CN109437871B - 一种多孔正硅酸锂材料的制备方法 - Google Patents

一种多孔正硅酸锂材料的制备方法 Download PDF

Info

Publication number
CN109437871B
CN109437871B CN201811521796.XA CN201811521796A CN109437871B CN 109437871 B CN109437871 B CN 109437871B CN 201811521796 A CN201811521796 A CN 201811521796A CN 109437871 B CN109437871 B CN 109437871B
Authority
CN
China
Prior art keywords
lithium orthosilicate
porous lithium
block
pore
forming agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811521796.XA
Other languages
English (en)
Other versions
CN109437871A (zh
Inventor
李广忠
汪强兵
李亚宁
杨保军
葛渊
荆鹏
王昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Institute for Non Ferrous Metal Research
Original Assignee
Northwest Institute for Non Ferrous Metal Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Institute for Non Ferrous Metal Research filed Critical Northwest Institute for Non Ferrous Metal Research
Priority to CN201811521796.XA priority Critical patent/CN109437871B/zh
Publication of CN109437871A publication Critical patent/CN109437871A/zh
Application granted granted Critical
Publication of CN109437871B publication Critical patent/CN109437871B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明公开了一种多孔正硅酸锂材料的制备方法,该方法包括:一、向正硅酸锂粉末中加入造孔剂后混合均匀得混合粉末;二、采用压机对混合粉末进行压制得多孔正硅酸锂块体生坯;三、将多孔正硅酸锂块体生坯进行预烧结得预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡;四、将经浸泡后的预烧结多孔正硅酸锂块体进行烧结得多孔正硅酸锂材料。本发明通过预烧结工艺使造孔剂在多孔正硅酸锂块体生坯中充分形成孔隙且不容易被完全分解气化除去,提高了孔隙的均匀度和致密度,从而提高了多孔正硅酸锂材料的装载量,增加了多孔正硅酸锂材料的强度,使其使用过程中不易粉化破碎,适用于CH HCCB TBM模块氚的增殖剂。

Description

一种多孔正硅酸锂材料的制备方法
技术领域
本发明属于多孔材料制备技术领域,具体涉及一种多孔正硅酸锂材料的制备方法。
背景技术
一种清洁、安全、可再生的能源可以有效解决人类所面临的能源短缺和环境污染问题。核聚变能因其清洁、可再生已成为一种能满足上述要求的新能源。1985年,美国和前苏联在日内瓦峰会上提出了建造国际热核聚变实验堆(ITER)计划,以实现核聚变能的可控和商用化。ITER计划中一个重要的功能就是测试产氚实验包层模块(TBM)。中国氦冷陶瓷增殖剂实验包层模块(CH HCCB TBM)作为ITER上的一个测试模块,其设计目的就是验证商用聚变堆产氚和获取能量。Li4SiO4陶瓷微球作为CH HCCB TBM模块氚的增殖剂具有高锂含量、中子活化率低、装卸容易、表面积大、透气性能好、氚的扩散和释放便利等优点。已成为中国和欧盟的聚变堆产氚首选增值剂材料。
然而,目前已有的Li4SiO4陶瓷微球存在装载率低,在使用过程中易粉化从而导致小球破裂等问题。因此,开发具有结构功能一体化的多孔Li4SiO4陶瓷材料具有重要的科学和实践意义。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种多孔正硅酸锂材料的制备方法。该方法通过预烧结工艺使造孔剂在多孔正硅酸锂块体生坯中充分形成孔隙且不容易被完全分解气化除去,提高了孔隙的均匀度和致密度,从而提高了多孔正硅酸锂材料的装载量,增加了多孔正硅酸锂材料的强度,使其使用过程中不易粉化破碎,适用于CH HCCB TBM模块氚的增殖剂。
为解决上述技术问题,本发明采用的技术方案是:一种多孔正硅酸锂材料的制备方法,其特征在于,该方法包括以下步骤:
步骤一、向正硅酸锂粉末中加入造孔剂,然后放置于混料机中混合均匀得到混合粉末;所述造孔剂的质量为混合粉末质量的5%~20%;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;所述混合的时间为20h~30h;
步骤二、采用压机对步骤一中得到的混合粉末进行压制,得到多孔正硅酸锂块体生坯;所述压制的压力为120MPa~160MPa,保压时间为5s~12s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡以去除造孔剂;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于烧结炉中进行烧结,得到多孔正硅酸锂材料。
本发明以正硅酸锂粉末为原料加入造孔剂压制得到多孔正硅酸锂块体生坯,然后先进行预烧结,使造孔剂在多孔正硅酸锂块体生坯中充分形成孔隙且不容易被完全分解气化除去,提高了孔隙的均匀度和致密度,避免了过大或过小等畸形孔的形成,从而提高了多孔正硅酸锂材料的装载量,同时由于孔隙较为均匀致密,制备的多孔正硅酸锂材料的强度增加,使用过程中不易粉化破碎,延长了多孔正硅酸锂材料的使用寿命;将预烧结多孔正硅酸锂块体浸泡后使残留在多孔中的造孔剂溶于水中去除,降低了造孔剂残留,避免了造孔剂对后续烧结过程的不良影响,提高了多孔正硅酸锂材料的纯净度。
上述的一种多孔正硅酸锂材料的制备方法,其特征在于,步骤二中所述造孔剂为Na2CO3或NaCl。上述造孔剂在后续的低温预烧结过程中可发挥造孔剂的作用得到预烧结多孔正硅酸锂块体,并且可溶过水浸泡容易除去,避免对后续烧结的影响,保证了多孔正硅酸锂材料的质量。
上述的一种多孔正硅酸锂材料的制备方法,其特征在于,步骤三中所述预烧结的具体过程为:以3℃/min~5℃/min的速率升温至550℃~650℃保温0.5h~3h。采用上述预烧结工艺使造孔剂在多孔正硅酸锂块体生坯中充分地进行受热、分解或反应,使得造孔剂在多孔正硅酸锂块体生坯占据的体积空间均匀转变为气孔,提高了孔隙的均匀性和致密度,进一步提高了多孔正硅酸锂材料的装载量,增加了多孔正硅酸锂材料的强度。
上述的一种多孔正硅酸锂材料的制备方法,其特征在于,步骤三中所述浸泡的时间为2h~5h。上述水浸泡时间可保证造孔剂的完全除去。
上述的一种多孔正硅酸锂材料的制备方法,其特征在于,步骤四中所述烧结在真空条件或大气气氛条件下进行,所述烧结的具体过程为:以5℃/min~10℃/min的速率升温至700℃~950℃保温0.5h~3h。采用上述烧结工艺既保证了预烧结多孔正硅酸锂块体内颗粒相互粘连、体积收缩迅速致密化形成坚固烧结体,同时避免了孔隙过度收缩造成的孔隙不规则坍塌,保证了多孔正硅酸锂材料的孔隙稳定性,有利于多孔正硅酸锂材料装载、吸附等性能的发挥。
本发明与现有技术相比具有以下优点:
1、本发明通过预烧结工艺使造孔剂在多孔正硅酸锂块体生坯中充分形成孔隙且不容易被完全分解气化除去,提高了孔隙的均匀度和致密度,从而提高了多孔正硅酸锂材料的装载量,增加了多孔正硅酸锂材料的强度,使其使用过程中不易粉化破碎,延长了多孔正硅酸锂材料的使用寿命。
2、本发明通过水浸泡工艺使残留在多孔中的造孔剂溶于水中去除,降低了造孔剂残留,避免了造孔剂对后续烧结过程的不良影响,提高了多孔正硅酸锂材料的纯净度,方法简单,效果较好。
3、本发明制备得到的多孔正硅酸锂材料的孔隙率为75%~95%,孔径分布均匀,装载量可达70%,且不易粉化,适用于CH HCCB TBM模块氚的增殖剂。
4、本发明设计合理、工艺简单,对设备要求较少,能实现大规模化生产。
下面通过实施例对本发明的技术方案作进一步的详细描述。
具体实施方式
实施例1
本实施例的制备方法包括以下步骤:
步骤一、向950g正硅酸锂粉末中加入50g NaCl造孔剂,然后放置于行星式混料机中混合20h得混合粉末;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;
步骤二、采用压机对步骤一中得到的混合粉末进行4次压制,得到多孔正硅酸锂块体生坯;所述压制的压力为120MPa,保压时间为12s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡2h以去除造孔剂;所述预烧结的具体过程为:以3℃/min的速率升温至650℃保温0.5h;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于真空烧结炉中在真空度小于1.0×10-2pa的条件下进行烧结,得到多孔正硅酸锂材料;所述烧结的具体过程为:以5℃/min的速率升温至950℃保温0.5h。
经检测,本实施例制备得到的多孔正硅酸锂材料的孔隙率为95%,且孔径分布均匀。
实施例2
本实施例的制备方法包括以下步骤:
步骤一、向800g正硅酸锂粉末中加入200g NaCl造孔剂,然后放置于行星式混料机中混合30h得混合粉末;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;
步骤二、采用压机对步骤一中得到的混合粉末进行压制,得到多孔正硅酸锂块体生坯;所述压制的压力为160MPa,保压时间为5s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡5h以去除造孔剂;所述预烧结的具体过程为:以5℃/min的速率升温至600℃保温0.5h;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于真空烧结炉中在真空度小于1.0×10-2pa的条件下进行烧结,得到多孔正硅酸锂材料;所述烧结的具体过程为:以10℃/min的速率升温至700℃保温0.5h。
经检测,本实施例制备得到的多孔正硅酸锂材料的孔隙率为75%,且孔径分布均匀。
实施例3
本实施例的制备方法包括以下步骤:
步骤一、向900g正硅酸锂粉末中加入100g NaCl造孔剂,然后放置于行星式混料机中混合25h得混合粉末;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;
步骤二、采用压机对步骤一中得到的混合粉末进行压制,得到多孔正硅酸锂块体生坯;所述压制的压力为140MPa,保压时间为9s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡3.5h以去除造孔剂;所述预烧结的具体过程为:以4℃/min的速率升温至550℃保温3h;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于真空烧结炉中在真空度小于1.0×10-2pa的条件下进行烧结,得到多孔正硅酸锂材料;所述烧结的具体过程为:以7℃/min的速率升温至850℃保温0.5h。
经检测,本实施例制备得到的多孔正硅酸锂材料的孔隙率为86%,且孔径分布均匀。
实施例4
本实施例的制备方法包括以下步骤:
步骤一、向900g正硅酸锂粉末中加入100g NaCl造孔剂,然后放置于行星式混料机中混合25h得混合粉末;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;
步骤二、采用压机对步骤一中得到的混合粉末进行压制,得到多孔正硅酸锂块体生坯;所述压制的压力为140MPa,保压时间为9s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡3.5h以去除造孔剂;所述预烧结的具体过程为:以4℃/min的速率升温至550℃保温3h;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于马弗炉进行烧结,得到多孔正硅酸锂材料;所述烧结的具体过程为:以7℃/min的速率升温至850℃保温2.0h。
经检测,本实施例制备得到的多孔正硅酸锂材料的孔隙率为86%,且孔径分布均匀。
实施例5
本实施例的制备方法包括以下步骤:
步骤一、向900g正硅酸锂粉末中加入100g Na2CO3造孔剂,然后放置于行星式混料机中混合25h得混合粉末;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;
步骤二、采用压机对步骤一中得到的混合粉末进行压制,得到多孔正硅酸锂块体生坯;所述压制的压力为140MPa,保压时间为9s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡3.5h以去除造孔剂;所述预烧结的具体过程为:以4℃/min的速率升温至550℃保温2.5h;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于真空烧结炉中在真空度小于1.0×10-2pa的条件下进行烧结,得到多孔正硅酸锂材料;所述烧结的具体过程为:以7℃/min的速率升温至850℃保温3h。
经检测,本实施例制备得到的多孔正硅酸锂材料的孔隙率为86%,且孔径分布均匀。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制。凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。

Claims (3)

1.一种多孔正硅酸锂材料的制备方法,其特征在于,该方法包括以下步骤:
步骤一、向正硅酸锂粉末中加入造孔剂,然后放置于混料机中混合均匀得到混合粉末;所述造孔剂的质量为混合粉末质量的5%~20%;所述正硅酸锂粉末通过溶胶-凝胶法工艺制备得到;所述混合的时间为20h~30h;
步骤二、采用压机对步骤一中得到的混合粉末进行压制,得到多孔正硅酸锂块体生坯;所述压制的压力为120MPa~160MPa,保压时间为5s~12s;
步骤三、将步骤二中得到的多孔正硅酸锂块体生坯放置于马弗炉中在大气条件下进行预烧结,得到预烧结多孔正硅酸锂块体,然后将预烧结多孔正硅酸锂块体置于水中浸泡以去除造孔剂;所述预烧结的具体过程为:以3℃/min~5℃/min的速率升温至550℃~650℃保温0.5h~3h;
步骤四、将步骤三中经浸泡后的预烧结多孔正硅酸锂块体放置于烧结炉中进行烧结,得到多孔正硅酸锂材料;所述烧结在真空条件或大气气氛条件下进行,所述烧结的具体过程为:以5℃/min~10℃/min的速率升温至700℃~950℃保温0.5h~3h。
2.根据权利要求1所述的一种多孔正硅酸锂材料的制备方法,其特征在于,步骤一中所述造孔剂为Na2CO3或NaCl。
3.根据权利要求1所述的一种多孔正硅酸锂材料的制备方法,其特征在于,步骤三中所述浸泡的时间为2h~5h。
CN201811521796.XA 2018-12-13 2018-12-13 一种多孔正硅酸锂材料的制备方法 Active CN109437871B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811521796.XA CN109437871B (zh) 2018-12-13 2018-12-13 一种多孔正硅酸锂材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811521796.XA CN109437871B (zh) 2018-12-13 2018-12-13 一种多孔正硅酸锂材料的制备方法

Publications (2)

Publication Number Publication Date
CN109437871A CN109437871A (zh) 2019-03-08
CN109437871B true CN109437871B (zh) 2020-11-03

Family

ID=65558123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811521796.XA Active CN109437871B (zh) 2018-12-13 2018-12-13 一种多孔正硅酸锂材料的制备方法

Country Status (1)

Country Link
CN (1) CN109437871B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018557B (zh) * 2019-12-26 2022-04-29 广州赛隆增材制造有限责任公司 一种氚增殖用正硅酸锂球壳的制备方法
CN112174156B (zh) * 2020-09-28 2022-05-17 中科南京绿色制造产业创新研究院 一种TiN/C包覆正硅酸锂氚增殖剂及其制备方法与制备装置系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100567213C (zh) * 2007-06-20 2009-12-09 中国原子能科学研究院 Li4SiO4陶瓷球的制备工艺
CN106507789B (zh) * 2009-11-30 2012-10-03 中国科学院上海硅酸盐研究所 一种Li4SiO4增殖剂球的制备方法
KR101718339B1 (ko) * 2015-06-01 2017-03-21 울산과학기술원 이산화탄소 포집용 거대기공과 산호형 모폴로지를 갖는 리튬 오르쏘실리케이트 및 그 제조방법
CN108689722B (zh) * 2018-06-13 2021-04-06 绍兴市梓昂新材料有限公司 一种孔径可调的多孔陶瓷的制备方法

Also Published As

Publication number Publication date
CN109437871A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN112876283B (zh) 一种具有储油、锁油功能的多孔陶瓷基体和雾化芯
CN106971765B (zh) 一种高triso含量惰性基弥散燃料芯块的制备工艺
CN109437871B (zh) 一种多孔正硅酸锂材料的制备方法
CN106971764B (zh) 一种惰性基弥散燃料芯块的快速制备工艺
CN109081340B (zh) 一种松树基生物质活性炭及其制备方法和在电化学储能中的应用
CN110690397A (zh) 一种熔融盐复合电解质隔膜、制备方法及应用
CN104046826B (zh) 一种泡沫镁基材料及其制备方法
EP4317113A1 (en) Microporous ceramic atomization core and preparation method therefor
CN111020329B (zh) 一种基于W-Fe-C体系腐蚀法制备多孔钨材料的方法
CN107602127B (zh) SiC空心球及其制备方法
CN101814606A (zh) 水基流延制备熔融碳酸盐燃料电池NiO阴极材料的方法
WO2022174624A1 (zh) 一种耐高温抗氧化轻质隔热泡沫材料及其制备方法
CN111137890A (zh) 一种生物质多级孔纳米环微结构碳基超级电容器电极材料的制备方法
CN114975929A (zh) 一种钠离子电池用硬碳负极材料及其制备方法
CN111945028B (zh) 高孔隙率微/纳米多孔NiO/Ni材料及其制备方法与专用设备
CN103601174A (zh) 制备石墨化泡沫炭的方法
CN111850366A (zh) 一种氧化物负载镁镍合金储氢复合材料及其制备方法
WO2023226274A1 (zh) 一种雾化芯的制备方法及雾化器
CN111153712A (zh) 一种多孔陶瓷互穿网络中子屏蔽复合材料及其制备方法
CN111072387A (zh) 氟化铝复合陶瓷及其制备方法
CN113636833B (zh) 一种氧化铬陶瓷材料及其制备方法以及一种氧化铬陶瓷材料烧结用保温装置
CN111018557B (zh) 一种氚增殖用正硅酸锂球壳的制备方法
CN113929488A (zh) 一种曲面孔道结构的锂陶瓷氚增殖剂及其制备方法
CN112441820A (zh) 一种多孔陶瓷及其制备方法
CN114790084B (zh) 一种多孔微晶玻璃及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant