WO2022173018A1 - 架橋タンパク質の製造方法 - Google Patents

架橋タンパク質の製造方法 Download PDF

Info

Publication number
WO2022173018A1
WO2022173018A1 PCT/JP2022/005477 JP2022005477W WO2022173018A1 WO 2022173018 A1 WO2022173018 A1 WO 2022173018A1 JP 2022005477 W JP2022005477 W JP 2022005477W WO 2022173018 A1 WO2022173018 A1 WO 2022173018A1
Authority
WO
WIPO (PCT)
Prior art keywords
meat
vegetable protein
weight
structured
processed food
Prior art date
Application number
PCT/JP2022/005477
Other languages
English (en)
French (fr)
Inventor
杏匠 酒井
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to EP22752840.3A priority Critical patent/EP4292439A1/en
Priority to CN202280014104.0A priority patent/CN116828993A/zh
Priority to JP2022580694A priority patent/JPWO2022173018A1/ja
Publication of WO2022173018A1 publication Critical patent/WO2022173018A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/18Vegetable proteins from wheat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/225Texturised simulated foods with high protein content
    • A23J3/227Meat-like textured foods
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/22Working-up of proteins for foodstuffs by texturising
    • A23J3/26Working-up of proteins for foodstuffs by texturising using extrusion or expansion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/262Cellulose; Derivatives thereof, e.g. ethers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives

Definitions

  • the present invention relates to a method for producing crosslinked proteins. More specifically, the present invention relates to processing techniques that enhance the crosslinkability of plant proteins.
  • meat substitutes have increased in the food market.
  • meat-like food materials used to be targeted at some consumers, such as vegetarians and vegans but in recent years the trend of demand has changed, and awareness of health consciousness, diet, environmental problems, animal welfare, etc. It is attracting attention again in response to the rise in
  • Patent Document 1 for the purpose of making it possible to produce a meat granular protein-containing food that does not lose its shape even after cooking and has a feeling of elasticity, it contains granular soy protein, isolated soy protein, and predetermined cations. , cations having a weight ratio of cations to isolated soy protein of 0.005 to 0.1 and divalent cations of 0.01 or less are mixed under humidity conditions and molded to a moisture content of 40 to 70%.
  • a method for producing a meat-like food is disclosed, which is characterized by heating and binding by microwave irradiation so that Moreover, in Patent Document 2, dry granular defatted soybean protein is reconstituted with a weak alkaline solution or A method for producing a granular meat protein-containing food is disclosed, which comprises mixing granular defatted soybean protein obtained by rehydrating with hot water and egg white or egg white powder.
  • Patent Document 3 cellulose ethers having thermoreversible gelling properties such as methyl cellulose are used in processed foods for the purpose of imparting functions such as binding properties or shape-retaining properties. It is disclosed for use in making burger patties and sausages as analogs.
  • Patent Document 4 discloses a protein cross-linking method using multi-copper oxidases including laccase, bilirubin oxidase, ascorbic acid oxidase, ceruloplasmin and the like.
  • the meat-like food material uses vegetable protein as a raw material, at least one of properties such as binding properties, juiciness or liquid retention, digestion speed, yield in processing (hereinafter also referred to as "animal meat-like properties" ), it still falls short of meat products.
  • Processing technology for meat-like food materials has been improved with the aim of reproducing meat-like characteristics at a level closer to that of meat products.
  • there are still many cases in which there is insufficient room for improvement Moreover, even if there is a technique that can express animal meat-like characteristics to some extent, a technique that can further enhance the characteristics is desired in order to keep up with the diversification of foods using meat substitutes.
  • an object of the present invention is to provide a new processing technology for enhancing the crosslinkability of vegetable proteins.
  • laccase which is a multi-copper oxidase having protein cross-linking activity
  • polysaccharides such as pectin and methylcellulose
  • the polysaccharide itself does not have a protein cross-linking effect
  • the cross-linking target of the laccase is a protein
  • coexistence of the laccase with the polysaccharide does not necessarily enhance the properties of the polysaccharide (for example, thickening).
  • Section 1 A method for producing a crosslinked vegetable protein, comprising a step of allowing a polysaccharide and multi-copper oxidase to act on a vegetable protein.
  • Section 2. Item 2. The production method according to Item 1, wherein the polysaccharide is a thermally irreversible gelling agent.
  • Item 3. Item 3. The production method according to Item 1 or 2, wherein the thermally irreversible gelling agent is pectin.
  • Section 4. Item 4. The production method according to any one of Items 1 to 3, wherein in said step, a compound selected from the group consisting of betalains, anthocyans, curcuminoids, polyhydroxychalcone, and polyhydroxyanthraquinone is allowed to act.
  • Item 5. Item 4.
  • Item 6. The production method according to any one of Items 1 to 5, wherein the multi-copper oxidase is laccase and/or bilirubin oxidase.
  • Item 7. obtaining a meat-like processed food by reacting the polysaccharide and the multi-copper oxidase on the structured vegetable protein material; wherein the vegetable protein is contained in the structured vegetable protein material; Item 7. The production method according to any one of Items 1 to 6, wherein the crosslinked vegetable protein is contained in the meat-like processed food.
  • Item 8. Cross-linking agents for vegetable proteins, including polysaccharides and multi-copper oxidases.
  • Item 9. Item 9.
  • the cross-linking agent according to Item 8 which is used as an agent for improving the binding properties of meat-like processed foods using the structured vegetable protein material.
  • Item 10. Item 9. The cross-linking agent according to Item 8, which is used as a texture modifier for meat-like processed foods using the structured vegetable protein material.
  • Item 11. Item 9. The cross-linking agent according to Item 8, which is used as a liquid retention improver for meat-like processed foods using the structured vegetable protein material.
  • Item 13. Item 9.
  • the cross-linking agent according to Item 8 which is used as a yield improver in the production of meat-like processed foods using the structured vegetable protein material.
  • Item 14. Item 14.
  • Item 15. Item 14.
  • Item 16. Item 8. A meat-like processed food obtained by the production method according to Item 7.
  • a processing technology that enhances the crosslinkability of vegetable proteins.
  • the meat-like properties of the resulting meat-like processed food such as binding properties, liquid retention, digestion speed, yield in processing, etc., can be enhanced.
  • Test Example 1 the result of confirming the cross-linking effect by the combination of polysaccharide and multi-copper oxidase by SDS-PAGE is shown.
  • 4 shows the hardness measurement results of the meat-like processed food produced in Test Example 2.
  • 2 shows an appearance photograph of the meat-like processed food produced in Test Example 2.
  • FIG. 4 shows the hardness measurement results of the meat-like processed food produced in Test Example 3.
  • 4 shows an appearance photograph of the meat-like processed food produced in Test Example 3.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. 4 shows an appearance photograph of the meat-like processed food produced in Test Example 5.
  • FIG. It is a result of a digestion rate test (free amino nitrogen content) of the meat-like processed food produced in Test Example 7. It is a digestion rate test (residue amount) result of the meat-like processed food manufactured in Test Example 7.
  • the method for producing a crosslinked vegetable protein of the present invention is characterized by including a step of reacting a polysaccharide and multi-copper oxidase on a vegetable protein. Thereby, the crosslinkability of the vegetable protein can be enhanced.
  • a compound selected from the group consisting of betalains, anthocyans, curcuminoids, polyhydroxychalcone, and polyhydroxyanthraquinone can also be allowed to act in this step.
  • Vegetable protein The origin of the vegetable protein is not particularly limited. , millet, millet, teff, quinoa, corn; hemp (industrial hemp), canary seed, flaxseed, almonds, cashews, hazelnuts, pecans, macadamia nuts, pistachios, walnuts, brazil nuts, peanuts, coconuts, pili nuts , chestnuts, sesame seeds, pine nuts and the like; and algae.
  • the vegetable protein may contain one of the above vegetable proteins alone, or may contain two or more.
  • these vegetable proteins from the viewpoint of further increasing crosslinkability, and when the production method of the present invention is used for producing meat-like processed foods using structured vegetable protein materials, meat-like properties are further enhanced.
  • cereal protein and cereal protein are preferred, soybean protein, pea protein and wheat protein are more preferred, soybean protein and pea protein are more preferred.
  • the form of the vegetable protein used in the present invention is not particularly limited. For example, it may be powdered or textured. In the present invention, when powdery vegetable protein is used, the powdery vegetable protein can be used in a state of being dispersed in water. In addition, in the present invention, when an organized vegetable protein ("organized vegetable protein material" to be described later) is used, the organized vegetable protein material can be used in a state of being swollen in water.
  • the vegetable protein is more specifically used in the form of an organized vegetable protein material.
  • Structured vegetable protein materials are known as meat substitutes (meat imitations), and typically, a raw material mixture containing vegetable protein and water is extruded with an extruder or the like, dried or frozen to form a meat-like texture. material that has been converted into
  • Forms of structured vegetable protein materials include granular and fibrous.
  • Granular forms include lump forms of various sizes such as small grain type, large grain type, and block type (small grain type, large grain type, and block type increase in size in order); flake type, fillet type, slice type, etc.
  • Flattened forms of various sizes can be mentioned.
  • structured vegetable protein materials include granular vegetable protein and fibrous vegetable protein.
  • Granular vegetable protein and fibrous vegetable protein both refer to those defined in the Japanese Agricultural Standards for Vegetable Protein.
  • the structured vegetable protein material used in the present invention is not limited to this as long as it is a meat-like structured material as described above.
  • the content of vegetable protein contained in the structured vegetable protein material is not particularly limited, but is, for example, 30% by weight or more, 35% by weight or more, 40% by weight or more. From the viewpoint of further enhancing the effect of improving the meat-like properties, the content is preferably 43% by weight or more, more preferably 45% by weight or more, and still more preferably 50% by weight or more. Although the upper limit of the content range is not particularly limited, it is, for example, 90% by weight or less, preferably 80% by weight or less.
  • the structured vegetable protein material can optionally contain other raw materials and/or food additives.
  • These other raw materials and/or food additives can be selected, for example, according to the type of "1-6. Meat-like processed food" described later.
  • Other raw materials include components derived from the food raw materials containing the above-mentioned vegetable proteins and inevitably coexisting therewith, edible vegetable oils and fats, extract concentrates of animals and plants, protein hydrolysates, and the like.
  • Food additives are not particularly limited as long as they are food-safe, and include tissue improving agents such as calcium sulfate; salt, sugar, spices, sodium L-glutamate, disodium 5′ -ribonucleotide, Seasonings such as disodium 5' -inosinate and disodium 5' -guanylate; colorings such as caramel I, caramel III, caramel IV, and cocoa (excluding "1-4. Predetermined compound” described later); antioxidants such as L-ascorbic acid; perfumes;
  • properties other than the type of vegetable protein and the content of the vegetable protein e.g., properties, water content, particle size, product temperature, raw materials other than food additives, food additives, chewiness, water retention, foreign matter, content
  • their measurement methods can comply with the properties and measurement methods defined in the Japanese Agricultural Standards for Vegetable Proteins.
  • Polysaccharides used in the present invention are not particularly limited, but thickening polysaccharides (gelling agents) are usually used.
  • the polysaccharide thickener may be either a heat-irreversible gelling agent or a heat-reversible gelling agent.
  • thermally irreversible gelling agents examples include pectin, gellan gum, glucomannan, alginic acid and salts thereof (alkali metal salts such as sodium salts, alkaline earth metal salts such as calcium salts), and the like.
  • Pectins include HM pectins with a degree of esterification (DE) of 50% or more and LM pectins with a DE of less than 50%.
  • Thermoreversible gelling agents include methylcellulose (MC), hydroxypropylcellulose (HPC), hydroxypropylmethylcellulose (HPMC), carrageenan, xanthan gum, gelatin, agar, and starch.
  • polysaccharides may be used singly or in combination.
  • the origin of pectin is not particularly limited, and examples thereof include citrus peels (eg, lemons, oranges, etc.), apples, beets, and the like.
  • the beet from which pectin is derived is Beta vulgaris ssp. vulgaris var. Altissima (a beat also known as sugar beat).
  • pectins from the viewpoint of further increasing crosslinkability, and when the production method of the present invention is used for manufacturing meat-like processed foods using structured vegetable protein materials, meat-like properties are further increased. From the point of view, beet-derived pectin is preferred. Among the pectins, HM pectin is preferable, and HM pectin having a DE of 55% or more is more preferable, from the viewpoint of further increasing crosslinkability. Alternatively, among pectins, from the viewpoint of further increasing the crosslinkability, and when the production method of the present invention is used for the production of meat-like processed foods using structured vegetable protein materials, the effect of improving meat-like characteristics is improved. Pectin containing ferulic acid is preferable from the viewpoint of further enhancing the content of ferulic acid. is 0.5 to 1% by weight.
  • the texture of the meat-like processed food that feels the texture of the structured vegetable protein material (
  • a heat-irreversible gelling agent is preferred, pectin is more preferred, HM pectin is even more preferred, and DE is 55%.
  • the above HM pectin can be mentioned.
  • pectin containing ferulic acid is preferable from the viewpoint of making the obtained meat-like processed food more strongly feel the texture of the textured vegetable protein material (for example, grainy texture).
  • the content of ferulic acid in the pectin is, for example, 0.3 to 3% by weight, preferably 0.4 to 2% by weight, more preferably 0.5 to 1% by weight.
  • the amount of the polysaccharide used is not particularly limited, but the amount of the polysaccharide per 100 parts by weight of the vegetable protein is, for example, 0.5 to 30 parts by weight, from the viewpoint of further enhancing the crosslinkability of the vegetable protein. , preferably 2 to 15 parts by weight.
  • the amount of polysaccharide used is 100 parts of the structured vegetable protein material (swollen with water).
  • the amount of polysaccharide per part by weight includes, for example, 0.02 to 20 parts by weight.
  • the amount of polysaccharide per 100 parts by weight of the structured vegetable protein material (swollen with water) is preferably 0.2 to 6 parts by weight, more preferably is 0.7 to 4.5 parts by weight, 1.0 to 4 parts by weight, or 1.5 to 3.5 parts by weight.
  • the state in which the structured vegetable protein material is swollen with water refers to the state in which the structured vegetable protein material is saturated with water.
  • Multicopper oxidase used in the present invention is a group of enzymes containing multiple copper atoms in the molecule and oxidizing polyphenols, methoxyphenols, diamines, bilirubin, ascorbic acid, etc. with molecular oxygen.
  • the number of copper atoms contained so far is usually 2 to 8, but this number is particularly limited because it varies depending on the state of the enzyme preparation at the time of analysis and the analysis method. not a thing
  • Enzymes classified as multicopper oxidases include, for example, laccase, bilirubin oxidase, ascorbate oxidase, ceruloplasmin, and the like.
  • multi-copper oxidases may be used singly or in combination.
  • livestock meat Laccase is preferred from the viewpoint of further enhancing the effect of improving the skin properties.
  • Laccase is an enzyme (EC 1.10.3.2) with phenol oxidase activity.
  • laccases include laccases derived from microorganisms such as fungi and bacteria. , Pycnoporus, Pyricularia, Trametes, Rhizoctonia, Rigidoporus, Coprinus, Psatyrella, Myceliophtera, Schtalidium, Polyporus, Phlebia, Coriolus and the like.
  • laccases may be used singly or in combination.
  • these laccases from the viewpoint of further increasing the crosslinkability of vegetable proteins, and when the production method of the present invention is used to produce meat-like processed foods using structured vegetable protein materials, From the viewpoint of further enhancing the effect of improving , Trametes-derived laccase and Aspergillus-derived laccase (more preferably Aspergillus oryzae-derived laccase) are preferred, and Trametes-derived laccase is more preferred.
  • the amount of the multi-copper oxidase used is not particularly limited, but the amount of the multi-copper oxidase per 1 g of the plant protein is, for example, 5 to 5,000 U, which is preferable from the viewpoint of further enhancing the crosslinkability of the plant protein. includes 10 to 1,000 U.
  • the amount of multi-copper oxidase used is the amount of multi-copper oxidase per 1 g is, for example, 1 to 500 U, preferably 2 to 400 U, more preferably 3 to 300 U, 4 to 200 U, 5 to 400 U, from the viewpoint of further enhancing the effect of improving meat-like properties. 100U, 7.5-75U, 10-50U, 12.5-35U, or 15-25U.
  • the amount of multicopper oxidase per 1 mg of polysaccharide is, for example, 0.1 to 20 U, preferably 0.4 to 10 U, more preferably 0.4 to 10 U from the viewpoint of further enhancing the crosslinkability of vegetable proteins. 6 to 7U are included.
  • ABTS 2,2'-Azino-di-[3-ethylbenzthiazoline sulfonate]
  • ABTS was dissolved in 25 mM citrate buffer (pH 3.2) at a concentration of 1.0 mg/ml to prepare a substrate solution. After preheating 3.0 ml of this substrate solution at 25° C., 0.1 ml of enzyme solution was added, stirred, incubated at 25° C., and the absorbance at 405 nm was measured after 1 minute and 3 minutes. The amount of enzyme that increased the absorbance at 405 nm by 1.0 OD per minute under these conditions was defined as 1 unit (U).
  • Certain compounds of the present invention further improve the cross-linking properties of the vegetable protein and improve the meat-like properties (especially the binding properties) when the production method of the present invention is used to produce meat-like processed foods using the structured vegetable protein material.
  • a predetermined compound that is, betalain, anthocyan, curcuminoid, polyhydroxychalcone, and polyhydroxyanthraquinone, is selected for the purpose of further enhancing adhesion). can be used.
  • Betalains include betacyanins and betaxanthins.
  • Betacyanins include betanin (glycoside of betanidine), betanidine (aglycone of betanin), isobetanin (glycoside of isobetanidin), isobetanidin (aglycone of isobetanin), probetanin, neobetanin and the like.
  • Betaxanthins include vulgaxanthin, miraxanthin, portulaxanthin, indicaxanthin and the like.
  • Anthocyans include anthocyanins and anthocyanidins (aglycones of anthocyanins).
  • Anthocyanidins are polyhydroxy-2-phenylbenzopyrylium (2-phenylbenzopyrylium compound in which at least a plurality of phenolic hydroxyl groups are bonded as substituents), pelargonidin, cyanidin (aglycone of lubrobrusin, shisonin), delphinidin , aurantinidin, luteolinidin, peonidin, malvidin, petunidin, europinidine, rosinidin and the like.
  • anthocyanins which are glycosides of anthocyanidins, include rubrobrusin (cyanidin glycoside), shisonin (cyanidin glycoside), malonylshisonin (malonic acid-bound shisonin), and the like.
  • Curcuminoids include curcumin, demethoxycurcumin, bisdemethoxycurcumin, and the like.
  • polyhydroxychalcone compound in which at least a plurality of phenolic hydroxyl groups are bonded to chalcone as substituents
  • examples of polyhydroxychalcone include safromine, carthamine, and the like.
  • polyhydroxyanthraquinones compounds in which at least a plurality of phenolic hydroxyl groups are bonded to anthraquinone as substituents
  • examples of polyhydroxyanthraquinones include carminic acid and the like.
  • the predetermined compound may be a chemically synthesized product or a natural product.
  • the origin is not particularly limited.
  • plants such as beet (Beta vulgaris ssp. vulgaris var. Vulgaris (beet also called table beet, red beet, beetroot)), red radish, purple sweet potato, red shiso, purple cabbage, safflower, turmeric organisms such as insects;
  • the natural products that provide the above compounds include beet pigments (betalains such as betanin, isobetanin, betanidin, and isobetanidine).
  • Natural dyes such as cochineal dyes (including carminic acid as polyhydroxyanthraquinone) can be used.
  • the predetermined compound may be used singly or in combination of multiple types.
  • predetermined compounds from the viewpoint of further increasing the crosslinkability of vegetable proteins, and when the production method of the present invention is used for producing meat-like processed foods using structured vegetable protein materials, From the viewpoint of further improving properties (especially binding properties), betalain is preferred, and betanin, betanidine, isobetanine, and isobetanidine are more preferred.
  • the natural pigment itself can be used in order to use the predetermined compound.
  • a natural pigment itself that is, a natural pigment isolated from the organism
  • an extract containing the pigment compound of an organism containing the pigment compound may be used, or the pigment compound may be used.
  • the organism itself may be used.
  • the isolated natural pigments, extracts, and/or organisms themselves may be used singly or in a plurality of A combination of species may also be used.
  • the production method of the present invention is a meat-like substance using an organized vegetable protein material.
  • beet pigments, beet extracts and beets are preferred, and beet extracts and beets are more preferred. and more preferably beets.
  • the amount of the predetermined compound used is not particularly limited, but the amount of the predetermined compound per 100 parts by weight of the vegetable protein is, for example, 0.00005 to 1 part by weight, and the crosslinkability of the vegetable protein is further improved. From the viewpoint of further increasing the content, it is preferably 0.0005 to 0.7 parts by weight.
  • the above-mentioned predetermined amount per 100 parts by weight of the structured vegetable protein material swelling with water
  • the amount of the compound is, for example, 0.00001 to 0.1 parts by weight, preferably 0.0001 to 0.07 from the viewpoint of further improving the meat-like properties (especially binding properties) in meat-like processed foods. parts by weight, more preferably 0.0003 to 0.04 parts by weight, more preferably 0.0005 to 0.02 parts by weight.
  • the amount of the predetermined compound per 100 parts by weight of the vegetable protein is, for example, 0.05 to 0.05 in terms of dry weight of the organism as the raw material. 100 parts by weight, preferably 0.5 to 70 parts by weight from the viewpoint of further enhancing the crosslinkability of the vegetable protein.
  • the amount of the compound is, for example, 0.01 to 10 parts by weight in terms of the dry weight of the raw material organism, from the viewpoint of further improving the meat-like properties (especially binding properties) in the meat-like processed food. , preferably 0.1 to 7 parts by weight, more preferably 0.3 to 4 parts by weight, still more preferably 0.5 to 2 parts by weight.
  • the amount of the predetermined compound used per 1 part by weight of the polysaccharide is, for example, 0.0001 to 0.1 part by weight, preferably 0.001 to 0.01 part by weight, more preferably 0.003 to 0.01 part by weight. .007 parts by weight.
  • the amount of the predetermined compound per 1 part by weight of the polysaccharide is, for example, 0.01 in terms of the dry weight of the organism used as the raw material. ⁇ 10 parts by weight, preferably 0.1 to 1 part by weight, more preferably 0.3 to 0.7 parts by weight.
  • the production method of the present invention is used to produce a meat-like processed food using the structured vegetable protein material, the water-swollen structured vegetable protein material, polysaccharides and multi-copper oxidase
  • a mixture containing a predetermined compound is prepared, and a reaction for improving meat-like properties based on crosslinkability is allowed to proceed.
  • the mixture can be further mixed with powdered pea protein for the purpose of further enhancing the binding property.
  • the amount of powdered pea protein used is, for example, 5 to 20 parts by weight, preferably 10 to 13 parts by weight, per 100 parts by weight of the structured vegetable protein material (swollen with water).
  • the mixture containing the structured vegetable protein material can be mixed with a base material, a binder and/or other ingredients.
  • Substrates include water (other than the water impregnating the swollen structured vegetable protein material) and/or oil.
  • the binder one or more of bread crumbs, potato starch, eggs, etc. can be selected and used.
  • Other food materials can be appropriately determined by those skilled in the art according to the type of meat-like processed food, and examples thereof include vegetables.
  • the amount of water used per 1 part by weight of oil is preferably 0.5 to 6 parts by weight, more preferably 1 part by weight. to 4 parts by weight, more preferably 1.5 to 2.5 parts by weight.
  • the amount of oil used relative to 1 part by weight of water is preferably 0.2 to 2 parts by weight, more preferably 0. .4 to 1.5 parts by weight, more preferably 0.8 to 1.1 parts by weight.
  • the treatment temperature of the mixture can be appropriately determined in consideration of the optimum temperature of the multi-copper oxidase, and is, for example, 4-80°C, preferably 15-70°C.
  • the treatment time is not particularly limited, but is, for example, 0.1 to 18 hours, preferably 0.2 to 3 hours.
  • the production method of the present invention can effectively exhibit a cross-linking effect even under inherently unfavorable reaction conditions in which the multi-copper oxidase alone cannot exhibit an effective cross-linking effect.
  • a suitable example of the treatment temperature of the mixture is 15 to 45° C., more preferably 15 to 35° C., still more preferably 15 to 30° C., still more preferably non-heating conditions (room temperature, preferably 15 to 25° C.), and a suitable example of the treatment time is 0.5 to 1.5 hours, more preferably 0.8 to 1.2 hours.
  • the processed mixture containing the structured vegetable protein material can be molded into a shape suitable for the desired form of the meat-like processed food and cooked to obtain the meat-like processed food.
  • a person skilled in the art can appropriately determine the cooking method according to the type of meat-like processed food. Specifically, boiling, grilling (roasting, toasting, baking, grilling, broiling), steaming, and deep-frying can be used as cooking methods. One of these cooking methods may be used alone, or a plurality of them may be used in combination.
  • the production method of the present invention is used to produce a meat-like processed food using the structured vegetable protein material
  • the resulting meat-like processed food contains polysaccharides and/or multi-copper
  • At least one of meat-like properties such as binding property, liquid retention property, digestion rate, and yield in processing is enhanced as compared to the production without using oxidase.
  • the specific form of the meat-like processed food is not particularly limited, and can conform to meat processed food cooked by molding and heating minced meat seeds. Specific examples include hamburgers, meatballs, patties, meatloaf, and minced cutlets.
  • cross- linking agents for vegetable proteins Polysaccharides can improve cross-linking properties of vegetable proteins by multi-copper oxidase. Accordingly, the present invention also provides cross-linking agents for plant proteins, including polysaccharides and multi-copper oxidases. From the viewpoint of further enhancing crosslinkability, the cross-linking agent of the present invention preferably further contains a compound selected from the group consisting of betalain, anthocyan, curcuminoid, polyhydroxychalcone, and polyhydroxyanthraquinone, and contains betalain. is more preferred, more preferably contains beet pigments, beet extract and/or beets, and even more preferably contains beets.
  • the resulting meat-like processed food has improved cross-linking properties of vegetable proteins, resulting in meat-like properties. characteristics can be improved.
  • meat-like properties include binding properties, liquid retention properties, digestion speed, yield in processing, and the like.
  • the cross-linking agent of the present invention can be used as an agent for improving the binding properties of meat-like processed foods using structured vegetable protein materials.
  • the binding property of the meat-like processed food using the structured vegetable protein material can be quantitatively confirmed by measuring the hardness of the processed meat-like processed food. The greater the hardness, the higher the binding property.
  • the cross-linking agent of the present invention can improve the binding property of meat-like processed foods using the structured vegetable protein material, it can be used as a texture modifier for meat-like processed foods using the structured vegetable protein material. It can also be used as Specifically, when a heat-irreversible gelling agent is used as the polysaccharide, it can be effectively used as the texture modifier.
  • the improved texture of the meat-like processed food using the structured vegetable protein material can be attributed to: It can be confirmed by the fact that the texture of the texture of the structured vegetable protein material and the elasticity of the food due to binding are combined, and the texture is closer to that of general processed meat foods.
  • the crosslinkability improver of the present invention can be used as a liquid retention improver for meat-like processed foods using structured vegetable protein materials.
  • Liquid retention includes water retention and oil retention.
  • the liquid retention property of the meat-like processed food using the structured vegetable protein material can be quantitatively confirmed by measuring the difference in weight before and after centrifugation of the meat-like processed food. The smaller the weight difference, the greater the liquid retention.
  • the crosslinkability improver of the present invention can be used as a digestion speed improver for meat-like processed foods using structured vegetable protein materials.
  • the digestion rate of a meat-like processed food using structured vegetable protein material is determined by digesting the meat-like processed food for a predetermined time in an environment simulating the stomach (in artificial gastric juice, at a temperature equivalent to body temperature). , can be confirmed by measuring free amino nitrogen and residue after digestion. The more free amino nitrogen and less residue after digestion in a given time, the faster the digestion rate.
  • the crosslinkability improver of the present invention can be used as a yield improver in the production of meat-like processed foods using the structured vegetable protein material.
  • the meat-like processed food in which the crosslinkability improver of the present invention is used as a yield improver is a food obtained by cooking with heat, preferably a food obtained by baking.
  • the yield in the production of meat-like processed food using the structured vegetable protein material can be quantitatively confirmed by measuring the difference in weight of the meat-like processed food before and after cooking. The smaller the weight difference, the higher the yield.
  • crosslinkability improver for vegetable proteins The types and amounts of components used in the crosslinkability improver for vegetable proteins are as shown in the section "1. Method for producing crosslinked vegetable proteins" above.
  • laccase activity measurement method The enzymatic activity of laccase was measured using 2,2′-Azino-di-[3-ethylbenzthiazoline sulfonate] (ABTS, manufactured by Boehringer Mannheim) as a substrate by the method described below.
  • ABTS was dissolved in 25 mM citrate buffer (pH 3.2) at a concentration of 1.0 mg/ml to prepare a substrate solution. 3.0 ml of this substrate solution was taken in a cuvette, preheated at 25° C., 0.1 ml of enzyme solution was added, stirred, incubated at 25° C., and absorbance at 405 nm was measured after 1 minute and 3 minutes. The amount of enzyme that increased the absorbance at 405 nm by 1.0 OD per minute under these conditions was defined as 1 unit (U).
  • FIG. 2 shows the hardness measurement results.
  • FIG. 3 shows photographs of the appearance of each meat-like processed food.
  • Test Example 3 Adhesion and Texture-Granular Pea Protein
  • a meat-like processed food was obtained in the same manner as in Test Example 2, except that granular (small granular) soybean protein was changed to granular (small granular) pea protein.
  • Table 4 shows the components used in the production of the meat-like processed food of this test example and their amounts used in the same format as Table 3.
  • FIG. 4 shows the hardness measurement results.
  • FIG. 5 shows photographs of the appearance of each meat-like processed food.
  • the amounts shown in Table 5 refer to the amounts incorporated in the vegetable protein mixture (however, the amount of laccase indicates the activity value per gram of swollen granular pea protein).
  • the vegetable protein mixture was well mixed and shaped into a hamburger steak, left at room temperature for 60 minutes and then baked to obtain a meat-like processed food.
  • the obtained meat-like processed food was measured for hardness in the same manner as in Test Example 2 to evaluate the degree of cohesion.
  • Table 5 shows the hardness measurement results.
  • Example 5 As shown in Table 5, when methyl cellulose or pectin and laccase were added to granular pea protein (Examples 7 and 9), the binding property of granular pea protein was improved, and the degree of improvement was higher when pectin was used ( This was remarkable in Example 9). Furthermore, when a beet pigment was added (Examples 8 and 10), the binding property of the granular pea protein was further improved.
  • the amounts shown in Tables 6-13 refer to the amounts incorporated in the vegetable protein mixture (whereas the amount of laccase indicates the activity value per gram of swollen textured vegetable protein material).
  • the amount of methylcellulose or pectin was 2 parts by weight per 100 parts by weight of the swollen textured vegetable protein material.
  • the vegetable protein mixture was well mixed and shaped into a hamburger steak, left at room temperature for 60 minutes and then baked to obtain a meat-like processed food.
  • the vegetable protein mixture was mixed well, shaped into a hamburger steak, left to stand at room temperature for 60 minutes (the product obtained at this stage was a "pre-cooking patty"), and then subjected to a baking process to prepare a meat-like processed food ( A "post-cooked patty") was obtained.
  • Patties were cut into 5 g portions and added to simulated gastric fluid (77 mL purified water, 13 mL McIlvaine buffer pH 5.0, 4.39 g NaCl, 0.22 g KCl, 0.04 g CaCl2, final concentration 0.0065% pepsin). Immerse and react for 80 minutes at 37° C. and 60 rpm. At that time, 1N HCl was added every 10 minutes to adjust the pH to 3.0. After completion of the reaction, boiling treatment and cooling were performed, and the amount of free amino nitrogen and the amount of residue after digestion were measured. The results are shown in FIGS. 14 and 15. FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

本発明の目的は、植物性タンパク質材料の架橋性を高める新たな加工技術を提供することである。植物性タンパク質に、多糖類とマルチ銅オキシダーゼとを作用させることにより、植物性タンパク質の架橋効果を高めることができる。

Description

架橋タンパク質の製造方法
 本発明は、架橋タンパク質の製造方法に関する。より具体的には、本発明は、植物性タンパク質の架橋性を高める加工技術に関する。
 近年、食品市場において、代替肉と呼ばれる植物性の肉様食品材料のシェアが伸びている。このような肉様食品材料は、かつてはベジタリアン又はヴィーガンといった一部の消費者を対象としていたが、ここ数年では需要の動向も変化し、健康志向、ダイエット、環境問題、動物愛護等の意識の高まりを受け、改めて注目されている。
 そこで、ハンバーグなどの畜肉ミンチの加工食品を模した食品を肉様食品材料を用いて製造するために、肉様食品材料を結着させる技術が種々検討されている。例えば特許文献1には、調理後も型崩れのしない、弾力感を有する肉粒状蛋白含有食品を製造可能にすることを目的として、粒状大豆蛋白と、分離大豆蛋白、及び所定のカチオンを含有し、分離大豆蛋白に対するカチオンの重量比が0.005~0.1であり、かつ二価のカチオンが0.01以下であるカチオンを、調湿混合、成型し、水分含量が40~70%になるようにマイクロ波照射により加熱結着させることを特徴とする肉様食品の製造法が開示されている。また、特許文献2には、調理後も型崩れのしない、ジューシーで弾力感を有する肉粒状蛋白含有食品を製造することを目的として、乾燥粒状脱脂大豆蛋白を弱アルカリ溶液を用いて水戻し又は湯戻しして得られた粒状脱脂大豆蛋白と、卵白又は卵白粉とを混合することを特徴とする肉粒状蛋白含有食品の製造方法が開示されている。特許文献3には、メチルセルロース等の熱可逆ゲル化特性を有するセルロースエーテルが、結合性又は形状保持性といった機能の付与を目的として加工食品に利用され、植物を主体とした原料を用いた食肉の類似物としてバーガーパティやソーセージを製造する際に用いられることが開示されている。
 一方、粉末状、ペースト状、ミルク状等の非組織化植物性タンパク質材料の改質技術も種々検討されている。例えば、特許文献4にはラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラズミンなどが含まれるマルチ銅オキシダーゼによる蛋白質の架橋法が開示されている。
国際公開第2010/119985号 特開2013-009617号公報 特開2020-029571号公報 特開平11-276162号公報
 肉様食品材料は、植物性タンパク質を原料としているため、結着性、ジューシーさつまり保液性、消化速度、加工における歩留まり等の少なくともいずれかの特性(以下において、「畜肉様特性」とも記載する。)において、未だ畜肉食品に及ばない。肉様食品材料の加工技術は、畜肉食品により近いレベルで畜肉様特性を再現することを目的として改良されているが、いまだ発展途上であり、製法上の制約が多かったり、得られる畜肉様特性が十分でなかったりするものが多く、依然として改善の余地がある。また、畜肉様特性をある程度発現できる技術があるとしても、代替肉を用いた食品の多様化に追随するには、当該特性をより一層増強できる技術が望まれる。
 本発明者は、植物性タンパク質の、結着性、保液性、消化速度、加工における歩留まり等の畜肉様特性を高めるために、組織化植物性タンパク質材料の架橋性を高めることが有用と予測した。そこで、タンパク質の架橋化活性を有するマルチ銅オキシダーゼであるラッカーゼを用いて組織化植物性タンパク質材料の処理を試みたが、畜肉様特性を高める効果は全く認められなかった。これは、マルチ銅オキシダーゼ単独では、畜肉様特性を高める効果を発現できるほどの高いタンパク質架橋効果が奏されないためであると考えた。そこで本発明は、植物性タンパク質の架橋性を高める加工技術を新たに提供することを目的とする。
 本発明者は、タンパク質の架橋化活性を有するマルチ銅オキシダーゼであるラッカーゼに、ペクチン、メチルセルロースといった多糖類を併用することで、植物性タンパク質の架橋性が顕著に高められ、さらに、組織化植物性タンパク質材料に適用して肉様加工食品(代替肉食品)を調理した場合においては、得られる肉様加工食品の、結着性、保液性、消化速度、加工における歩留まり等の畜肉様特性が高められることを発見した。多糖類自体にはタンパク質の架橋効果はない点、及び、ラッカーゼの架橋化対象がタンパク質であり多糖類と共存させたところで多糖類の特性(例えば増粘性)を増強できるわけでもない点に鑑みると、これらの成分が組み合わされることで植物性タンパク質材料の架橋性が顕著に高められ、その架橋性向上効果が、組織化植物性タンパク質材料に適用して肉様加工食品を製造した場合に肉様加工食品の畜肉様特性を高めるほどに際立った程度で得られることは、全く予想外であった。本発明は、この知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本発明は、下記に掲げる態様の発明を提供する。
項1. 植物性タンパク質に、多糖類とマルチ銅オキシダーゼとを作用させる工程を含む、架橋植物性タンパク質の製造方法。
項2. 前記多糖類が熱不可逆性ゲル化剤である、項1に記載の製造方法。
項3. 前記熱不可逆性ゲル化剤がペクチンである、項1又は2に記載の製造方法。
項4. 前記工程において、さらに、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を作用させる、項1~3のいずれかに記載の製造方法。
項5. 前記工程において、さらにビート色素を含む、項1~3のいずれかに記載の製造方法。
項6. 前記マルチ銅オキシダーゼが、ラッカーゼ及び/又はビリルビンオキシダーゼである、項1~5のいずれかに記載の製造方法。
項7. 組織化植物性タンパク質材料に、前記多糖類と前記マルチ銅オキシダーゼとを作用させて肉様加工食品を得る工程を含み、
 前記植物性タンパク質が、前記組織化植物性タンパク質材料に含まれ、
 前記架橋植物性タンパク質が、前記肉様加工食品に含まれる、項1~6のいずれかに記載の製造方法。
項8. 多糖類及びマルチ銅オキシダーゼを含む、植物性タンパク質の架橋剤。
項9.組織化植物性タンパク質材料を用いた肉様加工食品の結着性向上剤として用いられる、項8に記載の架橋剤。
項10.組織化植物性タンパク質材料を用いた肉様加工食品の食感改質剤として用いられる、項8に記載の架橋剤。
項11.組織化植物性タンパク質材料を用いた肉様加工食品の保液性向上剤として用いられる、項8に記載の架橋剤。
項12.組織化植物性タンパク質材料を用いた肉様加工食品の消化速度向上剤として用いられる、項8に記載の架橋剤。
項13.組織化植物性タンパク質材料を用いた肉様加工食品の製造における歩留まり向上剤として用いられる、項8に記載の架橋剤。
項14. さらに、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を含む、項8~13のいずれかに記載の結着性向上剤。
項15. さらにビート色素を含む、項8~13のいずれかに記載の結着性向上剤。
項16. 項7に記載の製造方法により得られる、肉様加工食品。
 本発明によれば、植物性タンパク質の架橋性を高める加工技術が提供される。この技術を組織化植物性タンパク質材料に適用することにより、得られる肉様加工食品の、結着性、保液性、消化速度、加工における歩留まり等の畜肉様特性を高めることができる。
試験例1により、多糖類及びマルチ銅オキシダーゼの組み合わせによる架橋効果をSDS-PAGEにて確認した結果を示す。 試験例2で製造した肉様加工食品の硬さの測定結果示す。 試験例2で製造した肉様加工食品の外観写真を示す。 試験例3で製造した肉様加工食品の硬さの測定結果示す。 試験例3で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例5で製造した肉様加工食品の外観写真を示す。 試験例7で製造した肉様加工食品の消化速度試験(遊離アミノ態窒素量)結果である。 試験例7で製造した肉様加工食品の消化速度試験(残渣量)結果である。
1.架橋植物性タンパク質の製造方法
 本発明の架橋植物性タンパク質の製造方法は、植物性タンパク質に、多糖類とマルチ銅オキシダーゼとを作用させる工程を含むことを特徴とする。これにより、植物性タンパク質の架橋性を高めることができる。また、本発明の好ましい態様においては、当該工程において、さらに、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を作用させることもできる。さらに、本発明の架橋植物性タンパク質の製造方法を組織化植物性タンパク質材料に適用して肉様加工食品を製造する場合、当該材料中の植物性タンパク質の架橋性が高まることで、得られる肉様加工食品の畜肉様特性を向上させることができる。以下、本発明の架橋植物性タンパク質の製造方法について詳述する。
1-1.植物性タンパク質
 植物性タンパク質の由来については特に限定されず、例えば、大豆、空豆、エンドウ、ひよこ豆、緑豆、ルピン豆、インゲン豆等の菽穀類;大麦、米、小麦、ライ麦、オート麦、そば、ひえ、あわ、テフ、キヌア、トウモロコシ等の禾穀類;ヘンプ(産業用ヘンプ)、カナリーシード、亜麻仁、アーモンド、カシューナッツ、ヘーゼルナッツ、ペカンナッツ、マカダミアナッツ、ピスタチオ、クルミ、ブラジルナッツ、ピーナッツ、ココナッツ、ピリナッツ、栗、ゴマ、松の実等の種実類;藻類等が挙げられる。
 本発明において、植物性タンパク質としては、上記の植物性タンパク質のうちの1種を単独で含んでいてもよいし、2種以上を含んでいてもよい。これらの植物性タンパク質の中でも、架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性をより一層高める観点から、好ましくは菽穀類のタンパク質及び禾穀類のタンパク質が挙げられ、より好ましくは大豆タンパク質、エンドウタンパク質、小麦タンパク質が挙げられ、さらに好ましくは大豆タンパク質及びエンドウタンパク質が挙げられる。
 本発明で用いられる植物性タンパク質の形態については特に限定されない。例えば、粉末状であってもよいし、組織化状であってもよい。本発明において、粉末状の植物性タンパク質を用いる場合、粉末状の植物性タンパク質は、水中に分散された状態で用いることができる。また、本発明において、組織化状の植物性タンパク質(後述の「組織化植物性タンパク質材料」)を用いる場合、組織化植物性タンパク質材料は、水に膨潤させた状態で用いることができる。
 本発明で用いられる植物性タンパク質の形態が組織化状である場合、植物性タンパク質は、より具体的には、組織化植物性タンパク質材料の形態で用いられる。組織化植物性タンパク質材料は、代替肉(擬似肉)として公知であり、典型的な例として、植物性タンパク質及び水を含む原料混合物をエクストルーダー等で押出し、乾燥又は冷凍させて肉様に組織化した材料が挙げられる。
 組織化植物性タンパク質材料の形態としては、粒状及び繊維状が挙げられる。粒状の形態には、小粒型、大粒型、ブロック型等の様々な大きさ(小粒型、大粒状、ブロック型の順にサイズが大きくなる)の塊状形態;フレーク型、フィレ型、スライス型等の様々な大きさ(フレーク型、フィレ型、スライス型の順にサイズが大きくなる)の扁平状形態が挙げられる。
 組織化植物性タンパク質材料のより具体的な例としては、粒状植物性たん白及び繊維状植物性たん白が挙げられる。粒状植物性たん白及び繊維状植物性たん白とは、いずれも、「植物性たん白の日本農林規格」で定義されたものを指す。しかしながら、本発明で用いられる組織化植物性タンパク質材料は上記のように肉様に組織化した材料であればこれに限定されるものではない。
 組織化植物性タンパク質材料に含まれる植物性タンパク質の含有量(組織化植物性タンパク質材料が乾燥した状態を基準とする。)としては特に限定されないが、例えば30重量%以上、35重量%以上、40重量%以上が挙げられる。畜肉様特性の向上効果をより一層高める観点から、当該含有量としては、好ましくは43重量%以上、より好ましくは45重量%以上、さらに好ましくは50重量%以上が挙げられる。当該含有量範囲の上限としては特に限定されないが、例えば90重量%以下、好ましくは80重要%以下が挙げられる。
 組織化植物性タンパク質材料には、植物性タンパク質以外に、必要に応じて、他の原材料及び/又は食品添加物を含むことができる。これら他の原材料及び/又は食品添加物は、例えば、後述の「1-6.肉様加工食品」の種類に応じて選択することができる。他の原材料としては、上記の植物性タンパク質を含有する食品原材料に由来し不可避的に共存している成分、食用植物油脂、動植物の抽出濃縮物及びたん白加水分解物等が挙げられる。食品添加物としては、食品学的に許容されるものであれば特に限定されず、例えば硫酸カルシウム等の組織改良剤;食塩、砂糖、香辛料、L-グルタミン酸ナトリウム、5'-リボヌクレオチド二ナトリウム、5'-イノシン酸二ナトリウム及び5'-グアニル酸二ナトリウム等の調味料;カラメルI、カラメルIII、カラメルIV、ココア等の着色料(後述の「1-4.所定の化合物」を除く);L-アスコルビン酸等の酸化防止剤;香料等が挙げられる。
 本発明で用いることができる組織化植物性タンパク質材料について、植物性タンパク質の種類、植物性タンパク質の含有割合以外の特性(例えば、性状、水分量、粒度、品温、食品添加物以外の原材料、食品添加物、かみごたえ、保水性、異物、内容量)及びその測定方法については、「植物性たん白の日本農林規格」で定義された特性及び測定方法に準拠することができる。
1-2.多糖類
 本発明で用いられる多糖類としては、特に限定されないが、通常、増粘多糖類(ゲル化剤)が用いられる。増粘多糖類は、熱不可逆性ゲル化剤及び熱可逆性ゲル化剤のいずれであってもよい。
 熱不可逆性ゲル化剤としては、ペクチン、ジェランガム、グルコマンナン、アルギン酸及びその塩(ナトリウム塩等のアルカリ金属塩、カルシウム塩等のアルカリ土類金属塩)等が挙げられる。ペクチンとしては、エステル化度(DE)が50%以上のHMペクチンおよびDEが50%未満のLMペクチンが挙げられる。
 熱可逆性ゲル化剤としては、メチルセルロース(MC)、ヒドロキシプロピルセルロース(HPC)、ヒドロキシプロピルメチルセルロース(HPMC)、カラギーナン、キサンタンガム、ゼラチン、寒天、でんぷん等が挙げられる。
 これらの多糖類は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 これらの多糖類の中でも、架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性の向上効果をより一層高める観点から、好ましくは植物性細胞壁由来の多糖類及びその誘導体が挙げられ、より好ましくは熱不可逆性ゲル化剤が挙げられ、さらに好ましくはペクチンが挙げられる。ペクチンの由来としては特に限定されず、例えば、柑橘果皮(例えばレモン、オレンジ等)、リンゴ、ビート等が挙げられる。なお、ペクチンの由来となるビートとは、Beta vulgaris ssp. vulgaris var. Altissima(シュガービートとも呼ばれるビート)である。
 さらに、ペクチンの中でも、架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性をより一層高める観点から、好ましくはビート由来ペクチンが挙げられる。また、ペクチンの中でも、架橋性をより一層高める観点から、好ましくはHMペクチンが挙げられ、一層好ましくはDEが55%以上のHMペクチンが挙げられる。或いは、ペクチンの中でも、架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性の向上効果をより一層高める観点から、好ましくはフェルラ酸を含むペクチンが挙げられ、当該ペクチン中のフェルラ酸の含有量としては、例えば0.3~3重量%、好ましくは0.4~2重量%、さらに好ましくは0.5~1重量%が挙げられる。
 また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において得られる肉様加工食品の、組織化植物性タンパク質材料の組織形状を感じる食感(一例として粒感)をより一層強く感じさせる観点でも、好ましくは熱不可逆性ゲル化剤が挙げられ、より好ましくはペクチンが挙げられ、さらに好ましくはHMペクチンが挙げられ、一層好ましくはDEが55%以上のHMペクチンが挙げられる。或いは、ペクチンの中でも、得られる肉様加工食品の、組織化植物性タンパク質材料の組織形状を感じる食感(一例として粒感)をより一層強く感じさせる観点から、好ましくはフェルラ酸を含むペクチンが挙げられ、当該ペクチン中のフェルラ酸の含有量としては、例えば0.3~3重量%、好ましくは0.4~2重量%、さらに好ましくは0.5~1重量%が挙げられる。
 多糖類の使用量については特に限定されないが、植物性タンパク質100重量部当たりの多糖類の量として、例えば0.5~30重量部が挙げられ、植物性タンパク質の架橋性をより一層高める観点から、好ましくは2~15重量部が挙げられる。
 さらに、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合、多糖類の使用量は、組織化植物性タンパク質材料(水で膨潤させたもの)100重量部当たりの多糖類の量として、例えば0.02~20重量部が挙げられる。畜肉様特性の向上効果をより一層高める観点から、組織化植物性タンパク質材料100重量部(水で膨潤させたもの)当たりの多糖類の量として、好ましくは0.2~6重量部、より好ましくは0.7~4.5重量部、1.0~4重量部、又は1.5~3.5重量部が挙げられる。なお、組織化植物性タンパク質材料を水で膨潤させた状態とは、組織化植物性タンパク質材料に飽和状態まで水を吸収させた状態をいう。
1-3.マルチ銅オキシダーゼ
 本発明で用いられるマルチ銅オキシダーゼとは、分子中に複数の銅原子を含有し、ポリフェノール、メトキシフェノール、ジアミン、ビリルビン、アスコルビン酸などを分子状酸素により酸化せしめる一群の酵素である。含まれる銅原子の数は、これまで知られているものは通常2~8個であるが、この数は分析時の酵素標品の状態、分析法によりばらつきが見られるため、特に限定されるものではない。マルチ銅オキシダーゼに分類される酵素としては、例えばラッカーゼ、ビリルビンオキシダーゼ、アスコルビン酸オキシダーゼ、セルロプラズミン等が挙げられる。
 これらのマルチ銅オキシダーゼは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのマルチ銅オキシダーゼの中でも、植物性タンパク質の架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性の向上効果をより一層高める観点から、好ましくはラッカーゼが挙げられる。
 ラッカーゼは、フェノールオキシダーゼ活性を有する酵素(EC1.10.3.2)である。ラッカーゼの具体例としては、真菌及び細菌等の微生物に由来のラッカーゼが挙げられ、より具体的には、Aspergillus属、Neurospora属、Podospora属、Botrytis属、Collybia属、Fomes属、Lentinus属、Pleurotus属、Pycnoporus属、Pyricularia属、Trametes属、Rhizoctonia属、Rigidoporus属、Coprinus属、Psatyrella属、Myceliophtera属、Schtalidium属、Polyporus属、Phlebia属、Coriolus属等に由来のラッカーゼが挙げられる。
 これらのラッカーゼは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらのラッカーゼの中でも、植物性タンパク質の架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性の向上効果をより一層高める観点から、好ましくはTrametes属由来ラッカーゼ及びAspergillus属由来ラッカーゼ(より好ましくはAspergillus oryzae由来ラッカーゼ)が挙げられ、さらに好ましくはTrametes属由来ラッカーゼが挙げられる。
 マルチ銅オキシダーゼの使用量については特に限定されないが、植物性タンパク質1g当たりのマルチ銅オキシダーゼの量として、例えば5~5,000Uが挙げられ、植物性タンパク質の架橋性をより一層高める観点から、好ましくは10~1,000Uが挙げられる。
 さらに、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合、マルチ銅オキシダーゼの使用量は、組織化植物性タンパク質材料(水で膨潤させたもの)1g当たりのマルチ銅オキシダーゼの量として、例えば1~500Uが挙げられ、畜肉様特性の向上効果をより一層高める観点から、好ましくは2~400U、より好ましくは3~300U、4~200U、5~100U、7.5~75U、10~50U、12.5~35U、又は15~25Uが挙げられる。
 また、多糖類1mg当たりのマルチ銅オキシダーゼの量として、例えば0.1~20Uが挙げられ、植物性タンパク質の架橋性をより一層高める観点から、好ましくは0.4~10U、より好ましくは0.6~7Uが挙げられる。
 なお、マルチ銅オキシダーゼの活性については、基質である2,2’-Azino-di-[3-ethylbenzthiazoline sulfonate](ABTS)を用いて測定した。ABTSを1.0mg/mlの濃度で25mMクエン酸緩衝液(pH3.2)に溶解し基質液とした。この基質液3.0mlを25℃で予熱後、0.1mlの酵素液を添加、撹拌し、25℃でインキュベートし、1分後と3分後における405nmの吸光度を測定した。この条件下で1分間に405nmの吸光度を1.0 OD増加させる酵素量を1ユニット(U)と定義した。
1-4.所定の化合物
 本発明では、植物性タンパク質の架橋性をさらに向上させ、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性(特に結着性)をさらに高めることを目的として、上記の多糖類及びマルチ銅オキシダーゼに加え、さらに、所定の化合物、つまり、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を用いることができる。
 ベタレインとしては、ベタシアニン及びベタキサンチンが挙げられる。ベタシアニンとしては、ベタニン(ベタニジンの配糖体)、ベタニジン(ベタニンのアグリコン)、イソベタニン(イソベタニジンの配糖体)、イソベタニジン(イソベタニンのアグリコン)、プロベタニン、ネオベタニン等が挙げられる。ベタキサンチンとしては、ブルガキサンチン、ミラキサンチン、ポルツラキサンチン、インディカキサンチン等が挙げられる。
 アントシアンとしては、アントシアニン及びアントシアニジン(アントシアニンのアグリコン)が挙げられる。アントシアニジンは、ポリヒドロキシ-2-フェニルベンゾピリリウム(2-フェニルベンゾピリリウムに、少なくとも複数のフェノール性水酸基が置換基として結合した化合物)であり、ペラルゴニジン、シアニジン(ルブロブラシン、シソニンのアグリコン)、デルフィニジン、オーランチニジン、ルテオリニジン、ペオニジン、マルビジン、ペチュニジン、ヨーロピニジン、ロシニジン等が挙げられる。アントシアニジンの配糖体であるアントシアニンとしては、ルブロブラシン(シアニジンの配糖体)、シソニン(シアニジンの配糖体)、マロニルシソニン(マロン酸が結合したシソニン)等が挙げられる。
 クルクミノイドとしては、クルクミン、デメトキシクルクミン、ビスデメトキシクルクミン等が挙げられる。
 ポリヒドロキシカルコン(カルコンに、少なくとも複数のフェノール性水酸基が置換基として結合した化合物)としては、サフロミン、カルタミン等が挙げられる。
 ポリヒドロキシアントラキノン(アントラキノンに、少なくとも複数のフェノール性水酸基が置換基として結合した化合物)としては、カルミン酸等が挙げられる。
 また、上記所定の化合物は、化学合成物であってもよいし、天然物であってもよい。上記の化合物が天然物である場合、由来としても特に限定されない。当該由来としては、ビート(Beta vulgaris ssp. vulgaris var. Vulgaris(テーブルビート、レッドビート、ビートルートとも呼ばれるビート)を指す。)、アカダイコン、ムラサキイモ、アカシソ、ムラサキキャベツ、ベニバナ、ウコン等の植物;昆虫等の生物が挙げられる。より具体的には、上記の化合物を与える天然物としては、ビート色素(ベタレインとして、ベタニン、イソベタニン、ベタニジン、イソベタニジンを含む。その他の色素として、フィロカクチン、ヒロセレニン、アマランチン、ゴムフレニン-I,II,III、イレシニン、セロシアニン-I,IIを含む。)、アカダイコン色素(アントシアンとして、ペラルゴニジン、シアニジンを含む。)、ムラサキイモ色素(アントシアンとして、シアニジン、ペオニジンを含む。)、アカシソ色素(アントシアンとして、シソニン、マロニルシソニンを含む。)、ムラサキキャベツ色素(アントシアンとして、ルブロブラシンを含む。)、ベニバナ色素(ポリヒドロキシカルコンとして、サフロミン、カルタミンを含む。)、ウコン色素(クルクミノイドとして、クルクミンを含む。)、コチニール色素(ポリヒドロキシアントラキノンとして、カルミン酸を含む。)等の天然色素が挙げられる。
 上記所定の化合物は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 上記所定の化合物の中でも、植物性タンパク質の架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性(特に結着性)をより一層向上させる観点から、好ましくはベタレインが挙げられ、より好ましくは、ベタニン、ベタニジン、イソベタニン、イソベタニジンが挙げられる。
 また、上記所定の化合物を用いるために上記の天然色素そのものを用いることができる。天然色素そのもの(つまり、上記生物から単離された天然色素)を用いてもよいし、当該色素化合物を含む生物の、当該色素化合物を含む抽出物を用いてもよいし、当該色素化合物を含む生物そのものを用いてもよい。これらの単離された天然色素、抽出物、及び/又は生物そのものを用いる場合、上記の単離された天然色素、抽出物、及び生物そのものは、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。これらの単離された天然色素、抽出物、及び生物そのものの中でも、植物性タンパク質の架橋性をより一層高める観点から、また、本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合において畜肉様特性(特に結着性)をより一層向上させる観点から、好ましくはビート色素、ビート抽出物及びビートが挙げられ、より好ましくはビート抽出物及びビートが挙げられ、さらに好ましくはビートが挙げられる。
 上記所定の化合物の使用量については特に限定されないが、植物性タンパク質100重量部当たりの上記所定の化合物の量として、例えば0.00005~1重量部が挙げられ、植物性タンパク質の架橋性をより一層高める観点から、好ましくは0.0005~0.7重量部が挙げられる。本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合においては、組織化植物性タンパク質材料(水で膨潤させたもの)100重量部当たりの上記所定の化合物の量として、例えば0.00001~0.1重量部が挙げられ、肉様加工食品における畜肉様特性(特に結着性)をより一層向上させる観点から、好ましくは0.0001~0.07重量部、より好ましくは0.0003~0.04重量部、さらに好ましくは0.0005~0.02重量部が挙げられる。
 あるいは、上記所定の化合物が上記生物由来の天然物である場合、植物性タンパク質100重量部当たり上記所定の化合物の量としては、原料となる上記生物の乾燥重量換算量で、例えば0.05~100重量部が挙げられ、植物性タンパク質の架橋性をより一層高める観点から、好ましくは0.5~70重量部が挙げられる。本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合においては、組織化植物性タンパク質材料(水で膨潤させたもの)100重量部当たりの上記所定の化合物の量としては、原料となる上記生物の乾燥重量換算量で、例えば0.01~10重量部が挙げられ、肉様加工食品における畜肉様特性(特に結着性)をより一層向上させる観点から、好ましくは0.1~7重量部、より好ましくは0.3~4重量部、さらに好ましくは0.5~2重量部が挙げられる。
 また、多糖類1重量部当たりの上記所定の化合物の使用量としては、例えば0.0001~0.1重量部、好ましくは0.001~0.01重量部、より好ましくは0.003~0.007重量部が挙げられる。また、上記所定の化合物が上記生物由来の天然物である場合の、多糖類1重量部当たり上記所定の化合物の量としては、原料となる上記生物の乾燥重量換算量としては、例えば0.01~10重量部、好ましくは0.1~1重量部、より好ましくは0.3~0.7重量部が挙げられる。
1-5.反応操作及び条件等
 植物性タンパク質に、多糖類及びマルチ銅オキシダーゼ(場合によりさらに所定の化合物)を作用させる工程においては、適宜、植物性タンパク質材料と、多糖類及びマルチ銅オキシダーゼと、場合によりさらに所定の化合物とを水中に含む植物性タンパク質混合物を調製し、架橋性を向上させる反応を進行させる。
 本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合においては、水で膨潤させた状態の組織化植物性タンパク質材料と、多糖類及びマルチ銅オキシダーゼと、場合によりさらに所定の化合物とを含む混合物を調製し、架橋性に基づく畜肉様特性を向上させる反応を進行させる。
 なお、組織化植物性タンパク質材料を含む場合の当該混合物には、結着性をより高めることを目的として、粉末状のエンドウタンパク質をさらに混合することもできる。粉末状のエンドウタンパク質の使用量としては、例えば、組織化植物性タンパク質材料(水で膨潤させたもの)100重量部当たり5~20重量部、好ましくは10~13重量部が挙げられる。
 また、組織化植物性タンパク質材料を含む場合の当該混合物には、必要に応じて、基材、つなぎ及び/又は他の食材を混合することができる。基材としては、水(膨潤した組織化植物性タンパク質材料に含浸している水以外)及び/又は油が挙げられる。つなぎとしては、パン粉、片栗粉、卵等から1種又は2種以上を選択して用いることができる。他の食材としては、肉様加工食品の種類に応じて当業者が適宜決定することができ、例えば野菜等が挙げられる。なお、基材として水及び油を用いる場合、保液性の中でも保水性を高める観点からは、油1重量部に対する水の使用量として、好ましくは0.5~6重量部、より好ましくは1~4重量部、さらに好ましくは1.5~2.5重量部が挙げられる。また、基材として水及び油を用いる場合、保液性の中でも保油性を高める観点からは、水1重量部に対する油の使用量として、好ましくは0.2~2重量部、より好ましくは0.4~1.5重量部、さらに好ましくは0.8~1.1重量部が挙げられる。
 当該混合物の処理温度については、マルチ銅オキシダーゼの至適温度等を考慮して適宜決定することができるが、例えば、4~80℃、好ましくは15~70℃が挙げられる。また、処理時間としては特に限定されないが、例えば0.1~18時間、好ましくは0.2~3時間が挙げられる。本発明の製造方法は、マルチ銅オキシダーゼが単独では効果的な架橋効果を奏することができない、本来的に不利な反応条件であっても、効果的に架橋効果を奏することができる。このような観点から、当該混合物の処理温度の好適な例としては、15~45℃、より好ましくは15~35℃、さらに好ましくは15~30℃、一層好ましくは非加熱条件(室温、好ましくは15~25℃)が挙げられ、処理時間の好適な例としては、0.5~1.5時間、さらに好ましくは0.8~1.2時間が挙げられる。
 組織化植物性タンパク質材料を含む場合の処理後の混合物は、肉様加工食品の所望の形態に適した形状に成型し、加熱調理することによって、肉様加工食品を得ることができる。
 加熱調理方法については、肉様加工食品の種類に応じて当業者が適宜決定することができる。具体的には、加熱調理方法としては、煮沸、焼き(ロースト、トースト、ベイク、グリル、ブロイル)、蒸し、揚げ等が挙げられる。これらの加熱調理方法は、1種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。
1-6.肉様加工食品
 本発明の製造方法が組織化植物性タンパク質材料を用いた肉様加工食品の製造に用いられる場合、得られる肉様加工食品(代替肉食品)は、多糖類及び/又はマルチ銅オキシダーゼを用いずに製造した場合に比べ、結着性、保液性、消化速度、及び加工における歩留まり等の畜肉様特性の少なくともいずれかが高められている。
 肉様加工食品の具体的な形態としては特に限定されず、ミンチ状の畜肉を用いた肉種を成形し加熱することで調理される畜肉加工食品に準拠することができる。具体的には、ハンバーグ、ミートボール、パティ、ミートローフ、ミンチカツ等が挙げられる。
2.植物性タンパク質の架橋剤
 多糖類は、マルチ銅オキシダーゼによる植物性タンパク質の架橋性を向上させることができる。したがって、本発明は、多糖類及びマルチ銅オキシダーゼを含む、植物性タンパク質の架橋剤も提供する。架橋性をより一層高める観点から、本発明の架橋剤は、さらに、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を含むことが好ましく、ベタレインを含むことがより好ましく、ビート色素、ビート抽出物及び/又はビートを含むことがさらに好ましく、ビートを含むことがより一層好ましい。
 多糖類及びマルチ銅オキシダーゼは、優れた植物性タンパク質架橋性を示すため、組織化植物性タンパク質材料に適用される場合、得られる肉様加工食品において、植物性タンパク質の架橋性向上に伴い畜肉様特性を向上させることができる。このような畜肉様特性としては、結着性、保液性、消化速度、加工における歩留まり等が挙げられる。
 従って、本発明の架橋剤は、組織化植物性タンパク質材料を用いた肉様加工食品の結着性向上剤として用いることができる。組織化植物性タンパク質材料を用いた肉様加工食品の結着性は、定量的には、肉様加工食品に加工した場合の硬さを測定することで確認することができる。当該硬さが大きいほど結着性が高い。
 また、本発明の架橋剤は、組織化植物性タンパク質材料を用いた肉様加工食品の結着性を向上できるため、組織化植物性タンパク質材料を用いた肉様加工食品の食感改質剤として用いることもできる。具体的には、多糖類として熱不可逆性ゲル化剤を用いた場合に、当該食感改質剤として有効に利用することができる。この場合、組織化植物性タンパク質材料を用いた肉様加工食品の食感が改善していることは、熱不可逆性ゲル化剤及び/又はマルチ銅オキシダーゼを用いない肉様加工食品に比べて、組織化植物性タンパク質材料の組織形状を感じる食感と、結着による当該食品の弾力とが相まって、一般的な畜肉加工食品の食感により近くなっていることにより確認することができる。
 また、本発明の架橋性向上剤は、組織化植物性タンパク質材料を用いた肉様加工食品の保液性向上剤として用いることができる。保液性には、保水性及び保油性が含まれる。組織化植物性タンパク質材料を用いた肉様加工食品の保液性は、定量的には、肉様加工食品を遠心分離した前後における重量差を測定することで確認することができる。当該重量差が小さいほど保液性が大きい。
 また、本発明の架橋性向上剤は、組織化植物性タンパク質材料を用いた肉様加工食品の消化速度向上剤として用いることができる。組織化植物性タンパク質材料を用いた肉様加工食品の消化速度は、定量的には、胃を模した環境(人工胃液中、体温相当温度条件下)で所定時間、肉様加工食品を消化し、消化後の遊離アミノ態窒素と残渣とを測定することで確認できる。所定時間内で消化した後の遊離アミノ態窒素が多いほど、及び残渣が少ないほど、消化速度は速い。
 また、本発明の架橋性向上剤は、組織化植物性タンパク質材料を用いた肉様加工食品の製造における歩留まり向上剤として用いることができる。なお、本発明の架橋性向上剤が歩留まり向上剤として用いられる場合の肉様加工食品は、加熱調理により得られる食品であり、好ましくは焼成により得られる食品である。組織化植物性タンパク質材料を用いた肉様加工食品の製造における歩留まりは、定量的には、肉様加工食品の加熱調理前後の重量差を測定することで確認することができる。当該重量差が小さいほど歩留まりが大きい。
 植物性タンパク質の架橋性向上剤において、使用する成分の種類、使用量等については、前記「1.架橋植物性タンパク質の製造方法」の欄に示す通りである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は以下の実施例に限定して解釈されるものではない。
[使用材料]
Figure JPOXMLDOC01-appb-T000001
[ラッカーゼ活性値測定法]
 ラッカーゼの酵素活性測定は、2,2’-Azino-di-[3-ethylbenzthiazoline sulfonate](ABTS、ベーリンガー・マンハイム社製)を基質として以下に記載する方法で行った。
 ABTSを1.0mg/mlの濃度で25mMクエン酸緩衝液(pH3.2)に溶解し基質液とした。この基質液3.0mlをキュベットにとり、25℃で予熱後、0.1mlの酵素液を添加、撹拌し、25℃でインキュベートし、1分後と3分後における405nmの吸光度を測定した。この条件下で1分間に405nmの吸光度を1.0 OD増加させる酵素量を1ユニット(U)と定義した。
[試験例1]
 100mMリン酸バッファー(pH7.0)中に、表2に示す材料を表示の量(但し、ラッカーゼの量は、反応液10mL中の活性値で示す。)で添加した溶液を10mL調製し、40℃で60分反応させた。反応後、反応液をSDS-PAGEに供した。タンパク質の架橋化及びその程度は、SDS-PAGEにおける原点のバンドの存在及び当該バンドの濃さにより確認することができる。結果を図1に示す。
Figure JPOXMLDOC01-appb-T000002
 図1から明らかな通り、40℃で60分程度の反応条件では、ラッカーゼ単独では効果的な架橋反応は認められず(Lane2)、ペクチンもラッカーゼにより架橋されなかった(Lane3)が、ラッカーゼにペクチンを併用することで、効果的な架橋反応が認められた(Lane4)。
[試験例2:結着性及び食感-粒状大豆蛋白]
 粒状(小粒状)大豆蛋白80gに対して5倍重量の温水(40℃)を加え、10分間静置して飽和状態まで膨潤させた。水分を切り、膨潤した粒状大豆蛋白を25gずつ秤量した。秤量した粒状大豆蛋白に対して、2.75gの粉末状エンドウ蛋白(ロケット社製NUTRALYS F85M)と、メチルセルロース、ペクチン及びラッカーゼから選択される添加成分を、表3に示す量で添加し、植物性タンパク質混合物を調製した。表3に示す量は、植物性タンパク質混合物中の配合量を意味する。植物性タンパク質混合物をよく混合してハンバーグ状に成形し、室温にて60分間静置した後に焼成し、肉様加工食品を得た。
Figure JPOXMLDOC01-appb-T000003
 得られた肉様加工食品における粒状大豆蛋白の結着性の程度を評価するため、肉様加工食品の硬さをレオメーター(株式会社サン科学社製)にて測定した。硬さの測定値が大きいほど、結着性の程度が大きいことを示す。なお、肉様加工食品が崩れている場合については、硬さは検出不可能(n.d.;not detected)とした。硬さの測定結果を図2に示す。また、各肉様加工食品の外観写真を図3に示す。
 図2及び図3に示すように、多糖類を添加しなかった肉様加工食品においては、ラッカーゼを添加しなかった場合(比較例1)だけでなく、ラッカーゼを添加した場合(比較例2)であっても粒状大豆蛋白が結着することなく崩れた。つまり、ラッカーゼ自体に粒状大豆蛋白を結着させる作用がないことが認められた。メチルセルロースを単独で添加した場合(比較例3)には粒状大豆蛋白の結着性が認められたが、メチルセルロースにラッカーゼを併用した場合(実施例1)は、ラッカーゼ自体に結着作用がない(比較例2)にも関わらず、粒状大豆蛋白の結着性がさらに増強された。2重量%ペクチン及び4重量%ペクチンをそれぞれ単独で添加した場合(比較例4,5)においては、粒状大豆蛋白は結着することなく崩れたが、それらにラッカーゼを併用した場合(実施例2,3)は、ラッカーゼ自体に結着作用がない(比較例2)にも関わらず、粒状大豆蛋白の結着性が格段顕著に増強された。
 なお、結着性が認められた肉様加工食品の食感(舌ざわり)を評価したところ、メチルセルロースを添加した場合(比較例3、実施例1)においては練り物様であり、一般的な畜肉加工食品とは異なる食感であった。一方で、ペクチン及びラッカーゼを添加した場合(実施例2,3)においてはひき肉様の粒感があり、当該粒感と結着による食品の弾力とが相まって、一般的な畜肉加工食品と同様の食感であった。
[試験例3:結着性及び食感-粒状エンドウ蛋白]
 粒状(小粒状)大豆蛋白を粒状(小粒状)エンドウ蛋白に変更したことを除き、試験例2と同様にして肉様加工食品を得た。本試験例の肉様加工食品の製造で用いた成分及びその使用量を、表3と同様の形式で表4に示す。
Figure JPOXMLDOC01-appb-T000004
 得られた肉様加工食品について、試験例2と同様にして、結着性の程度を評価するための硬さの測定、外観写真の撮影、及び食感の評価を行った。硬さの測定結果を図4に示す。また、各肉様加工食品の外観写真を図5に示す。
 図4及び図5に示すように、多糖類を添加しなかった肉様加工食品においては、ラッカーゼを添加しなかった場合(比較例6)だけでなく、ラッカーゼを添加した場合(比較例7)であっても粒状エンドウ蛋白が結着することなく崩れた。つまり、ラッカーゼ自体に粒状エンドウ蛋白を結着させる作用がないことが認められた。メチルセルロースを単独で添加した場合(比較例8)には粒状エンドウ蛋白の結着性が認められたが、メチルセルロースにラッカーゼを併用した場合(実施例4)は、ラッカーゼ自体に結着作用がない(比較例7)にも関わらず、粒状エンドウ蛋白の結着性がさらに増強された。2重量%ペクチン及び4重量%ペクチンをそれぞれ単独で添加した場合(比較例9,10)においては、粒状エンドウ蛋白は結着することなく崩れたが、それらにラッカーゼを併用した場合(実施例5,6)は、ラッカーゼ自体に結着作用がない(比較例7)にも関わらず、粒状エンドウ蛋白の結着性が格段顕著に増強された。
 なお、結着性が認められた肉様加工食品の食感(舌ざわり)を評価したところ、メチルセルロースを添加した場合(比較例8、実施例4)においては練り物様であり、一般的な畜肉加工食品とは異なる食感であった。一方で、ペクチン及びラッカーゼを添加した場合(実施例5,6)においてはひき肉様の粒感があり、当該粒感と結着による食品の弾力とが相まって、一般的な畜肉加工食品と同様の食感であった。
[試験例4:結着性-粒状エンドウ蛋白]
 粒状(小粒状)エンドウ蛋白に対して5倍重量の温水(40℃)を加え、10分間静置して飽和状態まで膨潤させた。水分を切り、膨潤した粒状エンドウ蛋白を25gずつ秤量した。秤量した粒状エンドウ蛋白に対して、2.75gの粉末状エンドウ蛋白を混ぜ、ビート色素源としてのビート乾燥粉末、メチルセルロース、ペクチン及びラッカーゼから選択される添加成分を表5に示す量で添加し、植物性タンパク質混合物を調製した。表5に示す量は、植物性タンパク質混合物中の配合量を意味する(但し、ラッカーゼの量は膨潤した粒状エンドウ蛋白1g当たりの活性値を示す)。植物性タンパク質混合物をよく混合してハンバーグ状に成形し、室温にて60分間静置した後に焼成し、肉様加工食品を得た。
 得られた肉様加工食品について、試験例2と同様にして、結着性の程度を評価するための硬さの測定を行った。硬さの測定結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、粒状エンドウ蛋白にメチルセルロース又はペクチンとラッカーゼとを添加した場合(実施例7,9)に粒状エンドウ蛋白の結着性が向上し、その程度は、ペクチンを用いた場合(実施例9)に顕著であった。さらにビート色素を添加した場合(実施例8,10)には粒状エンドウ蛋白の結着性がより一層向上した。
[試験例5:結着性-様々な形状及び由来の組織状植物性タンパク質材料]
 表6~13に示す様々な形状及び由来の組織状植物性タンパク質材料に対して5倍重量の温水(40℃)を加え、10分間静置して飽和状態まで膨潤させた。水分を切り、膨潤した組織状植物性タンパク質材料を25gずつ秤量した。秤量した組織状植物性タンパク質材料に対して、水5g、オリーブオイル5gとともに、メチルセルロース、ペクチン、ラッカーゼから選択される添加成分を、表6~13に示す量で添加し、植物性タンパク質混合物を調製した。表6~13に示す量は、植物性タンパク質混合物中の配合量を意味する(但し、ラッカーゼの量は膨潤した組織状植物性タンパク質材料1g当たりの活性値を示す)。メチルセルロース又はペクチンの配合量は、膨潤した組織状植物性タンパク質材料100重量部当たり、2重量部であった。植物性タンパク質混合物をよく混合してハンバーグ状に成形し、室温にて60分間静置した後に焼成し、肉様加工食品を得た。
 得られた肉様加工食品について、試験例2と同様にして、結着性の程度を評価するための硬さの測定、及び外観写真の撮影を行った。硬さの測定結果を表6~13に示す。また、各肉様加工食品の外観写真を図6~13に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 表6~13から明らかなとおり、多糖類を添加しなかった肉様加工食品においては、ラッカーゼを添加しなかった場合だけでなく、ラッカーゼを添加した場合であっても組織状植物性タンパク質材料が結着することなく崩れた。メチルセルロースを単独で添加した場合には組織状植物性タンパク質材料の結着性が認められたが、メチルセルロースにラッカーゼを併用した場合は、ラッカーゼ自体に結着作用がないにも関わらず、組織状植物性タンパク質材料の結着性がさらに増強された。ペクチンを単独で添加した場合においては、組織状植物性タンパク質材料は結着することなく崩れたが、それらにラッカーゼを併用した場合は、ラッカーゼ自体に結着作用がないにも関わらず、組織状植物性タンパク質材料の結着性が格段顕著に増強された。
[試験例6:歩留まり及び保液性]
 粒状(小粒状)大豆蛋白に対して5倍重量の温水(40℃)を加え、10分間静置して飽和状態まで膨潤させた。水分を切り、膨潤した粒状(小粒状)大豆蛋白を25gずつ秤量した。秤量した粒状(小粒状)大豆蛋白に対して、終濃度2w/w%のメチルセルロース又はペクチンと、表14に示す量の水及びオリーブオイルと、膨潤した粒状(小粒状)大豆蛋白1g当たり20Uのラッカーゼを添加し、植物性タンパク質混合物を調製した。植物性タンパク質混合物をよく混合してハンバーグ状に成形し、室温にて60分間静置した(この段階で得られたものが「調理前パティ」)後、焼成工程を経て、肉様加工食品(「調理後パティ」)を得た。
 歩留まりを評価するために、調理前後のパティそれぞれの重量を測定することで、下記式に基づいてクッキングロスの割合(%)を算出した。結果を表14に示す。クッキングロスの割合(%)が小さいほど歩留まりが良い。
Figure JPOXMLDOC01-appb-M000014
 保液性を評価するために、焼成後のパティを5g分取り分けて3000rpmの条件で遠心に供して上澄みを破棄し、遠心後のパティを得た。遠心前後におけるパティそれぞれの重量を測定することで、下記式に基づいて保水性及び保油性(%)を算出した。結果を表14に示す。保水性及び保油性(%)が大きいほど保液性が高く、ジューシーな食感が得られる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-T000016
 表14から明らかな通り、ペクチンとラッカーゼとを用いて製造したパティでは、クッキングロスが低減されており、従って歩留まり向上が認められた。さらに、表14から明らかな通り、ペクチンとラッカーゼとを用いて製造したパティでは、保水性及び保油性が増加しており、従って保液性向上が認められた。
[試験例7:消化速度]
 粒状(小粒状)大豆蛋白に対して5倍重量の温水(40℃)を加え、10分間静置して飽和状態まで膨潤させた。水分を切り、膨潤した粒状大豆蛋白を25gずつ秤量した。秤量した粒状大豆蛋白に対して、メチルセルロース、ペクチン及びラッカーゼから選択される添加成分を、表15に示す量で添加し、植物性タンパク質混合物を調製した。表15に示す量は、植物性タンパク質混合物中の配合量を意味する(但し、ラッカーゼの量は膨潤した粒状大豆蛋白1g当たりの活性値を示す)。植物性タンパク質混合物をよく混合してハンバーグ状に成形し、室温にて60分間静置した後に焼成し、肉様加工食品(パティ)を得た。
Figure JPOXMLDOC01-appb-T000017
 パティを5gになるようにカットし、模倣胃液(77mL精製水、13mLマッキルバイン緩衝液pH5.0、4.39g NaCl、0.22g KCl、CaCl2 0.04g、終濃度0.0065%ペプシン)に浸し、80分間、37℃、60rpmで反応させた。その際、1N HClを10分おきに添加し、pH3.0となるよう調整した。反応終了後、煮沸処理及び冷却を行い、消化後の遊離アミノ態窒素量と残渣量とを測定した。結果を図14及び図15に示す。
 図14に示す通り、実施例36のパティによると、遊離アミノ態窒素量が比較例54のパティの2倍に増加し、図15に示す通り、残渣量は比較例54の半分であった。つまり、実施例36のパティによると、消化速度が向上していることが認められ、従って、栄養吸収量が高まっていることが示唆された。

Claims (16)

  1.  植物性タンパク質に、多糖類とマルチ銅オキシダーゼとを作用させる工程を含む、架橋植物性タンパク質の製造方法。
  2.  前記多糖類が熱不可逆性ゲル化剤である、請求項1に記載の製造方法。
  3.  前記熱不可逆性ゲル化剤がペクチンである、請求項1又は2に記載の製造方法。
  4.  前記工程において、さらに、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を作用させる、請求項1~3のいずれかに記載の製造方法。
  5.  前記工程において、さらにビート色素を含む、請求項1~3のいずれかに記載の製造方法。
  6.  前記マルチ銅オキシダーゼが、ラッカーゼ及び/又はビリルビンオキシダーゼである、請求項1~5のいずれかに記載の製造方法。
  7.  組織化植物性タンパク質材料に、前記多糖類と前記マルチ銅オキシダーゼとを作用させて肉様加工食品を得る工程を含み、
     前記植物性タンパク質が、前記組織化植物性タンパク質材料に含まれ、
     前記架橋植物性タンパク質が、前記肉様加工食品に含まれる、請求項1~6のいずれかに記載の製造方法。
  8.  多糖類及びマルチ銅オキシダーゼを含む、植物性タンパク質の架橋剤。
  9.  組織化植物性タンパク質材料を用いた肉様加工食品の結着性向上剤として用いられる、請求項8に記載の架橋剤。
  10.  組織化植物性タンパク質材料を用いた肉様加工食品の食感改質剤として用いられる、請求項8に記載の架橋剤。
  11.  組織化植物性タンパク質材料を用いた肉様加工食品の保液性向上剤として用いられる、請求項8に記載の架橋剤。
  12.  組織化植物性タンパク質材料を用いた肉様加工食品の消化速度向上剤として用いられる、請求項8に記載の架橋剤。
  13.  組織化植物性タンパク質材料を用いた肉様加工食品の製造における歩留まり向上剤として用いられる、請求項8に記載の架橋剤。
  14.  さらに、ベタレイン、アントシアン、クルクミノイド、ポリヒドロキシカルコン、及びポリヒドロキシアントラキノンからなる群より選択される化合物を含む、請求項8~13のいずれかに記載の結着性向上剤。
  15.  さらにビート色素を含む、請求項8~13のいずれかに記載の結着性向上剤。
  16.  請求項7に記載の製造方法により得られる、肉様加工食品。
PCT/JP2022/005477 2021-02-10 2022-02-10 架橋タンパク質の製造方法 WO2022173018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22752840.3A EP4292439A1 (en) 2021-02-10 2022-02-10 Method for manufacturing crosslinked protein
CN202280014104.0A CN116828993A (zh) 2021-02-10 2022-02-10 交联蛋白质的制造方法
JP2022580694A JPWO2022173018A1 (ja) 2021-02-10 2022-02-10

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-019654 2021-02-10
JP2021019654 2021-02-10
JP2021-106077 2021-06-25
JP2021106077 2021-06-25

Publications (1)

Publication Number Publication Date
WO2022173018A1 true WO2022173018A1 (ja) 2022-08-18

Family

ID=82838833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005477 WO2022173018A1 (ja) 2021-02-10 2022-02-10 架橋タンパク質の製造方法

Country Status (3)

Country Link
EP (1) EP4292439A1 (ja)
JP (1) JPWO2022173018A1 (ja)
WO (1) WO2022173018A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027110A1 (ja) * 2021-08-24 2023-03-02 天野エンザイム株式会社 植物性タンパク質発酵飲食品の製造方法
WO2024068633A1 (en) 2022-09-28 2024-04-04 Société des Produits Nestlé S.A. Binder comprising pea protein and sugar beet pectin for use in meat analogues

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276162A (ja) 1998-03-31 1999-10-12 Amano Pharmaceut Co Ltd 酵素による蛋白質の架橋法
JP2007028955A (ja) * 2005-07-25 2007-02-08 Mitsubishi Paper Mills Ltd 酸化酵素を用いた蛋白質の架橋方法
WO2010119985A1 (ja) 2009-04-15 2010-10-21 味の素株式会社 肉様食品の製造法
WO2010140550A1 (ja) * 2009-06-03 2010-12-09 Oci株式会社 食品用色素転写シート
JP2013009617A (ja) 2011-06-28 2013-01-17 Ajinomoto Co Inc 肉様食品の製造法
JP2019140944A (ja) * 2018-02-19 2019-08-29 株式会社キティー 食品タンパク質結着剤、これを含む食品組成物及びこれを用いた食品の製造方法
JP2020029571A (ja) 2014-12-11 2020-02-27 信越化学工業株式会社 メチルセルロースの製造方法及びメチルセルロース
CN113519690A (zh) * 2021-06-30 2021-10-22 陕西未来植膳健康科技有限公司 一种植物肉交联组合物
CN113647507A (zh) * 2021-07-22 2021-11-16 陕西未来植膳健康科技有限公司 一种植物肉的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276162A (ja) 1998-03-31 1999-10-12 Amano Pharmaceut Co Ltd 酵素による蛋白質の架橋法
JP2007028955A (ja) * 2005-07-25 2007-02-08 Mitsubishi Paper Mills Ltd 酸化酵素を用いた蛋白質の架橋方法
WO2010119985A1 (ja) 2009-04-15 2010-10-21 味の素株式会社 肉様食品の製造法
WO2010140550A1 (ja) * 2009-06-03 2010-12-09 Oci株式会社 食品用色素転写シート
JP2013009617A (ja) 2011-06-28 2013-01-17 Ajinomoto Co Inc 肉様食品の製造法
JP2020029571A (ja) 2014-12-11 2020-02-27 信越化学工業株式会社 メチルセルロースの製造方法及びメチルセルロース
JP2019140944A (ja) * 2018-02-19 2019-08-29 株式会社キティー 食品タンパク質結着剤、これを含む食品組成物及びこれを用いた食品の製造方法
CN113519690A (zh) * 2021-06-30 2021-10-22 陕西未来植膳健康科技有限公司 一种植物肉交联组合物
CN113647507A (zh) * 2021-07-22 2021-11-16 陕西未来植膳健康科技有限公司 一种植物肉的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023027110A1 (ja) * 2021-08-24 2023-03-02 天野エンザイム株式会社 植物性タンパク質発酵飲食品の製造方法
WO2024068633A1 (en) 2022-09-28 2024-04-04 Société des Produits Nestlé S.A. Binder comprising pea protein and sugar beet pectin for use in meat analogues

Also Published As

Publication number Publication date
JPWO2022173018A1 (ja) 2022-08-18
EP4292439A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
US20070269571A1 (en) Composition for Soybean Protein-Processed Food, Paste for Meat-Containing or Meat-Not-Containing Processed Food, Dried Meat-Like Food
WO2022173018A1 (ja) 架橋タンパク質の製造方法
JP5566053B2 (ja) 食品組成物
CN101188946B (zh) 米饭用品质改良剂及使用该改良剂的米饭类及其制造方法
WO2022215647A1 (ja) 液卵代替組成物及び加熱凝固物
Nabeshima et al. Tubers and roots as a source of prebiotic fibers
WO2024070002A1 (ja) 液卵代替組成物及び加熱凝固物
JP6828394B2 (ja) 揚げ蒲鉾用組成物および揚げ蒲鉾の製造方法
CN117241675A (zh) 肉类替代配方
KR101738874B1 (ko) 울금 함유 닭고기 육포 및 이의 제조방법
KR101649028B1 (ko) 꽃게 강정 제조방법
JPWO2020130018A1 (ja) 揚げ物用打ち粉ミックス
WO2022270635A1 (ja) 食品の褐色化剤
CN116828993A (zh) 交联蛋白质的制造方法
WO2021131952A1 (ja) 畜肉様加工食品の製造方法
JP6935424B2 (ja) 乾燥食品
JPS5911153A (ja) 揚げ物用衣材
JP7240566B1 (ja) フライ食品用打ち粉
JP7374365B1 (ja) 液卵代替組成物及びその凝固物
JP7135415B2 (ja) 包皮食品の製造方法および包皮食品
CN113424934B (zh) 一种紫薯肠及其制备方法
CN117769359A (zh) 保色可食用组合物及其生产方法
WO2023218060A1 (en) Plant- or fungi based particles loaded with protein
KR20160085648A (ko) 비타민 현미밥 제조방법 및 이에 의해 제조된 비타민 현미밥
WO2020100653A1 (ja) 半固形食品用の乾燥具材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022580694

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280014104.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022752840

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752840

Country of ref document: EP

Effective date: 20230911