆碳泡沫复合隔热材料及其制备方法
CN108658616B (zh) 一种ZrO2-SiO2基复合材料的低温快速制备方法
CN111224137A (zh) 一种质子交换膜燃料电池的双功能有序化膜电极
CN108178144B (zh) 一种碳纳米管气凝胶及其制备和应用
CN113929470B (zh) 纳米阵列定向排布的各向异性多孔氮化硅陶瓷及制备方法
CN108609603B (zh) 一种含有石墨烯涂层的碳泡沫及其制备方法
CN113648976A (zh) 一种高效吸附二氧化碳的生物炭的制备方法
CN102441330B (zh) 一种钯基双功能膜及其制备方法
CN114015110A (zh) 一种低收缩率酚醛气凝胶及其制备方法
CN113697792A (zh) 一种大尺寸块状生物框架/MOFs衍生复合碳材料及其制备方法
CN109179373A (zh) 一种抗氧化炭气凝胶材料及其制备方法
CN109437871B (zh) 一种多孔正硅酸锂材料的制备方法
CN108455526B (zh) 由甲醇和水制备高纯度氢气的方法
CN105293473A (zh) 一种以聚偏氟乙烯为前驱体的多孔碳材料及制备方法
CN109796002B (zh) 金属改性磺酸基介孔碳材料合成方法
CN110862258B (zh) 一种承载型炭气凝胶-多孔二氧化硅复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021926338

Country of ref document: EP

Effective date: 20221212