WO2023226274A1 - 一种雾化芯的制备方法及雾化器 - Google Patents

一种雾化芯的制备方法及雾化器 Download PDF

Info

Publication number
WO2023226274A1
WO2023226274A1 PCT/CN2022/124132 CN2022124132W WO2023226274A1 WO 2023226274 A1 WO2023226274 A1 WO 2023226274A1 CN 2022124132 W CN2022124132 W CN 2022124132W WO 2023226274 A1 WO2023226274 A1 WO 2023226274A1
Authority
WO
WIPO (PCT)
Prior art keywords
green body
powder
pore
forming agent
binder
Prior art date
Application number
PCT/CN2022/124132
Other languages
English (en)
French (fr)
Inventor
肖小朋
聂革
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2023226274A1 publication Critical patent/WO2023226274A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/0675Vegetable refuse; Cellulosic materials, e.g. wood chips, cork, peat, paper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Definitions

  • the present application relates to the technical field of atomization equipment, and specifically to a preparation method of an atomization core and an atomizer.
  • the atomizer core in the atomizer has three methods: heating wire wrapped with cotton core, porous ceramic wrapped heating wire, and porous ceramic printed heating circuit. These three methods use liquid conduction and heating functions each composed of a To realize the atomization function, it is necessary to combine the two materials through certain physical and chemical methods during the preparation process, which leads to a complicated preparation process and is difficult to control, which can easily lead to the separation of liquid conduction and heat generation. The core phenomenon occurs.
  • This application provides a method for preparing an atomizer core and an atomizer to solve the problem that the preparation process of the atomizer core is complicated and difficult to control, which can easily lead to the separation of liquid conduction and heat generation, resulting in core smearing.
  • the first technical solution adopted in this application is to provide a method for preparing an atomizing core, including:
  • the composite green body is sintered to obtain the atomizing core.
  • the first silicon carbide, the first pore-forming agent and the first binder are mixed and pressed to form the bottom layer of the green body, which includes:
  • the mixed powder A is pressed and molded at a pressure of 5 to 10MPA to obtain the base layer of the green body.
  • the conductive powder obtained by mixing the second silicon carbide, silicon powder, nickel powder, molybdenum powder, graphite, the second pore-forming agent and the second binder includes:
  • second silicon carbide 100 parts by weight of second silicon carbide, 10-20 parts by weight of silicon powder, 3-10 parts by weight of nickel powder, 3-10 parts by weight of molybdenum powder, 10-20 parts by weight of graphite and 15-30 parts by weight
  • the second pore-forming agent is mixed at 200-300r/min for 3-5 hours to obtain mixed powder B;
  • the mixed powder B and the second binder are mixed and granulated to obtain the conductive powder.
  • the particle size of the first silicon carbide is 40-60um, and the particle size of the second silicon carbide is 10-30um.
  • the composite body is sintered to obtain the atomization core including:
  • the composite green body is sintered for the first time to obtain an atomizing core green body
  • the atomizing core body is sintered for a second time to obtain the atomizing core.
  • the first sintering temperature is 500 ⁇ 600°C, the time is 0.5 ⁇ 1.5h; the second sintering temperature is 1800 ⁇ 2000°C, the time is 1 ⁇ 3h.
  • the first pore-forming agent and the second pore-forming agent are at least one of starch, lignin and PMMA, and the first binder and the second binder are mass. Concentration 10 ⁇ 15% PVA solution.
  • the particle size of the first pore-forming agent and the particle size of the second pore-forming agent are 10 to 15 ⁇ m respectively.
  • pressing the conductive powder on the bottom layer of the green body to form a top layer of the green body, and obtaining a composite green body includes:
  • the conductive powder is pressed and molded on the bottom layer of the green body at a pressure of 15 to 20MPA to form a top layer of the green body, and a composite green body is obtained.
  • the second technical solution adopted by this application is to provide an atomizer, which includes an atomizer core prepared by the above-mentioned preparation method.
  • the atomization core includes a liquid-conducting layer and a heating layer.
  • the thickness of the liquid-conducting layer is 2 to 2.5 mm, the porosity is 45 to 65%, and the pore diameter is 15 to 30um; the thickness of the heating layer is The thickness is 0.2 ⁇ 0.5um, the porosity is 20 ⁇ 40%, and the pore diameter is 10 ⁇ 20um.
  • the preparation method of this application presses conductive powder on the bottom layer of the green body to form the top layer of the green body to obtain a composite green body, and then sinters the composite green body to obtain an atomization that integrates liquid conduction and heating functions core.
  • the preparation process of this preparation method is simple and easy to control, and the atomization core prepared by this preparation method has an integrated structure with liquid conduction and heating functions, thereby avoiding the separation of liquid conduction and heat generation during the installation and use of the atomization core. Foul core phenomenon.
  • Figure 1 is a schematic flow chart of a method for preparing an atomizing core in an embodiment of the present application.
  • Figure 1 is a schematic flow chart of a method for preparing an atomizing core in an embodiment of the present application.
  • This application provides a method for preparing an atomizing core, including:
  • the composite green body is sintered to obtain the atomizing core.
  • the preparation method of the present application is to press and mold conductive powder on the bottom layer of the green body to form the top layer of the green body to obtain a composite green body, and then sinter the composite green body to obtain an atomization core with integrated liquid conduction and heating functions.
  • the preparation process of this preparation method is simple and easy to control, and the atomization core prepared by this preparation method has an integrated structure with liquid conduction and heating functions, thereby avoiding the separation of liquid conduction and heat generation during the installation and use of the atomization core. Foul core phenomenon.
  • the preparation method adopts a brand-new material system, does not contain substances harmful to the human body, and is safe and environmentally friendly.
  • the bottom layer of the green body needs to be prepared, that is, the first silicon carbide, the first pore-forming agent and the first binder are mixed and then pressed and formed to obtain the bottom layer of the green body.
  • mixing the first silicon carbide, the first pore-forming agent and the first binder and then pressing and forming the green body bottom layer includes:
  • the mixed powder A is pressed and molded at a pressure of 5 to 10MPA to obtain the bottom layer of the green body.
  • the first silicon carbide, the first pore-forming agent and the first binder can be mixed in a certain mass ratio according to actual needs.
  • the particle size of the first silicon carbide is 40-60um;
  • the first pore-forming agent is at least one of starch, lignin and PMMA, and the particle size of the first pore-forming agent is 10-15um;
  • the first binder is Mass concentration 10 ⁇ 15% PVA solution.
  • the thickness of the bottom layer of the green body is 2.5 ⁇ 3.0mm, and the diameter is 11 ⁇ 13mm.
  • conductive powder After obtaining the bottom layer of the green body, conductive powder needs to be produced, that is, the second silicon carbide, silicon powder, nickel powder, molybdenum powder, graphite, second pore-forming agent and second binder are mixed to obtain conductive powder.
  • the conductive powder obtained by mixing the second silicon carbide, silicon powder, nickel powder, molybdenum powder, graphite, the second pore-forming agent and the second binder includes:
  • second silicon carbide 100 parts by weight of second silicon carbide, 10-20 parts by weight of silicon powder, 3-10 parts by weight of nickel powder, 3-10 parts by weight of molybdenum powder, 10-20 parts by weight of graphite and 15-30 parts by weight
  • the second pore-forming agent is mixed at 200-300r/min for 3-5 hours to obtain mixed powder B;
  • the mixed powder B and the second binder are mixed and granulated to obtain conductive powder.
  • the mixed powder B and the second binder can be mixed in a certain mass ratio according to actual needs.
  • the particle size of the second silicon carbide is 10-30um; the second pore-forming agent is at least one of starch, lignin and PMMA, and the particle size of the second pore-forming agent is 10-15um; the second binder is Mass concentration 10 ⁇ 15% PVA solution.
  • the conductive powder After producing the conductive powder, the conductive powder needs to be pressed and molded on the bottom layer of the green body, that is, the conductive powder is pressed and molded on the bottom layer of the green body to form the top layer of the green body, and a composite green body is obtained.
  • pressing the conductive powder on the bottom layer of the green body to form the top layer of the green body and obtaining the composite green body includes:
  • the conductive powder is pressed and formed on the bottom layer of the green body at a pressure of 15 to 20MPA to form the top layer of the green body, and a composite green body is obtained.
  • the bottom layer of the green body is a liquid-conducting layer green body
  • the top layer of the green body is a heat-generating layer green body.
  • the bottom layer of the green body and the top layer of the green body are combined into one body to form a composite green body.
  • the composite green body After obtaining the composite green body, the composite green body needs to be sintered, that is, the composite green body is sintered to obtain an atomizing core.
  • the composite body is sintered to obtain an atomization core including:
  • the composite body is sintered for the first time to obtain the atomization core body
  • the atomizing core body is sintered for the second time to obtain the atomizing core.
  • the temperature of the first sintering is 500-600°C and the time is 0.5-1.5 hours.
  • the first sintering can remove the first pore-forming agent, the second pore-forming agent, the first binder and the third pore-forming agent in the composite body.
  • the second binder is discharged.
  • the temperature of the second sintering is 1800 ⁇ 2000°C and the time is 1 ⁇ 3h.
  • the atomization core obtained by sintering the atomizer core green body for the second time includes a liquid conductive layer and a heating layer.
  • the liquid conductive layer is formed by sintering the bottom layer of the green body, and the heating layer is formed by sintering the top layer of the green body.
  • the atomizer core has an integrated structure with liquid conduction and heating functions, thereby avoiding the core burning phenomenon caused by the separation of liquid conduction and heat generation during installation and use of the atomizer core.
  • the thickness of the liquid conductive layer is 2 ⁇ 2.5mm, the porosity is 45 ⁇ 65%, and the pore diameter is 15 ⁇ 30um; the thickness of the heating layer is 0.2 ⁇ 0.5um, the porosity is 20 ⁇ 40%, and the pore diameter is 10 ⁇ 20um .
  • the liquid-conducting layer has a silicon carbide porous structure with high porosity and large pore size
  • the heating layer has a silicon carbide porous conductive structure with moderate porosity and small pore size.
  • the atomization core formed by the combination of the liquid conduction layer and the heating layer can achieve rapid liquid conduction and can also achieve self-energization and heating.
  • the present application also provides an atomizer, which includes an atomizer core prepared by the above preparation method, and the atomizer core is used to heat the atomized aerosol matrix to generate an aerosol that can be absorbed by the user.
  • the preparation method of the present application presses conductive powder on the bottom layer of the green body to form the top layer of the green body to obtain a composite green body, and then sinters the composite green body to obtain an atomization core that integrates liquid conduction and heating functions.
  • the preparation process of this preparation method is simple and easy to control, and the atomization core prepared by this preparation method has an integrated structure with liquid conduction and heating functions, thereby avoiding the separation of liquid conduction and heat generation during the installation and use of the atomization core. Foul core phenomenon.
  • the preparation method adopts a brand-new material system, does not contain substances harmful to the human body, and is safe and environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种雾化芯的制备方法及雾化器,雾化芯的制备方法包括:将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层;将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉;将导电粉压制成型于坯体底层上形成坯体顶层,并得到复合坯体;将复合坯体进行烧结,得到雾化芯。制备方法通过将导电粉压制成型于坯体底层上形成坯体顶层,得到复合坯体,再将复合坯体进行烧结得到导液与发热功能一体的雾化芯。该制备方法的制备过程简单并容易控制,且由该制备方法制备出的雾化芯为导液与发热功能一体结构,从而避免了雾化芯在安装使用过程中因导液与发热分离而发生糊芯现象。

Description

一种雾化芯的制备方法及雾化器 技术领域
本申请涉及雾化设备技术领域,具体涉及一种雾化芯的制备方法及雾化器。
背景技术
现有技术中,雾化器中的雾化芯有发热丝包裹棉芯、多孔陶瓷包裹发热丝、多孔陶瓷印刷发热电路三种方式,此三种方式都是采用导液和发热功能各由一种材料来实现,在制备过程中需要通过一定的物理、化学方法把此两种材料复合在一起才能实现雾化功能,从而导致制备过程复杂,且制备过程不易控制,容易导致导液与发热分离而发生糊芯现象。
发明内容
本申请提供一种雾化芯的制备方法及雾化器,以解决雾化芯的制备过程复杂,且制备过程不易控制,容易导致导液与发热分离而发生糊芯现象的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化芯的制备方法,包括:
将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层;
将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉;
将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体;
将所述复合坯体进行烧结,得到所述雾化芯。
可选的,将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型 得到坯体底层包括:
将第一碳化硅、第一造孔剂及第一粘结剂混合得到混合粉体A;
将所述混合粉体A以5~10MPA压强压制成型得到所述坯体底层。
可选的,将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉包括:
将100重量份的第二碳化硅、10~20重量份的硅粉、3~10重量份的镍粉、3~10重量份的钼粉、10~20重量份的石墨及15~30重量份的第二造孔剂以200~300r/min混合3~5h得到混合粉体B;
将所述混合粉体B及第二粘结剂混合造粒得到所述导电粉。
可选的,所述第一碳化硅的粒径为40~60um,所述第二碳化硅的粒径为10~30um。
可选的,将所述复合坯体进行烧结,得到所述雾化芯包括:
将所述复合坯体进行第一次烧结,得到雾化芯坯体;
将所述雾化芯坯体进行第二次烧结,得到所述雾化芯。
可选的,第一次烧结的温度为500~600℃,时间为0.5~1.5h;第二次烧结的温度为1800~2000℃,时间为1~3h。
可选的,所述第一造孔剂及所述第二造孔剂分别为淀粉、木质素及PMMA中的至少一种,所述第一粘结剂及所述第二粘结剂为质量浓度10~15%PVA溶液。
可选的,所述第一造孔剂的粒径及所述第二造孔剂的粒径分别为10~15um。
可选的,将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体包括:
将所述导电粉以15~20MPA压强压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体。
本申请采用的第二个技术方案是:提供一种雾化器,所述雾化器包括通过如上所述的制备方法制备而成的雾化芯。
可选的,所述雾化芯包括导液层及发热层,所述导液层的厚度为2~2.5mm,孔隙率为45~65%,孔径为15~30um;所述发热层的厚度为 0.2~0.5um,孔隙率为20~40%,孔径为10~20um。
本申请的有益效果是:本申请的制备方法通过将导电粉压制成型于坯体底层上形成坯体顶层,得到复合坯体,再将复合坯体进行烧结得到导液与发热功能一体的雾化芯。该制备方法的制备过程简单并容易控制,且由该制备方法制备出的雾化芯为导液与发热功能一体结构,从而避免了雾化芯在安装使用过程中因导液与发热分离而发生糊芯现象。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请一实施例中的雾化芯的制备方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
如图1所示,图1是本申请一实施例中的雾化芯的制备方法的流程示意图。本申请提供一种雾化芯的制备方法,包括:
将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层;
将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉;
将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体;
将所述复合坯体进行烧结,得到所述雾化芯。
本申请的制备方法通过将导电粉压制成型于坯体底层上形成坯体 顶层,得到复合坯体,再将复合坯体进行烧结得到导液与发热功能一体的雾化芯。该制备方法的制备过程简单并容易控制,且由该制备方法制备出的雾化芯为导液与发热功能一体结构,从而避免了雾化芯在安装使用过程中因导液与发热分离而发生糊芯现象。而且该制备方法采用了全新的材料体系,不含对人体有害的物质,安全环保。
在本申请提供的雾化芯的制备方法中,首先需要制作坯体底层,即将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层。示例性的,将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层包括:
将第一碳化硅、第一造孔剂及第一粘结剂混合得到混合粉体A;
将混合粉体A以5~10MPA压强压制成型得到坯体底层。
其中,第一碳化硅、第一造孔剂及第一粘结剂可以根据实际需要,从而按一定的质量比进行混合。第一碳化硅的粒径为40~60um;第一造孔剂为淀粉、木质素及PMMA中的至少一种,且第一造孔剂的粒径为10~15um;第一粘结剂为质量浓度10~15%PVA溶液。坯体底层的厚度为2.5~3.0mm,直径为11~13mm。
得到坯体底层后,需要制作导电粉,即将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉。示例性的,将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉包括:
将100重量份的第二碳化硅、10~20重量份的硅粉、3~10重量份的镍粉、3~10重量份的钼粉、10~20重量份的石墨及15~30重量份的第二造孔剂以200~300r/min混合3~5h得到混合粉体B;
将混合粉体B及第二粘结剂混合造粒得到导电粉。
其中,混合粉体B及第二粘结剂可以根据实际需要,从而按一定的质量比进行混合。第二碳化硅的粒径为10~30um;第二造孔剂为淀粉、木质素及PMMA中的至少一种,且第二造孔剂的粒径为10~15um;第二粘结剂为质量浓度10~15%PVA溶液。
制作出导电粉后,需要将导电粉压制成型于坯体底层,即将导电粉 压制成型于坯体底层上形成坯体顶层,并得到复合坯体。示例性的,将导电粉压制成型于坯体底层上形成坯体顶层,并得到复合坯体包括:
将导电粉以15~20MPA压强压制成型于坯体底层上形成坯体顶层,并得到复合坯体。
其中,坯体底层为导液层坯体,坯体顶层为发热层坯体,坯体底层与坯体顶层复合为一体从而形成复合坯体。
得到复合坯体后,需要对复合坯体进行烧结,即将复合坯体进行烧结,得到雾化芯。示例性的,将复合坯体进行烧结,得到雾化芯包括:
将复合坯体进行第一次烧结,得到雾化芯坯体;
将雾化芯坯体进行第二次烧结,得到雾化芯。
其中,第一次烧结的温度为500~600℃,时间为0.5~1.5h,第一次烧结可以将复合坯体内的第一造孔剂、第二造孔剂、第一粘结剂及第二粘结剂排出。第二次烧结的温度为1800~2000℃,时间为1~3h。
将雾化芯坯体进行第二次烧结后得到的雾化芯包括导液层及发热层,导液层由坯体底层经过烧结而成,发热层由坯体顶层经过烧结而成。该雾化芯为导液与发热功能一体结构,从而避免了雾化芯在安装使用过程中因导液与发热分离而发生糊芯现象。
其中,导液层的厚度为2~2.5mm,孔隙率为45~65%,孔径为15~30um;发热层的厚度为0.2~0.5um,孔隙率为20~40%,孔径为10~20um。由以上数据可知,导液层为高孔隙率、大孔径碳化硅多孔结构,发热层为孔隙率适中、孔径较小碳化硅多孔导电结构。由导液层及发热层复合形成的雾化芯即可实现快速导液,又可以实现自身通电发热。
本申请还提供一种雾化器,该雾化器包括通过如上所述制备方法制备的雾化芯,雾化芯用于加热雾化气溶胶基质,以产生可供用户吸收的气溶胶。
与相关技术相比,本申请的制备方法通过将导电粉压制成型于坯体底层上形成坯体顶层,得到复合坯体,再将复合坯体进行烧结得到导液与发热功能一体的雾化芯。该制备方法的制备过程简单并容易控制,且由该制备方法制备出的雾化芯为导液与发热功能一体结构,从而避免了 雾化芯在安装使用过程中因导液与发热分离而发生糊芯现象。而且该制备方法采用了全新的材料体系,不含对人体有害的物质,安全环保。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种雾化芯的制备方法,其中,包括:
    将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层;
    将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉;
    将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体;
    将所述复合坯体进行烧结,得到所述雾化芯。
  2. 根据权利要求1所述的制备方法,其中,将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层包括:
    将第一碳化硅、第一造孔剂及第一粘结剂混合得到混合粉体A;
    将所述混合粉体A以5~10MPA压强压制成型得到所述坯体底层。
  3. 根据权利要求1所述的制备方法,其中,将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉包括:
    将100重量份的第二碳化硅、10~20重量份的硅粉、3~10重量份的镍粉、3~10重量份的钼粉、10~20重量份的石墨及15~30重量份的第二造孔剂以200~300r/min混合3~5h得到混合粉体B;
    将所述混合粉体B及第二粘结剂混合造粒得到所述导电粉。
  4. 根据权利要求1所述的制备方法,其中,所述第一碳化硅的粒径为40~60um,所述第二碳化硅的粒径为10~30um。
  5. 根据权利要求1所述的制备方法,其中,将所述复合坯体进行烧结,得到所述雾化芯包括:
    将所述复合坯体进行第一次烧结,得到雾化芯坯体;
    将所述雾化芯坯体进行第二次烧结,得到所述雾化芯。
  6. 根据权利要求5所述的制备方法,其中,第一次烧结的温度为500~600℃,时间为0.5~1.5h;第二次烧结的温度为1800~2000℃,时间为1~3h。
  7. 根据权利要求1所述的制备方法,其中,所述第一造孔剂及所述第二造孔剂分别为淀粉、木质素及PMMA中的至少一种,所述第一粘结剂及所述第二粘结剂为质量浓度10~15%PVA溶液。
  8. 根据权利要求7所述的制备方法,其中,所述第一造孔剂的粒径及所述第二造孔剂的粒径分别为10~15um。
  9. 根据权利要求1所述的制备方法,其中,将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体包括:
    将所述导电粉以15~20MPA压强压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体。
  10. 一种雾化器,其中,所述雾化器包括雾化芯;
    通过以下步骤制备所述雾化芯:
    将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层;
    将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉;
    将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体;
    将所述复合坯体进行烧结,得到所述雾化芯。
  11. 根据权利要求10所述的雾化器,其中,所述雾化芯包括导液层及发热层,所述导液层的厚度为2~2.5mm,孔隙率为45~65%,孔径为15~30um;所述发热层的厚度为0.2~0.5um,孔隙率为20~40%,孔径为10~20um。
  12. 根据权利要求10所述的雾化器,其中,将第一碳化硅、第一造孔剂及第一粘结剂混合后压制成型得到坯体底层包括:
    将第一碳化硅、第一造孔剂及第一粘结剂混合得到混合粉体A;
    将所述混合粉体A以5~10MPA压强压制成型得到所述坯体底层。
  13. 根据权利要求10所述的雾化器,其中,将第二碳化硅、硅粉、镍粉、钼粉、石墨、第二造孔剂及第二粘结剂混合得到导电粉包括:
    将100重量份的第二碳化硅、10~20重量份的硅粉、3~10重量份的 镍粉、3~10重量份的钼粉、10~20重量份的石墨及15~30重量份的第二造孔剂以200~300r/min混合3~5h得到混合粉体B;
    将所述混合粉体B及第二粘结剂混合造粒得到所述导电粉。
  14. 根据权利要求10所述的雾化器,其中,所述第一碳化硅的粒径为40~60um,所述第二碳化硅的粒径为10~30um。
  15. 根据权利要求10所述的雾化器,其中,将所述复合坯体进行烧结,得到所述雾化芯包括:
    将所述复合坯体进行第一次烧结,得到雾化芯坯体;
    将所述雾化芯坯体进行第二次烧结,得到所述雾化芯。
  16. 根据权利要求15所述的雾化器,其中,第一次烧结的温度为500~600℃,时间为0.5~1.5h;第二次烧结的温度为1800~2000℃,时间为1~3h。
  17. 根据权利要求10所述的雾化器,其中,所述第一造孔剂及所述第二造孔剂分别为淀粉、木质素及PMMA中的至少一种。
  18. 根据权利要求17所述的雾化器,其中,所述第一造孔剂的粒径及所述第二造孔剂的粒径分别为10~15um。
  19. 根据权利要求10所述的雾化器,其中,所述第一粘结剂及所述第二粘结剂为质量浓度10~15%PVA溶液。
  20. 根据权利要求10所述的雾化器,其中,将所述导电粉压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体包括:
    将所述导电粉以15~20MPA压强压制成型于所述坯体底层上形成坯体顶层,并得到复合坯体。
PCT/CN2022/124132 2022-05-25 2022-10-09 一种雾化芯的制备方法及雾化器 WO2023226274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210579493.3A CN115104779A (zh) 2022-05-25 2022-05-25 一种雾化芯的制备方法及雾化器
CN202210579493.3 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023226274A1 true WO2023226274A1 (zh) 2023-11-30

Family

ID=83325534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124132 WO2023226274A1 (zh) 2022-05-25 2022-10-09 一种雾化芯的制备方法及雾化器

Country Status (2)

Country Link
CN (1) CN115104779A (zh)
WO (1) WO2023226274A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115104779A (zh) * 2022-05-25 2022-09-27 深圳市吉迩科技有限公司 一种雾化芯的制备方法及雾化器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046834A (zh) * 2017-12-21 2018-05-18 深圳市卓力能电子有限公司 一种具有镶嵌结构的多孔陶瓷加热体的制备工艺
CN109590473A (zh) * 2018-12-18 2019-04-09 北京科技大学 一种多孔钛基给药雾化芯以及雾化用发热组件的制备方法
CN110590381A (zh) * 2018-06-12 2019-12-20 睿健邦生医股份有限公司 陶瓷材料的烧结控制方法
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
US20210052002A1 (en) * 2019-03-28 2021-02-25 China Tobacco Yunnan Industrial Co., Ltd Electronic cigarette with an improved atomizer
CN112931952A (zh) * 2021-03-04 2021-06-11 深圳市基克纳科技有限公司 一种雾化芯及电子雾化装置
CN113480327A (zh) * 2021-07-16 2021-10-08 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
CN113912412A (zh) * 2021-10-22 2022-01-11 深圳市吉迩科技有限公司 多孔陶瓷雾化芯及其制备方法和电子烟
CN113941704A (zh) * 2021-09-03 2022-01-18 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN114315404A (zh) * 2021-12-31 2022-04-12 深圳市吉迩科技有限公司 一种雾化芯基体的制备方法及雾化芯
CN114394849A (zh) * 2021-12-29 2022-04-26 深圳市吉迩科技有限公司 一种多孔陶瓷复合材料及多孔陶瓷复合材料的制备方法
CN115104779A (zh) * 2022-05-25 2022-09-27 深圳市吉迩科技有限公司 一种雾化芯的制备方法及雾化器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108046834A (zh) * 2017-12-21 2018-05-18 深圳市卓力能电子有限公司 一种具有镶嵌结构的多孔陶瓷加热体的制备工艺
CN110590381A (zh) * 2018-06-12 2019-12-20 睿健邦生医股份有限公司 陶瓷材料的烧结控制方法
CN109590473A (zh) * 2018-12-18 2019-04-09 北京科技大学 一种多孔钛基给药雾化芯以及雾化用发热组件的制备方法
US20210052002A1 (en) * 2019-03-28 2021-02-25 China Tobacco Yunnan Industrial Co., Ltd Electronic cigarette with an improved atomizer
CN111153686A (zh) * 2020-01-14 2020-05-15 东莞市陶陶新材料科技有限公司 电子烟用多孔陶瓷、含该多孔陶瓷的雾化芯及其制备方法
CN112931952A (zh) * 2021-03-04 2021-06-11 深圳市基克纳科技有限公司 一种雾化芯及电子雾化装置
CN113480327A (zh) * 2021-07-16 2021-10-08 深圳市吉迩科技有限公司 雾化芯、多孔陶瓷及多孔陶瓷的制备方法
CN113941704A (zh) * 2021-09-03 2022-01-18 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN113912412A (zh) * 2021-10-22 2022-01-11 深圳市吉迩科技有限公司 多孔陶瓷雾化芯及其制备方法和电子烟
CN114394849A (zh) * 2021-12-29 2022-04-26 深圳市吉迩科技有限公司 一种多孔陶瓷复合材料及多孔陶瓷复合材料的制备方法
CN114315404A (zh) * 2021-12-31 2022-04-12 深圳市吉迩科技有限公司 一种雾化芯基体的制备方法及雾化芯
CN115104779A (zh) * 2022-05-25 2022-09-27 深圳市吉迩科技有限公司 一种雾化芯的制备方法及雾化器

Also Published As

Publication number Publication date
CN115104779A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
CN108585810B (zh) 微孔陶瓷及其制备方法和雾化芯
WO2021227818A1 (zh) 梯度多孔材料及其制备方法、雾化器和电子雾化装置
CN109180171B (zh) 一种电子烟雾化器多孔陶瓷及其制备方法和带有该电子烟雾化器多孔陶瓷的电子烟
WO2021258746A1 (zh) 一种仿珍珠母层状高强超韧陶瓷的制备方法
CN110467441A (zh) 用于雾化器的多孔陶瓷基板及其制作方法
CN113603503B (zh) 微孔陶瓷雾化芯及其制备方法
CN109437875A (zh) 微孔陶瓷、陶瓷发热体及其制备方法和应用
CN113511886B (zh) 陶瓷雾化芯及其制备方法
WO2023226274A1 (zh) 一种雾化芯的制备方法及雾化器
CN113349454A (zh) 一种陶瓷雾化芯及其制备方法
CN105294140A (zh) 多孔陶瓷的制备方法、多孔陶瓷及其应用
CN109590473B (zh) 一种多孔钛基给药雾化芯以及雾化用发热组件的制备方法
CN101913873A (zh) 能提高强度和孔隙连通度的多孔陶瓷过滤管支撑体的制法
CN109279909A (zh) 一种高强度碳化硼多孔陶瓷的制备方法
CN110407566A (zh) 一种双层结构多孔陶瓷的制备方法
CN110683839A (zh) 多孔陶瓷及其制备方法和应用
CN113941704A (zh) 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN115159991A (zh) 多孔陶瓷发热结构及其制备方法
WO2023088019A1 (zh) 一种氮化硅陶瓷造粒粉的制备方法
CN105948781A (zh) 一种高开孔率多孔碳化硅陶瓷材料的制备方法
CN113880603A (zh) 一种多孔陶瓷组合物及其制备方法
CN114394849A (zh) 一种多孔陶瓷复合材料及多孔陶瓷复合材料的制备方法
CN106206928B (zh) 一种压电功能多孔电极复合材料及制备方法
CN109437871B (zh) 一种多孔正硅酸锂材料的制备方法
CN210642434U (zh) 一种多孔陶瓷的改进结构、电子烟及多孔陶瓷雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943462

Country of ref document: EP

Kind code of ref document: A1