JP4803101B2 - ハイブリッド車両の動力出力装置 - Google Patents

ハイブリッド車両の動力出力装置 Download PDF

Info

Publication number
JP4803101B2
JP4803101B2 JP2007119309A JP2007119309A JP4803101B2 JP 4803101 B2 JP4803101 B2 JP 4803101B2 JP 2007119309 A JP2007119309 A JP 2007119309A JP 2007119309 A JP2007119309 A JP 2007119309A JP 4803101 B2 JP4803101 B2 JP 4803101B2
Authority
JP
Japan
Prior art keywords
motor generator
power
shaft
motor
load factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007119309A
Other languages
English (en)
Other versions
JP2008273381A (ja
Inventor
誠 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007119309A priority Critical patent/JP4803101B2/ja
Publication of JP2008273381A publication Critical patent/JP2008273381A/ja
Application granted granted Critical
Publication of JP4803101B2 publication Critical patent/JP4803101B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明はハイブリッド車両の動力出力装置に関し、より特定的には、モータの温度に応じてモータの負荷率を制限する動力出力装置に関する。
近年、エンジンの低燃費化を図るために、エンジンおよびモータジェネレータを動力源とする動力出力装置を搭載したハイブリッド車両が提案されている。モータジェネレータは、電気エネルギの供給により電動機(モータ)として機能させられるとともに、回転駆動されることにより発電機(ジェネレータ)として機能させられる。モータジェネレータは駆動軸に結合されることにより、力行時すなわち電動機として機能させられるときには車両を駆動し、回生時すなわち発電機として機能させられるときには、その車両により回転駆動される。
モータジェネレータの力行時および回生時にはモータジェネレータの温度が上昇する。モータジェネレータの温度が高くなりすぎると、モータジェネレータに含まれるコイルの断線あるいは絶縁被膜の損傷による短絡などが生じる可能性が高くなる。このような問題を防ぐために、従来からモータジェネレータの温度に応じてモータジェネレータの負荷率を制限する技術が提案される。
たとえば特開2001−112101号公報(特許文献1)は、電動発電機(モータジェネレータ)を備える車両の制御装置を開示する。この制御装置は電動発動機の負荷制限値を決定するための負荷制限値決定手段を備える。負荷制限値決定手段は、たとえば電動発電機が発電機として機能させられる場合の負荷制限値を、電動発電機が電動機として機能させられる場合の負荷制限値よりも低く設定する。上記文献によれば、このように力行時および回生時の負荷制限値を定めることによって、電動発電機の動作が回生動作から力行動作に切換わったときに電動発電機から大きなトルクをただちに出力することができるので、良好な運転性を確保することができる。
特開2001−112101号公報 特開2005−86919号公報
ハイブリッド方式の動力出力装置には、シリーズ方式、パラレル方式など各種の方式が提案されているが、遊星歯車機構によってエンジンおよび2つのモータジェネレータを連結したシリーズ−パラレルハイブリッド方式が提案されている。
このようなシリーズ−パラレルハイブリッド方式では、遊星歯車機構のサンギヤは第1のモータジェネレータに接続され、リングギヤは第2のモータジェネレータに接続される。そしてリングギヤとサンギヤとはピニオンギヤを間に介して噛み合っている。このピニオンギヤを支持するキャリヤがエンジン出力軸に接続されている。
そして基本的には、エンジンが最高効率領域で駆動するように回転数が定められ、このエンジンの回転数を維持できるように、車速に応じて回転するリングギヤに対して、サンギヤに接続されているモータジェネレータの回転数を制御する。このサンギヤに接続されているモータジェネレータの回転数を制御するには、モータジェネレータで発生される電力を制御すればよい。
しかしながら、車速をある一定値以上に上げて高速低負荷走行すると、エンジン回転数を所定の回転数に維持したままでは、サンギヤに接続された第1のモータジェネレータは回転数が負回転となる。このため、エンジントルクと駆動力とのバランスを保つために、サンギヤに接続された第1のモータジェネレータは力行動作を行ない、一方、リングギヤに接続された第2のモータジェネレータは発電動作を行なう。この場合、第2のモータジェネレータの発電動作により生じた電力は第1のモータジェネレータに供給される。
このような状態では第1および第2のモータジェネレータ間で動力が循環するとともに、ハイブリッド車両の駆動力はエンジンが出力する駆動力にほぼ等しくなる。このときの動作モードは動力循環モードと称される。
動力循環時には第2のモータジェネレータが回生動作を行なうもののハイブリッド車両の駆動力自体は正の駆動力となる。よって、第2のモータジェネレータの力行動作時と回生動作時とで第2のモータジェネレータの負荷率制限値を切換えた場合には、動力循環時(言い換えると高速低負荷走行時)にも車両の動力性能が制限されることが考えられる。よってユーザの違和感が生じるような車両の挙動の変化が生じる可能性がある。
本発明の目的は、ハイブリッド車両の走行時における動力性能への影響をより低減することが可能なハイブリッド車両の動力出力装置を提供することである。
本発明は要約すれば、駆動軸に動力を出力するハイブリッド車両の動力出力装置である。動力出力装置は、3軸式の動力分割機構と、エンジンと、第1のモータジェネレータと、第2のモータジェネレータと、温度検知部と、制御部とを備える。動力分割機構は、第1から第3の軸と結合された遊星歯車機構を含み、第3の軸に車両の駆動軸が結合されるとともに、第1ないし第3の軸のうちのいずれか2軸に対し動力が入出力されたときに、その入出力された動力に基づいて定まる動力を残余の1軸に対して入出力する。エンジンは、第1の軸にその回転軸が結合し、燃料の燃焼により第1の回転軸に対し動力を出力する。第1のモータジェネレータは、第2の軸にその回転軸が結合し、第2の軸に対し動力を入出力することが可能である。第2のモータジェネレータは、第3の軸にその回転軸が結合し、第3の軸に対し動力を入出力することが可能である。温度検知部は、第2のモータジェネレータの温度であるモータ温度を検知する。制御部は、温度検知部が検知したモータ温度が所定の温度を超えた場合において、第2のモータジェネレータが第3の軸に対し動力を出力する力行動作を行なうときには第2のモータジェネレータの負荷率が第1の制限値を超えないように負荷率を制限し、第2のモータジェネレータが第3の軸に対し動力を入力する回生動作を行なうときには負荷率が第1の制限値よりも低い第2の制限値を超えないように負荷率を制限する。制御部は、ハイブリッド車両に要求される駆動力の符号が正であり、かつ、第1のモータジェネレータが第2の軸に動力を出力する場合には、第2のモータジェネレータが回生動作を行なっていても負荷率を第1の制限値に設定する。
好ましくは、制御部は、モータ温度と第1の制限値とを対応付ける第1のマップ、およびモータ温度と第2の制限値とを対応付ける第2のマップを記憶する。制御部は、第2のモータジェネレータが力行動作を行なうときには第1のマップに基づいて第1の制限値を決定する。制御部は、第2のモータジェネレータが回生動作を行なうときには第2のマップに基づいて第2の制限値を決定する。
より好ましくは、制御部は、さらに、第2のモータジェネレータの回転数が負の所定値から正の所定値までの範囲内にある場合には、第2のモータジェネレータが回生動作を行なっていても負荷率を第1の制限値に設定する。
さらに好ましくは、制御部は、第2のモータジェネレータが回生動作を行ない、かつ、第2のモータジェネレータの回転数が正の所定値より大きい場合には、負荷率を第2の制限値に設定する。
本発明によれば、ハイブリッド車両の走行時における動力性能への影響をより低減することが可能になる。
以下において、この発明の実施の形態について図面を参照して詳細に説明する。なお、以下において図中の同一または相当部分には同一符号を付してその説明は原則的として繰返さないものとする。
[実施の形態1]
図1は、この発明によるハイブリッド車両の動力出力装置(以下、「ハイブリッド動力出力装置」と称する)の構成を示すブロック図である。
図1を参照して、この発明の実施の形態によるハイブリッド動力出力装置100は、エンジン10と、バッテリ20と、インバータ30と、車輪40aと、トランスアクスル50と、温度センサ80と、ECU(Electric Control Unit)90とを備える。
エンジン10は、ガソリン等の燃料の燃焼エネルギを源として駆動力を発生する。バッテリ20は、電力ライン51へ直流電力を供給する。バッテリ20は、充電可能な二次電池で構成され、代表的にはニッケル・水素蓄電池やリチウムイオン二次電池や大容量コンデンサ(キャパシタ)等が適用される。
インバータ30は、電力ライン51にバッテリ20から供給された直流電力を交流電力に変換して電力ライン53へ出力する。あるいは、インバータ30は、電力ライン52,53に供給された交流電力を直流電力に変換して電力ライン51へ出力する。なお図1には示さないが、インバータ30は電力ライン51と電力ライン52との間で直流−交流変換を行なう変換回路と、電力ライン51と電力ライン53との間で直流−交流変換を行なう変換回路とを含む。これらの変換回路はともにECU90により制御される。
トランスアクスル50は、トランスミッションとアクスル(車軸)とを一体構造として備えており、動力分割機構60と、減速機70と、モータジェネレータMG1と、モータジェネレータMG2とを有する。
動力分割機構60は、エンジン10によって生じた駆動力を、減速機70を介して車輪40a駆動用の駆動軸45へ伝達する経路と、モータジェネレータMG1へ伝達する経路とに分割可能である。
モータジェネレータMG1,MG2の各々は、発電機としても電動機としても機能し得るが、モータジェネレータMG1は概ね発電機として動作することが多いため「発電機」と呼ばれることがあり、モータジェネレータMG2は主として電動機として動作するため「電動機」と呼ばれることがある。
モータジェネレータMG1は、動力分割機構60を介して伝達されたエンジン10からの駆動力によって回転されて発電する。モータジェネレータMG1による発電電力は、電力ライン52を介してインバータ30に供給され、バッテリ20の充電電力として、あるいはモータジェネレータMG2の駆動電力として用いられる。
モータジェネレータMG2は、インバータ30から電力ライン53に供給された交流電力によって回転駆動される。モータジェネレータMG2によって生じた駆動力は、減速機70を介して駆動軸45へ伝達される。なお、駆動軸45にて駆動される車輪40a以外の車輪(図示せず)については、単なる従動輪としてもよいが、さらに図示しない別のモータジェネレータにて駆動されるように構成して、いわゆる電動の四輪駆動システムを構成するようにしてもよい。
また、回生制動動作時にモータジェネレータMG2が車輪40aの減速に伴って回転される場合には、モータジェネレータMG2に生じた起電力(交流電力)が電力ライン53へ供給される。この場合には、インバータ30が電力ライン53へ供給された交流電力を直流電力に変換して電力ライン51へ出力することによりバッテリ20が充電される。
温度センサ80は、モータジェネレータMG2の温度を検出して、検出した温度値をECU90に出力する。ここで「モータジェネレータMG2の温度」とは、たとえばモータジェネレータMG2が有するコイルの温度でもよいし、モータジェネレータMG2の潤滑および冷却のために潤滑油が供給されている場合には潤滑油の温度でもよい。
ECU90は、ハイブリッド動力出力装置100が搭載された自動車を運転者の指示(たとえばアクセル開度の情報であるアクセル開度Acc)および車速V等に応じて運転させるために、自動車に搭載された機器・回路群の全体動作を制御する。ECU90は、代表的には、予めプログラムされた所定シーケンスおよび所定演算を実行するためのマイクロコンピュータおよびメモリ(RAM,ROM等)で構成される。
特に、ECU90は、温度センサ80が検知したモータジェネレータMG2の温度(以下、「モータ温度」とも呼ぶ)に応じてモータジェネレータMG2の負荷率制限を行なう。モータジェネレータMG2の温度はモータジェネレータMG2が行なう駆動軸45の駆動あるいは回生制動動作により上昇する。しかしながらモータ温度が高くなりすぎるとモータコイルの断線あるいは絶縁被膜の損傷による短絡などが生じる可能性が高くなる。モータ温度に応じてモータジェネレータの負荷率が制限されることによって、このような問題が生じるのを防ぐことができる。
次に、図2および図3を用いて、動力分割機構60による遊星歯車を利用した駆動力の機械分配について説明する。なお、図3は、図2に示される遊星歯車機構150の断面図である。
図2および図3を参照して、動力分割機構60を構成する遊星歯車機構150は、複数のピニオンギヤ160と、サンギヤ170と、リングギヤ180とを有する。サンギヤ170およびリングギヤ180は回転軸が同軸のギヤである。
サンギヤ170の回転力が入出力されるサンギヤ軸172は、モータジェネレータMG1の回転軸(すなわちロータ)と接続される。また、リングギヤ180の回転力が入出力されるリングギヤ軸182は、モータジェネレータMG2の回転軸(すなわちロータ)と結合される。
リングギヤ軸182は、減速機70を構成するチェーンドライブスプロケット190とさらに連結されている。チェーンドライブスプロケット190は、チェーン195によってチェーンドリブンスプロケット192と連結されている。チェーンドリブンスプロケット192は、駆動軸45と結合されたカウンタドライブギヤ198と連結されている。これにより、リングギヤ180の回転は、減速機70の所定の減速比に従って、駆動軸45へ伝達される。
複数のピニオンギヤ160は、サンギヤ170およびリングギヤ180との間に配置され、各々が、サンギヤ170の外周を自転しながら公転する。各ピニオンギヤ160の公転力は、プラネタリキャリア軸162によりプラネタリキャリア165の回転力として与えられる。プラネタリキャリア軸162は、エンジン回転軸110と連結される。
遊星歯車機構150では、上記のサンギヤ軸172、リングギヤ軸182およびプラネタリキャリア軸162の3軸のうちいずれか2軸の回転数およびこれらの軸に入出力されるトルクが決定されると、対応の1軸の回転数およびその回転軸に入出力されるトルクが決定されるという性質を有している。
図3を参照して、複数のピニオンギヤ160は、エンジン回転軸110による回転力がプラネタリキャリア165を回転させることによって、サンギヤ170の外周を自転しながら公転する。プラネタリキャリア165の回転に伴ってサンギヤ170およびリングギヤ180が回転することにより、エンジン回転軸110からの動力が、ピニオンギヤ160を通じて外周のリングギヤ180および内側のサンギヤ170へ伝達される。これにより、エンジン10による駆動力が、駆動軸45の回転駆動力と、モータジェネレータMG1の回転駆動力とに分割される。
なお、図2および図3に示した構成と、本発明の構成との関係を説明すると、プラネタリキャリア軸162がこの発明における「動力分割機構における第1の軸」に相当し、サンギヤ軸172がこの発明における「動力分割機構における第2の軸」に相当し、リングギヤ軸182がこの発明における「動力分割機構における第3の軸」に相当する。また、駆動軸45がこの発明における「駆動軸」に相当する。また、モータジェネレータMG1がこの発明における「第1のモータジェネレータ」に相当し、モータジェネレータMG2がこの発明における「第2のモータジェネレータ」に相当する。
また、モータジェネレータMG1がサンギヤ軸172に動力を出力する動作を「モータジェネレータMG1の力行動作」と定義し、モータジェネレータMG1がサンギヤ軸172から入力される動力により回転する動作を「モータジェネレータMG1の回生動作」と定義する。同様に、モータジェネレータMG2がリングギヤ軸182に動力を出力する動作を「モータジェネレータMG2の力行動作」と定義し、モータジェネレータMG2がリングギヤ軸182から入力される動力により回転する動作を「モータジェネレータMG2の回生動作」と定義する。
上記のハイブリッド動力出力装置100を有するハイブリッド車両は、走行時において、駆動軸45に出力すべき要求パワーに相当する動力をエンジン10から出力し、出力された動力を動力分割機構60を介して駆動軸45に伝達している。このとき、たとえば、駆動軸45から出力すべき要求回転数および要求トルクに対し、エンジン回転軸110が高回転数かつ低トルクで回転している場合には、エンジン10の出力している動力の一部を動力分割機構60を介してモータジェネレータMG1に伝達する。モータジェネレータMG1は伝達された動力により発電し、その発電電力によりモータジェネレータMG2が駆動される。モータジェネレータMG2の駆動により、リングギヤ180を介して駆動軸45にトルクが付加される。
逆に、駆動軸45から出力すべき要求回転数および要求トルクに対し、エンジン回転軸110が低回転数かつ高トルクで回転している場合には、エンジン10の出力している動力の一部を動力分割機構60を介してモータジェネレータMG2に伝達し、モータジェネレータMG2により電力を回収する。この回収した電力によって、モータジェネレータMG1が駆動されて、サンギヤ170にトルクが付加される。
上記のように、モータジェネレータMG1およびMG2を介して電力の形でやり取りされる動力を調整することにより、エンジン10から出力された動力を所望の回転数およびトルクとして駆動軸45から出力することができる。なお、モータジェネレータMG1またはMG2によって回収された電力の一部は、バッテリ20に蓄積することが可能である。また、バッテリ20に蓄積された電力を用いて、モータジェネレータMG1またはMG2を駆動することも可能である。
上記のような動作原理に基づき、定常走行時には、たとえばエンジン10を主駆動源としつつ、モータジェネレータMG2の動力を用いて走行する。このように、エンジン10とモータジェネレータMG2の双方を駆動源として走行することにより、必要なトルクおよびモータジェネレータMG2で発生し得るトルクに応じて、エンジン10を運転効率の高い動作点にて運転できる。したがって、ハイブリッド車両は、エンジン10のみを駆動源とする車両に比べて、省資源性および排気浄化性に優れている。
一方、エンジン回転軸110の回転を、動力分割機構60を介してモータジェネレータMG1に伝達することができるため、エンジン10の運転によりモータジェネレータMG1で発電しつつ走行することも可能である。
図4は、ハイブリッド動力出力装置100の各運転状況における動作を説明する第1の共線図である。
図5は、ハイブリッド動力出力装置100の各運転状況における動作を説明する第2の共線図である。
図4および図5を参照して、符号210に示される車両停止時には、エンジン10およびモータジェネレータMG1,MG2の各々は停止している。
符号220に示されるエンジン起動時には、発電機であるモータジェネレータMG1をスタータとして使うことによりエンジン10が始動される。エンジン10が始動されるとモータジェネレータMG1はその回転数が上昇して発電を始めるとともに、発電した電力はモータジェネレータMG2に供給され加速に使用される。
符号230に示される定常走行時には、主としてエンジン10の出力で走行するので、発電は殆ど不要となり、モータジェネレータMG1の回転数は低下する。
定常走行から加速を行なう場合には、符号240に示すように、エンジン10の回転数を上げるとともに、モータジェネレータMG1に発電させることによって、モータジェネレータMG2の駆動力を加えて加速を行なう。このように、モータジェネレータMG1の回転を制御することにより、エンジン回転数を変えることができるとともに、エンジン出力の一部をモータジェネレータMG1(発電機)を介してモータジェネレータMG2(電動機)に伝達することができる。すなわち、動力分割機構60に無段変速機の機能を持たせている。
さらに符号250に示される走行状態において、プラネタリキャリアの回転数Regはエンジンが最高効率を発揮するときのエンジン回転数に対応する回転数である。この状態で車速をさらに増加させたい場合には、チェーンドライブスプロケット190と一体となって回転するリングギヤ180の回転数Rmg2を増加させる必要がある。このためには、サンギヤ170の回転数Rmg(すなわちモータジェネレータMG1の回転数)を減少させる必要がある。つまりハイブリッド車両をさらに加速するためには、モータジェネレータMG1を制御することによりその回転数を低下させる。これによりエンジンの回転数を効率のよい回転数に維持しつつ車速を増加させることができる。
ここで、車速をある一定値以上に上げることにより高速低負荷走行した場合には、ハイブリッド車両の走行状態は符号250に示される状態から符号260に示される状態に変化する。走行状態が変化してもエンジンの回転数が変化しないためサンギヤ170に接続されたモータジェネレータMG1の回転数は負の回転数となる。この状態では駆動軸45から出力すべき要求回転数および要求トルクに対し、エンジン回転軸110が低回転数かつ高トルクで回転しているため、エンジントルクと駆動力とのバランスを保つ必要がある。このためモータジェネレータMG2は回生動作を行ない、サンギヤ170に接続されたモータジェネレータMG1は力行動作を行なう。このような動作モードは動力循環モードと呼ばれる。
図6は、動力循環モードを説明するための図である。図6を参照して、実線の矢印により示される動力の経路は通常のハイブリッド車両の走行時における動力の経路を示す(この経路は図1に示す経路と同様である)。また、実線の矢印と併記された破線の矢印は動力循環時に動力の流れが変化することを表わす。
動力循環モードでは、モータジェネレータMG2は回生動作を行なうことにより電力を生成する。この電力はインバータ30を介してモータジェネレータMG1に供給される。モータジェネレータMG1は電力供給に応じて力行動作を行なうため、動力分割機構60の第2の軸(サンギヤ軸172)に動力を出力する。モータジェネレータMG2は動力分割機構60の第3の軸(リングギヤ軸182)から入力される動力により回生動作を行なう。モータジェネレータMG1の動力とモータジェネレータMG2の動力とがほぼ釣り合った状態では、破線の矢印に示されるようにモータジェネレータMG1とモータジェネレータMG2との間で動力が循環する。この結果、動力循環モードではハイブリッド車両の駆動力はエンジンによる駆動力とほぼ等しくなる。
上述したようにECU90は、モータ温度に基づいてモータジェネレータMG2の負荷率を制限する。特にECU90は、モータジェネレータMG2の動作(力行動作および回生動作)だけでなくハイブリッド車両の走行状況も考慮してモータジェネレータMG2の負荷を制限する。これにより動力性能の低下を防ぎながらモータジェネレータMG2を確実に保護することが可能になる。ECU90による負荷率の制限について、以下詳しく説明する。
図7は、ECU90の機能ブロック図である。図7を参照して、ECU90は、バッテリ制御部91とハイブリッド制御部92と、エンジン制御部93と、インバータ制御部94と、マップ記憶部95とを含む。
バッテリ制御部91は、バッテリ20の充電状態(SOC)をバッテリ20の充放電電流の積算などにより求めてこれをハイブリッド制御部92に送信する。
エンジン制御部93は、エンジン10のスロットル制御を行なうとともに、エンジン10のエンジン回転数Neを検出してハイブリッド制御部92に送信する。
ハイブリッド制御部92は、アクセルポジションセンサ(図示せず)からアクセル開度Accの情報を受けるとともに車速センサ(図示せず)から車速Vの情報を受ける。ハイブリッド制御部92は、アクセル開度Accおよび車速Vに基づいて、運転者の要求する出力(要求パワー)を算出する。ハイブリッド制御部92は、この運転者の要求パワーに加え、バッテリ20の充電状態SOCを考慮してハイブリッド車両のトータルパワーを算出するとともに、エンジン10の要求回転数および要求パワーをさらに算出する。
ハイブリッド制御部92は、エンジン制御部93に要求回転数と要求パワーとを送信し、エンジン制御部93にエンジン10のスロットル制御を行なわせる。
ハイブリッド制御部92は、ハイブリッド車両の走行状態に応じた運転者要求トルクを算出する。そしてハイブリッド制御部92は、運転者要求トルクと、エンジン10の要求回転数および要求パワーにより定まるエンジントルクとに基づいてモータジェネレータMG1,MG2のトルクをそれぞれ指令するためのトルク指令値TR1,TR2を生成し、そのトルク指令値TR1,TR2をインバータ制御部94に対して出力する。
なお、ハイブリッド制御部92はモータジェネレータMG1に発電動作を行なわせる場合にはトルク指令値TR1の符号を正に設定し、モータジェネレータMG1に力行動作を行なわせる場合にはトルク指令値TR1の符号を負に設定する。
同様に、ハイブリッド制御部92は、モータジェネレータMG2に発電動作(回生動作)を行なわせる場合にはトルク指令値TR2の符号を負に設定し、モータジェネレータMG2に力行動作を行なわせる場合にはトルク指令値TR2の符号を正に設定する。
マップ記憶部95は、モータジェネレータMG2のモータ温度と負荷率制限値との関係を規定するマップを記憶する。
インバータ制御部94は、トルク指令値TR1を受け、モータジェネレータMG1の電流値を示すモータ電流Igを受け、モータジェネレータMG1の回転数を示すモータ回転数Ngを受ける。インバータ制御部94は、トルク指令値TR1、モータ電流Ig、モータ回転数Ngに基づいて、モータジェネレータMG1から出力されるトルクがトルク指令値TR1に等しくなるようにインバータ30を制御する。
同様にインバータ制御部94は、トルク指令値TR2を受け、モータジェネレータMG2の電流値を示すモータ電流Imを受け、モータジェネレータMG2の回転数を示すモータ回転数Nmを受ける。インバータ制御部94は、さらに、温度センサ80からモータジェネレータMG2の温度を示す温度値THを受ける。
インバータ制御部94は、マップ記憶部95に記憶されるマップを参照することにより温度値THに応じた負荷率制限値を取得する。インバータ制御部94は、トルク指令値TR2に負荷率制限値を乗算して、制限トルク指令値を演算する。インバータ制御部94は、その制限トルク指令値により指定されたトルクがモータジェネレータMG2から出力されるように、その制限トルク指令値、モータ電流Imおよびモータ回転数Nmに基づいてインバータ30を制御する。
図8は、マップ記憶部95が記憶するマップを説明する図である。図8を参照して、負荷率制限マップMAP1は、モータジェネレータMG2の力行動作時におけるモータ温度と負荷率制限値との関係を規定する。負荷率制限マップMAP2は、モータジェネレータMG2の回生動作時におけるモータ温度と負荷率制限値との関係を規定する。
負荷率制限値が100%の場合には制限トルク指令値はトルク指令値TR2に等しい。すなわち負荷率制限マップMAP1,MAP2において負荷率制限値が100%から低下し始めるときのモータ温度が負荷率の制限が開始されるときのモータ温度(以下、「制限開始温度」という)である。
負荷率制限マップMAP1における制限開始温度は温度T1である。負荷率制限マップMAP2における制限開始温度は温度T2である。負荷率制限値が0%になるときのモータ温度は負荷率制限マップMAP1,MAP2ともに温度T0である。T2<T1であることから、モータ温度が同一であれば、回生動作時のほうが力行動作時よりも負荷率制限値が小さくなる。
このように負荷率制限値を設定することにより得られる利点について説明する。モータジェネレータMG2の回生動作時(動力循環時を除く)にはハイブリッド車両の駆動力の符号が負になる。負の駆動力は、ECU90によるモータジェネレータMG2の回生動作とハイブリッド車両の油圧ブレーキとの協調制御により実現される。図8のマップに示されるようにモータジェネレータMG2の回生動作時の負荷率制限値をモータジェネレータMG2の力行時の負荷率制限値よりも小さくすれば、油圧ブレーキによる制動力が大きくなる。これによりモータジェネレータMG2の発熱を抑制することができる。
モータジェネレータMG2の発熱を抑制することによりモータジェネレータMG2の温度上昇が抑制されるため、力行時においても負荷率が制限される可能性が小さくなる。この結果、ハイブリッド車両を走行させる際における動力性能への影響を緩和することができる。
なお、モータ温度が制限開始温度よりも低い場合の負荷率制限値は、負荷率制限マップMAP1,MAP2ともに100%である(図8ではこれを示すために意図的にMAP2をMAP1とずらしている)。この場合の負荷率制限マップMAP2の負荷率制限値は負荷率制限マップMAP1の負荷率制限値より低く設定されてもよい。
図9は、図7に示すECU90が実行する負荷率制限処理を説明するフローチャートである。図9および図7を参照して、処理が開始されると、インバータ制御部94はハイブリッド制御部92から受けるトルク指令値TR2の符号に基づいて、モータジェネレータMG2に力行動作を行なわせるか否かを判定する(ステップS1)。
トルク指令値TR2の符号が正の場合には、インバータ制御部94は、モータジェネレータMG2に力行動作を行なわせる。この場合(ステップS1においてYES)、インバータ制御部94は、負荷率制限マップMAP1(図8参照)および温度センサ80が検出したモータ温度(温度値TH)に基づいて、モータジェネレータMG2の負荷率制限値を決定する。インバータ制御部94は、その負荷率制限値と、トルク指令値TR2とを算出して制限トルク指令値を算出する。インバータ制御部94は、制限トルク指令値と、モータ回転数Nmと、モータ電流Imとに基づいてモータジェネレータMG2を制御することによりトルク制限を実施する。これによりモータジェネレータMG2は、その出力トルクが制限トルク指令値を超えないように制限される(ステップS3)。
一方、トルク指令値TR2の符号が負の場合には、インバータ制御部94は、モータジェネレータに回生動作を行なわせる。この場合(ステップS1においてNO)、インバータ制御部94はハイブリッド車両に動力循環が生じているか否かを判定する(ステップS2)。
上述したように、動力循環とはモータジェネレータMG1が力行動作を行ない、かつ、モータジェネレータMG2が回生動作を行なっている状態である。よってインバータ制御部94は、以下の(1)〜(4)の条件がすべて成立する場合に、動力循環が生じていると判定する。
(1)モータジェネレータMG1の回転数Ngの符号が負である。
(2)モータジェネレータMG1のトルク指令値TR1の符号が負である。
(3)モータジェネレータMG2の回転数Nmの符号が正である。
(4)モータジェネレータMG2のトルク指令値TR2の符号が負である。
条件(1),(2)はモータジェネレータMG1が力行動作を行なっていることを示し、条件(3),(4)はモータジェネレータMG2が回生動作を行なっていることを示す。
インバータ制御部94は動力循環が生じていると判定した場合(ステップS2においてYES)、ステップS3の処理を実行する。動力循環時には車両の駆動力は正である。このため、ハイブリッド車両の制動時(モータジェネレータMG2の回生動作時)と同様に負荷率制限値を設定した場合には、モータジェネレータMG2の力行動作時よりも負荷率制限値が小さくなるため車両の動力性能が制限される可能性がある。しかし、インバータ制御部94は、負荷率制限マップMAP1に基づいてモータジェネレータMG2の負荷率制限値を決定するので、このような問題を防ぐことができる。
一方、インバータ制御部94は動力循環が生じていないと判定した場合(ステップS2においてNO)、ステップS4の処理を実行する。ステップS4の処理はハイブリッド車両の制動処理に対応する。この場合には、インバータ制御部94は、負荷率制限マップMAP2(図8参照)および温度センサ80が検出したモータ温度(温度値TH)に基づいて、モータジェネレータMG2の負荷率制限値を決定する。ステップS3の処理と同様にインバータ制御部94は、その負荷率制限値と、トルク指令値TR2とを算出して制限トルク指令値を算出する。インバータ制御部94は、制限トルク指令値と、モータ回転数Nmと、モータ電流Imとに基づいてモータジェネレータMG2を制御することによりトルク制限を実施する。これによりモータジェネレータMG2は、その出力トルクが制限トルク指令値を超えないように制限される。
ステップS3またはステップS4の処理が終了すると全体の処理はステップS1に戻される。
実施の形態1を包括的に説明すると以下のとおりである。ECU90は、温度センサ80が検知したモータジェネレータMG2の温度が所定の温度を超えた場合において、モータジェネレータMG2が力行動作を行なうときにはモータジェネレータMG2の負荷率が第1の制限値を超えないように負荷率を制限し、モータジェネレータMG2が回生動作を行なうときには負荷率が第1の制限値よりも低い第2の制限値を超えないように負荷率を制限する。ECU90は、ハイブリッド車両の動力循環時、すなわちハイブリッド車両に要求される駆動力の符号が正であり、かつ、モータジェネレータMG1が動力分割機構60の第2の軸に動力を出力する場合には、モータジェネレータMG2が回生動作を行なっていても負荷率を第1の制限値に設定する。
実施の形態1によれば、動力循環時にはモータジェネレータMG2が回生動作を行なっているものの、負荷率の制限が緩やかになる。これにより動力性能への影響を緩和することができる。よってハイブリッド車両が高速で走行する場合に走行性能が制限されるのを防ぐことができる。
[実施の形態2]
実施の形態2に係るハイブリッド動力出力装置100Aの構成は、図1に示すハイブリッド動力出力装置100とほぼ同様である。図1を参照して、ハイブリッド動力出力装置100AはECU90に代えてECU90Aを含む点でハイブリッド動力出力装置100と異なるが他の部分はハイブリッド動力出力装置100の対応する部分の構成と同様である。
次にECU90AとECU90との構成の相違点について図7を参照しながら説明する。ECU90Aは、インバータ制御部94に代えてインバータ制御部94Aを含む点、およびマップ記憶部95に代えてマップ記憶部95Aを含む点においてECU90と異なる。
図10は、マップ記憶部95Aが記憶するマップを説明する図である。図10を参照して、負荷率制限マップMAP1Aは、モータジェネレータMG2の力行動作時、および、モータ回転数NmがNm1以上かつNm2以下の範囲内にある時の両方におけるモータ温度と負荷率制限値との関係を規定する。ここでNm1は負の値であり、Nm2は正の値である。また、Nm1,Nm2は、ハイブリッド車両の車速が0近傍となるときのモータジェネレータMG2の回転数であり設計や実験などにより適切に定めることができる。
負荷率制限マップMAP2Aは、モータジェネレータMG2の回生動作時、かつ、モータ回転数NmがNm2より大きい場合におけるモータ温度と負荷率制限値との関係を規定する。
負荷率制限マップMAP1Aにおける制限開始温度は温度T1Aであり、負荷率制限マップMAP2Aにおける制限開始温度は温度T2Aである。負荷率制限値が0%になるときのモータ温度は負荷率制限マップMAP1A,MAP2Aともに温度T0Aである。
なおT2A<T1Aである。また、温度T0A,T1A,T2Aは、図8に示す温度T0,T1,T2とそれぞれ同一でもよい。さらに、モータ温度が制限開始温度よりも低い場合の負荷率制限値は、負荷率制限マップMAP1A,MAP2Aともに100%である(図8と同様に図10でもMAP2AをMAP1Aとずらして示す)。ただしこの場合の負荷率制限マップMAP2Aの負荷率制限値は、負荷率制限マップMAP1Aの負荷率制限値より低くてもよい。
図7に戻り、ECU90Aは、モータ回転数NmがNm1以上かつNm2以下である場合には、トルク指令値TR2の符号が負であっても負荷率制限マップMAP1Aに基づいて負荷率制限値を決定する。なお実施の形態1と同様に、トルク指令値TR2の符号が正である場合にはECU90Aは負荷率制限マップMAP1Aに基づいて負荷率制限値を決定する。また、トルク指令値TR2の符号が負であり、かつ、モータ回転数NmがNm2より大きい場合には、ECU90Aは負荷率制限マップMAP2Aに基づいて負荷率制限値を決定する。
上述のように、モータ回転数NmがNm2以上かつNm1以下である場合にはハイブリッド車両の車速が0近傍の値となる。この場合において、インバータ制御部94Aは、モータジェネレータMG2が回生動作を行なう場合であっても負荷率制限マップMAP1Aに基づいてモータジェネレータMG2の負荷制限値を設定する。これにより、車速が0付近である場合には、モータジェネレータMG2の回生動作時における負荷率制限が緩和される。
図11は、ECU90Aが実行する負荷率制限処理を説明するフローチャートである。図11および図9を参照して、図11のフローチャートは、ステップS1の処理に先立ってステップSAの処理が実行される点で図9のフローチャートと異なる。また、図11のフローチャートでは、ステップS3,S4において負荷率制限マップMAP1A,MAP2Aにそれぞれ基づきトルク制限が実施される点で図9のフローチャートと異なる。
ステップSAにおいて、ECU90Aはモータ回転数Nmを受ける。ECU90Aはモータ回転数NmがNm1以上かつNm2以下であると判定した場合(ステップSAにおいてYES)にはステップS1の処理を実行し、そうでない場合(ステップSAにおいてNO)、ステップS3の処理を実行する。なお、図11のフローチャートにおけるステップS1〜S4の処理は図9のフローチャートにおける対応するステップの処理と同様であるので以後の説明は繰返さない。
このように実施の形態2によれば車速が0付近である場合にモータジェネレータMG2の回生動作時における負荷率制限を緩和する。これにより、たとえばハイブリッド車両が上り坂で停車した状態から発進するときに運転者の操作に対する車両の応答性が低下するのを防ぐことができる。また、ハイブリッド車両が上り坂を走行する場合にも運転者の操作に対する車両の応答性が低下するのを防ぐことができる。
また、実施の形態2では実施の形態1と同様に、動力循環時にはモータジェネレータMG2が回生動作を行なっていても負荷率制限を緩和するので、実施の形態1の効果と同様の効果を得ることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
この発明によるハイブリッド車両の動力出力装置の構成を示すブロック図である。 図1に示した動力分割機構の構成を示す図である。 図2に示される遊星歯車機構150の断面図である。 ハイブリッド動力出力装置100の各運転状況における動作を説明する第1の共線図である。 ハイブリッド動力出力装置100の各運転状況における動作を説明する第2の共線図である。 動力循環モードを説明するための図である。 ECU90の機能ブロック図である。 マップ記憶部95が記憶するマップを説明する図である。 図7に示すECU90が実行する負荷率制限処理を説明するフローチャートである。 マップ記憶部95Aが記憶するマップを説明する図である。 ECU90Aが実行する負荷率制限処理を説明するフローチャートである。
符号の説明
10 エンジン、20 バッテリ、30 インバータ、40a 車輪、45 駆動軸、50 トランスアクスル、51〜53 電力ライン、60 動力分割機構、70 減速機、80 温度センサ、91 バッテリ制御部、92 ハイブリッド制御部、93 エンジン制御部、94,94A インバータ制御部、95,95A マップ記憶部、100,100A ハイブリッド動力出力装置、110 エンジン回転軸、150 遊星歯車機構、160 ピニオンギヤ、162 プラネタリキャリア軸、165 プラネタリキャリア、170 サンギヤ、172 サンギヤ軸、180 リングギヤ、182 リングギヤ軸、190 チェーンドライブスプロケット、192 チェーンドリブンスプロケット、195 チェーン、198 カウンタドライブギヤ、MAP1,MAP2,MAP1A,MAP2A 負荷率制限マップ、MG1,MG2 モータジェネレータ。

Claims (4)

  1. 駆動軸に動力を出力するハイブリッド車両の動力出力装置であって、
    第1から第3の軸と結合された遊星歯車機構を含み、前記第3の軸に車両の駆動軸が結合されるとともに、前記第1ないし第3の軸のうちのいずれか2軸に対し動力が入出力されたときに、その入出力された動力に基づいて定まる動力を残余の1軸に対して入出力する3軸式の動力分割機構と、
    前記第1の軸にその回転軸が結合し、燃料の燃焼により前記第1の回転軸に対し動力を出力するエンジンと、
    前記第2の軸にその回転軸が結合し、前記第2の軸に対し動力を入出力することが可能な第1のモータジェネレータと、
    前記第3の軸にその回転軸が結合し、前記第3の軸に対し動力を入出力することが可能な第2のモータジェネレータと、
    前記第2のモータジェネレータの温度であるモータ温度を検知する温度検知部と、
    前記温度検知部が検知した前記モータ温度が所定の温度を超えた場合において、前記第2のモータジェネレータが前記第3の軸に対し動力を出力する力行動作を行なうときには前記第2のモータジェネレータの負荷率が第1の制限値を超えないように前記負荷率を制限し、前記第2のモータジェネレータが前記第3の軸に対し動力を入力する回生動作を行なうときには前記負荷率が前記第1の制限値よりも低い第2の制限値を超えないように前記負荷率を制限する制御部とを備え、
    前記制御部は、前記ハイブリッド車両に要求される駆動力の符号が正であり、かつ、前記第1のモータジェネレータが前記第2の軸に動力を出力する場合には、前記第2のモータジェネレータが前記回生動作を行なっていても前記負荷率を前記第1の制限値に設定する、ハイブリッド車両の動力出力装置。
  2. 前記制御部は、前記モータ温度と前記第1の制限値とを対応付ける第1のマップ、および前記モータ温度と前記第2の制限値とを対応付ける第2のマップを記憶し、前記第2のモータジェネレータが前記力行動作を行なうときには前記第1のマップに基づいて前記第1の制限値を決定するとともに、前記第2のモータジェネレータが前記回生動作を行なうときには前記第2のマップに基づいて前記第2の制限値を決定する、請求項1に記載のハイブリッド車両の動力出力装置。
  3. 前記制御部は、さらに、前記第2のモータジェネレータの回転数が負の所定値から正の所定値までの範囲内にある場合には、前記第2のモータジェネレータが前記回生動作を行なっていても前記負荷率を前記第1の制限値に設定する、請求項1または2に記載のハイブリッド車両の動力出力装置。
  4. 前記制御部は、前記第2のモータジェネレータが前記回生動作を行ない、かつ、前記第2のモータジェネレータの回転数が前記正の所定値より大きい場合には、前記負荷率を前記第2の制限値に設定する、請求項3に記載のハイブリッド車両の動力出力装置。
JP2007119309A 2007-04-27 2007-04-27 ハイブリッド車両の動力出力装置 Expired - Fee Related JP4803101B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119309A JP4803101B2 (ja) 2007-04-27 2007-04-27 ハイブリッド車両の動力出力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119309A JP4803101B2 (ja) 2007-04-27 2007-04-27 ハイブリッド車両の動力出力装置

Publications (2)

Publication Number Publication Date
JP2008273381A JP2008273381A (ja) 2008-11-13
JP4803101B2 true JP4803101B2 (ja) 2011-10-26

Family

ID=40051920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119309A Expired - Fee Related JP4803101B2 (ja) 2007-04-27 2007-04-27 ハイブリッド車両の動力出力装置

Country Status (1)

Country Link
JP (1) JP4803101B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058768A1 (ja) 2008-11-18 2010-05-27 住友重機械工業株式会社 作業機械
JP5436900B2 (ja) * 2009-03-23 2014-03-05 住友重機械工業株式会社 ハイブリッド型建設機械
JP5218110B2 (ja) * 2009-02-02 2013-06-26 トヨタ自動車株式会社 車両のフェールセーフ装置
JPWO2012035817A1 (ja) * 2010-09-13 2014-02-03 茂治 清水 モータ駆動走行体用回生装置及びこれを用いたモータ駆動走行体
JP5413440B2 (ja) * 2011-12-07 2014-02-12 株式会社デンソー 回転機の制御装置
JP2013154748A (ja) 2012-01-30 2013-08-15 Denso Corp ハイブリッド動力源の制御装置
JP6026815B2 (ja) * 2012-08-22 2016-11-16 トヨタ自動車株式会社 電動車両の駆動制御装置
JP6320720B2 (ja) * 2013-11-14 2018-05-09 住友重機械工業株式会社 ショベル
JP6563182B2 (ja) * 2014-08-29 2019-08-21 住友重機械工業株式会社 建設機械
JP6888432B2 (ja) * 2017-06-12 2021-06-16 トヨタ自動車株式会社 ハイブリッド車両の駆動装置
JP2018046742A (ja) * 2017-10-19 2018-03-22 Ntn株式会社 インホイールモータ駆動装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4035930B2 (ja) * 1999-10-08 2008-01-23 トヨタ自動車株式会社 電動発電機を備えた車両の制御装置
JP3956796B2 (ja) * 2001-12-26 2007-08-08 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動制御方法及びそのプログラム
JP2004364453A (ja) * 2003-06-06 2004-12-24 Aisin Aw Co Ltd 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
JP2005083300A (ja) * 2003-09-10 2005-03-31 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
JP2008273381A (ja) 2008-11-13

Similar Documents

Publication Publication Date Title
JP4803101B2 (ja) ハイブリッド車両の動力出力装置
JP4345824B2 (ja) 車両およびその制御方法
JP4529097B2 (ja) ハイブリッド駆動装置
JP4086018B2 (ja) ハイブリッド車およびその制御方法並びに動力出力装置
JP4512075B2 (ja) 動力出力装置およびその制御方法並びに車両
JP2008012992A (ja) ハイブリッド車両の駆動制御装置
JP4229105B2 (ja) ハイブリッド車およびその制御方法
JP2005295691A (ja) 動力出力装置およびこれを搭載する自動車
JP2009130994A (ja) 動力出力装置およびその制御方法並びに車両
JP2005002989A (ja) 動力出力装置およびその制御方法並びに自動車
JP6096411B2 (ja) ハイブリッド車両の発電制御装置
JP4190490B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御装置,動力出力装置の制御方法
JP6662359B2 (ja) ハイブリッド車両の駆動力制御装置
JP2013119383A (ja) ハイブリッド自動車のトルク制御方法及びそのシステム
JP2010058579A (ja) ハイブリッド車両
JP2009126258A (ja) 車両およびその制御方法
JPWO2018047224A1 (ja) ハイブリッド車両の制御方法と制御装置
JP2008049775A (ja) 車両およびその制御方法
JP2007284005A (ja) 車両及びその制御方法
JP2008168773A (ja) 車両およびその制御方法
JP4365354B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2007112291A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
JP2006298283A (ja) 車両制御装置
JP2007269093A (ja) 車両およびその制御方法
JP5810580B2 (ja) 車両および車両用制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees