WO2022172502A1 - 電動車両制御装置および電動車両制御装置の制御方法 - Google Patents

電動車両制御装置および電動車両制御装置の制御方法 Download PDF

Info

Publication number
WO2022172502A1
WO2022172502A1 PCT/JP2021/036327 JP2021036327W WO2022172502A1 WO 2022172502 A1 WO2022172502 A1 WO 2022172502A1 JP 2021036327 W JP2021036327 W JP 2021036327W WO 2022172502 A1 WO2022172502 A1 WO 2022172502A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
transmission
torque
electric
warming
Prior art date
Application number
PCT/JP2021/036327
Other languages
English (en)
French (fr)
Inventor
敬晃 宅間
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180092876.1A priority Critical patent/CN116848012A/zh
Priority to JP2022581174A priority patent/JP7453427B2/ja
Priority to US18/264,621 priority patent/US20240109427A1/en
Priority to DE112021006379.0T priority patent/DE112021006379T5/de
Publication of WO2022172502A1 publication Critical patent/WO2022172502A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/006Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/302Temperature sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/303Speed sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2410/00Constructional features of vehicle sub-units
    • B60Y2410/10Housings

Definitions

  • the present invention relates to an electric vehicle control device and a control method for an electric vehicle control device.
  • a transmission is connected to the output shaft of the electric motor of the electric vehicle, and the transmission is connected to drive wheels of the vehicle.
  • a transmission is composed of a large number of gears and has a liquid medium such as oil inside. When the temperature of the transmission is low, the viscosity of the liquid medium in the transmission increases and frictional force is applied to the gears.
  • Patent Document 1 describes a hybrid vehicle that uses an engine and an electric motor as power sources, in which either a first electric motor or a second electric motor is used to generate power when a transmission that transmits engine power to wheels is in a cold state.
  • a power cycle in which one motor functions as a motor and the other functions as a power source, and the electric power generated by one motor drives the other motor, causing the other generator to drive the other motor via the transmission.
  • Techniques have been disclosed for creating conditions and thereby warming up the transmission.
  • Patent Literature 1 does not consider an electric vehicle that runs using a plurality of electric motors as a drive source, and the electric power consumption of the electric vehicle worsens.
  • An electric vehicle control device is an electric vehicle control device for controlling a vehicle running through a transmission connected to a plurality of electric motors as drive sources, the first transmission containing a liquid medium. and a controller for controlling a first electric motor and a second electric motor in contact with the second transmission, respectively, wherein the controller controls the first electric motor during a warming period for warming the first transmission or the second transmission.
  • one of the second electric motors is driven and controlled with a powering torque obtained by increasing the warming torque to the required torque of the electric motor, and the other of the first electric motor or the second electric motor is controlled from the required torque of the electric motor. It is controlled by the torque which reduced the temperature torque.
  • a control method for an electric vehicle control device is a control method for an electric vehicle control device for controlling a vehicle running through a transmission connected to a plurality of electric motors as drive sources, the transmission includes a first transmission and a second transmission each containing a liquid medium, the electric motor includes a first electric motor and a second electric motor in contact with the first transmission and the second transmission, respectively;
  • a warming period in which the first transmission or the second transmission is heated one of the first electric motor and the second electric motor is driven and controlled with a power running torque obtained by increasing the required torque of the electric motor by the amount of warming.
  • the other of the first electric motor and the second electric motor is controlled with a torque obtained by subtracting the warming torque from the required torque of the electric motor.
  • the present invention it is possible to accelerate the heating of the liquid medium in the transmission and suppress the deterioration of the electricity consumption of the electric vehicle.
  • FIG. 1 is a configuration diagram of an electric vehicle provided with an electric vehicle control device
  • FIG. 3 is a cross-sectional view showing an example of a first electric motor and a first transmission
  • FIG. 5 is a cross-sectional view showing another example of the first electric motor and the first transmission
  • 4 is a flowchart showing processing operations of a controller
  • It is a graph which shows the rotation speed of an electric motor, and the relationship of a maximum torque.
  • 4A to 4E are graphs showing heating control of the electric motor;
  • a processor for example, CPU, GPU
  • storage resources for example, a memory
  • an interface device for example, a communication port
  • processing may be performed by a processor.
  • a main body of processing executed by executing a program may be a controller having a processor, a device, a system, a computer, or a node.
  • the subject of the processing performed by executing the program may be an arithmetic unit, and may include a dedicated circuit (for example, FPGA or ASIC) that performs specific processing.
  • a program may be installed on a device such as a computer from a program source.
  • the program source may be, for example, a program distribution server or a computer-readable storage medium.
  • the program distribution server may include a processor and storage resources for storing the distribution target program, and the processor of the program distribution server may distribute the distribution target program to other computers.
  • two or more programs may be implemented as one program, and one program may be implemented as two or more programs.
  • FIG. 1 is a configuration diagram of an electric vehicle 1000 including an electric vehicle control device 100.
  • Electric vehicle 1000 includes a first electric motor 201 and a second electric motor 202 that are driving sources.
  • First electric motor 201 is coupled to front wheels 401 via first transmission 301 .
  • Second electric motor 202 is coupled to rear wheel 501 via second transmission 302 .
  • it has steering, accelerator, brake, and mechanisms for controlling them.
  • the electric vehicle control device 100 includes a controller 101 , a first inverter 102 , a second inverter 103 , a battery 104 and a vehicle speed sensor 105 .
  • a system required torque Tdem for the electric vehicle 1000 is externally input to the controller 101 according to the accelerator operation.
  • first transmission 301 and second transmission 302 are provided with sensors for detecting the temperature of liquid medium such as oil in first transmission 301 and second transmission 302, respectively.
  • the temperatures TH1 and TH2 are input to the controller 101 .
  • the first electric motor 201 and the second electric motor 202 are each provided with a sensor for detecting the rotation speed, and the rotation speeds N1 and N2 are input to the controller 101 from each sensor. Controller 101 also detects the SOC (rate of charge) of battery 104 .
  • the controller 101 appropriately distributes the system required torque Tdem to the required torque Tdem1 for the first electric motor 201 and the required torque Tdem2 for the second electric motor 202 .
  • Controller 101 controls first inverter 102 and second inverter 103 according to required torques Tdem1 and Tdem2, temperatures TH1 and TH2, and rotational speeds N1 and N2 to drive or regenerate first electric motor 201 and second electric motor 202. to control.
  • the first inverter 102 converts the DC power of the battery 104 into AC power and applies the AC current to the first electric motor 201 to drive the first electric motor 201 . Then, the front wheel 401 is rotated via the axle connected to the first electric motor 201 . During regeneration, the first electric motor 201 functions as a generator, and the AC power generated by the first electric motor 201 that is rotated by the rotational force of the front wheels 401 is converted into DC power by the first inverter 102 to power the battery 104. to charge.
  • the first inverter 102 includes a power semiconductor element inside, and converts electric power by switching the power semiconductor element.
  • the second inverter 103 converts the DC power of the battery 104 into AC power and applies the AC current to the second electric motor 202 to drive the second electric motor 202 . Then, the rear wheel 501 is rotated via the axle connected to the second electric motor 202 . Further, during regeneration, the second electric motor 202 functions as a generator, and the AC power generated by the second electric motor 202 that is rotated by the torque of the rear wheels 501 is converted into DC power by the second inverter 103, and the battery 104 to charge.
  • the second inverter 103 has a power semiconductor element inside, and converts electric power by switching the power semiconductor element.
  • the controller 101 increases one of the first electric motor 201 or the second electric motor 202 to the required torque during the heating period during which the first transmission 301 or the second transmission 302 is heated.
  • Drive control is performed with the increased power running torque, and the other of the first electric motor 201 or the second electric motor 202 is regeneratively controlled with regenerative torque corresponding to the torque for heating.
  • FIG. 2 is a cross-sectional view showing an example of the first electric motor 201 and the first transmission 301.
  • the first electric motor 201 incorporates a rotor 231 , a stator 241 and a cooler 251 inside a housing 211 .
  • Rotor 231 is fixed to rotating shaft 221 .
  • Cooler 251 is provided in proximity to stator 241 to surround stator 241 and cools first electric motor 201 by circulating cooling water therein.
  • the first electric motor 201 is provided with a sensor (not shown) for detecting the rotation speed of the rotor 231 .
  • a first transmission 301 is provided in contact with the first electric motor 201 . That is, housing 211 of first electric motor 201 is in contact with housing 311 of first transmission 301 .
  • the first transmission 301 incorporates a gear connected to the rotary shaft 221 of the first electric motor 201 and a plurality of gears 321 connected to this gear, and is finally connected to the output shaft 341 .
  • the output shaft 341 is connected to the front wheels 401 via a clutch and an axle.
  • a liquid medium 331 such as oil is provided in the first transmission 301 to lubricate the gear 321 .
  • a sensor (not shown) for detecting the temperature of the liquid medium 331 is provided in the first transmission 301 .
  • the temperature of the first transmission 301 When the temperature of the first transmission 301 is low, the viscosity of the liquid medium 331 increases and frictional force is applied to the gears. As a result, the electric power consumption of electric vehicle 1000 worsens.
  • the heat of the first electric motor 201 which is provided in contact with the first transmission 301, is transmitted through the path HE1 through the rotating shaft 221 and through the path HE2 through the housing 211 by the control described later. .
  • the temperature of the liquid medium 331 of the first transmission 301 is raised, and deterioration of the electricity consumption of the electric vehicle 1000 is suppressed.
  • FIG. 2 shows an example of the first electric motor 201 and the first transmission 301
  • the second electric motor 202 and the second transmission 302 have the same configuration.
  • FIG. 3 is a cross-sectional view showing another example of the first electric motor 201 and the first transmission 301.
  • FIG. 2 The difference from the example shown in FIG. 2 is that the liquid medium 331 is commonly distributed inside the first transmission 301 and the first electric motor 201 .
  • the same reference numerals are given to the same parts as in FIG. 2 to simplify the description.
  • the liquid medium 331 is also stored in the oil pans 361 and 261 provided in the first transmission 301 and the first electric motor 201, and is pumped from the first transmission 301 to the first electric motor 201 by a circulation pump (not shown) or natural circulation. Circulate inward. That is, since the first electric motor 201 and the first transmission 301 are in contact with each other, and the liquid medium 331 in the first transmission 301 flows through the first electric motor 201, the heat of the first electric motor 201 is Through the path HE1 through the shaft 221 and through the path HE3 through the liquid medium 331. As a result, the temperature of the liquid medium 331 of the first transmission 301 is raised, and deterioration of the electricity consumption of the electric vehicle 1000 is suppressed.
  • FIG. 3 shows an example of the first electric motor 201 and the first transmission 301
  • the second electric motor 202 and the second transmission 302 have the same configuration.
  • a sensor is provided to detect the temperature of the liquid medium 331 in the second transmission 302 .
  • FIG. 4 is a flow chart showing processing operations performed by the controller 101 executing the program.
  • the controller 101 performs heating control for heating the liquid medium 331 by executing the processing operations of the flowchart shown in FIG.
  • step S401 it is determined based on the vehicle speed sensor 105 whether the vehicle speed of the electric vehicle 1000 has exceeded a threshold value. When the electric vehicle 1000 has just started and the vehicle speed does not exceed the threshold value, the heating control of the first transmission 301 and the second transmission 302 is not performed. This is because the driving torques of both the first electric motor 201 and the second electric motor 202 are used to increase the starting force immediately after starting. If it is determined in step S401 that the vehicle speed exceeds the threshold, the process proceeds to step S402.
  • step S402 the SOC (state of charge) of the battery 104 is detected, and it is determined whether the SOC exceeds the threshold. If the SOC of the battery 104 does not exceed the threshold, the heating control that imposes a load on the battery 104 is not performed, and the flow chart of FIG. 4 ends. If it is determined in step S402 that the SOC exceeds the threshold, the process proceeds to step S403.
  • step S403 it is determined whether the temperature TH1 from the sensor that detects the temperature of the liquid medium 331 of the first transmission 301 is lower than the threshold. If determined to be low, the process proceeds to step S404.
  • the temperature of the liquid medium 331 of the first transmission 301 is low, the viscosity of the liquid medium 331 becomes high, frictional force is applied to the gears of the first transmission 301, and the electric power consumption of the electric vehicle 1000 deteriorates. In order to suppress it, the liquid medium 331 is heated by the process of the following steps.
  • step S404 the required torque Tdem1 distributed to the first electric motor 201 and the rotational speed N1 of the first electric motor 201 are obtained from the system required torque Tdem input according to the accelerator operation.
  • the warming torque Twarm is calculated.
  • This warming torque Twarm drives the first electric motor 201 with a torque higher than the required torque Tdem1, thereby increasing the heat of the first electric motor 201 and increasing the temperature of the liquid medium 331 of the first transmission 301 more quickly. It is the torque to make it higher.
  • the warming torque Twarm may be calculated, for example, at a predetermined ratio of the required torque Tdem1, or may be a predetermined value.
  • step S406 it is determined whether or not the torque obtained by adding the warming torque Twarm to the required torque Tdem1 exceeds the maximum torque of the first electric motor 201. Description will be made with reference to FIG.
  • FIG. 5 is a graph showing the relationship between the number of rotations of the electric motor and the maximum torque.
  • the horizontal axis is rotation speed, and the vertical axis is torque.
  • the positive side of the vertical axis represents power running, and the negative side represents regeneration.
  • a solid line indicates the maximum output of the first electric motor 201 and a dotted line indicates the maximum output of the second electric motor 202 .
  • This example shows a case where the first electric motor 201 has a higher maximum output than the second electric motor 202 .
  • the maximum output is constant up to the rotation speed Na, and decreases when the rotation speed Na is exceeded.
  • step S406 it is determined that the torque obtained by adding the heating torque Twarm to the required torque Tdem1 exceeds the maximum torque of the first electric motor 201, the heating control is not performed, and the processing of FIG. 4 ends. do.
  • step S406 if the torque obtained by adding the warming torque Twarm to the required torque Tdem1 does not exceed the maximum torque of the first electric motor 201, the process proceeds to step S407.
  • step S407 the first electric motor 201 is driven with a torque obtained by adding the warming torque Twarm to the required torque Tdem1 of the first electric motor 201.
  • FIG. As a result, the temperature of the liquid medium 331 of the first transmission 301 can be raised quickly.
  • the second electric motor 202 is driven by subtracting the warming torque Twarm from the required torque Tdem2 distributed to the second electric motor 202.
  • the required torque Tdem2 is zero
  • the heating torque Twarm becomes the regenerative torque of the second electric motor 202, and the energy required for heating is recovered.
  • the first electric motor 201 is driven and controlled with a power running torque obtained by increasing the warming torque Twarm to the required torque Tdem1, and the second electric motor 202 is regenerated with a regenerative torque corresponding to the warming torque Twarm. Control.
  • the processing shown in FIG. 4 is repeatedly executed at predetermined time intervals. As a result, the temperature TH1 of the liquid medium 331 of the first transmission 301 rises. Then, when it is determined in step S403 that the temperature TH1 of the liquid medium 331 of the first transmission 301 is equal to or higher than the threshold value, the process proceeds to step S410. A period until the temperature TH1 of the liquid medium 331 of the first transmission 301 becomes equal to or higher than the threshold is referred to as a first heating period.
  • step S410 it is determined whether the temperature TH2 from the sensor that detects the temperature of the liquid medium 331 of the second transmission 302 is lower than the threshold. If determined to be low, the process proceeds to step S411.
  • the temperature of the liquid medium 331 of the second transmission 302 is low, the viscosity of the liquid medium 331 increases, frictional force is applied to the gears of the second transmission 302, and the electric power consumption of the electric vehicle 1000 deteriorates. In order to suppress it, the liquid medium 331 is heated by the process of the following steps.
  • step S411 the required torque Tdem2 distributed to the second electric motor 202 and the rotational speed N2 of the second electric motor 202 are obtained from the system required torque Tdem input according to the accelerator operation.
  • the warming torque Twarm is calculated.
  • This warming torque Twarm drives the second electric motor 202 with a torque higher than the required torque Tdem2, thereby increasing the heat of the second electric motor 202 and increasing the temperature of the liquid medium 331 of the second transmission 302 more quickly. It is the torque to make it higher.
  • the warming torque Twarm may be calculated, for example, at a predetermined ratio of the required torque Tdem2, or may be a predetermined value.
  • step S413 it is determined whether or not the torque obtained by adding the warming torque Twarm to the required torque Tdem2 exceeds the maximum torque of the second electric motor 202.
  • the heating control is not performed, and the process of FIG. 4 is terminated. If the maximum torque is not exceeded in step S413, the process proceeds to step S414.
  • step S414 the second electric motor 202 is driven with a torque obtained by adding the warming torque Twarm to the required torque Tdem2 of the second electric motor 202. As a result, the temperature of the liquid medium 331 of the second transmission 302 can be raised quickly.
  • the first electric motor 201 is driven by subtracting the warming torque Twarm from the required torque Tdem1 distributed to the first electric motor 201.
  • the heating torque Twarm becomes the regenerative torque of the first electric motor 201 and recovers the energy required for heating.
  • the second electric motor 202 is driven and controlled with a power running torque obtained by increasing the warming torque Twarm to the required torque Tdem2, and the first electric motor 201 is regenerated with a regenerative torque corresponding to the warming torque Twarm. Control.
  • the process shown in FIG. 4 is repeatedly executed at predetermined time intervals, and the temperature TH2 of the liquid medium 331 of the second transmission 302 rises. Then, when it is determined in step S410 that the temperature TH2 of the liquid medium 331 of the second transmission 302 is equal to or higher than the threshold value, the process ends.
  • a period until the temperature TH2 of the liquid medium 331 of the second transmission 302 becomes equal to or higher than the threshold is referred to as a second heating period. When the second heating period ends, the heating control shown in FIG. 4 ends.
  • FIGS. 6(A) to 6(E) are graphs showing the heating control of the electric motor.
  • 6(A) is the vehicle speed
  • FIG. 6(B) is the required torque
  • FIG. 6(C) is the torque applied to the electric motor
  • FIG. 6(D) is the temperature of the liquid medium 331
  • FIG. indicates the heating period.
  • the horizontal axis in each figure is time.
  • the electric vehicle 1000 is driven by normal control without heating control until time t1 when the vehicle speed of the electric vehicle 1000 does not exceed the threshold value V0. That is, the system required torque Tdem shown in FIG. 6B is distributed to the first electric motor 201 and the second electric motor 202 as shown in FIG.
  • the first electric motor 201 When the vehicle speed exceeds the threshold value V0 at time t1, as shown in FIG. 6D, if the temperature of the liquid medium 331 is lower than the threshold value T0, the first electric motor 201 is turned on as described with reference to FIG. heating control. That is, as shown in FIG. 6C, the first electric motor 201 is driven with a torque M1 obtained by adding the warming torque Twarm to the required torque Tdem1 of the first electric motor 201 . As a result, the temperature T1 of the liquid medium 331 of the first transmission 301 rises, as shown in FIG. 6(D). On the other hand, as shown in FIG. 6C, the second electric motor 202 is subjected to regenerative control with a torque M2 after the torque Twarm for heating is subtracted. As shown in FIG. 6(D), the first heating period shown in FIG. 6(E) continues until the temperature of the liquid medium 331 of the first transmission 301 reaches or exceeds the threshold value T0.
  • the second electric motor 202 may have a higher maximum output than the first electric motor 201 .
  • the electric motor having a large maximum output is first subjected to heating control.
  • the maximum output of the first electric motor 201 and the second electric motor 202 may be the same. In this case, either one may be heated and controlled first.
  • two electric motors have been described as an example, four electric motors corresponding to the four wheels of electric vehicle 1000 may be provided. In this case, the motors are divided into two electric motors corresponding to the front wheels and two electric motors corresponding to the rear wheels, and the heating is controlled in the first heating period and the second heating period, respectively.
  • the first electric motor 201 and the second electric motor 202 are heated and controlled in a predetermined order. Heating control may be performed from the electric motor 331 whose temperature is low. Also, if it is necessary to perform power running control with a plurality of electric motors, the heating control is not performed.
  • the temperature of the liquid medium in the transmission is increased by the heat transferred from the electric motor, thereby suppressing deterioration of the electricity consumption of the electric vehicle.
  • the electric vehicle control device 100 is an electric vehicle control device 100 that controls an electric vehicle 1000 that runs through a transmission connected to a plurality of electric motors as drive sources, and contains a liquid medium 331.
  • a controller 101 is provided for controlling a first electric motor 201 and a second electric motor 202 that are in contact with a first transmission 301 and a second transmission 302, respectively.
  • the controller 101 heats the first transmission 301 or the second transmission 302.
  • one of the first electric motor 201 and the second electric motor 202 is driven and controlled with a power running torque obtained by increasing the warming torque Twarm to the required torques Tdem1 and Tdem2 of the electric motor, and the first electric motor 201 or the second electric motor
  • the other of 202 is controlled by a torque obtained by subtracting the warming torque Twarm from the required torques Tdem1 and Tdem of the electric motor.
  • the control method of the electric vehicle control device 100 is a control method of the electric vehicle control device 100 that controls the electric vehicle 1000 that runs through a transmission that is connected to a plurality of electric motors as drive sources,
  • the transmission includes a first transmission 301 and a second transmission 302 respectively containing a liquid medium 331, and the electric motors are a first electric motor 201 and a second electric motor contacting the first transmission 301 and the second transmission 302 respectively.
  • 202 during the heating period in which the first transmission 301 or the second transmission 302 is heated, one of the first electric motor 201 and the second electric motor 202 is increased to the required torques Tdem1 and Tdem by the heating amount torque Twarm.
  • the drive is controlled by the power running torque, and the other of the first electric motor 201 or the second electric motor 202 is controlled by the required torques Tdem1 and Tdem minus the heating torque Twarm. As a result, it is possible to accelerate the heating of the liquid medium in the transmission and suppress the deterioration of the electricity consumption of the electric vehicle.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the features of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and several modifications.
  • SYMBOLS 100... Electric vehicle control apparatus, 101... Controller, 102... 1st inverter, 103... 2nd inverter, 104... Battery, 105... Vehicle speed sensor, 201... 1st Electric motor 202 Second electric motor 211, 311 Case 221 Rotating shaft 231 Rotor 241 Stator 251 Cooler 301 Second 1 transmission, 302... 2nd transmission, 321... gear, 331... liquid medium, 341... output shaft, 401... front wheel, 501... rear wheel, 1000... Electric vehicle, Tdem, Tdem1, Tdem2 --- demand torque, Twarm --- heating torque, TH1, TH2 --- temperature, N1, N2 --- number of revolutions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

複数の電動機を駆動源として前記電動機に連結された変速機を介して走行する車両を制御する電動車両制御装置であって、液状媒体を内蔵する第1変速機および第2変速機にそれぞれ接する第1電動機および第2電動機を制御するコントローラを備え、前記コントローラは、前記第1変速機または前記第2変速機を加温する加温期間において、前記第1電動機または前記第2電動機の一方を、当該電動機の要求トルクに加温分トルクを増加した力行トルクで駆動制御し、前記第1電動機または前記第2電動機の他方を、当該電動機の要求トルクから前記加温分トルクを減じたトルクで制御する電動車両制御装置。

Description

電動車両制御装置および電動車両制御装置の制御方法
 本発明は、電動車両制御装置および電動車両制御装置の制御方法に関する。
 電動機を駆動源として車両を走行させる電動車両が実用化されている。電動車両の電動機の出力軸には変速機が連結され、変速機は車両の駆動輪へ連結されている。変速機は、多数の歯車で構成され、内部にオイルなどの液状媒体を有するが、変速機の低温時には、変速機の液状媒体の粘性が高くなり、歯車に摩擦力が加わる。
 特許文献1は、エンジンと電動機とを動力源として使用するハイブリッド車において、エンジンの動力を車輪に伝達する変速機が冷機状態にあるときに、第1電動機または第2電動機のいずれか一方を発電機として機能させ、かつ他方を動力源として機能させて、一方の電動機が発電した電力によって他方の電動機を作動させることにより、他方の発電機が変速機を介して一方の電動機を駆動する動力循環状態を形成し、これにより変速機を暖機する技術が開示されている。
日本国特開2010-815号公報
 特許文献1の技術は、複数の電動機を駆動源として車両を走行させる電動車両は考慮されておらず、電動車両の電費が悪化する。
 本発明による電動車両制御装置は、複数の電動機を駆動源として前記電動機に連結された変速機を介して走行する車両を制御する電動車両制御装置であって、液状媒体を内蔵する第1変速機および第2変速機にそれぞれ接する第1電動機および第2電動機を制御するコントローラを備え、前記コントローラは、前記第1変速機または前記第2変速機を加温する加温期間において、前記第1電動機または前記第2電動機の一方を、当該電動機の要求トルクに加温分トルクを増加した力行トルクで駆動制御し、前記第1電動機または前記第2電動機の他方を、当該電動機の要求トルクから前記加温分トルクを減じたトルクで制御する。
 本発明による電動車両制御装置の制御方法は、複数の電動機を駆動源として前記電動機に連結された変速機を介して走行する車両を制御する電動車両制御装置の制御方法であって、前記変速機は、液状媒体をそれぞれ内蔵する第1変速機および第2変速機を含み、前記電動機は、前記第1変速機および前記第2変速機にそれぞれ接する第1電動機および第2電動機を含み、前記第1変速機または前記第2変速機を加温する加温期間において、前記第1電動機または前記第2電動機の一方を、当該電動機の要求トルクに加温分トルクを増加した力行トルクで駆動制御し、前記第1電動機または前記第2電動機の他方を、当該電動機の要求トルクから前記加温分トルクを減じたトルクで制御する。
 本発明によれば、変速機内の液状媒体の加温を促進し、電動車両の電費の悪化を抑制することができる。
電動車両制御装置を備えた電動車両の構成図である。 第1電動機および第1変速機の一例を示す断面図である。 第1電動機および第1変速機の他の例を示す断面図である。 コントローラの処理動作を示すフローチャートである。 電動機の回転数と最大トルクの関係を示すグラフである。 (A)~(E)電動機の加温制御を示すグラフである。
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。
 同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 また、以下の説明では、プログラムを実行して行う処理を説明する場合があるが、プログラムは、プロセッサ(例えばCPU、GPU)によって実行されることで、定められた処理を、適宜に記憶資源(例えばメモリ)および/またはインターフェースデバイス(例えば通信ポート)等を用いながら行うため、処理の主体がプロセッサとされてもよい。同様に、プログラムを実行して行う処理の主体が、プロセッサを有するコントローラ、装置、システム、計算機、ノードであってもよい。プログラムを実行して行う処理の主体は、演算部であれば良く、特定の処理を行う専用回路(例えばFPGAやASIC)を含んでいてもよい。
 プログラムは、プログラムソースから計算機のような装置にインストールされてもよい。プログラムソースは、例えば、プログラム配布サーバまたは計算機が読み取り可能な記憶メディアであってもよい。プログラムソースがプログラム配布サーバの場合、プログラム配布サーバはプロセッサと配布対象のプログラムを記憶する記憶資源を含み、プログラム配布サーバのプロセッサが配布対象のプログラムを他の計算機に配布してもよい。また、以下の説明において、2以上のプログラムが1つのプログラムとして実現されてもよいし、1つのプログラムが2以上のプログラムとして実現されてもよい。
 図1は、電動車両制御装置100を備えた電動車両1000の構成図である。
 電動車両1000は、駆動源である第1電動機201および第2電動機202を備える。第1電動機201は、第1変速機301を介して前輪401と連結されている。第2電動機202は、第2変速機302を介して後輪501と連結されている。なお、図示省略しているが、ステアリング、アクセル、ブレーキやこれらを制御する機構を備えている。
 電動車両制御装置100は、コントローラ101、第1インバータ102、第2インバータ103、バッテリ104、車速センサ105を備えている。
 コントローラ101には、アクセル操作に応じて電動車両1000に対するシステム要求トルクTdemが外部より入力される。また、第1変速機301および第2変速機302には、第1変速機301、第2変速機302内のオイルなどの液状媒体の温度を検出するセンサがそれぞれ設けられているが、各センサから温度TH1、TH2がコントローラ101に入力される。さらに、第1電動機201および第2電動機202には、回転数を検出するセンサがそれぞれ設けられているが、各センサから回転数N1、N2がコントローラ101に入力される。また、コントローラ101は、バッテリ104のSOC(充電率)を検出する。
 コントローラ101は、システム要求トルクTdemを第1電動機201への要求トルクTdem1および第2電動機202への要求トルクTdem2に適宜配分する。コントローラ101は、要求トルクTdem1、Tdem2、温度TH1、TH2、回転数N1、N2に応じて、第1インバータ102および第2インバータ103を制御し、第1電動機201および第2電動機202の駆動もしくは回生を制御する。
 第1インバータ102は、バッテリ104の直流電力を交流電力に変換し、交流電流を第1電動機201に印加して、第1電動機201を駆動する。そして、第1電動機201に連結された車軸を介して前輪401を回転する。また、回生時には、第1電動機201を発電機として機能させ、前輪401の回転力で回された第1電動機201の発電による交流電力は、第1インバータ102で直流電力に変換され、バッテリ104を充電する。第1インバータ102は、内部にパワー半導体素子を備え、パワー半導体素子をスイッチング動作させることにより電力を変換する。
 第2インバータ103は、バッテリ104の直流電力を交流電力に変換し、交流電流を第2電動機202に印加して、第2電動機202を駆動する。そして、第2電動機202に連結された車軸を介して後輪501を回転する。また、回生時には、第2電動機202を発電機として機能させ、後輪501の回転力で回された第2電動機202の発電による交流電力は、第2インバータ103で直流電力に変換され、バッテリ104を充電する。第2インバータ103は、内部にパワー半導体素子を備え、パワー半導体素子をスイッチング動作させることにより電力を変換する。
 詳細は後述するが、コントローラ101は、第1変速機301または第2変速機302を加温する加温期間において、第1電動機201または第2電動機202の一方を要求トルクに加温分トルクを増加した力行トルクで駆動制御し、第1電動機201または第2電動機202の他方を加温分トルクに相当する回生トルクで回生制御する。
 図2は、第1電動機201および第1変速機301の一例を示す断面図である。
 第1電動機201は、筐体211内に、ロータ231、ステータ241、冷却器251を内蔵している。ロータ231は回転軸221に固定される。冷却器251は、ステータ241に近接してステータ241を囲んで設けられ、内部に冷却水を流通して第1電動機201を冷却する。第1電動機201には、図示省略したがロータ231の回転数を検出するセンサが設けられている。
 第1電動機201と接して第1変速機301が設けられる。すなわち、第1電動機201の筐体211は、第1変速機301の筐体311と接している。第1変速機301は、第1電動機201の回転軸221に連結された歯車とこの歯車に連結された複数の歯車321を内蔵し、最終的に出力軸341に連結される。出力軸341は、クラッチ、車軸を介して前輪401に連結されている。第1変速機301内には歯車321を潤滑するためのオイルなどの液状媒体331が配設されている。第1変速機301内には、図示省略したが液状媒体331の温度を検出するセンサが設けられている。
 第1変速機301の低温時には、液状媒体331の粘性が高くなり、歯車に摩擦力が加わる。このため、電動車両1000の電費が悪化する。本実施形態では、後述の制御により、第1変速機301と接して設けられている第1電動機201の熱を、回転軸221を介する経路HE1より、また筐体211を介する経路HE2より伝達する。これにより、第1変速機301の液状媒体331の温度を高め、電動車両1000の電費の悪化を抑制する。
 図2では、第1電動機201および第1変速機301の一例を示したが、第2電動機202および第2変速機302も同様の構成である。
 図3は、第1電動機201および第1変速機301の他の例を示す断面図である。図2で示した例との相違点は、液状媒体331を第1変速機301および第1電動機201の内部に共用して流通させている点である。図2と同一箇所には同一の符号を付してその説明を簡略にする。
 液状媒体331は、第1変速機301および第1電動機201に設けられたオイルパン361、261にも溜められ、図示省略した流通ポンプまたは自然循環により、第1変速機301内から第1電動機201内へと循環する。すなわち、第1電動機201と第1変速機301とが接して、第1変速機301内の液状媒体331は、第1電動機201内に流通しているので、第1電動機201の熱を、回転軸221を介する経路HE1より、また液状媒体331を介する経路HE3より伝達する。これにより、第1変速機301の液状媒体331の温度を高め、電動車両1000の電費の悪化を抑制する。
 図3では、第1電動機201および第1変速機301の一例を示したが、第2電動機202および第2変速機302も同様の構成である。第2変速機302内の液状媒体331の温度を検出するセンサが設けられている。
 図4は、コントローラ101がプログラムを実行して行う処理動作を示すフローチャートである。コントローラ101は、図4に示すフローチャートの処理動作を実行して液状媒体331を加温する加温制御を行う。
 ステップS401では、車速センサ105に基づいて電動車両1000の車速が閾値を超えたかを判定する。電動車両1000は発進直後で車速が閾値を超えていない場合は、第1変速機301および第2変速機302の加温制御は行わない。発進直後は、第1電動機201および第2電動機202の両方の駆動トルクを用いて発進力を高めるためである。ステップS401で車速が閾値を超えたと判定された場合は、ステップS402へ進む。
 ステップS402では、バッテリ104のSOC(充電率)を検出し、SOCが閾値を超えているかを判定する。バッテリ104のSOCが閾値を超えていない場合は、バッテリ104に負荷がかかる加温制御は行なわず、図4のフローチャートを終了する。ステップS402でSOCが閾値を超えていると判定された場合は、ステップS403へ進む。
 ステップS403では、第1変速機301の液状媒体331の温度を検出するセンサからの温度TH1が閾値より低いかを判定する。低いと判定された場合は、ステップS404へ進む。第1変速機301の液状媒体331の温度が低い場合は、液状媒体331の粘性が高くなり、第1変速機301の歯車に摩擦力が加わり、電動車両1000の電費が悪化するが、これを抑制するため、以下のステップの処理により液状媒体331を加温する。
 ステップS404では、アクセル操作に応じて入力されるシステム要求トルクTdemから第1電動機201へ配分された要求トルクTdem1と第1電動機201の回転数N1とを取得する。
 そして、次のステップS405では、加温分トルクTwarmの算出を行う。この加温分トルクTwarmは、第1電動機201を要求トルクTdem1よりも高いトルクで駆動することにより、第1電動機201の熱を高めて、より早く第1変速機301の液状媒体331の温度を高くするためのトルクである。加温分トルクTwarmは、例えば、要求トルクTdem1の所定割合で算出してもよく、予め定めた値でもよい。
 次のステップS406では、要求トルクTdem1に加温分トルクTwarmを加算したトルクが第1電動機201の最大トルクを超えないかを判定する。図5を参照して説明する。
 図5は、電動機の回転数と最大トルクの関係を示すグラフである。横軸は回転数、縦軸はトルクである。縦軸のプラス側は力行を、マイナス側は回生を表す。実線は第1電動機201の最大出力を、点線は第2電動機202の最大出力を示す。この例では、第1電動機201が第2電動機202よりも最大出力が大きい場合を示す。最大出力は、回転数Naまでは一定であり、回転数Naを超えると低下する。
 図5に示すように、第1電動機201の回転数N1において、要求トルクTdem1に加温分トルクTwarmを加算したトルクは第1電動機201の最大トルクを超えない。なお、システム要求トルクTdemが全て要求トルクTdem1に配分されている場合は、加温分トルクTwarmは、第2電動機202の回生トルクとなる。一方、第1電動機201の回転数Nbにおいては、要求トルクTdem1に加温分トルクTwarmを加算したトルクは第1電動機201の最大トルクを超えてしまう。このような場合は、ステップS406で、要求トルクTdem1に加温分トルクTwarmを加算したトルクが第1電動機201の最大トルクを超えたと判定され、加温制御は行われず、図4の処理を終了する。
 ステップS406で、要求トルクTdem1に加温分トルクTwarmを加算したトルクが第1電動機201の最大トルクを超えていなければ、ステップS407へ進む。
 ステップS407では、第1電動機201の要求トルクTdem1に加温分トルクTwarmを加算したトルクで、第1電動機201を駆動する。これにより、第1変速機301の液状媒体331の温度を早く高めることができる。
 次のステップS408では、第2電動機202に配分されている要求トルクTdem2から加温分トルクTwarmを減じて、第2電動機202を駆動する。要求トルクTdem2がゼロの場合は、加温分トルクTwarmは第2電動機202の回生トルクとなり、加温に要したエネルギーを回収する。
 ステップS407、408に示すように、第1電動機201は要求トルクTdem1に加温分トルクTwarmを増加した力行トルクで駆動制御し、第2電動機202は加温分トルクTwarmに相当する回生トルクで回生制御する。
 図4に示す処理は所定時間ごとに繰り返し実行される。これにより、第1変速機301の液状媒体331の温度TH1が上昇する。そして、ステップS403で第1変速機301の液状媒体331の温度TH1が閾値以上と判定されると、ステップS410へ進む。なお、第1変速機301の液状媒体331の温度TH1が閾値以上になるまでの期間を第1加温期間と称する。
 ステップS410では、第2変速機302の液状媒体331の温度を検出するセンサからの温度TH2が閾値より低いかを判定する。低いと判定された場合は、ステップS411へ進む。第2変速機302の液状媒体331の温度が低い場合は、液状媒体331の粘性が高くなり、第2変速機302の歯車に摩擦力が加わり、電動車両1000の電費が悪化するが、これを抑制するため、以下のステップの処理により液状媒体331を加温する。
 ステップS411では、アクセル操作に応じて入力されるシステム要求トルクTdemから第2電動機202へ配分された要求トルクTdem2と第2電動機202の回転数N2とを取得する。
 そして、次のステップS412では、加温分トルクTwarmの算出を行う。この加温分トルクTwarmは、第2電動機202を要求トルクTdem2よりも高いトルクで駆動することにより、第2電動機202の熱を高めて、より早く第2変速機302の液状媒体331の温度を高くするためのトルクである。加温分トルクTwarmは、例えば、要求トルクTdem2の所定割合で算出してもよく、予め定めた値でもよい。
 次のステップS413では、要求トルクTdem2に加温分トルクTwarmを加算したトルクが第2電動機202の最大トルクを超えないかを判定する。最大トルクを超えたと判定された場合は、加温制御は行われず、図4の処理を終了する。ステップS413で、最大トルクを超えていなければ、ステップS414へ進む。
 ステップS414では、第2電動機202の要求トルクTdem2に加温分トルクTwarmを加算したトルクで、第2電動機202を駆動する。これにより、第2変速機302の液状媒体331の温度を早く高めることができる。
 次のステップS415では、第1電動機201に配分されている要求トルクTdem1から加温分トルクTwarmを減じて、第1電動機201を駆動する。要求トルクTdem1がゼロの場合は、加温分トルクTwarmは第1電動機201の回生トルクとなり、加温に要したエネルギーを回収する。
 ステップS414、415に示すように、第2電動機202は要求トルクTdem2に加温分トルクTwarmを増加した力行トルクで駆動制御し、第1電動機201は加温分トルクTwarmに相当する回生トルクで回生制御する。
 図4に示す処理は所定時間ごとに繰り返し実行され、第2変速機302の液状媒体331の温度TH2が上昇する。そして、ステップS410で第2変速機302の液状媒体331の温度TH2が閾値以上と判定されると、処理を終了する。なお、第2変速機302の液状媒体331の温度TH2が閾値以上になるまでの期間を第2加温期間と称する。第2加温期間を終了すると、図4で示した加温制御を終了する。
 図6(A)~図6(E)は、電動機の加温制御を示すグラフである。図6(A)は、車速、図6(B)は、要求トルク、図6(C)は、電動機に加えるトルク、図6(D)は、液状媒体331の温度、図6(E)は、加温期間を示す。各図において横軸は時間である。これらのグラフは、図4を参照して説明した加温制御の推移を示している。
 図6(A)に示すように、電動車両1000の車速が閾値V0を超えてない時刻t1までは、加温制御は行わず、通常の制御で電動車両1000を駆動する。すなわち、図6(B)に示すシステム要求トルクTdemを、図6(C)に示すように、第1電動機201および第2電動機202に配分して、それぞれトルクM1およびトルクM2で駆動する。
 時刻t1で車速が閾値V0を超えると、図6(D)に示すように、液状媒体331の温度が閾値T0より低い場合には、図4を参照して説明したように、第1電動機201の加温制御を行う。すなわち、図6(C)に示すように、第1電動機201の要求トルクTdem1に加温分トルクTwarmを加算したトルクM1で第1電動機201を駆動する。これにより、図6(D)に示すように、第1変速機301の液状媒体331の温度T1が上昇する。一方、図6(C)に示すように、第2電動機202は加温分トルクTwarmが減算されてトルクM2で第2電動機202を回生制御する。図6(D)に示すように、第1変速機301の液状媒体331の温度が閾値T0以上になるまで、図6(E)に示す第1加温期間が継続する。
 時刻t2で、第1変速機301の液状媒体331の温度が閾値T0以上になると、図6(C)に示すように、第2電動機202の要求トルクTdem2に加温分トルクTwarmを加算したトルクM2で第2電動機202を駆動する。これにより、図6(D)に示すように、第2変速機302の液状媒体331の温度T2が上昇する。一方、図6(C)に示すように、第1電動機201は加温分トルクTwarmが減算されてトルクM1で第1電動機201を回生制御する。図6(D)に示すように、第2変速機302の液状媒体331の温度が閾値T0以上になるまで、図6(E)に示す第2加温期間が継続する。
 時刻t3で、第2変速機302の液状媒体331の温度が閾値T0以上になると、図6(C)に示すように、第1変速機301および第2変速機302の加温は終了し、通常の制御で第1電動機201および第2電動機202を駆動する。
 本実施形態では、第1電動機201が第2電動機202よりも最大出力が大きい場合を例に説明したが、第2電動機202が第1電動機201よりも最大出力が大きくてもよい。好ましくは、最大出力が大きい電動機を先に加温制御する。また、第1電動機201と第2電動機202の最大出力が同じであってもよい。この場合は、いずれを先に加温制御してもよい。また、電動機は2個の例で説明したが、電動車両1000の4輪に対応して4個の電動機を備えてもよい。この場合は、前輪に対応する2個の電動機と後輪に対応する2個の電動機に分けて、それぞれ第1加温期間、第2加温期間で加温制御する。
 また、本実施形態では、第1電動機201と第2電動機202を所定の順に加温制御したが、第1電動機201と第2電動機202の液状媒体331の温度差が小さくなるように、液状媒体331の温度が低い電動機から加温制御してもよい。また、複数の電動機で力行制御する必要がある場合は、加温制御は行わない。
 本実施形態によれば、変速機を加温する加温期間において、電動機より伝達された熱により変速機内の液状媒体の温度を上昇させることにより、電動車両の電費の悪化を抑制することができる。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電動車両制御装置100は、複数の電動機を駆動源として電動機に連結された変速機を介して走行する電動車両1000を制御する電動車両制御装置100であって、液状媒体331を内蔵する第1変速機301および第2変速機302にそれぞれ接する第1電動機201および第2電動機202を制御するコントローラ101を備え、コントローラ101は、第1変速機301または第2変速機302を加温する加温期間において、第1電動機201または第2電動機202の一方を、当該電動機の要求トルクTdem1、Tdem2に加温分トルクTwarmを増加した力行トルクで駆動制御し、第1電動機201または第2電動機202の他方を、当該電動機の要求トルクTdem1、Tdemから加温分トルクTwarmを減じたトルクで制御する。これにより、変速機内の液状媒体の加温を促進し、電動車両の電費の悪化を抑制することができる。
(2)電動車両制御装置100の制御方法は、複数の電動機を駆動源として電動機に連結された変速機を介して走行する電動車両1000を制御する電動車両制御装置100の制御方法であって、変速機は、液状媒体331をそれぞれ内蔵する第1変速機301および第2変速機302を含み、電動機は、第1変速機301および第2変速機302にそれぞれ接する第1電動機201および第2電動機202を含み、第1変速機301または第2変速機302を加温する加温期間において、第1電動機201または第2電動機202の一方を要求トルクTdem1、Tdemに加温分トルクTwarmを増加した力行トルクで駆動制御し、第1電動機201または第2電動機202の他方は要求トルクTdem1、Tdemに加温分トルクTwarmを減じたトルクで制御する。これにより、変速機内の液状媒体の加温を促進し、電動車両の電費の悪化を抑制することができる。
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
 100・・・電動車両制御装置、101・・・コントローラ、102・・・第1インバータ、103・・・第2インバータ、104・・・バッテリ、105・・・車速センサ、201・・・第1電動機、202・・・第2電動機、211、311・・・筐体、221・・・回転軸、231・・・ロータ、241・・・ステータ、251・・・冷却器、301・・・第1変速機、302・・・第2変速機、321・・・歯車、331・・・液状媒体、341・・・出力軸、401・・・前輪、501・・・後輪、1000・・・電動車両、Tdem、Tdem1、Tdem2・・・要求トルク、Twarm・・・加温分トルク、TH1、TH2・・・温度、N1、N2・・・回転数。

Claims (7)

  1.  複数の電動機を駆動源として前記電動機に連結された変速機を介して走行する車両を制御する電動車両制御装置であって、
     液状媒体を内蔵する第1変速機および第2変速機にそれぞれ接する第1電動機および第2電動機を制御するコントローラを備え、
     前記コントローラは、前記第1変速機または前記第2変速機を加温する加温期間において、前記第1電動機または前記第2電動機の一方を、当該電動機の要求トルクに加温分トルクを増加した力行トルクで駆動制御し、前記第1電動機または前記第2電動機の他方を、当該電動機の要求トルクから前記加温分トルクを減じたトルクで制御する電動車両制御装置。
  2.  請求項1に記載の電動車両制御装置において、
     前記コントローラは、前記第1変速機または前記第2変速機を加温する加温期間において、前記第1電動機または前記第2電動機の一方を前記力行トルクで駆動制御し、前記第1電動機または前記第2電動機の他方を前記加温分トルクに相当する回生トルクで回生制御する電動車両制御装置。
  3.  請求項1または請求項2に記載の電動車両制御装置において、
     前記コントローラは、前記車両の速度が所定閾値を超えた後に前記加温期間を開始する電動車両制御装置。
  4.  請求項3に記載の電動車両制御装置において、
     前記コントローラは、前記第1電動機および前記第2電動機に電力を供給するバッテリの充電率が所定閾値を超えている場合に前記加温期間を開始する電動車両制御装置。
  5.  請求項4に記載の電動車両制御装置において、
     前記コントローラは、前記液状媒体の温度が所定閾値より低い場合に前記加温期間を開始する電動車両制御装置。
  6.  請求項1または請求項2に記載の電動車両制御装置において、
     前記加温期間は、第1加温期間と第2加温期間よりなり、
     前記コントローラは、前記第1変速機内の前記液状媒体の温度が所定閾値より低く、且つ前記車両の速度が所定閾値を超えた場合に、前記第1加温期間を開始して、前記第1電動機より伝達された熱により前記第1変速機内の前記液状媒体の温度を上昇させ、前記第2変速機内の前記液状媒体の温度が所定閾値より低く、且つ前記車両の速度が所定閾値を超えた場合に、前記第2加温期間を開始して、前記第2電動機より伝達された熱により前記第2変速機内の前記液状媒体の温度を上昇させる電動車両制御装置。
  7.  複数の電動機を駆動源として前記電動機に連結された変速機を介して走行する車両を制御する電動車両制御装置の制御方法であって、
     前記変速機は、液状媒体をそれぞれ内蔵する第1変速機および第2変速機を含み、
     前記電動機は、前記第1変速機および前記第2変速機にそれぞれ接する第1電動機および第2電動機を含み、
     前記第1変速機または前記第2変速機を加温する加温期間において、前記第1電動機または前記第2電動機の一方を、当該電動機の要求トルクに加温分トルクを増加した力行トルクで駆動制御し、前記第1電動機または前記第2電動機の他方を、当該電動機の要求トルクから前記加温分トルクを減じたトルクで制御する電動車両制御装置の制御方法。
PCT/JP2021/036327 2021-02-12 2021-09-30 電動車両制御装置および電動車両制御装置の制御方法 WO2022172502A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180092876.1A CN116848012A (zh) 2021-02-12 2021-09-30 电动车辆控制装置以及电动车辆控制装置的控制方法
JP2022581174A JP7453427B2 (ja) 2021-02-12 2021-09-30 電動車両制御装置および電動車両制御装置の制御方法
US18/264,621 US20240109427A1 (en) 2021-02-12 2021-09-30 Electric vehicle control device and method for controlling electric vehicle control device
DE112021006379.0T DE112021006379T5 (de) 2021-02-12 2021-09-30 Elektrofahrzeugsteuervorrichtung und Verfahren zum Steuern einer Elektrofahrzeugsteuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-020885 2021-02-12
JP2021020885 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172502A1 true WO2022172502A1 (ja) 2022-08-18

Family

ID=82837668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036327 WO2022172502A1 (ja) 2021-02-12 2021-09-30 電動車両制御装置および電動車両制御装置の制御方法

Country Status (5)

Country Link
US (1) US20240109427A1 (ja)
JP (1) JP7453427B2 (ja)
CN (1) CN116848012A (ja)
DE (1) DE112021006379T5 (ja)
WO (1) WO2022172502A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023398A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp ハイブリッド車両用動力伝達装置の制御装置
JP2011027246A (ja) * 2009-07-29 2011-02-10 Ntn Corp 電気自動車用変速機の暖機装置
JP2016178842A (ja) * 2015-03-23 2016-10-06 三菱自動車工業株式会社 電動車両のモータオイル昇温制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210815A (ja) 1988-06-29 1990-01-16 Matsushita Electric Ind Co Ltd チップ型電子部品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009023398A (ja) * 2007-07-17 2009-02-05 Toyota Motor Corp ハイブリッド車両用動力伝達装置の制御装置
JP2011027246A (ja) * 2009-07-29 2011-02-10 Ntn Corp 電気自動車用変速機の暖機装置
JP2016178842A (ja) * 2015-03-23 2016-10-06 三菱自動車工業株式会社 電動車両のモータオイル昇温制御装置

Also Published As

Publication number Publication date
DE112021006379T5 (de) 2023-10-12
US20240109427A1 (en) 2024-04-04
JP7453427B2 (ja) 2024-03-19
JPWO2022172502A1 (ja) 2022-08-18
CN116848012A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
JP5981439B2 (ja) ハイブリッド車両の制御装置
JP5177324B2 (ja) 車両用制御装置および車両用制御方法
JP4803101B2 (ja) ハイブリッド車両の動力出力装置
JP2014196101A5 (ja)
JP2014196101A (ja) 制御装置
JPWO2013051140A1 (ja) ハイブリッド車両の制御装置
US9718458B2 (en) Vehicle
JP4854557B2 (ja) 電動駆動制御装置
BR102015028965A2 (pt) veículo híbrido
US11639110B2 (en) Electrified drivetrain for a vehicle
JP6075018B2 (ja) 電動車両の制御装置およびそれを備える電動車両、ならびに電動車両の制御方法
JP4924257B2 (ja) 車両および昇温方法
JP2013060056A (ja) ハイブリッド車の制御装置
WO2022172502A1 (ja) 電動車両制御装置および電動車両制御装置の制御方法
JP2010285149A (ja) 電動駆動制御装置
JP6003698B2 (ja) 車両
JP6769209B2 (ja) 電動車両
US10421450B2 (en) Vehicle with first and second power sources
JP2018074655A (ja) 電動車両
JP5880818B2 (ja) ハイブリッド車両及びその制御方法
JP5790689B2 (ja) 電動ポンプの制御装置
KR20160036203A (ko) 연료전지 차량의 냉시동 운전 장치 및 방법
JP6314894B2 (ja) ハイブリッド車の制御装置
JP2012192769A (ja) 電動車両
JP2011102053A (ja) ハイブリッド車両の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581174

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092876.1

Country of ref document: CN

Ref document number: 112021006379

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 18264621

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 21925750

Country of ref document: EP

Kind code of ref document: A1