WO2022172410A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022172410A1
WO2022172410A1 PCT/JP2021/005332 JP2021005332W WO2022172410A1 WO 2022172410 A1 WO2022172410 A1 WO 2022172410A1 JP 2021005332 W JP2021005332 W JP 2021005332W WO 2022172410 A1 WO2022172410 A1 WO 2022172410A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel heat
temperature
heat exchanger
detection unit
refrigerant
Prior art date
Application number
PCT/JP2021/005332
Other languages
English (en)
French (fr)
Inventor
和也 渡辺
瑞朗 酒井
涼介 岡澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US18/251,778 priority Critical patent/US20230408122A1/en
Priority to JP2022581124A priority patent/JPWO2022172410A1/ja
Priority to DE112021007081.9T priority patent/DE112021007081T5/de
Priority to PCT/JP2021/005332 priority patent/WO2022172410A1/ja
Publication of WO2022172410A1 publication Critical patent/WO2022172410A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0251Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units being defrosted alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0254Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements
    • F25B2313/02542Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in series arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present disclosure relates to an air conditioner.
  • a heat-pump air conditioner can perform heating efficiently by the amount of heat supplied from the air in addition to the electrical input to the compressor.
  • Air conditioners capable of heating have been proposed (see Patent Documents 1 and 2, for example).
  • the outdoor heat exchanger is divided into a plurality of parallel heat exchangers, and the flow path switching such as a switching valve that switches whether the heat exchanger is operated as an evaporator or defrost is performed.
  • the flow path switching such as a switching valve that switches whether the heat exchanger is operated as an evaporator or defrost is performed.
  • Conventional air conditioners use this flow path switching unit to flow part of the refrigerant discharged from the compressor into the heat exchanger for which defrosting is requested, and defrost is performed, thereby stopping heating. It defrosts without
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an air conditioner that can detect erroneous attachment of attachment parts and perform defrost normally without stopping heating of the indoor unit. to provide.
  • one aspect of the present disclosure is that a compressor, an indoor heat exchanger, a pressure reducing device, and a plurality of parallel heat exchangers connected in parallel are connected by piping, and a refrigerant is connected to each of the plurality of parallel heat exchangers, and some of the plurality of parallel heat exchangers melt frost adhering to the parallel heat exchangers
  • a flow path switching unit selected as a defrost target, which is a defrost target, and a part of the refrigerant discharged by the compressor is branched and flowed into the parallel heat exchanger selected by the flow path switching unit as the defrost target.
  • the temperature detection unit for detecting the temperature of the refrigerant in each of the plurality of parallel heat exchangers, and the flow path switching unit function as evaporators.
  • an operation mode selecting a portion of the parallel heat exchangers from among the plurality of parallel heat exchangers as the defrosting target, allowing a portion of the refrigerant to flow in via the bypass pipe, and an operation control unit for switching between a heating and defrosting operation mode in which the parallel heat exchangers function as evaporators; and an erroneous attachment detection unit that detects erroneous attachment of the air conditioner.
  • FIG. 3 is a diagram showing states of a cooling/heating switching unit and a flow path switching unit corresponding to operation modes of the air conditioner according to the first embodiment
  • FIG. 4 is a diagram showing the flow of refrigerant in the cooling operation mode of the air conditioner according to the first embodiment
  • 4 is a Ph diagram in the cooling operation mode of the air conditioner according to the first embodiment
  • FIG. FIG. 3 is a diagram showing states of a cooling/heating switching unit and a flow path switching unit corresponding to operation modes of the air conditioner according to the first embodiment
  • FIG. 4 is a diagram showing the flow of refrigerant in the cooling operation mode of the air conditioner according to the first embodiment
  • 4 is a Ph diagram in the cooling operation mode of the air conditioner according to the first embodiment
  • FIG. 4 is a diagram showing the flow of refrigerant in the heating normal operation mode of the air conditioner according to the first embodiment; 4 is a Ph diagram in a normal heating operation mode of the air conditioner according to the first embodiment; FIG. FIG. 4 is a diagram showing the flow of refrigerant in an example of a heating defrost operation mode of the air conditioner according to the first embodiment; 4 is a Ph diagram in one example of a heating defrost operation mode of the air conditioner according to the first embodiment; FIG. 4 is a flow chart showing an example of an incorrect installation detection process for the air conditioner according to the first embodiment.
  • FIG. 2 is a configuration diagram showing an example of an air conditioner according to a second embodiment; FIG. FIG.
  • FIG. 11 is a flowchart showing an example of incorrect installation detection processing for an air conditioner according to a second embodiment
  • FIG. 10 is a diagram showing an example of changes in detected temperature in the incorrect installation detection process for the air conditioner according to the second embodiment
  • FIG. 11 is a configuration diagram showing an example of an air conditioner according to a third embodiment
  • FIG. 10 is a diagram showing states of a cooling/heating switching unit and a switching device corresponding to operation modes of an air conditioner according to a third embodiment
  • FIG. 11 is a flow chart showing an example of incorrect installation detection processing for an air conditioner according to a third embodiment
  • FIG. 1 is a configuration diagram showing an example of an air conditioner 100 according to the first embodiment of the present disclosure.
  • the air conditioner 100 includes an outdoor unit 10, an indoor unit 20, and a control device 60.
  • the outdoor unit 10 is a heat source unit that generates heat to be supplied to the indoor unit 20, and functions as a heat source side unit.
  • the indoor unit 20 functions as a load side unit that uses heat supplied from the outdoor unit 10 .
  • the indoor unit 20 includes an indoor heat exchanger 21 and an indoor fan 22 .
  • the outdoor unit 10 and the indoor unit 20 are connected by a first extension pipe 32 and a second extension pipe 33 .
  • the indoor heat exchanger 21 uses heat supplied from the outdoor unit 10 to perform heat exchange of indoor air.
  • the indoor fan 22 conveys indoor air to the indoor heat exchanger 21 . That is, the indoor fan 22 is a blower that sends indoor air to the indoor heat exchanger 21 .
  • the outdoor unit 10 includes a compressor 11, a cooling/heating switching unit 12, a first pressure reducing device 13, a plurality of parallel heat exchangers 14 (14-1, 14-2), a receiver 15, and a third pressure reducing device 16. , a plurality of second pressure reducing devices 17 (17-1, 17-2), a flow rate adjusting device 18, an outdoor fan 19, a flow path switching unit 40, and a plurality of temperature detecting units 51 (51-1, 51 -2).
  • the air conditioner 100 has a main circuit RC, which is a refrigerant circuit for circulating refrigerant between the outdoor unit 10 and the indoor unit 20 .
  • the main circuit RC is formed by the discharge pipe 31, the first extension pipe 32, the second extension pipe 33, the first connection pipe 34, the second connection pipe 35, and the suction pipe 36. It is configured to be connected to each component that constitutes the RC.
  • the refrigerant used in the main circuit RC is, for example, Freon refrigerant or HFO refrigerant (hydrofluoroolefin refrigerant).
  • Fluorocarbon refrigerants are, for example, HFC refrigerants (chlorofluorocarbon refrigerants) such as R32 refrigerant, R125 refrigerant, and R134a refrigerant, or mixed refrigerants thereof such as R410A refrigerant, R407c refrigerant, and R404A refrigerant.
  • HFO refrigerants are, for example, HFO-1234yf, HFO-1234ze(E), HFO-1234ze(Z), and the like.
  • the main circuit RC includes a compressor 11, a cooling/heating switching unit 12, an indoor heat exchanger 21, a first pressure reducing device 13, a parallel heat exchanger 14-1 and a parallel heat exchanger 14-2, which are connected in order. It is configured by connecting by
  • the compressor 11 is connected between the suction pipe 36 and the discharge pipe 31 .
  • the compressor 11 compresses the refrigerant supplied through the suction pipe 36 and discharges high-temperature, high-pressure refrigerant to the discharge pipe 31 .
  • the cooling/heating switching unit 12 is connected between the discharge pipe 31 and the suction pipe 36, and switches the flow direction of the refrigerant.
  • the cooling/heating switching unit 12 is composed of, for example, a four-way valve.
  • the discharge side of the compressor 11 and the cooling/heating switching section 12 are connected by a discharge pipe 31 .
  • the suction side of the compressor 11 and the cooling/heating switching section 12 are connected by a suction pipe 36 .
  • the cooling/heating switching unit 12 connects the discharge pipe 31 and the first extension pipe 32, connects the discharge side of the compressor 11 and the indoor heat exchanger 21, and connects the suction pipe 36 and the second connection.
  • the pipes 35 (35-1, 35-2) are connected to connect the suction side of the compressor 11 and the parallel heat exchangers 14 (14-1, 14-2).
  • the cooling/heating switching unit 12 connects the discharge pipe 31 and the second connection pipes 35 (35-1, 35-2) to connect the discharge side of the compressor 11 and the parallel heat exchanger 14 (14 -1, 14-2), the suction pipe 36 and the first extension pipe 32 are connected, and the suction side of the compressor 11 and the indoor heat exchanger 21 are connected.
  • switching A the switching state of the cooling/heating switching unit 12 in the cooling operation
  • switching B the switching state of the cooling/heating switching unit 12 in the heating operation
  • the first decompression device 13 is connected to the indoor heat exchanger 21 through a second extension pipe 33 to decompress and expand the refrigerant.
  • the receiver 15 is a tank that is arranged between the first decompression device 13 and the third decompression device 16 and stores liquid refrigerant that has become liquid.
  • a plurality of parallel heat exchangers 14 are arranged in parallel between the heating/cooling switching unit 12 and the second pressure reducing device 17 (17-1, 17-2). It is an outdoor heat exchanger that exchanges heat between the outside air, which is the air in the room, and the refrigerant.
  • the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 refer to arbitrary parallel heat exchangers provided in the air conditioner 100, or when not particularly distinguished, parallel heat exchangers 14-1 and 14-2 It is described as heat exchanger 14 .
  • the parallel heat exchanger 14-1 is connected between the first connecting pipe 34-1 and the second connecting pipe 35-1.
  • the parallel heat exchanger 14-2 is connected between the first connecting pipe 34-2 and the second connecting pipe 35-2.
  • the first connection pipe 34-1 and the first connection pipe 34-2 refer to arbitrary first connection pipes provided in the air conditioner 100, or when they are not particularly distinguished, the first connection pipe 34-1 and the first connection pipe 34-2 1 connecting pipe 34 is described.
  • the second connection pipe 35-1 and the second connection pipe 35-2 refer to arbitrary second connection pipes provided in the air conditioner 100, or when they are not particularly distinguished, the second connection pipe 35-1 and the second connection pipe 35-2 2 connection piping 35 is described.
  • FIG. 2 is a diagram showing a configuration example of the parallel heat exchangers 14 (14-1, 14-2) in this embodiment.
  • the parallel heat exchangers 14 are composed of, for example, finned-tube heat exchangers having a plurality of heat transfer tubes 14a and a plurality of fins 14b.
  • the outdoor heat exchanger is divided into two parallel heat exchangers 14 (14-1, 14-2) will be described.
  • a plurality of heat transfer tubes 14a are provided in the row direction, which is the direction perpendicular to the air passage direction, and the column direction, which is the air passage direction, through which the refrigerant passes.
  • the fins 14b are spaced apart so that the air passes in the direction of air passage. Note that the fins 14b may be of an integral shape that is not divided between the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 as shown in FIG. It may be divided with the parallel heat exchanger 14-2.
  • the parallel heat exchangers 14 are divided in the vertical direction inside the housing of the outdoor unit 10. Note that the parallel heat exchanger 14 may be divided into left and right, or may be divided into upper and lower as shown in FIG. When the parallel heat exchanger 14 is divided into left and right, the refrigerant inlets to each of the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 are at the left and right ends of the outdoor unit 10, so the parallel heat exchanger Although the piping connection of 14 is complicated, water generated by defrosting does not adhere to other heat exchangers.
  • the pipe connection is easy, but the water generated in the upper heat exchanger flows down to the lower heat exchanger, so while defrosting the upper heat exchanger, the lower If the heat exchanger of 1 is made to function as an evaporator, the water generated by the defrost of the upper heat exchanger freezes in the lower heat exchanger, which may hinder heat exchange.
  • the third pressure reducing device 16 is arranged between the receiver 15 and the two parallel heat exchangers 14 (14-1, 14-2).
  • the third decompression device 16 decompresses and expands the refrigerant.
  • the second pressure reducing device 17 (17-1, 17-2) is arranged between the third pressure reducing device 16 of the parallel heat exchanger 14 (14-1, 14-2) and reduces the pressure of the refrigerant to expand it. .
  • the second decompression device 17-1 is connected to the second decompression device 17-1 by a first connecting pipe 34-1.
  • the second pressure reducing device 17-2 is connected to the second pressure reducing device 17-2 by a first connecting pipe 34-2.
  • the second decompression device 17 only needs to be able to decompress the refrigerant, and may be a capillary tube, an expansion valve, or the like.
  • the second decompression device 17-1 and the second decompression device 17-2 refer to any second decompression device included in the air conditioner 100, or when they are not particularly distinguished, the second decompression device 2 decompression device 17 .
  • the flow path switching unit 40 is connected to each of the two parallel heat exchangers 14, and selects one of the two parallel heat exchangers 14 to be defrosted.
  • the defrost target is a defrost target that melts the frost adhering to the parallel heat exchanger 14 .
  • the flow path switching unit 40 includes a second connection pipe 35 (35-1 , 35-2).
  • the channel switching unit 40 includes a first opening/closing device 41-1, a first opening/closing device 41-2, a second opening/closing device 42-1, and a second opening/closing device 42-2.
  • the first opening/closing device 41-1 is arranged between the cooling/heating switching section 12 and the second connecting pipe 35-1.
  • the first opening/closing device 41-1 is, for example, an opening/closing valve, and opens and closes the flow path between the cooling/heating switching section 12 and the second connecting pipe 35-1.
  • the first opening/closing device 41-2 is arranged between the cooling/heating switching section 12 and the second connecting pipe 35-2.
  • the first opening/closing device 41-1 is, for example, an opening/closing valve, and opens and closes the flow path between the cooling/heating switching section 12 and the second connecting pipe 35-2.
  • the second opening/closing device 42-1 is arranged between the discharge side of the compressor 11 and the second connecting pipe 35-1.
  • the second opening/closing device 42-1 is, for example, an opening/closing valve, and opens and closes the flow path between the bypass pipe 37 on the discharge side of the compressor 11 and the second connection pipe 35-1.
  • the second opening/closing device 42-2 is arranged between the discharge side of the compressor 11 and the second connecting pipe 35-2.
  • the second opening/closing device 42-2 is, for example, an opening/closing valve, and opens and closes the flow path between the bypass pipe 37 on the discharge side of the compressor 11 and the second connection pipe 35-2.
  • the refrigerant circuit of the air conditioner 100 also has a bypass pipe 37 that branches a part of the high-temperature, high-pressure refrigerant discharged from the compressor 11 and supplies it to the two parallel heat exchangers 14 .
  • a part of the refrigerant discharged from the compressor 11 is branched from the bypass pipe 37 and flows into the parallel heat exchanger 14 selected by the flow path switching unit 40 to be defrosted.
  • one end of the bypass pipe 37 is connected to the discharge pipe 31, and the other end is branched and connected to the second connection pipes 35 (35-1, 35-2).
  • the flow rate adjusting device 18 is arranged between the discharge pipe 31 and the bypass pipe 37 and adjusts the flow rate of the refrigerant flowing through the bypass pipe 37 .
  • the outdoor fan 19 is a blower that blows air to the plurality of parallel heat exchangers 14 . Outdoor fan 19 conveys outdoor air to parallel heat exchanger 14 .
  • the plurality of temperature detection units 51 are, for example, temperature sensors, and detect the temperature of each refrigerant in the plurality of parallel heat exchangers .
  • the temperature detection unit 51 detects the temperature of the refrigerant that evaporates in the parallel heat exchanger 14 or the temperature of the refrigerant that is used for defrosting.
  • the temperature detection unit 51-1 and the temperature detection unit 51-2 have the same configuration, and when an arbitrary temperature detection unit provided in the air conditioner 100 is indicated, or when there is no particular distinction is described as a temperature detection unit 51 .
  • the temperature detection unit 51-1 is arranged in the parallel heat exchanger 14-1 and detects the temperature of the refrigerant in the parallel heat exchanger 14-1. Also, the temperature detection unit 51-2 is arranged in the parallel heat exchanger 14-2 and detects the temperature of the refrigerant in the parallel heat exchanger 14-2.
  • the temperature detection units 51 (51-1, 51-2) are arranged in the first connection pipes 34 (34-1, 34-1) or the second connection pipes 35 (35-1, 35-2). You may do so.
  • the temperature detection unit 51 may detect the pressure of the refrigerant using a pressure detector instead of the temperature sensor, and indirectly detect the temperature of the refrigerant by using the saturation temperature.
  • the control device 60 includes, for example, a CPU (Central Processing Unit), and controls operations of various control devices and switching of operation modes.
  • the control device 60 includes, for example, a control board provided in the outdoor unit 10 and the indoor unit 20, a remote controller installed indoors, and the like.
  • the control device 60 also includes an operation control section 61 , an incorrect attachment detection section 62 , and a notification output section 63 .
  • the operation control unit 61 controls the operation of various control devices and switching of operation modes.
  • the operation control unit 61 operates, for example, the cooling/heating switching unit 12 to switch between the cooling operation mode and the heating operation mode.
  • the cooling operation mode is an operation mode in which the air conditioner 100 is operated for cooling.
  • the heating operation mode is an operation mode in which the air conditioner 100 is operated for heating.
  • the heating operation mode includes a heating normal operation mode and a heating defrost operation mode. In the following description, the heating/defrosting operation mode may be referred to as the continuous heating operation mode.
  • the operation control unit 61 controls the cooling/heating switching unit 12 to switch A described above when switching the operation mode to the cooling operation mode. Further, the operation control unit 61 controls the cooling/heating switching unit 12 to switch B described above when switching the operation mode to the heating operation mode.
  • the operation control unit 61 operates the flow path switching unit 40 to switch between the heating normal operation mode and the heating defrost operation mode.
  • the heating normal operation mode is an operation mode in which all of the two parallel heat exchangers 14 function as evaporators, and is a normal heating operation mode. That is, in the heating normal operation mode, both parallel heat exchanger 14-1 and parallel heat exchanger 14-2 operate as normal evaporators.
  • the heating defrost operation mode some of the parallel heat exchangers 14 are selected as defrost targets, some of the refrigerant flows through the bypass pipe 37, some This is an operation mode in which the parallel heat exchanger 14 other than the above functions as an evaporator.
  • defrosting is performed on part of the parallel heat exchangers 14-1 and 14-2.
  • the operation control unit 61 turns on the first opening/closing device 41-1 and the first opening/closing device 41-2 to turn on the second opening/closing device 42-1 and the second opening/closing device 41-2. 2
  • the switching device 42-2 is turned off.
  • parallel heat exchanger 14-1 and parallel heat exchanger 14-2 function as evaporators.
  • the operation control unit 61 turns off the first switchgear 41-1 and turns off the second switchgear. 42-1 is turned on, the first switchgear 41-2 is turned on, and the second switchgear 42-2 is turned off. In this case, the parallel heat exchanger 14-1 is defrosted and the parallel heat exchanger 14-2 functions as an evaporator.
  • the operation control unit 61 turns off the first switchgear 41-2 and turns off the second switchgear 42-2. is turned on, the first switchgear 41-1 is turned on, and the second switchgear 42-1 is turned off. In this case, the parallel heat exchanger 14-2 is defrosted and the parallel heat exchanger 14-1 functions as an evaporator.
  • the operation control unit 61 determines completion of defrosting based on, for example, the detected temperature of the refrigerant in the parallel heat exchanger 14 to be defrosted detected by the temperature detecting unit 51 (51-1, 51-2).
  • the operation control unit 61 completes defrosting of the parallel heat exchanger 14 to be defrosted when the detected temperature of the refrigerant in the parallel heat exchanger 14 to be defrosted is higher than the frost melting temperature (0° C.), for example. It is determined that
  • the erroneous attachment detection unit 62 detects erroneous attachment of the attachment component related to defrost based on the temperatures detected by the temperature detection unit 51 in the plurality of parallel heat exchangers 14 . That is, the erroneous attachment detection unit 62 executes erroneous attachment detection processing for detecting erroneous attachment of the attachment component related to defrosting in the state of switching to the heating defrost operation mode.
  • the attachment parts related to defrosting include, for example, the flow path switching section 40 and the temperature detection section 51 .
  • the erroneous installation detection unit 62 detects that the temperature detected by the parallel heat exchanger 14 to be defrosted is equal to or lower than the temperature detected by the parallel heat exchanger 14 that functions as an evaporator. Detect incorrect installation. Further, when the incorrect attachment detection unit 62 detects the incorrect attachment of the attachment component, the incorrect attachment detection unit 62 causes the notification output unit 63 to output notification information based on the detection result of the incorrect attachment of the attachment component. That is, the erroneous attachment detection unit 62 notifies the outside of the air conditioner 100 of the detection of erroneous attachment using the notification output unit 63 .
  • the notification output unit 63 is, for example, a display unit of a remote controller or a speaker that outputs notification sounds.
  • the notification output unit 63 outputs the detection result detected by the incorrect attachment detection unit 62 .
  • the notification output unit 63 displays notification information based on the detection result of incorrect attachment of the attachment part.
  • the detection result of erroneous attachment also includes the detection result of detection of normal attachment.
  • FIG. 3 is a diagram showing states of the cooling/heating switching unit 12 and the flow path switching unit 40 corresponding to the operation modes of the air conditioner 100 according to this embodiment.
  • the first opening/closing device 41-1, the first opening/closing device 41-2, the second opening/closing device 42-1, and the second opening/closing device 42-2 of the channel switching unit 40 are in the "ON" state. indicates a state in which both ends are connected, and a state of "OFF" indicates a state in which both ends are disconnected.
  • the route using the second connection pipe 35-1 is referred to as “route 1”
  • the parallel heat exchanger 14-1 is selected as the defrost target
  • the defrost is performed by the route using the second connection pipe 35-1.
  • path 1 side defrosting The case where defrosting is performed.
  • route 2 the route using the second connection pipe 35-1 is called “route 2”, and the parallel heat exchanger 14-2 is selected as the defrost target, and the defrost is performed by the route using the second connection pipe 35-2.
  • route 2 side defrost The case of performing defrost is referred to as "route 2 side defrost”.
  • the operation control unit 61 sets the cooling/heating switching unit 12 to “switch A” and turns the first opening/closing device 41-1 and the first opening/closing device 41-2 to “ON”. Furthermore, it indicates that the second opening/closing device 42-1 and the second opening/closing device 42-2 are turned "OFF”.
  • the operation control unit 61 sets the cooling/heating switching unit 12 to “switch B” and switches the first opening/closing device 41-1 and the first opening/closing device 41-2 to “ ON”, and the second switchgear 42-1 and the second switchgear 42-2 are set to "OFF".
  • the operation control unit 61 causes the cooling/heating switching unit 12 to switch B”, the first switching device 41-1 is turned “OFF”, and the first switching device 41-2 is turned “ON”.
  • the operation control unit 61 further indicates that the second opening/closing device 42-1 is turned “ON” and the second opening/closing device 42-2 is turned “OFF”.
  • the operation control unit 61 causes the cooling/heating switching unit 12 to switch B”, the first switching device 41-1 is turned “ON”, and the first switching device 41-2 is turned “OFF”. In this case, the operation control unit 61 further indicates that the second opening/closing device 42-1 is turned “OFF” and the second opening/closing device 42-2 is turned “ON”.
  • FIG. 4 is a diagram showing refrigerant flows in the cooling operation mode of the air conditioner 100 according to this embodiment.
  • the solid line indicates the portion where the refrigerant flows in the cooling operation mode
  • the broken line indicates the portion where the refrigerant does not flow.
  • FIG. 5 is a Ph diagram in the cooling operation mode of the air conditioner 100 according to this embodiment.
  • the vertical axis indicates the refrigerant pressure P [MPa (megapascal)]
  • the horizontal axis indicates the specific enthalpy h [kJ (kilojoule)/kg (kg)].
  • points P1 to P4 in FIG. 5 indicate the state of the refrigerant at the portions denoted by the same reference numerals in FIG.
  • the compressor 11 compresses the low-temperature, low-pressure gas refrigerant and discharges the high-temperature, high-pressure gas refrigerant.
  • the refrigerant is compressed by the adiabatic efficiency of the compressor 11 so as to be heated as compared with the case of adiabatic compression along the isentropic line, and from point P1 to point P2 in FIG. represented by the indicated line.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the cooling/heating switching unit 12, is branched into two, and passes through the first opening/closing device 41-1 and the first opening/closing device 41-2.
  • the gas refrigerant that has passed through the first switchgear 41-1 and the first switchgear 41-2 is connected to the parallel heat exchanger 14-1 through the second connection pipe 35-1 and the second connection pipe 35-2, respectively. and flows into the parallel heat exchanger 14-2.
  • the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 cool the inflowing refrigerant while heating the outdoor air. As a result, the refrigerant becomes medium temperature and high pressure liquid refrigerant.
  • Refrigerant change in the parallel heat exchangers 14-1 and 14-2 is represented by a slightly inclined straight line extending from point P2 to point P3 in FIG. 5, considering the pressure loss.
  • the refrigerant change at this time is represented by a vertical line from point P3 to point P4 in FIG.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed out of the first pressure reducing device 13 flows out of the outdoor unit 10 , passes through the second extension pipe 33 , and flows into the indoor heat exchanger 21 of the indoor unit 20 .
  • the indoor heat exchanger 21 heats the flowing refrigerant while cooling the indoor air.
  • the refrigerant becomes a low-temperature, low-pressure gas refrigerant.
  • the change in the refrigerant in the indoor heat exchanger 21 is represented by a slightly inclined almost horizontal straight line extending from point P4 to point P1 in FIG.
  • the low-temperature, low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 21 returns to the outdoor unit 10 through the first extension pipe 32, flows through the heating/cooling switching unit 12 into the compressor 11, and is compressed.
  • FIG. 6 is a diagram showing the refrigerant flow in the normal heating operation mode of the air conditioner 100 according to this embodiment.
  • solid lines indicate portions where the refrigerant flows in the heating normal operation mode
  • dashed lines indicate portions where the refrigerant does not flow.
  • FIG. 7 is a Ph diagram in the heating normal operation mode of the air conditioner 100 according to this embodiment.
  • the vertical axis indicates the refrigerant pressure P [MPa]
  • the horizontal axis indicates the specific enthalpy h [kJ/kg].
  • points P11 to P14 in FIG. 7 indicate the state of the refrigerant at the portions denoted by the same reference numerals in FIG.
  • the compressor 11 compresses a low-temperature, low-pressure gas refrigerant and discharges a high-temperature, high-pressure gas refrigerant.
  • the refrigerant compression process of this compressor 11 is represented by a line from point P11 to point P12 in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 10 after passing through the cooling/heating switching section 12 .
  • the high-temperature, high-pressure gas refrigerant that has flowed out of the outdoor unit 10 flows into the indoor heat exchanger 21 of the indoor unit 20 via the first extension pipe 32 .
  • the indoor heat exchanger 21 cools the inflowing refrigerant while heating the indoor air. As a result, the refrigerant becomes medium temperature and high pressure liquid refrigerant. Considering the pressure loss, the change in the refrigerant in the indoor heat exchanger 21 is represented by a slightly inclined straight line extending from the point P12 to the point P13 in FIG.
  • the medium-temperature, high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 21 returns to the outdoor unit 10 via the second extension pipe 33 .
  • the refrigerant returned to the outdoor unit 10 passes through the first decompression device 13, the receiver 15, and the third decompression device 16, branches, and passes through the first connection pipe 34-1 and the first connection pipe 34-2, It flows into the second decompression device 17-1 and the second decompression device 17-2.
  • the refrigerant is expanded and decompressed by the first decompression device 13, the third decompression device 16, and the second decompression device 17, and becomes a low-temperature, low-pressure gas-liquid two-phase state.
  • the change of the refrigerant in the first pressure reducing device 13, the third pressure reducing device 16, and the second pressure reducing device 17 is performed under a constant enthalpy.
  • the refrigerant change at this time is represented by a vertical line from point P13 to point P14 in FIG.
  • the refrigerants flowing out of the second pressure reducing devices 17-1 and 17-2 flow into the parallel heat exchangers 14-1 and 14-2, respectively.
  • the parallel heat exchangers 14-1 and 14-2 heat the refrigerant while cooling the outdoor air.
  • the refrigerant becomes a low-temperature, low-pressure gas refrigerant.
  • the refrigerant change in the parallel heat exchangers 14-1 and 14-2 is represented by a slightly inclined straight line extending from point P14 to point P11 in FIG.
  • the low-temperature, low-pressure gas refrigerant that has flowed out of the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 flows into the second connecting pipe 35-1 and the second connecting pipe 35-2, and flows into the first switchgear 41- 1 and the first opening/closing device 41-2, the air flows into the compressor 11 through the cooling/heating switching unit 12, and is compressed.
  • the heating defrost operation mode is executed when frost forms on the parallel heat exchanger 14 during the heating normal operation mode.
  • the operation control unit 61 of the control device 60 determines whether or not the parallel heat exchanger 14 is frosted, and based on the determination result, determines whether or not the heating defrost operation needs to be performed.
  • the operation control unit 61 determines the presence or absence of frost formation, for example, based on the refrigerant saturation temperature converted from the suction pressure of the compressor 11 .
  • the operation control unit 61 determines that frost requiring defrosting exists in the parallel heat exchanger 14 when the refrigerant saturation temperature is significantly lower than the set outside air temperature and becomes smaller than a threshold value. do.
  • the operation control unit 61 determines that frost formation requiring defrosting exists in the parallel heat exchanger 14 . Note that the determination of the presence or absence of frost formation is not limited to these determination methods, and other methods may be used.
  • the operation control unit 61 determines that the start condition for starting the heating defrost operation is met.
  • the operation control unit 61 changes the operation mode to the heating defrost operation mode when determining that the start condition is satisfied.
  • defrosting is performed by selecting the parallel heat exchanger 14-2 as a defrosting target (path 2 side defrosting), and the parallel heat exchanger 14-1 is selected. It is possible to operate to continue heating by functioning as an evaporator. Conversely, it is possible to select the parallel heat exchanger 14-1 as a defrost target, perform defrosting (path 1 side defrosting), and operate the parallel heat exchanger 14-2 to function as an evaporator.
  • the operation of defrosting on the path 1 side and the operation of defrosting on the path 2 side described above are the first opening/closing device 41-1, the first opening/closing device 41-2, the second opening/closing device 42-1, and the second opening/closing device 42.
  • -2 has a different open/closed state, the parallel heat exchanger 14 to be defrosted and the parallel heat exchanger 14 functioning as an evaporator are switched, and the flow of the refrigerant in the parallel heat exchanger 14 is switched. It is the same. Therefore, in the following description, the parallel heat exchanger 14-2 is defrosted (path 2 side defrost), and the parallel heat exchanger 14-1 functions as an evaporator to continue heating. The same applies to the description of the subsequent embodiments.
  • FIG. 8 is a diagram showing the refrigerant flow in the heating defrost operation mode of the air conditioner 100 according to this embodiment. Note that the example shown in FIG. 8 is an example of a case where defrosting is performed on the path 2 side, and in the heating/defrosting operation mode, the portion through which the refrigerant flows is indicated by a solid line, and the portion where the refrigerant does not flow is indicated by a broken line.
  • FIG. 9 is a Ph diagram in the heating defrost operation mode of the air conditioner 100 according to this embodiment.
  • the vertical axis indicates the refrigerant pressure P [MPa]
  • the horizontal axis indicates the specific enthalpy h [kJ/kg].
  • points P21 to P29 in FIG. 9 indicate the state of the refrigerant at the portions denoted by the same reference numerals in FIG.
  • the operation control unit 61 closes the first opening/closing device 41-2 corresponding to the parallel heat exchanger 14-2 to be defrosted in the heating defrost operation mode in which the parallel heat exchanger 14-2 is defrosted. Furthermore, the operation control unit 61 opens the second opening/closing device 42-2 to open the flow rate adjusting device 18. FIG. Further, the operation control unit 61 opens the first opening/closing device 41-1 corresponding to the parallel heat exchanger 14-1 functioning as an evaporator, and closes the second opening/closing device 42-1.
  • the defrost circuit in which the compressor 11 ⁇ the flow rate adjusting device 18 ⁇ the second opening/closing device 42-2 ⁇ the parallel heat exchanger 14-2 ⁇ the second pressure reducing device 17-2 is sequentially connected is opened to start the heating defrost operation. be implemented.
  • FIG. 8 when the heating defrost operation is performed, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the bypass pipe 37 and is reduced to medium pressure by the flow rate adjusting device 18 .
  • a change in the refrigerant at this time is represented by a line from point P22 to point P25 in FIG.
  • the refrigerant decompressed to the intermediate pressure at point P25 passes through the second opening/closing device 42-2 and flows into the parallel heat exchanger 14-2.
  • the refrigerant that has flowed into the parallel heat exchanger 14-2 is cooled by exchanging heat with frost adhering to the parallel heat exchanger 14-2.
  • the refrigerant flowing out of the parallel heat exchanger 14-2 is decompressed through the second decompression device 17-2.
  • a change in the refrigerant at this time is represented by a line from point P26 to point P27 in FIG.
  • the refrigerant that has passed through the second pressure reducing device 17-2 joins the main circuit RC.
  • the merged refrigerant passes through the second decompression device 17-1, flows into the parallel heat exchanger 14-1 functioning as an evaporator, and evaporates.
  • the operation control unit 61 When defrosting of the parallel heat exchanger 14-2 is completed, the operation control unit 61 operates the first opening/closing device 41-1, the first opening/closing device 41-2, the second opening/closing device 42-1, and the second opening/closing device 42- 2 is operated to defrost the parallel heat exchanger 14-1 or shift to the heating normal operation mode.
  • the operation control unit 61 determines completion of defrosting based on the detected temperature detected by the temperature detection unit 51-2.
  • the operation control unit 61 determines completion of defrosting by, for example, exceeding a constant value higher than the melting temperature of frost (0° C.).
  • the temperature detection unit 51 (51-1, 51-2) or the flow path switching unit 40 (first opening/closing device 41-1, first opening/closing device 41-2, second opening/closing device 42-1, and second opening/closing device 42-1) will be described below.
  • the temperature detection unit 51-1 detects the refrigerant temperature of the defrosted parallel heat exchanger 14-2, and the evaporator
  • the temperature detection unit 51-1 detects the refrigerant temperature of the parallel heat exchanger 14-1 functioning as a parallel heat exchanger.
  • the parallel heat exchanger 14-1 functioning as an evaporator is below 0.degree. Therefore, the temperature detected by the temperature detection unit 51-2 for determining the completion of defrosting does not become higher than 0° C., which is the melting temperature of frost, so that the operation control unit 61 can correctly determine the completion of defrosting. Can not.
  • the second opening/closing device 42-2 is connected to the second connection pipe 35-1. Therefore, the high-temperature refrigerant that has passed through the second opening/closing device 42-2 is sucked into the compressor 11 through the first opening/closing device 41-1 without flowing through the parallel heat exchanger 14-1. , defrost cannot be performed on either the parallel heat exchanger 14-1 or the parallel heat exchanger 14-2.
  • the air conditioner 100 includes the temperature detection unit 51 (51-1, 51-2) or the flow path switching unit 40 (first opening/closing device 41-1, first opening/closing device 41-2, second The erroneous attachment detection process for detecting erroneous attachment of the second switchgear 42-1 and the second switchgear 42-1) is executed.
  • FIG. 10 is a flowchart showing an example of erroneous installation detection processing for the air conditioner 100 according to this embodiment.
  • the air conditioner 100 executes erroneous installation detection processing as shown in FIG. 10 when the conditions for starting the erroneous installation detection processing are met.
  • the starting condition of the incorrect installation detection process is, for example, when the heating and defrosting operation is performed for the first time after the power is turned on, when the start is specified by operating the remote controller or the mobile terminal, or on the control board of the outdoor unit 10 This is the case when the start is designated by a switch such as a button switch or a dip switch provided in the .
  • a switch such as a button switch or a dip switch provided in the .
  • the operation control unit 61 of the control device 60 first operates the parallel heat exchanger 14-2 in the heating defrost operation selected as the defrost target (step S101). That is, the operation control unit 61 sets the cooling/heating switching unit 12 to switching B, turns on the first switching device 41-1 and the second switching device 42-2, and switches the first switching device 41-2 and the second switching device 41-2 on. The device 42-1 is turned off. Further, the operation control unit 61 opens the flow rate adjusting device 18 and starts the operation of the compressor 11 .
  • the incorrect attachment detection unit 62 of the control device 60 determines whether or not the detected temperature T2 is higher than the detected temperature T1 (step S102).
  • the incorrect attachment detection unit 62 acquires the detected temperature T1 in the parallel heat exchanger 14-1 from the temperature detection unit 51-1, and acquires the detected temperature T2 in the parallel heat exchanger 14-2 from the temperature detection unit 51-2. do. That is, the incorrect attachment detection unit 62 acquires the detection temperature T1 detected by the temperature detection unit 51-1 and the detection temperature T2 detected by the temperature detection unit 51-2.
  • the incorrect installation detection unit 62 compares the detected temperature T1 in the parallel heat exchanger 14-1 and the detected temperature T2 in the parallel heat exchanger 14-2 to determine whether the detected temperature T2 is higher than the detected temperature T1. judge.
  • step S102 If the detected temperature T2 is higher than the detected temperature T1 (step S102: YES), the incorrect attachment detection unit 62 advances the process to step S103. Further, when the detected temperature T2 is equal to or lower than the detected temperature T1 (step S102: NO), the incorrect attachment detection unit 62 advances the process to step S104.
  • step S103 the incorrect attachment detection unit 62 notifies the outside that the attachment is normal.
  • the incorrect attachment detection unit 62 detects the temperature detection unit 51 (51-1, 51-2) and the flow path switching unit 40 (first opening/closing device 41-1, first opening/closing device 41-2, second opening/closing device 41-2).
  • the notification output unit 63 is caused to output notification information indicating that the installation of the device 42-1 and the second opening/closing device 42-1) is normal, and the normal installation is notified to the outside.
  • the erroneous attachment detection unit 62 terminates the erroneous attachment detection process.
  • the incorrect attachment detection unit 62 notifies the outside of the incorrect attachment.
  • the erroneous attachment detection unit 62 for example, the temperature detection unit 51 (51-1, 51-2), or the flow path switching unit 40 (first opening and closing device 41-1, first opening and closing device 41-2, second
  • the notification output unit 63 is caused to output notification information indicating that the second opening/closing device 42-1 and the second opening/closing device 42-1) are incorrectly attached, and the incorrect attachment is notified to the outside.
  • the incorrect attachment detection unit 62 ends the incorrect attachment detection process.
  • the erroneous attachment detection unit 62 detects normal attachment or erroneous attachment by, for example, a display unit of a remote controller, a display unit provided on the control board of the outdoor unit 10, and a lighting device provided on the control board. etc., are notified by the notification output unit 63 .
  • the erroneous attachment detection unit 62 may output a notification of normal attachment or erroneous attachment to a portable terminal or the like via a remote controller or a control board.
  • the air conditioner 100 includes the main circuit RC, the flow path switching unit 40, the bypass pipe 37, the temperature detection unit 51, the operation control unit 61, and the incorrect attachment detection unit 62.
  • the main circuit RC includes a compressor 11, an indoor heat exchanger 21, a pressure reducing device (for example, a first pressure reducing device 13, etc.), and a plurality of parallel heat exchangers 14 connected in parallel. and the refrigerant circulates.
  • the flow path switching unit 40 is connected to each of the plurality of parallel heat exchangers 14, and switches some of the plurality of parallel heat exchangers 14 (for example, the parallel heat exchanger 14-2).
  • the bypass pipe 37 branches a part of the refrigerant discharged from the compressor 11, and flows it into the parallel heat exchanger 14 (for example, the parallel heat exchanger 14-2) selected for defrosting by the flow path switching unit 40.
  • the temperature detection unit 51 detects the temperature of each refrigerant in the plurality of parallel heat exchangers 14 .
  • the operation control unit 61 operates the flow path switching unit 40 to switch between the heating normal operation mode and the heating defrost operation mode.
  • the heating normal operation mode is an operation mode in which the multiple parallel heat exchangers 14 function as evaporators.
  • some parallel heat exchangers 14 (for example, parallel heat exchanger 14-2) of the plurality of parallel heat exchangers 14 are selected as defrost targets, and the refrigerant is supplied through the bypass pipe 37. is allowed to flow in, and the parallel heat exchanger 14 (for example, the parallel heat exchanger 14-1) other than the part is made to function as an evaporator.
  • the erroneous attachment detection unit 62 detects attachment parts related to defrosting (for example, the temperature detection unit 51 or the flow path switching unit 40) based on the temperatures detected by the temperature detection unit 51 in the plurality of parallel heat exchangers 14. Detects incorrect installation of
  • the air conditioner 100 detects incorrect attachment of a defrost-related attachment part (eg, the temperature detection unit 51 or the flow path switching unit 40), and stops heating of the indoor unit 20. defrost can be performed normally without
  • the erroneous installation detection unit 62 detects the temperature (eg, When the detected temperature T2) is equal to or lower than the detected temperature (e.g., the detected temperature T1 or lower) in the parallel heat exchanger 14 (e.g., parallel heat exchanger 14-1) functioning as an evaporator, the flow path switching unit 40 or It detects that the temperature detection unit 51 is incorrectly attached.
  • the parallel heat exchanger 14 e.g., parallel heat exchanger 14-1 functioning as an evaporator, the flow path switching unit 40 or It detects that the temperature detection unit 51 is incorrectly attached.
  • the air conditioner 100 has a detected temperature T2 of the refrigerant in the parallel heat exchanger 14-2 to be defrosted and a detected temperature T1 of the refrigerant in the parallel heat exchanger 14-1 functioning as an evaporator. By comparing , it is possible to appropriately detect that the flow path switching unit 40 or the temperature detection unit 51 is incorrectly attached.
  • the erroneous attachment detection unit 62 causes the notification output unit 63 to output notification information based on the detection result of the erroneous attachment of the attachment component when the attachment component is incorrectly attached.
  • the user can recognize the erroneous attachment of the attachment part or the normal attachment of the attachment part when the erroneous attachment of the attachment part is detected.
  • the erroneous attachment detection unit 62 detects erroneous attachment of the attachment part by switching to the heating defrost operation mode when the condition for starting the process of detecting erroneous attachment of the attachment part is satisfied. detect.
  • the air conditioner 100 according to the present embodiment can confirm incorrect attachment of the attachment component at an appropriate timing according to the start condition.
  • the refrigerant discharged from the compressor 11 is decompressed by the flow rate adjusting device 18 and flowed into the parallel heat exchanger 14-2, thereby lowering the saturation temperature of the refrigerant, The amount of liquid refrigerant in the parallel heat exchanger 14-2 can be suppressed. Therefore, the air conditioner 100 according to this embodiment can improve indoor comfort.
  • the outdoor fan 19 may or may not be operated.
  • the temperature of the refrigerant in the parallel heat exchanger 14 functioning as an evaporator tends to decrease, and the temperature of the refrigerant in the other heat exchanger tends to increase. Therefore, the air conditioner 100 according to the present embodiment can easily detect the temperature difference between the detected temperature T1 and the detected temperature T2 by stopping the outdoor fan 19 .
  • the air conditioner 100 can prevent liquid refrigerant from being sucked into the compressor 11 by operating the outdoor fan 19 .
  • the first decompression device 13 or the third decompression device 16 may be opened or closed.
  • the air conditioner 100 according to the present embodiment by closing the first decompression device 13 or the third decompression device 16, in the air conditioner 100 according to the present embodiment, the refrigerant circuit to the indoor unit 20 side is blocked, and the paths through which the refrigerant flows are reduced. Therefore, the difference between the discharge pressure and the suction pressure of the compressor 11 increases, and the temperature difference between the parallel heat exchanger 14 functioning as an evaporator and the other parallel heat exchanger 14 also increases accordingly.
  • the air conditioner 100 according to the present embodiment can easily detect the temperature difference between the detected temperature T1 and the detected temperature T2.
  • the air conditioner 100 according to the present embodiment can store unnecessary refrigerant in the receiver 15, so that liquid refrigerant to the compressor 11 inhalation can be prevented.
  • the parallel heat exchanger 14-1 functions as an evaporator and the parallel heat exchanger 14-2 is targeted for defrosting and the erroneous installation detection process is executed has been described.
  • the parallel heat exchanger 14-2 may function as an evaporator while the heat exchanger 14-1 is to be defrosted, and the erroneous installation detection process may be executed.
  • the determination conditions are reversed, and normal attachment is determined when the detected temperature T1 is higher than the detected temperature T2.
  • FIG. 11 is a configuration diagram showing an example of an air conditioner 100a according to the second embodiment.
  • the air conditioner 100a includes an outdoor unit 10a, an indoor unit 20, and a control device 60a.
  • the same components as in FIG. 1 described above are denoted by the same reference numerals, and descriptions thereof are omitted here.
  • the air conditioner 100a will be described below, focusing on the differences from the first embodiment.
  • the outdoor unit 10a includes a compressor 11, a cooling/heating switching unit 12, a first decompression device 13, a plurality of parallel heat exchangers 14 (14-1, 14-2), a receiver 15, and a third decompression device 16. , a plurality of second pressure reducing devices 17 (17-1, 17-2), a flow rate adjusting device 18, a plurality of outdoor fans (19-1, 19-2), a flow path switching unit 40, a plurality of and a temperature detection unit 51 (51-1, 51-2).
  • the first embodiment is that the outdoor unit 10a includes a plurality of outdoor fans (19-1, 19-2) respectively corresponding to the plurality of parallel heat exchangers 14 (14-1, 14-2). The shape is different from that of the outdoor unit 10 .
  • the outdoor fan 19-1 is a blower that blows air to the parallel heat exchanger 14-1.
  • the outdoor fan 19-1 conveys outdoor air to the parallel heat exchanger 14-1.
  • the outdoor fan 19-2 is a blower that blows air to the parallel heat exchanger 14-2.
  • the outdoor fan 19-2 conveys outdoor air to the parallel heat exchanger 14-2.
  • the control device 60a includes, for example, a CPU, and controls operations of various control devices and switching of operation modes.
  • the control device 60a includes, for example, control boards provided in the outdoor unit 10a and the indoor unit 20, a remote controller grounded indoors, and the like.
  • the control device 60 a also includes an operation control section 61 a , an incorrect attachment detection section 62 a , and a notification output section 63 .
  • the basic functions of the operation control section 61a are the same as those of the operation control section 61 of the first embodiment described above.
  • the operation control unit 61a differs from the operation control unit 61 according to the first embodiment in that it controls two outdoor fans (19-1, 19-2). In the heating defrost operation mode, the operation control unit 61a controls the two outdoor fans (19-1 , 19-2).
  • the operation control unit 61a improves the defrost performance by individually controlling the outdoor fan 19-1 and the outdoor fan 19-2 in the heating defrost operation mode.
  • the operation control unit 61a controls the air volume to the parallel heat exchanger 14-2 to be smaller than the air volume to the parallel heat exchanger 14-1. It controls the outdoor fan 19-1 and the outdoor fan 19-2. In this case, the operation control unit 61a, for example, stops the outdoor fan 19-2 or controls the rotation speed to be lower than that of the outdoor fan 19-1 to reduce the air volume to the parallel heat exchanger 14-2. Further, in this case, the operation control unit 61a controls the operation of the outdoor fan 19-1.
  • the operation control unit 61a when executing the erroneous installation detection process, the operation control unit 61a does not change the air volume of the outdoor fan 19-1 corresponding to the parallel heat exchanger 14-1 functioning as an evaporator.
  • the air volume of the outdoor fan 19-2 corresponding to the heat exchanger 14-2 is increased.
  • the basic function of the erroneous attachment detection section 62a is the same as the erroneous attachment detection section 62 of the first embodiment described above.
  • the erroneous installation detection unit 62a for example, for either the parallel heat exchanger 14-2 to be defrosted or the parallel heat exchanger 14-1 functioning as an evaporator, the outdoor fan 19-1 (or the outdoor fan 19-1 Incorrect installation of the plurality of outdoor fans (19-1, 19-2) is detected based on the change in the detected temperature before and after the air volume of the fan (19-2) is changed.
  • the erroneous installation detection unit 62a changes the outdoor fan 19-2 from stopped to active to increase the air volume in the parallel heat exchanger 14-2 to be defrosted. If the temperature does not drop below the detected temperature (does not drop from the previous detected temperature), it is detected that the outdoor fans (19-1, 19-2) are incorrectly installed. Further, if the detected temperature after increasing the air volume in the defrosting target parallel heat exchanger 14-2 is lower than the detected temperature before increasing the air volume, the incorrect installation detection unit 62a detects that the outdoor fan (19-1 , 19-2) are normally attached.
  • FIG. 12 is a flowchart showing an example of erroneous attachment detection processing for the air conditioner 100a according to the present embodiment.
  • the air conditioner 100a executes the erroneous mounting detection process as shown in FIG. 12 when the condition for starting the erroneous mounting detection process is satisfied.
  • the operation control unit 61a of the control device 60a first operates the parallel heat exchanger 14-2 in the heating defrost operation selected as the defrost target (step S201). That is, the operation control unit 61a sets the cooling/heating switching unit 12 to switching B, turns on the first switching device 41-1 and the second switching device 42-2, and switches the first switching device 41-2 and the second switching device 41-2 on. The device 42-1 is turned off.
  • the operation control unit 61a opens the flow rate adjusting device 18 and starts the operation of the compressor 11 . Further, the operation control unit 61a turns on the outdoor fan 19-1 (operating state) and turns off the outdoor fan 19-2 (stopped state).
  • the incorrect attachment detection unit 62a of the control device 60a determines whether or not the detected temperature T2 is higher than the detected temperature T1 (step S202).
  • the incorrect attachment detection unit 62a determines whether or not the detected temperature T2 in the parallel heat exchanger 14-2 is higher than the detected temperature T1 in the parallel heat exchanger 14-1. If the detected temperature T2 is higher than the detected temperature T1 (step S202: YES), the incorrect attachment detection unit 62a advances the process to step S203. If the detected temperature T2 is equal to or lower than the detected temperature T1 (step S202: NO), the incorrect attachment detection unit 62a advances the process to step S207.
  • step S203 the operation control unit 61a operates the outdoor fan 19-2. That is, the operation control unit 61a turns on the outdoor fan 19-2 (operating state).
  • the incorrect attachment detection unit 62a determines whether the detected temperature T2' is lower than the detected temperature T2 (step S204).
  • the detected temperature T2 is the detected temperature of the refrigerant detected by the temperature detection unit 51-2 before the outdoor fan 19-2 is turned on (when the outdoor fan 19-2 is turned off).
  • the detected temperature T2' is the detected temperature of the refrigerant detected by the temperature detection unit 51-2 after the outdoor fan 19-2 is turned on.
  • the incorrect attachment detection unit 62a compares the detected temperature T2 and the detected temperature T2'. If the detected temperature T2' is lower than the detected temperature T2 (step S204: YES), the process proceeds to step S205. If the detected temperature T2' is equal to or higher than the detected temperature T2 (step S204: NO), the incorrect attachment detection unit 62a advances the process to step S206.
  • step S205 the incorrect attachment detection unit 62a notifies the outside that the attachment is normal.
  • the erroneous attachment detection unit 62a detects the temperature detection unit 51 (51-1, 51-2), the flow path switching unit 40 (the first opening/closing device 41-1, the first opening/closing device 41-2, the second opening/closing device 42-1, and the second opening/closing device 42-1) and the outdoor fan (19-1, 19-2) are output to the notification output unit 63 to output notification information indicating that the installation is normal, Notify the outside that it is attached.
  • the erroneous attachment detection unit 62a terminates the erroneous attachment detection process.
  • step S206 the incorrect installation detection unit 62a notifies the outside that the outdoor fans (19-1, 19-2) are incorrectly installed.
  • the erroneous installation detection unit 62a causes the notification output unit 63 to output notification information indicating that the outdoor fans (19-1, 19-2) are incorrectly installed. Inform the outside of the incorrect installation of -2).
  • the erroneous attachment detection unit 62a terminates the erroneous attachment detection process.
  • step S207 the incorrect attachment detection unit 62a notifies the outside that the temperature detection unit 51 or the flow path switching unit 40 is incorrectly attached.
  • the erroneous attachment detection unit 62a causes the notification output unit 63 to output notification information indicating that the temperature detection unit 51 or the flow path switching unit 40 is erroneously attached, and notifies the erroneous attachment to the outside. do.
  • the erroneous attachment detection unit 62a terminates the erroneous attachment detection process.
  • the erroneous attachment detection unit 62a changes the outdoor fan 19-2 from the OFF state to the ON state, and the detected temperature T2′ after changing the outdoor fan 19-2 to the ON state is the temperature of the outdoor fan 19-2. is lower than the detected temperature T2 before changing to the ON state (the outdoor fan 19-2 is in the OFF state), it is determined that the outdoor fan 19-1 and the outdoor fan 19-2 are properly installed.
  • the erroneous attachment detection unit 62a compares the detected temperature T2 detected by the temperature detection unit 51-2 with the detected temperature T2', and detects the temperature of the outdoor fan 19-1 and the outdoor fan 19. -2 is normal or not, the temperature detected by the temperature detector 51-1 may be used.
  • FIG. 13 shows a schematic diagram of temporal changes in the detected temperature during the erroneous attachment detection process in this embodiment.
  • the vertical axis indicates detected temperature
  • the horizontal axis indicates time.
  • Waveforms W1 and W3 show, for example, at time t1, changes in the detected temperature during normal installation when the outdoor fan 19-2 is changed from the OFF state to the ON state.
  • Waveforms W2 and W4 indicate changes in the detected temperature when the outdoor fans (19-1, 19-2) are incorrectly installed.
  • the temperature detected by the temperature detection unit 51-2 connected to the parallel heat exchanger 14-2 corresponding to the outdoor fan 19-2 changes, so the detected temperature T2' is lower than the detected temperature T2. temperature (see waveform W1).
  • the temperature detected by the temperature detection unit 51-1 does not change, and the detected temperature T1′ of the temperature detection unit 51-2 after the outdoor fan 19-2 is turned on does not change from the detected temperature T1. (See waveform W3).
  • the outdoor fan 19-1 and the outdoor fan 19-2 are installed incorrectly, the outdoor fan 19-2 corresponds to the parallel heat exchanger 14-1, so the temperature detection unit 51-1 detects temperature changes.
  • the temperature detection unit 51-1 detects temperature changes.
  • the air volume of the parallel heat exchanger 14-1 functioning as an evaporator increases, the refrigerant heating performance of the air improves, so the temperature detected by the temperature detection unit 51-1 rises, The detected temperature T1' becomes higher than the detected temperature T1 (see waveform W4). Therefore, in the process of step S204 shown in FIG. 12, the incorrect installation detection unit 62a detects incorrect installation of the outdoor fans (19-1, 19-2) when the detected temperature T1' is higher than the detected temperature T1. You may do so.
  • step S201 the outdoor fan 19-2 is turned off and turned on in the process of step S203.
  • step S203 the number of rotations of the outdoor fan 19-2 may be increased.
  • step S203 instead of turning on the outdoor fan 19-2 or increasing the number of rotations, the number of rotations of the outdoor fan 19-1 may be decreased.
  • the erroneous attachment detection unit 62a determines that the detected temperature T1' is lower than the detected temperature T1 as normal attachment, or the detected temperature T2' is higher than the detected temperature T2. be judged as incorrect installation.
  • the air conditioner 100a includes a plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2) that blow air to each of the plurality of parallel heat exchangers 14. .
  • the incorrect installation detection unit 62a detects the air volume of the blower (outdoor fan 19-1 or outdoor fan 19-2) for either the parallel heat exchanger 14 to be defrosted or the parallel heat exchanger 14 functioning as an evaporator.
  • Incorrect installation of a plurality of fans (outdoor fan 19-1 and outdoor fan 19-2) is detected based on the change in the detected temperature before and after the change in .
  • the air conditioner 100a according to the present embodiment can appropriately detect erroneous installation of a plurality of fans (outdoor fan 19-1 and outdoor fan 19-2).
  • the operation control unit 61a changes the air volume of the blower (outdoor fan 19-1) corresponding to the parallel heat exchanger 14 (for example, the parallel heat exchanger 14-1) functioning as an evaporator. Instead, the air volume of the blower (outdoor fan 19-2) corresponding to the parallel heat exchanger 14 to be defrosted (for example, the parallel heat exchanger 14-2) is increased.
  • the incorrect installation detection unit 62a detects that the detected temperature T2′ after increasing the air volume in the parallel heat exchanger 14 to be defrosted (for example, the parallel heat exchanger 14-2) differs from the detected temperature T2 before increasing the air volume. If it does not decrease, it is detected that a plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2) are incorrectly installed.
  • the air conditioner 100a increases the air volume of the blower (outdoor fan 19-2) corresponding to the parallel heat exchanger 14 (for example, the parallel heat exchanger 14-2) to be defrosted. , erroneous installation of a plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2) can be detected appropriately.
  • the operation control unit 61a changes the air volume of the blower (outdoor fan 19-1) corresponding to the parallel heat exchanger 14 (for example, the parallel heat exchanger 14-1) functioning as an evaporator. Instead, the air volume of the blower (outdoor fan 19-2) corresponding to the parallel heat exchanger 14 to be defrosted (for example, the parallel heat exchanger 14-2) is increased.
  • the incorrect installation detection unit 62a detects that the detected temperature T1′ after increasing the air volume in the defrosting target parallel heat exchanger 14 (for example, the parallel heat exchanger 14-2) is lower than the detected temperature T1 before increasing the air volume. When it rises, it detects that a plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2) are incorrectly installed.
  • the air conditioner 100a increases the air volume of the blower (outdoor fan 19-2) corresponding to the parallel heat exchanger 14 (for example, the parallel heat exchanger 14-2) to be defrosted. , erroneous installation of a plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2) can be detected appropriately.
  • the operation control unit 61a in the heating defrost operation mode, controls the air volume to the parallel heat exchanger 14 to be defrosted (for example, the parallel heat exchanger 14-2) to function as an evaporator.
  • a plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2) are controlled so that the air volume is smaller than the air volume for the unit 14 (for example, the parallel heat exchanger 14-1).
  • the air conditioner 100a according to the present embodiment reduces the air volume in the parallel heat exchanger 14 to be defrosted (for example, the parallel heat exchanger 14-2), so that the high-temperature refrigerant used for defrosting flows into the air. It suppresses heat radiation and efficiently transfers the heat of the refrigerant to the frost. Therefore, the air conditioner 100a according to the present embodiment can improve the defrost performance by operating the outdoor fan 19-1 and the outdoor fan 19-2 individually in the heating defrost operation mode.
  • FIG. 14 is a configuration diagram showing an example of an air conditioner 100b according to the third embodiment.
  • the air conditioner 100b includes an outdoor unit 10b, an indoor unit 20, and a control device 60b.
  • the same components as in FIG. 1 or FIG. 11 described above are given the same reference numerals, and descriptions thereof are omitted here.
  • the air conditioner 100b will be described with a focus on the differences from the first embodiment and the second embodiment.
  • the outdoor unit 10b includes a compressor 11, a cooling/heating switching unit 12, a first pressure reducing device 13, a plurality of parallel heat exchangers 14 (14-1, 14-2), a receiver 15, and a third pressure reducing device 16. , a plurality of second pressure reducing devices 17 (17-1, 17-2), a flow rate adjusting device 18, a plurality of outdoor fans (19-1, 19-2), a flow path switching unit 40a, a plurality of It includes a temperature detection unit 51 (51-1, 51-2) and a plurality of temperature detection units 52 (52-1, 52-2).
  • the outdoor unit 10b differs from the outdoor unit 10a of the above-described second embodiment in that the configuration of the flow path switching unit 40a is different and that a plurality of temperature detection units 52 (52-1, 52-2) are provided. different.
  • the temperature detection unit 51-1 and the temperature detection unit 52-1 are the temperature detection unit 50-1 for detecting the temperature of the refrigerant in the parallel heat exchanger 14-1, and the temperature detection unit 51-2 and the temperature detection unit 52-2 will be described as a temperature detection unit 50-2 for detecting the temperature of the refrigerant in the parallel heat exchanger 14-2.
  • the temperature detection units 51-1 and 51-2 are examples of a first temperature detection unit, and the temperature detection units 52-1 and 52-2 are examples of a second temperature detection unit. It is an example of a detection unit.
  • the temperature detection unit 51-1 and the temperature detection unit 51-2 are referred to as the temperature detection unit 51 when indicating an arbitrary first temperature detection unit provided in the air conditioning apparatus 100b, or when they are not distinguished from each other. .
  • the temperature detection unit 52-1 and the temperature detection unit 52-2 are referred to as the temperature detection unit 52 when indicating an arbitrary second temperature detection unit provided in the air conditioner 100b, or when they are not particularly distinguished.
  • the temperature detection unit 50-1 and the temperature detection unit 50-2 are referred to as the temperature detection unit 50 when indicating any temperature detection unit provided in the air conditioning apparatus 100b or when they are not distinguished from each other.
  • the temperature detection unit 51 detects the saturation temperature of the refrigerant in the parallel heat exchanger 14 as the first detection temperature. That is, the temperature detection unit 51-1 detects the saturation temperature of the refrigerant in the parallel heat exchanger 14-1 as the detection temperature T11. Further, the temperature detection unit 51-2 detects the saturation temperature of the refrigerant in the parallel heat exchanger 14-2 as the detection temperature T12.
  • the temperature detection unit 52 is arranged in a pipe (first connection pipe 34) connected to the side opposite to the bypass pipe 37 of the parallel heat exchanger 14, and detects the temperature of the refrigerant at the outlet of the parallel heat exchanger 14 to be defrosted. , is detected as the second detection temperature. That is, the temperature detector 52-1 detects the temperature of the refrigerant in the first connecting pipe 34-1 of the parallel heat exchanger 14-2 as the detection temperature T21. Further, the temperature detection unit 52-2 detects the temperature of the refrigerant in the first connecting pipe 34-2 of the parallel heat exchanger 14-2 as the detection temperature T22. Note that the temperature detection unit 52 only needs to be able to detect the refrigerant temperature at the outlet when the parallel heat exchanger 14 is defrosted. good too.
  • the flow path switching unit 40a is connected to each of the two parallel heat exchangers 14, and selects one of the two parallel heat exchangers 14 to be defrosted.
  • the flow path switching unit 40a is a second connecting pipe 35 (35-1 , 35-2).
  • the channel switching unit 40a includes a switching device 43-1 and a switching device 43-2.
  • the switching device 43-1 is, for example, a three-way valve or a four-way valve.
  • the switching device 43-1 switches between connecting the parallel heat exchanger 14-1 to the intake pipe 36 and connecting it to the bypass pipe 37.
  • the switching device 43-2 is, for example, a three-way valve or a four-way valve.
  • the switching device 43-2 switches between connecting the parallel heat exchanger 14-2 to the suction pipe 36 and connecting it to the bypass pipe 37.
  • the switching device 43-1 and the switching device 43-2 are referred to as the switching device 43 when indicating any switching device provided in the air conditioner 100b or when they are not particularly distinguished.
  • the control device 60b includes, for example, a CPU, and controls operations of various control devices and switching of operation modes.
  • the control device 60b includes, for example, control boards provided in the outdoor unit 10b and the indoor unit 20, a remote controller grounded indoors, and the like.
  • the control device 60 b also includes an operation control section 61 b , an incorrect attachment detection section 62 b , and a notification output section 63 .
  • the basic functions of the operation control section 61b are the same as those of the operation control section 61a of the second embodiment described above.
  • the operation control unit 61b operates the flow path switching unit 40a to switch between the heating normal operation mode and the heating defrost operation mode.
  • the operation control unit 61b operates the switching device 43-1 to switch between connecting the parallel heat exchanger 14-1 to the intake pipe 36 and connecting it to the bypass pipe 37.
  • FIG. Further, the operation control unit 61b operates the switching device 43-2 to switch between connecting the parallel heat exchanger 14-2 to the intake pipe 36 and connecting it to the bypass pipe 37.
  • FIG. 15 is a diagram showing states of the cooling/heating switching unit 12 and the flow path switching unit 40a corresponding to the operation modes of the air conditioner 100b according to this embodiment.
  • the switching device 43-1 and the switching device 43-2 of the flow switching unit 40a are in the "main circuit” state, which indicates the state in which the parallel heat exchanger 14 is connected to the suction pipe 36, and the "bypass ” indicates that the parallel heat exchanger 14 is connected to the bypass pipe 37 .
  • the operation control unit 61b sets the cooling/heating switching unit 12 to “switch A” and switches the switching devices 43-1 and 43-2 to “main circuit”. showing. Further, for example, when the operation mode is the heating normal operation mode, the operation control unit 61b sets the cooling/heating switching unit 12 to “switch B” and switches the switching devices 43-1 and 43-2 to the “main circuit”. indicates that
  • the operation control unit 61b causes the cooling/heating switching unit 12 to switch B”. Further, in this case, the operation control unit 61b indicates that the switching device 43-1 is set to "bypass” and the switching device 43-2 is set to "main circuit”.
  • the operation control unit 61b causes the cooling/heating switching unit 12 to switch B”. Further, in this case, the operation control unit 61b indicates that the switching device 43-1 is set to the "main circuit” and the switching device 43-2 is set to the "bypass".
  • the basic function of the erroneous attachment detection section 62b is the same as the erroneous attachment detection section 62a of the second embodiment described above.
  • the erroneous attachment detection unit 62b detects erroneous attachment of attachment parts related to defrosting.
  • the attachment parts related to defrost include, for example, the flow path switching section 40a, the temperature detection section 51, the temperature detection section 52, and the outdoor fans (19-1, 19-2).
  • the incorrect installation detection unit 62b detects, for example, the detected temperature T12 and the detected temperature T22 in the parallel heat exchanger 14-2 to be defrosted, and the detected temperature T11 and the detected temperature in the parallel heat exchanger 14-1 functioning as an evaporator. Based on the combination of the four detected temperatures with T22, one of the flow path switching unit 40a, the temperature detection unit 51, the temperature detection unit 52, and the outdoor fan (19-1, 19-2) is incorrectly installed. to judge.
  • FIG. 16 is a flow chart showing an example of erroneous attachment detection processing of the air conditioner 100b according to the present embodiment.
  • the air conditioner 100b executes the erroneous mounting detection process as shown in FIG. 16 when the condition for starting the erroneous mounting detection process is satisfied.
  • the operation control unit 61b of the control device 60b first operates the parallel heat exchanger 14-2 in the heating defrost operation selected as the defrost target (step S301). That is, as shown in FIG. 15, the operation control unit 61b sets the cooling/heating switching unit 12 to "switch B", sets the switching device 43-1 to "main circuit”, and sets the switching device 43-2 to "bypass”. do.
  • the operation control unit 61b opens the flow rate adjusting device 18 and starts the operation of the compressor 11 .
  • the operation control unit 61b also turns on the outdoor fan 19-1 (operating state) and turns off the outdoor fan 19-2 (stopped state).
  • the incorrect attachment detection unit 62b of the control device 60b determines whether or not the detected temperature T12 is higher than the detected temperature T11 (step S302).
  • the incorrect attachment detector 62b determines whether or not the detected temperature T12 detected by the temperature detector 51-2 is higher than the detected temperature T11 detected by the temperature detector 51-1. If the detected temperature T12 is higher than the detected temperature T11 (step S302: YES), the incorrect attachment detection unit 62b advances the process to step S303. If the detected temperature T12 is equal to or lower than the detected temperature T11 (step S302: NO), the incorrect attachment detection unit 62b advances the process to step S308.
  • step S303 the incorrect attachment detection unit 62b determines whether or not the detected temperature T22 is higher than the detected temperature T21.
  • the incorrect attachment detector 62b determines whether or not the detected temperature T22 detected by the temperature detector 52-2 is higher than the detected temperature T21 detected by the temperature detector 52-1. If the detected temperature T22 is higher than the detected temperature T21 (step S303: YES), the incorrect attachment detection unit 62b advances the process to step S304. If the detected temperature T22 is equal to or lower than the detected temperature T21 (step S303: NO), the incorrect attachment detection unit 62b advances the process to step S307.
  • step S304 the incorrect attachment detection unit 62b determines whether or not the detected temperature T12 is higher than the detected temperature T22.
  • the incorrect attachment detector 62b determines whether the detected temperature T12 detected by the temperature detector 51-2 is higher than the detected temperature T22 detected by the temperature detector 52-2. If the detected temperature T12 is higher than the detected temperature T22 (step S304: YES), the incorrect attachment detection unit 62b advances the process to step S305. If the detected temperature T12 is equal to or lower than the detected temperature T22 (step S304: NO), the incorrect attachment detection unit 62b advances the process to step S306.
  • step S305 the incorrect installation detection unit 62b notifies the outside that the outdoor fans (19-1, 19-2) are incorrectly installed.
  • the erroneous attachment detection unit 62b causes the notification output unit 63 to output notification information indicating that the outdoor fans (19-1, 19-2) are incorrectly attached, and the outdoor fans (19-1, 19 Inform the outside of the incorrect installation of -2).
  • the erroneous attachment detection unit 62b terminates the erroneous attachment detection process.
  • step S306 the incorrect attachment detection unit 62b notifies the outside that the attachment is normal.
  • the erroneous attachment detection unit 62b outputs notification information indicating that the flow path switching unit 40a, the temperature detection unit 51, the temperature detection unit 52, and the outdoor fans (19-1, 19-2) are properly attached. , to the notification output unit 63 to notify the outside that the mounting is normal.
  • the erroneous attachment detection unit 62b ends the erroneous attachment detection process.
  • step S307 the incorrect attachment detection unit 62b notifies the outside that the temperature detection unit 51 is incorrectly attached.
  • the incorrect attachment detection unit 62b causes the notification output unit 63 to output notification information indicating that the temperature detection units 51 (51-1, 51-2) are incorrectly attached, and causes the temperature detection units 51 (51 -1, 51-2) is notified to the outside.
  • the erroneous attachment detection unit 62b terminates the erroneous attachment detection process.
  • step S308 the incorrect attachment detection unit 62b determines whether or not the detected temperature T22 is higher than the detected temperature T21.
  • the incorrect attachment detector 62b determines whether or not the detected temperature T22 detected by the temperature detector 52-2 is higher than the detected temperature T21 detected by the temperature detector 52-1. If the detected temperature T22 is higher than the detected temperature T21 (step S308: YES), the incorrect attachment detection unit 62b advances the process to step S309. If the detected temperature T22 is equal to or lower than the detected temperature T21 (step S308: NO), the incorrect attachment detection unit 62b advances the process to step S310.
  • step S309 the incorrect attachment detection unit 62b notifies the outside that the temperature detection unit 52 is incorrectly attached.
  • the incorrect attachment detection unit 62b causes the notification output unit 63 to output notification information indicating that the temperature detection units 52 (52-1, 52-2) are incorrectly attached, and causes the temperature detection units 52 (52 -1, 52-2) is notified to the outside.
  • the erroneous attachment detection unit 62b terminates the erroneous attachment detection process.
  • the erroneous attachment detection unit 62b notifies the outside of the erroneous attachment of the flow path switching unit 40a.
  • the erroneous attachment detection unit 62b causes the notification output unit 63 to output notification information indicating that the flow path switching unit 40a (switching device 43-1, switching device 43-1) is erroneously attached. Incorrect installation of the path switching unit 40a (switching device 43-1, switching device 43-1) is reported to the outside.
  • the erroneous attachment detection unit 62b terminates the erroneous attachment detection process.
  • the flow path switching unit 40a switching device 43-1, switching device 43-1
  • the temperature detection units 51 51-1, 51-2
  • the temperature detection units 52 52-1, 52-2
  • the temperature detection unit 51-1 and the temperature detection unit 52-1 detect the temperature of the parallel heat exchanger 14-1 functioning as an evaporator.
  • the temperature T21 becomes low.
  • the erroneous attachment detection unit 62b can confirm that the attachment between the flow path switching unit 40a and the temperature detection unit 51 is normal because the detected temperature T12 is higher than the detected temperature T11.
  • the erroneous attachment detector 62b can confirm that the attachment of the temperature detector 52 is normal because the detected temperature T22 is higher than the detected temperature T21 in step S303.
  • step S303 when the detected temperature T22 is equal to or lower than the detected temperature T21, the incorrect attachment detection unit 62b determines that the detected temperature T22 is the temperature of the parallel heat exchanger 14-1, which is an evaporator. By making a determination, it can be confirmed that the temperature detection unit 52 is incorrectly attached.
  • the detected temperature T22 is the same saturation temperature as the detected temperature T12.
  • the outdoor fan 19-1 and the outdoor fan 19-2 are incorrectly installed, the outdoor fan 19-1 corresponding to the parallel heat exchanger 14-2 is turned on, so that the cooling performance is improved and overheating occurs. Cooling is reached. As a result, the detected temperature T22 is lower than the detected temperature T12, which detects the saturation temperature, because the supercooled temperature is detected. Therefore, the erroneous installation detection unit 62b can detect erroneous installation of the outdoor fan 19-1 and the outdoor fan 19-2 by comparing the detected temperature T12 and the detected temperature T22 in step S304.
  • step S302 when the detected temperature T12 is equal to or lower than the detected temperature T11, the incorrect attachment detection unit 62b detects the switching device 43-1 and the switching device 43-2, the temperature detection unit 51-1 and the temperature detection unit 51 -2 is incorrectly installed. Therefore, in step S308, the incorrect attachment detection unit 62b compares the detection temperature T21 and the detection temperature T22, and if the detection temperature T22 is higher than the detection temperature T21, the temperature detection units 51 (51-1, 51-2 ) can be detected as incorrect installation.
  • step S310 the erroneous attachment detection unit 62b detects erroneous attachment of the flow path switching unit 40a (switching device 43-1, switching device 43-1) when the detected temperature T22 is equal to or lower than the detected temperature T21. be able to.
  • the parallel heat exchanger 14-1 functions as an evaporator, and the discharge gas flows into the parallel heat exchanger 14-2. do. Therefore, the temperature detection unit 51-2 connected to the parallel heat exchanger 14-1 detects low temperature, and the temperature detection unit 51-1 connected to the parallel heat exchanger 14-2 detects high temperature. do.
  • the temperature detection unit 52-1 connected to the parallel heat exchanger 14-1 detects a low temperature and performs parallel heat exchange.
  • a temperature detector 52-2 connected to the device 14-2 detects a high temperature. Therefore, in step S302, the incorrect attachment detection unit 62b determines that the detected temperature T12 is equal to or lower than the detected temperature T11, and in step S308, determines that the detected temperature T22 is higher than the detected temperature T21. Incorrect attachment of 51 (51-1, 51-2) can be detected.
  • the flow path switching unit 40a switching device 43-1, switching device 43-1
  • the discharge gas flows into the parallel heat exchanger 14-1, and the parallel heat exchanger 14-2 Acts as an evaporator. Therefore, the temperature detection unit 51-1 and the temperature detection unit 52-1 connected to the parallel heat exchanger 14-1 detect the high temperature, and the temperature detection unit 51 connected to the parallel heat exchanger 14-2 -2 and the temperature detector 52-2 detect a low temperature.
  • step S302 the incorrect attachment detection unit 62b determines that the detected temperature T12 is equal to or lower than the detected temperature T11, and in step S308, the detected temperature T22 is equal to or lower than the detected temperature T21. It is possible to detect erroneous attachment of the portion 40a (switching device 43-1, switching device 43-1).
  • the air conditioner 100b includes the temperature detection unit 50 that detects the temperature of the refrigerant in each of the plurality of parallel heat exchangers 14, the operation control unit 61b, and the incorrect installation detection unit 62b.
  • the temperature detection unit 50 includes a temperature detection unit 51 (first temperature detection unit) and a temperature detection unit 52 (second temperature detection unit).
  • the temperature detection unit 51 detects the saturation temperature of the refrigerant in the parallel heat exchanger 14 as the first detection temperature.
  • the temperature detection unit 52 is arranged in a pipe connected to the side of the parallel heat exchanger 14 opposite to the bypass pipe 37, and detects the temperature of the refrigerant at the outlet of the parallel heat exchanger 14 to be defrosted as a second detection temperature. do.
  • the erroneous installation detection unit 62b detects 4 of the first detected temperature and the second detected temperature in the parallel heat exchanger 14 to be defrosted and the first detected temperature and the second detected temperature in the parallel heat exchanger 14 functioning as an evaporator. Any one of the flow path switching unit 40, the temperature detection unit 51, the temperature detection unit 52, and the plurality of blowers (the outdoor fan 19-1 and the outdoor fan 19-2) is incorrectly installed based on the combination of the detected temperatures. determine that there is That is, the incorrect installation detection unit 62b detects, for example, the detected temperature T21 and the detected temperature T22 of the parallel heat exchanger 14-2 to be defrosted, and the detected temperature T11 and the detected temperature of the parallel heat exchanger 14-1 functioning as an evaporator. Based on the combination with T12, one of the flow path switching unit 40, the temperature detection unit 51, the temperature detection unit 52, and the plurality of fans (outdoor fan 19-1 and outdoor fan 19-2) is incorrectly attached. to judge.
  • the air conditioner 100b according to the present embodiment can detect any one of the flow path switching unit 40, the temperature detection unit 51, the temperature detection unit 52, and the plurality of blowers (the outdoor fan 19-1 and the outdoor fan 19-2). Incorrect attachment can be detected appropriately. Therefore, the air-conditioning apparatus 100b according to the present embodiment can appropriately detect erroneous attachment of an attachment component related to defrosting, and perform defrosting normally without stopping heating of the indoor unit 20.
  • the refrigerant used in the main circuit RC has been explained as an example in which Freon refrigerant or HFO refrigerant is used, but it is not limited to this.
  • the refrigerant used in the main circuit RC may be, for example, CO2 refrigerant, HC refrigerant (eg, propane, isobutane refrigerant), ammonia refrigerant, mixed refrigerant of these refrigerants, and the like.
  • the refrigerant used in the main circuit RC may be the refrigerant used in a vapor compression heat pump.
  • the air conditioner 100 (100a, 100b) has described an example in which one indoor unit 20 is connected to one outdoor unit 10 (10a, 10b). It is not limited.
  • the air conditioner 100 (100a, 100b) may have, for example, a configuration in which two or more indoor units 20 are connected in parallel, or two or more outdoor units 10 (10a, 10b) are connected in parallel. good too.
  • the air conditioner 100 (100a, 100b) can connect three extension pipes in parallel or provide a switching device on the indoor unit 20 side.
  • the refrigerant circuit may be configured so that each indoor unit can perform cooling/heating simultaneous operation by selecting cooling or heating.
  • the air conditioner 100 (100a, 100b) explained an example in which the receiver 15 and the third pressure reducing device 16 are provided. There may be.
  • the outdoor unit 10 (10a, 10b) includes the first decompression device 13 has been described, the present invention is not limited to this, and the first decompression device 13 is the outdoor unit 10 (10a, 10b). It may be arranged outside.
  • the first decompression device 13 may be arranged in a pipe connected to the second extension pipe 33 of the indoor unit 20 .
  • the parallel heat exchangers 14 are not limited to the structure shown in FIG. 2, and may have other structures.
  • the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 may be provided with a mechanism for reducing heat leakage in the fins 14b (for example, notches or slits provided in the fins), A heat transfer tube may be provided between the heat exchanger 14-1 and the parallel heat exchanger 14-2 to flow a high-temperature refrigerant.
  • the parallel heat exchanger 14-1 and the parallel heat exchanger 14-2 are provided with a mechanism that divides the fins 14b and reduces heat leakage, and are provided with heat transfer tubes through which the high-temperature refrigerant flows. It is possible to suppress heat leakage to the parallel heat exchanger 14 functioning as an evaporator, thereby suppressing difficulty in defrosting at the boundary of division due to heat leakage.
  • the outdoor unit 10 (10a, 10b) includes two parallel heat exchangers 14 has been described. good too.
  • the outdoor unit 10 (10a, 10b) is provided with the flow rate adjusting device 18 has been described, but a configuration without the flow rate adjusting device 18 may be employed.
  • the second opening/closing device 42-1 and the second opening/closing device 42-2 of the flow switching unit 40, or the switching device 43-1 and the switching device of the flow switching unit 40a 43-2 may have the function of the flow control device 18.
  • the air conditioner 100b includes the flow path switching unit 40, the temperature detection unit 51, the temperature detection unit 52, and the plurality of blowers (outdoor fan 19-1 and outdoor fan 19-2).
  • the air-conditioning apparatus 100b uses a combination of the four temperatures of the detected temperature T11, the detected temperature T12, the detected temperature T21, and the detected temperature T22 and the magnitude relationship of the respective temperature differences to When two or more of the temperature detection unit 52 and a plurality of blowers (the outdoor fan 19-1 and the outdoor fan 19-2) are incorrectly attached, or the temperature detection unit 51 and the temperature detection unit 52 are incorrectly installed. You may make it detect also about the case where it is attached.
  • the air conditioner 100 switches between the cooling operation and the heating operation, but is not limited to this.
  • the air conditioner 100 may have a circuit configuration capable of simultaneous cooling and heating operation, or the cooling/heating switching unit 12 may be omitted and only the normal heating operation and the heating defrost operation may be performed.
  • the air conditioner 100 (100a, 100b) described above has a computer system inside.
  • the process of the erroneous attachment detection process described above is stored in a computer-readable recording medium in the form of a program, and the process is performed by reading and executing this program by a computer.
  • the computer-readable recording medium refers to magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • Second Connection pipe 36 Suction pipe 37 Bypass pipe 40, 40a Flow path switching unit 41-1, 41-2 First opening/closing device 42-1, 42-2 Second opening/closing device 43- 1, 43-2... Switching device 50, 51, 51-1, 51-2, 52-1, 52-2... Temperature detector, 60... Control device, 61, 61a, 61b... Operation control part, 62, 62a, 62b... Incorrect attachment detector, 63... Notification output part, 100, 100a, 100b... Air conditioner, RC... Main circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置は、冷媒が循環する主回路と、複数の並列熱交換器のそれぞれに接続され、複数の並列熱交換器のうちの一部の並列熱交換器を、デフロスト対象に選択する流路切替部と、圧縮機が吐出した冷媒の一部を分岐し、デフロスト対象に選択した並列熱交換器に流入させるバイパス配管と、複数の並列熱交換器のそれぞれの冷媒の温度を検出する温度検出部と、流路切替部を操作して、複数の並列熱交換器を蒸発器として機能させる暖房通常運転モードと、複数の並列熱交換器のうちの一部の並列熱交換器をデフロスト対象に選択してバイパス配管を経由して冷媒の一部を流入させ、一部以外の並列熱交換器を蒸発器として機能させる暖房デフロスト運転モードとを切り替える運転制御部と、温度検出部が検出した複数の並列熱交換器における検出温度に基づいて、取付部品の誤取付を検知する誤取付検知部とを備える。

Description

空気調和装置
 本開示は、空気調和装置に関する。
 近年、地球環境保護の観点から、寒冷地域にも化石燃料を燃やして暖房を行うボイラ式の暖房器具に置き換えて、空気を熱源とするヒートポンプ式の空気調和装置が導入される事例が増えている。ヒートポンプ式の空気調和装置は、圧縮機への電気入力に加えて空気から熱が供給される分だけ効率よく暖房を行うことができる。
 しかし、この反面、ヒートポンプ式の空気調和装置は、屋外などにおける外気温度が低温になるほど、蒸発器として室外空気と冷媒とを熱交換する室外熱交換器に霜が付着しやすくなる。このため、ヒートポンプ式の空気調和装置では、室外熱交換器についた霜を融かすデフロストを行う必要がある。デフロストを行う方法には、例えば、暖房における冷媒の流れを逆転させ、圧縮機からの冷媒を室外熱交換器に供給する方法がある。この方法は、デフロストを行っている間、室内の暖房が停止するため、快適性が損なわれることがある。
 そこで、室外熱交換器を分割し、一部の室外熱交換器をデフロストしている間に他の室外熱交換器を蒸発器として動作させて暖房を行うことにより、デフロストを行っている期間に暖房を行うことができる空気調和装置が提案されている(例えば、特許文献1及び特許文献2を参照)。
 上述したような従来の空気調和装置では、室外熱交換器を複数の並列熱交換器に分割し、熱交換器を蒸発器として動作させるか、デフロストを行うかを切り替える切替弁などの流路切替部を備えている。従来の空気調和装置は、この流路切替部を使用して、圧縮機から吐出された冷媒の一部をデフロストの要求があった熱交換器に流入させてデフロストを行うことにより、暖房を停止することなくデフロストを行っている。
特開2008-157558号公報 国際公開第2014/083867号
 しかしながら、上述したような従来の空気調和装置では、例えば、流路切替部の接続を誤って、対応させるべき熱交換器とは異なる熱交換器に接続及び取付けしてしまった場合に、流路切替部などの取付部品の誤取付を検知することができずに、デフロストを正常に行うことができない可能性があった。
 本開示は、上記問題を解決すべくなされたもので、その目的は、取付部品の誤取付を検知して、室内機の暖房を停止させずにデフロストを正常に行うことができる空気調和装置を提供することにある。
 上記問題を解決するために、本開示の一態様は、圧縮機と、室内熱交換器と、減圧装置、及び、互いに並列に接続された複数の並列熱交換器が、配管により接続され、冷媒が循環する主回路と、前記複数の並列熱交換器のそれぞれに接続され、前記複数の並列熱交換器のうちの一部の並列熱交換器を、並列熱交換器に付着した霜を融かすデフロストの対象であるデフロスト対象に選択する流路切替部と、前記圧縮機が吐出した冷媒の一部を分岐し、前記流路切替部が前記デフロスト対象に選択した前記並列熱交換器に流入させるバイパス配管と、前記複数の並列熱交換器のそれぞれの冷媒の温度を検出する温度検出部と、前記流路切替部を操作して、前記複数の並列熱交換器を蒸発器として機能させる暖房通常運転モードと、前記複数の並列熱交換器のうちの一部の並列熱交換器を前記デフロスト対象に選択して前記バイパス配管を経由して前記冷媒の一部を流入させ、前記一部以外の並列熱交換器を蒸発器として機能させる暖房デフロスト運転モードとを切り替える運転制御部と、前記温度検出部が検出した前記複数の並列熱交換器における検出温度に基づいて、前記デフロストに関連する取付部品の誤取付を検知する誤取付検知部とを備える空気調和装置である。
 本開示によれば、デフロストに関連する取付部品の誤取付を検知して、室内機の暖房を停止させずにデフロストを正常に行うことができる。
第1の実施形態による空気調和装置の一例を示す構成図である。 第1の実施形態における並列熱交換器の構成例を示す図である。 第1の実施形態による空気調和装置の運転モードに対応する冷暖切替部及び流路切替部の状態を示す図である。 第1の実施形態による空気調和装置の冷房運転モードにおける冷媒の流れを示す図である。 第1の実施形態による空気調和装置の冷房運転モードにおけるP-h線図である。 第1の実施形態による空気調和装置の暖房通常運転モードにおける冷媒の流れを示す図である。 第1の実施形態による空気調和装置の暖房通常運転モードにおけるP-h線図である。 第1の実施形態による空気調和装置の暖房デフロスト運転モードの一例における冷媒の流れを示す図である。 第1の実施形態による空気調和装置の暖房デフロスト運転モードの一例におけるP-h線図である。 第1の実施形態による空気調和装置の誤取付検知処理の一例を示すフローチャートである。 第2の実施形態による空気調和装置の一例を示す構成図である。 第2の実施形態による空気調和装置の誤取付検知処理の一例を示すフローチャートである。 第2の実施形態による空気調和装置の誤取付検知処理における検出温度の変化の一例を示す図である。 第3の実施形態による空気調和装置の一例を示す構成図である。 第3の実施形態による空気調和装置の運転モードに対応する冷暖切替部及び切替装置の状態を示す図である。 第3の実施形態による空気調和装置の誤取付検知処理の一例を示すフローチャートである。
 以下、本開示の実施形態による空気調和装置について、図面を参照して説明する。
 [第1の実施形態]
 図1は、本開示の第1の実施形態による空気調和装置100の一例を示す構成図である。
 図1に示すように、空気調和装置100は、室外機10と、室内機20と、制御装置60とを備える。
 室外機10は、室内機20に供給する熱を生成する熱源機であり、熱源側ユニットとして機能する。
 室内機20は、室外機10から供給される熱を利用する負荷側ユニットとして機能する。室内機20は、室内熱交換器21と、室内ファン22とを備える。
 室外機10と室内機20とは、第1延長配管32及び第2延長配管33によって接続されている。
 室内熱交換器21は、室外機10から供給される熱を利用して、室内空気の熱交換を行う。
 室内ファン22は、室内熱交換器21に室内空気を搬送する。すなわち、室内ファン22は、室内空気を室内熱交換器21に送付する送風機である。
 室外機10は、圧縮機11と、冷暖切替部12と、第1減圧装置13と、複数の並列熱交換器14(14-1、14-2)と、レシーバ15と、第3減圧装置16と、複数の第2減圧装置17(17-1、17-2)と、流量調整装置18と、室外ファン19と、流路切替部40と、複数の温度検出部51(51-1、51-2)とを備える。
 なお、空気調和装置100は、室外機10と室内機20との間で冷媒を循環させる冷媒回路である主回路RCを有している。
 主回路RCは、吐出配管31、第1延長配管32、第2延長配管33、第1接続配管34、第2接続配管35、及び吸入配管36により、室外機10及び室内機20が備える主回路RCを構成する各構成と接続されて構成されている。
 また、主回路RCに使用される冷媒は、例えば、フロン冷媒、又はHFO冷媒(ハイドロフルオロオレフィン冷媒)である。フロン冷媒は、例えば、HFC系冷媒(クロロフルオロカーボン系冷媒)のR32冷媒、R125冷媒、及びR134a冷媒など、或いは、これらの混合冷媒のR410A冷媒、R407c冷媒、R404A冷媒などである。また、HFO冷媒は、例えば、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)などである。
 主回路RCは、圧縮機11と、冷暖切替部12と、室内熱交換器21と、第1減圧装置13と、並列熱交換器14-1及び並列熱交換器14-2とを順次、配管により接続して構成されている。
 圧縮機11は、吸入配管36と吐出配管31との間に接続されている。圧縮機11は、吸入配管36により供給された冷媒を圧縮して、高温高圧の冷媒を吐出配管31に吐出する。
 冷暖切替部12は、吐出配管31と吸入配管36との間に接続され、冷媒の流れ方向を切り替える。冷暖切替部12は、例えば、四方弁で構成される。圧縮機11の吐出側と冷暖切替部12とは、吐出配管31により接続されている。また、圧縮機11の吸入側と冷暖切替部12とは、吸入配管36により接続されている。
 暖房運転において、冷暖切替部12は、吐出配管31と第1延長配管32とを接続して、圧縮機11の吐出側と室内熱交換器21とを接続するとともに、吸入配管36と第2接続配管35(35-1、35-2)とを接続して、圧縮機11の吸入側と並列熱交換器14(14-1、14-2)とを接続する。
 また、冷房運転において、冷暖切替部12は、吐出配管31と第2接続配管35(35-1、35-2)とを接続して、圧縮機11の吐出側と並列熱交換器14(14-1、14-2)とを接続するとともに、吸入配管36と第1延長配管32とを接続して、圧縮機11の吸入側と室内熱交換器21とを接続する。
 なお、本実施形態において、冷房運転における冷暖切替部12の切替状態を切替Aと称し、暖房運転における冷暖切替部12の切替状態を切替Bと称する。
 第1減圧装置13は、第2延長配管33により、室内熱交換器21と接続され、冷媒を減圧して膨張させる。
 レシーバ15は、第1減圧装置13と第3減圧装置16との間に配置され、液体になった液冷媒を溜めるタンクである。
 複数の並列熱交換器14(14-1、14-2)は、冷暖切替部12と、第2減圧装置17(17-1、17-2)との間に並列に配置され、例えば、室外の空気である外気と冷媒とを熱交換させる室外熱交換器である。
 なお、本実施形態において、並列熱交換器14-1と並列熱交換器14-2とは、空気調和装置100が備える任意の並列熱交換器を示す場合、又は特に区別しない場合には、並列熱交換器14と記載する。
 並列熱交換器14-1は、第1接続配管34-1と、第2接続配管35-1との間に接続されている。また、並列熱交換器14-2は、第1接続配管34-2と、第2接続配管35-2との間に接続されている。
 なお、本実施形態において、第1接続配管34-1と第1接続配管34-2とは、空気調和装置100が備える任意の第1接続配管を示す場合、又は特に区別しない場合には、第1接続配管34と記載する。また、本実施形態において、第2接続配管35-1と第2接続配管35-2とは、空気調和装置100が備える任意の第2接続配管を示す場合、又は特に区別しない場合には、第2接続配管35と記載する。
 ここで、図2を参照して、並列熱交換器14(14-1、14-2)の詳細な構成について説明する。
 図2は、本実施形態における並列熱交換器14(14-1、14-2)の構成例を示す図である。
 図2に示すように、並列熱交換器14(14-1、14-2)は、例えば、複数の伝熱管14aと複数のフィン14bとを有するフィンチューブ型の熱交換器で構成される。ここでは、室外熱交換器が、2つの並列熱交換器14(14-1、14-2)に分割されている場合の一例について説明する。
 伝熱管14aは、内部を冷媒が通過し、空気通過方向に対して垂直方向の段方向及び空気通過方向である列方向に複数設けられている。
 フィン14bは、空気通過方向に空気が通過するように間隔を空けて配置されている。なお、フィン14bは、図2に示すように並列熱交換器14-1と並列熱交換器14-2とで分割されていない一体形状であってもよいし、並列熱交換器14-1と並列熱交換器14-2とで分割されていてもよい。
 並列熱交換器14(14-1、14-2)は、室外機10の筐体内において、上下方向に分割して構成される。なお、並列熱交換器14の分割は、左右に分割されても良く、図2に示すように上下に分割してもよい。並列熱交換器14を左右に分割する場合、並列熱交換器14-1と並列熱交換器14-2とのそれぞれへの冷媒入口が、室外機10の左右両端になるため、並列熱交換器14の配管接続が複雑になるが、デフロストを行うことによって生じた水が他の熱交換器に付着するといったことがない。
 また、上下に分割する場合、配管接続は容易であるが、上側の熱交換器で生じた水が下側の熱交換器に流下するため、上側の熱交換器のデフロストを行いながら、下側の熱交換器を蒸発器として機能させると、上側の熱交換器のデフロストによって生じた水が下側の熱交換器で氷結し、熱交換が阻害される可能性がある。
 図1の説明に戻り、第3減圧装置16は、レシーバ15と、2つの並列熱交換器14(14-1、14-2)との間に配置されている。第3減圧装置16は、冷媒を減圧して膨張させる。
 第2減圧装置17(17-1、17-2)は、並列熱交換器14(14-1、14-2)の第3減圧装置16との間に配置され、冷媒を減圧して膨張させる。第2減圧装置17-1は、第1接続配管34-1により、第2減圧装置17-1と接続されている。また、第2減圧装置17-2は、第1接続配管34-2により、第2減圧装置17-2と接続されている。第2減圧装置17は、冷媒の減圧ができればよく、毛細管又は膨張弁などを用いてもよい。
 なお、本実施形態において、第2減圧装置17-1と第2減圧装置17-2とは、空気調和装置100が備える任意の第2減圧装置を示す場合、又は特に区別しない場合には、第2減圧装置17と記載する。
 流路切替部40は、2つの並列熱交換器14のそれぞれに接続され、2つの並列熱交換器14のうちのいずれかの並列熱交換器14を、デフロスト対象に選択する。ここで、デフロスト対象とは、並列熱交換器14に付着した霜を融かすデフロストの対象である。流路切替部40は、圧縮機11の吐出側(冷暖切替部12)と、2つの並列熱交換器14(14-1、14-2)との間の第2接続配管35(35-1、35-2)に配置されている。
 流路切替部40は、第1開閉装置41-1と、第1開閉装置41-2と、第2開閉装置42-1と、第2開閉装置42-2とを備える。
 第1開閉装置41-1は、冷暖切替部12と第2接続配管35-1との間に配置されている。第1開閉装置41-1は、例えば、開閉弁であり、冷暖切替部12と第2接続配管35-1との間の流路の開閉を行う。
 第1開閉装置41-2は、冷暖切替部12と第2接続配管35-2との間に配置されている。第1開閉装置41-1は、例えば、開閉弁であり、冷暖切替部12と第2接続配管35-2との間の流路の開閉を行う。
 第2開閉装置42-1は、圧縮機11の吐出側と第2接続配管35-1との間に配置されている。第2開閉装置42-1は、例えば、開閉弁であり、圧縮機11の吐出側のバイパス配管37と第2接続配管35-1との間の流路の開閉を行う。
 第2開閉装置42-2は、圧縮機11の吐出側と第2接続配管35-2との間に配置されている。第2開閉装置42-2は、例えば、開閉弁であり、圧縮機11の吐出側のバイパス配管37と第2接続配管35-2との間の流路の開閉を行う。
 また、空気調和装置100の冷媒回路には、圧縮機11から吐出した高温高圧の冷媒の一部を分岐して2つの並列熱交換器14に供給するバイパス配管37を有している。
 バイパス配管37は、圧縮機11が吐出した冷媒の一部を分岐し、流路切替部40がデフロスト対象に選択した並列熱交換器14に流入させる。バイパス配管37は、例えば、一端が吐出配管31に接続され、他端が分岐して第2接続配管35(35-1、35-2)に接続されている。
 流量調整装置18は、吐出配管31と、バイパス配管37との間に配置され、バイパス配管37に流れる冷媒の流量を調整する。
 室外ファン19は、複数の並列熱交換器14に対して空気を送風する送風機である。室外ファン19は、室外空気を並列熱交換器14に搬送する。
 複数の温度検出部51(51-1、51-2)は、例えば、温度センサであり、複数の並列熱交換器14のそれぞれの冷媒の温度を検出する。温度検出部51は、並列熱交換器14で蒸発する冷媒の温度、又はデフロストに使用される冷媒の温度を検出する。
 なお、本実施形態において、温度検出部51-1と、温度検出部51-2とは、同一の構成であり、空気調和装置100が備える任意の温度検出部を示す場合、又は特に区別しない場合には、温度検出部51と記載する。
 温度検出部51-1は、並列熱交換器14-1に配置され、並列熱交換器14-1における冷媒の温度を検出する。また、温度検出部51-2は、並列熱交換器14-2に配置され、並列熱交換器14-2における冷媒の温度を検出する。
 なお、温度検出部51(51-1、51-2)は、第1接続配管34(34-1、34-1)又は第2接続配管35(35-1、35-2)に配置されるようにしてもよい。また、温度検出部51は、温度センサの代わりに圧力検出器を用いて冷媒の圧力を検出し、その飽和温度を使用することによって、冷媒の温度を間接的に検出してもよい。
 制御装置60は、例えば、CPU(Central Processing Unit)を含み、各種制御機器の動作、及び運転モードの切り替えを制御する。制御装置60には、例えば、室外機10及び室内機20に設けられた制御基板、及び室内に設置されたリモコン(リモートコントローラ)、等が含まれる。
 また、制御装置60は、運転制御部61と、誤取付検知部62と、報知出力部63とを備える。
 運転制御部61は、各種制御機器の動作、及び運転モードの切り替えを制御する。運転制御部61は、例えば、冷暖切替部12を操作して、冷房運転モードと、暖房運転モードとを切り替える。ここで、冷房運転モードは、空気調和装置100を冷房運転させる運転モードである。また、暖房運転モードは、空気調和装置100を暖房運転させる運転モードである。暖房運転モードには、暖房通常運転モードと、暖房デフロスト運転モードとが含まれる。なお、以下の説明において、暖房デフロスト運転モードを連続暖房運転モードと称する場合がある。
 運転制御部61は、運転モードを冷房運転モードに切り替える場合に、冷暖切替部12を上述した切替Aに制御する。また、運転制御部61は、運転モードを暖房運転モードに切り替える場合に、冷暖切替部12を上述した切替Bに制御する。
 運転制御部61は、流路切替部40を操作して、暖房通常運転モードと、暖房デフロスト運転モードとを切り替える。ここで、暖房通常運転モードは、2つの並列熱交換器14を全て蒸発器として機能させる運転モードであり、通常の暖房運転モードである。すなわち、暖房通常運転モードにおいて、並列熱交換器14-1と、並列熱交換器14-2との全てが、通常の蒸発器として動作する。
 また、暖房デフロスト運転モードは、複数の並列熱交換器14のうちの一部の並列熱交換器14をデフロスト対象に選択してバイパス配管37を経由して冷媒の一部を流入させ、一部以外の並列熱交換器14を蒸発器として機能させる運転モードである。暖房デフロスト運転モードでは、暖房運転を継続しながら、並列熱交換器14-1と並列熱交換器14-2との一部に対してデフロストを行う。
 運転制御部61は、例えば、運転モードを暖房通常運転モードにする場合に、第1開閉装置41-1及び第1開閉装置41-2をON状態にして、第2開閉装置42-1及び第2開閉装置42-2をOFF状態にする。この場合、並列熱交換器14-1及び並列熱交換器14-2は、蒸発器として機能する。
 また、運転制御部61は、暖房デフロスト運転モードにおいて、並列熱交換器14-1をデフロスト対象に選択した場合に、第1開閉装置41-1をOFF(オフ)状態にして、第2開閉装置42-1をON(オン)状態にするとともに、第1開閉装置41-2をON状態にして、第2開閉装置42-2をOFF状態にする。この場合、並列熱交換器14-1は、デフロストが行われ、並列熱交換器14-2は、蒸発器として機能する。
 また、運転制御部61は、暖房デフロスト運転モードにおいて、並列熱交換器14-2をデフロスト対象に選択した場合に、第1開閉装置41-2をOFF状態にして、第2開閉装置42-2をON状態にするとともに、第1開閉装置41-1をON状態にして、第2開閉装置42-1をOFF状態にする。この場合、並列熱交換器14-2は、デフロストが行われ、並列熱交換器14-1は、蒸発器として機能する。
 また、運転制御部61は、例えば、温度検出部51(51-1、51-2)が検出したデフロスト対象の並列熱交換器14における冷媒の検出温度に基づいて、デフロストの完了を判定する。運転制御部61は、デフロスト対象の並列熱交換器14における冷媒の検出温度が、例えば、霜の融解温度(0℃)より高くなった場合に、デフロスト対象の並列熱交換器14のデフロストが完了したと判定する。
 誤取付検知部62は、温度検出部51が検出した複数の並列熱交換器14における検出温度に基づいて、デフロストに関連する取付部品の誤取付を検知する。すなわち、誤取付検知部62は、暖房デフロスト運転モードに切り替えられた状態において、デフロストに関連する取付部品の誤取付を検知する誤取付検知処理を実行する。ここで、デフロストに関連する取付部品には、例えば、流路切替部40及び温度検出部51などが含まれる。
 誤取付検知部62は、デフロスト対象の並列熱交換器14における検出温度が、蒸発器として機能させる並列熱交換器14における検出温度以下である場合に、流路切替部40又は温度検出部51が誤取付されていることを検知する。
 また、誤取付検知部62は、取付部品の誤取付を検知した場合に、取付部品の誤取付の検知結果に基づく報知情報を報知出力部63に出力させる。すなわち、誤取付検知部62は、誤取付の検知を、報知出力部63を用いて空気調和装置100の外部に報知する。
 報知出力部63は、例えば、リモコンの表示部、又は報知音を出力するスピーカなどである。報知出力部63は、誤取付検知部62が検知した検知結果を出力する。例えば、報知出力部63がリモコンの表示部である場合には、報知出力部63は、取付部品の誤取付の検知結果に基づく報知情報を表示する。なお、誤取付の検知結果には、正常に取り付けられたことを検知した検知結果も含まれる。
 次に、図3を参照して、空気調和装置100の各運転モードに対応する冷暖切替部12及び流路切替部40の状態について説明する。
 図3は、本実施形態による空気調和装置100の運転モードに対応する冷暖切替部12及び流路切替部40の状態を示す図である。
 図3において、流路切替部40の第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-2では、“ON”である状態が、両端間が接続された状態を示し、“OFF”である状態が、両端間が分断された状態を示している。また、第2接続配管35-1を用いた経路を“経路1”と称し、並列熱交換器14-1がデフロスト対象に選択されて、第2接続配管35-1を用いた経路によりデフロストを行う場合を、“経路1側デフロスト”と称する。また、第2接続配管35-1を用いた経路を“経路2”と称し、並列熱交換器14-2がデフロスト対象に選択されて、第2接続配管35-2を用いた経路によりデフロストを行う場合を、“経路2側デフロスト”と称する。
 例えば、運転モードが冷房運転モードである場合に、運転制御部61は、冷暖切替部12を“切替A”にし、第1開閉装置41-1及び第1開閉装置41-2を“ON”にし、さらに、第2開閉装置42-1及び第2開閉装置42-2を“OFF”にすることを示している。
 また、例えば、運転モードが暖房通常運転モードである場合に、運転制御部61は、冷暖切替部12を“切替B”にし、第1開閉装置41-1及び第1開閉装置41-2を“ON”にし、さらに、第2開閉装置42-1及び第2開閉装置42-2を“OFF”にすることを示している。
 また、例えば、運転モードが暖房デフロスト運転モードであり、経路1側をデフロスト対象に選択した場合(“経路1側デフロスト”である場合)に、運転制御部61は、冷暖切替部12を“切替B”にし、第1開閉装置41-1を“OFF”にし、第1開閉装置41-2を“ON”にすることを示している。また、この場合、運転制御部61は、さらに、第2開閉装置42-1を“ON”にし、第2開閉装置42-2を“OFF”にすることを示している。
 また、例えば、運転モードが暖房デフロスト運転モードであり、経路2側をデフロスト対象に選択した場合(“経路2側デフロスト”である場合)に、運転制御部61は、冷暖切替部12を“切替B”にし、第1開閉装置41-1を“ON”にし、第1開閉装置41-2を“OFF”にすることを示している。また、この場合、運転制御部61は、さらに、第2開閉装置42-1を“OFF”にし、第2開閉装置42-2を“ON”にすることを示している。
 次に、図面を参照して、本実施形態による空気調和装置100の動作について説明する。ここでは、まず、空気調和装置100の冷房運転モードの動作について説明する。
 <冷房運転モード>
 図4は、本実施形態による空気調和装置100の冷房運転モードにおける冷媒流れを示す図である。なお、図4において、冷房運転モードで冷媒が流れる部分を実線にし、冷媒が流れない部分を破線にしている。
 また、図5は、本実施形態による空気調和装置100の冷房運転モードにおけるP-h線図である。図5において、縦軸は、冷媒の圧力P[MPa(メガパスカル)]を示し、横軸は、比エンタルピーh[kJ(キロジュール)/kg(キログラム)]を示している。なお、図5における点P1~点P4は、図4における同じ符号を付した部分での冷媒の状態を示す。
 図5において、圧縮機11が運転を開始すると、圧縮機11は、低温低圧のガス冷媒を圧縮して、高温高圧のガス冷媒を吐出する。この圧縮機11の冷媒圧縮過程は、圧縮機11の断熱効率の分だけ、等エントロピ線で断熱圧縮される場合と比較して加熱されるように圧縮され、図5における点P1から点P2に示す線で表される。
 圧縮機11から吐出された高温高圧のガス冷媒は、冷暖切替部12を通過して2つに分岐され、第1開閉装置41-1及び第1開閉装置41-2を通過する。第1開閉装置41-1及び第1開閉装置41-2を通過したガス冷媒は、それぞれ第2接続配管35-1及び第2接続配管35-2から接続されている並列熱交換器14-1及び並列熱交換器14-2に流入する。
 並列熱交換器14-1及び並列熱交換器14-2は、室外空気を加熱しながら流入した冷媒を冷却する。その結果、冷媒は、中温高圧の液冷媒となる。並列熱交換器14-1及び並列熱交換器14-2での冷媒変化は、圧力損失を考慮すると、図5における点P2から点P3に示すやや傾いた水平に近い直線で表される。
 並列熱交換器14-1及び並列熱交換器14-2から流出した中温高圧の液冷媒は、第1接続配管34-1及び第1接続配管34-2に流入し、第2減圧装置17-1及び第2減圧装置17-2を通過した後、合流する。合流した冷媒は、第3減圧装置16、レシーバ15、及び第1減圧装置13を通過して膨張、減圧され、低温低圧の気液二相状態になる。この第2減圧装置17-1及び第2減圧装置17-2、第3減圧装置16、レシーバ15、並びに第1減圧装置13における冷媒の変化は、エンタルピーが一定のもとで行われる。このときの冷媒変化は、図5における点P3から点P4に示す垂直線で表される。
 第1減圧装置13から流出した低温低圧の気液二相状態の冷媒は、室外機10から流出し、第2延長配管33を通過して、室内機20の室内熱交換器21に流入する。室内熱交換器21は、室内空気を冷却しながら流入した冷媒を加熱する。その結果、冷媒は、低温低圧のガス冷媒となる。室内熱交換器21における冷媒の変化は、圧力損失を考慮すると、図5における点P4から点P1に示すやや傾いた水平に近い直線で表される。
 室内熱交換器21を流出した低温低圧のガス冷媒は、第1延長配管32を通って室外機10に戻り、冷暖切替部12を通って圧縮機11に流入し、圧縮される。
 <暖房通常運転モード>
 図6は、本実施形態による空気調和装置100の暖房通常運転モードにおける冷媒流れを示す図である。なお、図6において、暖房通常運転モードで冷媒が流れる部分を実線にし、冷媒が流れない部分を破線にしている。
 また、図7は、本実施形態による空気調和装置100の暖房通常運転モードにおけるP-h線図である。図7において、縦軸は、冷媒の圧力P[MPa]を示し、横軸は、比エンタルピーh[kJ/kg]を示している。なお、図7における点P11~点P14は、図6における同じ符号を付した部分での冷媒の状態を示す。
 図6において、圧縮機11が運転を開始すると、圧縮機11は、低温低圧のガス冷媒を圧縮して、高温高圧のガス冷媒を吐出する。この圧縮機11の冷媒圧縮過程は、図7における点P11から点P12に示す線で表される。
 圧縮機11から吐出された高温高圧のガス冷媒は、冷暖切替部12を通過した後、室外機10から流出する。室外機10を流出した高温高圧のガス冷媒は、第1延長配管32を介して室内機20の室内熱交換器21に流入する。
 室内熱交換器21は、室内空気を加熱しながら流入した冷媒を冷却する。その結果、冷媒は、中温高圧の液冷媒となる。室内熱交換器21での冷媒の変化は、圧力損失を考慮すると、図7における点P12から点P13に示すやや傾いた水平に近い直線で表される。
 室内熱交換器21から流出した中温高圧の液冷媒は、第2延長配管33を介して室外機10に戻る。室外機10に戻った冷媒は、第1減圧装置13、レシーバ15、及び第3減圧装置16を通過して分岐し、第1接続配管34-1及び第1接続配管34-2を通って、第2減圧装置17-1及び第2減圧装置17-2に流入する。第1減圧装置13、第3減圧装置16、及び第2減圧装置17によって、冷媒は、膨張、減圧され、低温低圧の気液二相状態になる。この第1減圧装置13、第3減圧装置16、及び第2減圧装置17における冷媒の変化は、エンタルピーが一定のもとで行われる。このときの冷媒変化は、図7における点P13から点P14に示す垂直線で表される。
 第2減圧装置17-1及び第2減圧装置17-2を流出した冷媒は、それぞれ並列熱交換器14-1及び並列熱交換器14-2に流入する。並列熱交換器14-1及び並列熱交換器14-2は、室外空気を冷却しながら冷媒を加熱する。その結果、冷媒は、低温低圧のガス冷媒となる。並列熱交換器14-1及び並列熱交換器14-2における冷媒変化は、圧力損失を考慮すると、図7の点P14から点P11に示すやや傾いた水平に近い直線で表される。
 並列熱交換器14-1及び並列熱交換器14-2を流出した低温低圧のガス冷媒は、第2接続配管35-1及び第2接続配管35-2に流入し、第1開閉装置41-1及び第1開閉装置41-2を通った後合流し、冷暖切替部12を通過して圧縮機11に流入し、圧縮される。
 <暖房デフロスト運転(連続暖房運転)モード>
 暖房デフロスト運転モードは、暖房通常運転モード中に、並列熱交換器14に着霜した場合に実行される。制御装置60の運転制御部61は、並列熱交換器14の着霜の有無を判定し、当該判定結果に基づいて、暖房デフロスト運転を行う必要があるか否かを判定する。運転制御部61は、例えば、圧縮機11の吸入圧力から換算される冷媒飽和温度に基づいて、着霜の有無を判定する。
 運転制御部61は、例えば、冷媒飽和温度が設定された外気温度と比較して大幅に低下し、閾値より小さくなった場合に、デフロストが必要な着霜が並列熱交換器14に存在すると判定する。また、別の例として、運転制御部61は、外気温度と蒸発温度との温度差が、予め設定された値以上となり、且つ、その状態における経過期間が、一定期間以上になった場合に、デフロストが必要な着霜が並列熱交換器14に存在すると判定する。なお、着霜の有無の判定は、これらの判定方法に限らず、他の方法であってもよい。
 また、運転制御部61は、並列熱交換器14に着霜があると判定した場合に、暖房デフロスト運転を開始するための開始条件が成立したと判定する。運転制御部61は、この開始条件が成立したと判定した場合に、運転モードを暖房デフロスト運転モードに変更する。
 本実施形態による空気調和装置100の構成では、暖房デフロスト運転モードにおいて、並列熱交換器14-2をデフロスト対象として選択してデフロスト(経路2側デフロスト)を行い、並列熱交換器14-1を蒸発器として機能させて暖房を継続する運転が可能である。またその逆に、並列熱交換器14-1をデフロスト対象として選択してデフロスト(経路1側デフロスト)を行い、並列熱交換器14-2を蒸発器として機能させる運転が可能である。
 上述した経路1側デフロストを行う運転と経路2側デフロストを行う運転とは、第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-2の開閉状態が異なり、デフロスト対象の並列熱交換器14と、蒸発器として機能する並列熱交換器14とが入れ替わり、並列熱交換器14の冷媒の流れが入れ替わるだけで、その他の動作は同様である。よって、以下の説明では、並列熱交換器14-2のデフロスト(経路2側デフロスト)を行い、並列熱交換器14-1が蒸発器として機能して暖房を継続する場合の運転について説明する。以降の実施形態の説明についても同様である。
 図8は、本実施形態による空気調和装置100の暖房デフロスト運転モードにおける冷媒流れを示す図である。なお、図8に示す例は、経路2側デフロストを行う場合の一例であり、暖房デフロスト運転モードで冷媒が流れる部分を実線にし、冷媒が流れない部分を破線にしている。
 また、図9は、本実施形態による空気調和装置100の暖房デフロスト運転モードにおけるP-h線図である。図9において、縦軸は、冷媒の圧力P[MPa]を示し、横軸は、比エンタルピーh[kJ/kg]を示している。なお、図9における点P21~点P29は、図8における同じ符号を付した部分での冷媒の状態を示す。
 運転制御部61は、並列熱交換器14-2のデフロストを行う暖房デフロスト運転モードにおいて、デフロスト対象の並列熱交換器14-2に対応する第1開閉装置41-2を閉止する。更に、運転制御部61は、第2開閉装置42-2を開き、流量調整装置18を開く。また、運転制御部61は、蒸発器として機能する並列熱交換器14-1に対応する第1開閉装置41-1は開き、第2開閉装置42-1は閉止する。
 これによって、圧縮機11→流量調整装置18→第2開閉装置42-2→並列熱交換器14-2→第2減圧装置17-2を、順次接続したデフロスト回路が開かれて暖房デフロスト運転が実施される。
 図8において、暖房デフロスト運転が実施されると、圧縮機11から吐出された高温高圧のガス冷媒の一部は、バイパス配管37に流入し、流量調整装置18で中圧まで減圧される。このときの冷媒の変化は、図9における点P22から点P25に示す線で表される。
 そして、点P25における中圧まで減圧された冷媒は、第2開閉装置42-2を通り、並列熱交換器14-2に流入する。並列熱交換器14-2に流入した冷媒は、並列熱交換器14-2に付着した霜と熱交換することによって冷却される。
 このように、圧縮機11から吐出された高温高圧のガス冷媒を減圧した後に、並列熱交換器14-2に流入させることにより、並列熱交換器14-2に付着した霜を融かすことができる。このときの冷媒の変化は、図9における点P25から点P26に示す線で表される。
 また、デフロストを行った後に、並列熱交換器14-2から流出した冷媒は、第2減圧装置17-2を通って減圧される。このときの冷媒の変化は、図9における点P26から点P27に示す線で表される。
 また、第2減圧装置17-2を通過した冷媒は、主回路RCに合流する。合流した冷媒は、第2減圧装置17-1を通過して、蒸発器として機能している並列熱交換器14-1に流入し、蒸発する。
 並列熱交換器14-2のデフロストが完了したら、運転制御部61は、第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-2の開閉状態を操作して、並列熱交換器14-1のデフロストを行うもしくは、暖房通常運転モードに移行させる。
 なお、運転制御部61は、デフロストの完了を、温度検出部51-2が検出した検出温度により判定する。運転制御部61は、例えば、霜の融解温度(0℃)よりも高い一定値を超えることなどで、デフロストの完了を判定する。
 <誤取付検知処理>
 次に、本実施形態による空気調和装置100の誤取付検知処理について、説明する。
 ここでは、まず、温度検出部51(51-1、51-2)、又は流路切替部40(第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-1)の取付けを誤った(誤取付した)場合の影響について説明する。
 例えば、温度検出部51-1と温度検出部51-2とを逆に取り付けた場合、デフロストしている並列熱交換器14-2の冷媒温度を温度検出部51-1が検出し、蒸発器として機能している並列熱交換器14-1の冷媒温度を温度検出部51-1が検出することになる。この場合、蒸発器として機能している並列熱交換器14-1は霜がつく温度で0℃を下回っており、温度検出部51-2は、0℃を下回った温度を検出する。そのため、デフロストの完了を判定する温度検出部51-2の検出温度が、霜の融解温度である0℃よりも高い温度にならないため、運転制御部61は、デフロストの完了を正しく判定することができない。
 また、例えば、第2開閉装置42-1と第2開閉装置42-2とを逆に取り付けた場合、第2開閉装置42-2は第2接続配管35-1に接続される。そのため、第2開閉装置42-2を通った高温冷媒は、並列熱交換器14-1に流れずに第1開閉装置41-1を通って圧縮機11に吸入されるため、運転制御部61は、並列熱交換器14-1と並列熱交換器14-2とのいずれに対してもデフロストを行うことができなくなる。
 そこで、本実施形態による空気調和装置100は、温度検出部51(51-1、51-2)、又は流路切替部40(第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-1)の誤取付を検知する誤取付検知処理を実行する。
 次に、図10を参照して、本実施形態による空気調和装置100の誤取付検知処理について説明する。
 図10は、本実施形態による空気調和装置100の誤取付検知処理の一例を示すフローチャートである。
 空気調和装置100は、誤取付検知処理の開始条件が成立した場合に、図10に示すような誤取付検知処理を実行する。なお、誤取付検知処理の開始条件は、例えば、電源投入後の最初の暖房デフロスト運転時である場合、リモコンや携帯端末の操作により開始が指定された場合、又は、室外機10の制御基板上に設けられたボタンスイッチやディップスイッチなどのスイッチによって開始が指定された場合などである。なお、リモコンや携帯端末の操作、又は制御基板のスイッチで開始する場合には、室外機10の施工時やメンテナンス時に、作業者の任意のタイミングで実行できるメリットがある。
 図10に示すように、制御装置60の運転制御部61は、まず、並列熱交換器14-2をデフロスト対象に選択した暖房デフロスト運転で動作させる(ステップS101)。すなわち、運転制御部61は、冷暖切替部12を切替Bにし、第1開閉装置41-1及び第2開閉装置42-2をON状態にするとともに、第1開閉装置41-2及び第2開閉装置42-1をOFF状態にする。また、運転制御部61は、流量調整装置18を開き、圧縮機11の動作を開始させる。
 次に、制御装置60の誤取付検知部62は、検出温度T2が、検出温度T1よりも高いか否かを判定する(ステップS102)。誤取付検知部62は、温度検出部51-1から並列熱交換器14-1における検出温度T1を取得するとともに、温度検出部51-2から並列熱交換器14-2における検出温度T2を取得する。すなわち、誤取付検知部62は、温度検出部51-1が検出した検出温度T1と、温度検出部51-2が検出した検出温度T2とを取得する。誤取付検知部62は、並列熱交換器14-1における検出温度T1と、並列熱交換器14-2における検出温度T2とを比較して、検出温度T2が、検出温度T1より高いか否かを判定する。誤取付検知部62は、検出温度T2が、検出温度T1よりも高い場合(ステップS102:YES)に、処理をステップS103に進める。また、誤取付検知部62は、検出温度T2が、検出温度T1以下である場合(ステップS102:NO)に、処理をステップS104に進める。
 ステップS103において、誤取付検知部62は、正常取付であることを外部に報知する。この場合、誤取付検知部62は、温度検出部51(51-1、51-2)、及び流路切替部40(第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-1)の取付が正常であることを示す報知情報を、報知出力部63に出力させて、正常取付であることを外部に報知する。ステップS103の処理後に、誤取付検知部62は、誤取付検知処理を終了する。
 また、ステップS104において、誤取付検知部62は、誤取付であることを外部に報知する。この場合、誤取付検知部62は、例えば、温度検出部51(51-1、51-2)、又は流路切替部40(第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-1)に誤取付があることを示す報知情報を、報知出力部63に出力させて、誤取付であることを外部に報知する。ステップS104の処理後に、誤取付検知部62は、誤取付検知処理を終了する。
 なお、誤取付検知部62は、正常取付、又は誤取付の報知を、例えば、リモコンの表示部、室外機10の制御基板上に設けられた表示部、及び制御基板上に設けられた点灯器などを、報知出力部63として、報知する。また、誤取付検知部62は、リモコン又は制御基板を介して、携帯端末などに、正常取付、又は誤取付の報知を出力するようにしてもよい。
 以上説明したように、本実施形態による空気調和装置100は、主回路RCと、流路切替部40と、バイパス配管37と、温度検出部51と、運転制御部61と、誤取付検知部62とを備える。主回路RCは、圧縮機11と、室内熱交換器21と、減圧装置(例えば、第1減圧装置13など)と、互いに並列に接続された複数の並列熱交換器14とが、配管により接続され、冷媒が循環する。流路切替部40は、複数の並列熱交換器14のそれぞれに接続され、複数の並列熱交換器14のうちの一部の並列熱交換器14(例えば、並列熱交換器14-2)を、並列熱交換器14に付着した霜を融かすデフロストの対象であるデフロスト対象に選択する。バイパス配管37は、圧縮機11が吐出した冷媒の一部を分岐し、流路切替部40がデフロスト対象に選択した並列熱交換器14(例えば、並列熱交換器14-2)に流入させる。温度検出部51は、複数の並列熱交換器14のそれぞれの冷媒の温度を検出する。運転制御部61は、流路切替部40を操作して、暖房通常運転モードと、暖房デフロスト運転モードとを切り替える。ここで、暖房通常運転モードは、複数の並列熱交換器14を蒸発器として機能させる運転モードである。暖房デフロスト運転モードは、複数の並列熱交換器14のうちの一部の並列熱交換器14(例えば、並列熱交換器14-2)をデフロスト対象に選択してバイパス配管37を経由して冷媒の一部を流入させ、一部以外の並列熱交換器14(例えば、並列熱交換器14-1)を蒸発器として機能させる運転モードである。誤取付検知部62は、温度検出部51が検出した複数の並列熱交換器14における検出温度に基づいて、デフロストに関連する取付部品(例えば、温度検出部51、又は流路切替部40など)の誤取付を検知する。
 これにより、本実施形態による空気調和装置100は、デフロストに関連する取付部品(例えば、温度検出部51、又は流路切替部40など)の誤取付を検知して、室内機20の暖房を停止させずにデフロストを正常に行うことができる。
 また、本実施形態では、誤取付検知部62は、暖房デフロスト運転モードに切り替えられた状態において、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)における検出温度(例えば、検出温度T2)が、蒸発器として機能させる並列熱交換器14(例えば、並列熱交換器14-1)における検出温度以下(例えば、検出温度T1以下)である場合に、流路切替部40又は温度検出部51が誤取付されていることを検知する。
 これにより、本実施形態による空気調和装置100は、デフロスト対象の並列熱交換器14-2における冷媒の検出温度T2と、蒸発器として機能させる並列熱交換器14-1における冷媒の検出温度T1とを比較することによって、流路切替部40又は温度検出部51が誤取付されていることを適切に検知することができる。
 また、本実施形態では、誤取付検知部62は、取付部品の誤取付を検知した場合に、取付部品の誤取付の検知結果に基づく報知情報を報知出力部63に出力させる。
 これにより、本実施形態による空気調和装置100では、取付部品の誤取付を検知した場合に、利用者が、取付部品の誤取付、又は取付部品の正常取付を認知することできる。
 また、本実施形態では、誤取付検知部62は、取付部品の誤取付を検知する処理の開始条件が成立した場合に、暖房デフロスト運転モードに切り替えられた状態にして、取付部品の誤取付を検知する。
 これにより、本実施形態による空気調和装置100は、開始条件による適切なタイミングで、取付部品の誤取付を確認することができる。
 なお、本実施形態による空気調和装置100は、上述した図8において、流量調整装置18がない場合でも、高温高圧のガス冷媒を減圧せずに並列熱交換器14-2に流入することで霜を融かすことが可能である。しかし、圧力が高く、飽和温度が高い冷媒を並列熱交換器14-2に流入させると、霜の融解温度(0℃)との温度差が大きいため、すぐに凝縮する。これにより、並列熱交換器14-2の内部に存在する液冷媒量が多くなり、暖房に利用する冷媒量が不足するため、暖房能力が低下する。
 そこで、本実施形態による空気調和装置100は、流量調整装置18で圧縮機11から吐出された冷媒を減圧して並列熱交換器14-2に流入させることにより、冷媒の飽和温度を低くし、並列熱交換器14-2の液冷媒量を抑えることができる。そのため、本実施形態による空気調和装置100は、室内の快適性を向上させることができる。
 また、上述した図10に示す誤取付検知処理において、室外ファン19は、動作させてもよいし、動作させなくてもよい。室外ファン19を停止しておくことで、蒸発器として機能する並列熱交換器14の冷媒温度は、下がりやすく、他方の熱交換器の冷媒温度は上がりやすくなる。そのため、本実施形態による空気調和装置100は、室外ファン19を停止しておくことにより、検出温度T1と検出温度T2との温度差を検知しやすくなる。
 また、一方で、室外ファン19を作動させることにより、冷媒の蒸発が促進される。そのため、本実施形態による空気調和装置100は、室外ファン19を作動させることにより、圧縮機11への液冷媒の吸入を防ぐことができる。
 また、本実施形態における誤取付検知処理において、第1減圧装置13又は第3減圧装置16は、開けていてもよいし、閉めていてもよい。例えば、第1減圧装置13又は第3減圧装置16を閉めておくことによって、本実施形態による空気調和装置100は、室内機20側への冷媒回路が閉塞し、冷媒の流れる経路が少なくなる。そのため、圧縮機11の吐出圧力と吸入圧力との差が大きくなり、その分、蒸発器として機能させる並列熱交換器14と、他方の並列熱交換器14との冷媒の温度差も大きくなるため、本実施形態による空気調和装置100は、検出温度T1と検出温度T2との温度差を検知しやすくなる。
 また、例えば、第1減圧装置13及び第3減圧装置16を開けておくことによって、本実施形態による空気調和装置100は、不要な冷媒をレシーバ15に貯留できるため、圧縮機11への液冷媒の吸入を防ぐことができる。
 また、上述した図10において、並列熱交換器14-1を蒸発器として機能させ、並列熱交換器14-2をデフロスト対象として、誤取付検知処理を実行する例を説明したが、並列熱交換器14-1をデフロスト対象として、並列熱交換器14-2を蒸発器として機能させて、誤取付検知処理を実行するようにしてもよい。この場合は、図10に示すステップS102において、判定条件が逆転し、検出温度T1が検出温度T2よりも高い場合が正常取付となる。
 [第2の実施形態]
 次に、図面を参照して、本開示の第2の実施形態による空気調和装置100aについて説明する。本実施形態では、室外ファン19を複数備えて、複数の並列熱交換器14のそれぞれに対して送風する風量を変更できるようにした変形例について説明する。
 図11は、第2の実施形態による空気調和装置100aの一例を示す構成図である。
 図11に示すように、空気調和装置100aは、室外機10aと、室内機20と、制御装置60aとを備える。
 なお、図11において、上述した図1と同一の構成には、同一の符号を付与して、ここでの説明を省略する。以下、空気調和装置100aが、第1の実施形態と異なる部分を中心に説明する。
 室外機10aは、圧縮機11と、冷暖切替部12と、第1減圧装置13と、複数の並列熱交換器14(14-1、14-2)と、レシーバ15と、第3減圧装置16と、複数の第2減圧装置17(17-1、17-2)と、流量調整装置18と、複数の室外ファン(19-1、19-2)と、流路切替部40と、複数の温度検出部51(51-1、51-2)とを備える。室外機10aは、複数の並列熱交換器14(14-1、14-2)のそれぞれに対応する複数の室外ファン(19-1、19-2)を備えている点が、第1の実施形態の室外機10と異なる。
 室外ファン19-1は、並列熱交換器14-1に対して空気を送風する送風機である。室外ファン19-1は、室外空気を並列熱交換器14-1に搬送する。
 また、室外ファン19-2は、並列熱交換器14-2に対して空気を送風する送風機である。室外ファン19-2は、室外空気を並列熱交換器14-2に搬送する。
 制御装置60aは、例えば、CPUを含み、各種制御機器の動作、及び運転モードの切り替えを制御する。制御装置60aには、例えば、室外機10a及び室内機20に設けられた制御基板、及び室内に接地されたリモコン、等が含まれる。
 また、制御装置60aは、運転制御部61aと、誤取付検知部62aと、報知出力部63とを備える。
 運転制御部61aの基本的な機能は、上述した第1の実施形態の運転制御部61と同様である。運転制御部61aは、2つの室外ファン(19-1、19-2)に対する制御を行う点が、第1の実施形態による運転制御部61と異なる。
 運転制御部61aは、暖房デフロスト運転モードにおいて、デフロスト対象の並列熱交換器14に対する風量が、蒸発器として機能させる並列熱交換器14に対する風量より小さくなるように、2つの室外ファン(19-1、19-2)を制御する。運転制御部61aは、暖房デフロスト運転モードにおいて、室外ファン19-1及び室外ファン19-2を個別に制御することで、デフロスト性能を向上させる。
 例えば、並列熱交換器14-2が、デフロスト対象である場合に、運転制御部61aは、並列熱交換器14-2に対する風量が、並列熱交換器14-1に対する風量より小さくなるように、室外ファン19-1及び室外ファン19-2を制御する。この場合、運転制御部61aは、例えば、室外ファン19-2を停止させる、もしくは、室外ファン19-1よりも低い回転数に制御して、並列熱交換器14-2に対する風量を低下させる。また、この場合、運転制御部61aは、室外ファン19-1を作動させる制御を行う。
 また、運転制御部61aは、誤取付検知処理を実行する際に、蒸発器として機能させる並列熱交換器14-1に対応する室外ファン19-1の風量を変化させずに、デフロスト対象の並列熱交換器14-2に対応する室外ファン19-2の風量を増加させる。
 誤取付検知部62aの基本的な機能は、上述した第1の実施形態の誤取付検知部62と同様である。また、誤取付検知部62aは、例えば、デフロスト対象の並列熱交換器14-2と蒸発器として機能させる並列熱交換器14-1とのいずれか一方に対して室外ファン19-1(又は室外ファン19-2)の風量を変化させた前後の検出温度の変化に基づいて、複数の室外ファン(19-1、19-2)の誤取付を検知する。
 誤取付検知部62aは、例えば、室外ファン19-2を停止から作動に変化させて、デフロスト対象の並列熱交換器14-2における風量を増加させた後の検出温度が、風量を増加させる前の検出温度より低くならない(前の検出温度から低下しない)場合に、室外ファン(19-1、19-2)が誤取付されていることを検知する。また、誤取付検知部62aは、デフロスト対象の並列熱交換器14-2における風量を増加させた後の検出温度が、風量を増加させる前の検出温度より低い場合に、室外ファン(19-1、19-2)が正常取付であることを検知する。
 次に、図面を参照して、本実施形態による空気調和装置100aの動作について説明する。
 図12は、本実施形態による空気調和装置100aの誤取付検知処理の一例を示すフローチャートである。
 空気調和装置100aは、誤取付検知処理の開始条件が成立した場合に、図12に示すような誤取付検知処理を実行する。
 図12に示すように、制御装置60aの運転制御部61aは、まず、並列熱交換器14-2をデフロスト対象に選択した暖房デフロスト運転で動作させる(ステップS201)。すなわち、運転制御部61aは、冷暖切替部12を切替Bにし、第1開閉装置41-1及び第2開閉装置42-2をON状態にするとともに、第1開閉装置41-2及び第2開閉装置42-1をOFF状態にする。また、運転制御部61aは、流量調整装置18を開き、圧縮機11の動作を開始させる。また、運転制御部61aは、室外ファン19-1をON状態(作動状態)にし、室外ファン19-2をOFF状態(停止状態)にする。
 次に、制御装置60aの誤取付検知部62aは、検出温度T2が、検出温度T1よりも高いか否かを判定する(ステップS202)。誤取付検知部62aは、並列熱交換器14-2における検出温度T2が、並列熱交換器14-1における検出温度T1より高いか否かを判定する。誤取付検知部62aは、検出温度T2が、検出温度T1よりも高い場合(ステップS202:YES)に、処理をステップS203に進める。また、誤取付検知部62aは、検出温度T2が、検出温度T1以下である場合(ステップS202:NO)に、処理をステップS207に進める。
 ステップS203において、運転制御部61aは、室外ファン19-2を動作させる。すなわち、運転制御部61aは、室外ファン19-2をON状態(作動状態)にする。
 次に、誤取付検知部62aは、検出温度T2’が、検出温度T2よりも低いか否かを判定する(ステップS204)。ここで、検出温度T2は、室外ファン19-2をON状態にする前(室外ファン19-2がOFF状態)に、温度検出部51-2が検出した冷媒の検出温度である。また、検出温度T2’は、室外ファン19-2をON状態にした後に、温度検出部51-2が検出した冷媒の検出温度である。誤取付検知部62aは、検出温度T2と検出温度T2’とを比較して。検出温度T2’が、検出温度T2よりも低い場合(ステップS204:YES)に、処理をステップS205に進める。また、誤取付検知部62aは、検出温度T2’が、検出温度T2以上である場合(ステップS204:NO)に、処理をステップS206に進める。
 ステップS205において、誤取付検知部62aは、正常取付であることを外部に報知する。この場合、誤取付検知部62aは、温度検出部51(51-1、51-2)、流路切替部40(第1開閉装置41-1、第1開閉装置41-2、第2開閉装置42-1、及び第2開閉装置42-1)、並びに、室外ファン(19-1,19-2)の取付が正常であることを示す報知情報を、報知出力部63に出力させて、正常取付であることを外部に報知する。ステップS205の処理後に、誤取付検知部62aは、誤取付検知処理を終了する。
 また、ステップS206において、誤取付検知部62aは、室外ファン(19-1、19-2)の誤取付であることを外部に報知する。この場合、誤取付検知部62aは、室外ファン(19-1,19-2)の誤取付であることを示す報知情報を、報知出力部63に出力させて、室外ファン(19-1、19-2)の誤取付を外部に報知する。ステップS206の処理後に、誤取付検知部62aは、誤取付検知処理を終了する。
 また、ステップS207において、誤取付検知部62aは、温度検出部51又は流路切替部40の誤取付であることを外部に報知する。この場合、誤取付検知部62aは、温度検出部51又は流路切替部40に誤取付があることを示す報知情報を、報知出力部63に出力させて、誤取付であることを外部に報知する。ステップS207の処理後に、誤取付検知部62aは、誤取付検知処理を終了する。
 なお、上述した処理フローにおいて、室外ファン19-1、及び室外ファン19-2の取付けが正常な場合は、室外ファン19-2をON状態することによって、並列熱交換器14-2における風量が増加し、空気による冷媒の冷却性能が向上するため、温度検出部51-2が検知する温度は低下する。したがって、誤取付検知部62aは、室外ファン19-2をOFF状態からON状態に変化させて、室外ファン19-2をON状態に変化させた後の検出温度T2’が、室外ファン19-2をON状態に変化させる前(室外ファン19-2がOFF状態)の検出温度T2より低くなる場合に、室外ファン19-1及び室外ファン19-2の取付けが正常であると判定する。
 なお、図12に示すステップS204の処理において、誤取付検知部62aは、温度検出部51-2で検出した検出温度T2と検出温度T2′との比較で、室外ファン19-1及び室外ファン19-2の取付が正常であるか否かを判定しているが、温度検出部51-1の検出温度を用いてもよい。
 ここで、図13に本実施形態における誤取付検知処理中の検出温度の時間変化の概要図を示す。
 図13において、縦軸は検出温度を示し、横軸は時間を示している。波形W1及び波形W3は、例えば、時刻t1において、室外ファン19-2をOFF状態からON状態に変化させた場合における正常取付時の検出温度の変化を実線により示している。また、波形W2及び波形W4は、室外ファン(19-1、19-2)を誤取付した場合の検出温度の変化を破線により示している。
 正常取付時には、室外ファン19-2に対応した並列熱交換器14-2に接続された温度検出部51-2が検出する温度が変化するため、検出温度T2’は,検出温度T2よりも低い温度となる(波形W1参照)。このとき、温度検出部51-1が検出する温度に変化はなく、室外ファン19-2をON状態に変化させた後の温度検出部51-2の検出温度T1’は検出温度T1から変化しない(波形W3参照)。
 これに対し、室外ファン19-1と室外ファン19-2を誤取付した場合には、室外ファン19-2は、並列熱交換器14-1に対応するため、温度検出部51-1が検出する温度が変化する。この場合は、蒸発器として機能している並列熱交換器14-1の風量が増加するため、空気による冷媒の加熱性能が向上するため、温度検出部51-1が検知する温度が上昇し、検出温度T1’は検出温度T1よりも高くなる(波形W4参照)。
 したがって、図12に示すステップS204の処理において、誤取付検知部62aは、検出温度T1’が検出温度T1よりも高い場合に、室外ファン(19-1、19-2)の誤取付を検知するようにしてもよい。
 また、ステップS201の処理において、室外ファン19-2をOFF状態にしてステップS203の処理において、ON状態としているが、ステップS201の処理において、室外ファン19-2を回転数の小さい状態で運転させ、ステップS203の処理において、室外ファン19-2の回転数を増加させる変化にしてもよい。
 さらに、ステップS203の処理において、室外ファン19-2をON状態あるいは回転数を増加させる代わりに、室外ファン19-1の回転数を低下させる変化にしてもよい。この場合、誤取付検知部62aは、ステップS204の処理において、検出温度T1’が検出温度T1よりも低くなることを正常取付として判定する、或いは、検出温度T2’が検出温度T2よりも高くなることを誤取付として判定するようにする。
 以上説明したように、本実施形態による空気調和装置100aは、複数の並列熱交換器14のそれぞれに対して空気を送風する複数の送風機(室外ファン19-1及び室外ファン19-2)を備える。誤取付検知部62aは、デフロスト対象の並列熱交換器14と蒸発器として機能させる並列熱交換器14とのいずれか一方に対して送風機(室外ファン19-1又は室外ファン19-2)の風量を変化させた前後の検出温度の変化に基づいて、複数の送風機(室外ファン19-1及び室外ファン19-2)の誤取付を検知する。
 これにより、本実施形態による空気調和装置100aは、複数の送風機(室外ファン19-1及び室外ファン19-2)の誤取付を適切に検知することができる。
 また、本実施形態では、運転制御部61aは、蒸発器として機能させる並列熱交換器14(例えば、並列熱交換器14-1)に対応する送風機(室外ファン19-1)の風量を変化させずに、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)に対応する送風機(室外ファン19-2)の風量を増加させる。誤取付検知部62aは、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)における風量を増加させた後の検出温度T2’が、風量を増加させる前の検出温度T2から低下しない場合に、複数の送風機(室外ファン19-1及び室外ファン19-2)が誤取付されていることを検知する。
 これにより、本実施形態による空気調和装置100aは、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)に対応する送風機(室外ファン19-2)の風量を増加させることにより、複数の送風機(室外ファン19-1及び室外ファン19-2)の誤取付を適切に検知することができる。
 また、本実施形態では、運転制御部61aは、蒸発器として機能させる並列熱交換器14(例えば、並列熱交換器14-1)に対応する送風機(室外ファン19-1)の風量を変化させずに、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)に対応する送風機(室外ファン19-2)の風量を増加させる。誤取付検知部62aは、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)における風量を増加させた後の検出温度T1’が、風量を増加させる前の検出温度T1より上昇した場合に、複数の送風機(室外ファン19-1及び室外ファン19-2)が誤取付されていることを検知する。
 これにより、本実施形態による空気調和装置100aは、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)に対応する送風機(室外ファン19-2)の風量を増加させることにより、複数の送風機(室外ファン19-1及び室外ファン19-2)の誤取付を適切に検知することができる。
 また、本実施形態では、運転制御部61aは、暖房デフロスト運転モードにおいて、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)に対する風量が、蒸発器として機能させる並列熱交換器14(例えば、並列熱交換器14-1)に対する風量より小さくなるように、複数の送風機(室外ファン19-1及び室外ファン19-2)を制御する。
 これにより、本実施形態による空気調和装置100aは、デフロスト対象の並列熱交換器14(例えば、並列熱交換器14-2)における風量が低下するため、デフロストに使用する高温の冷媒から空気への放熱を抑え、冷媒の熱を効率よく霜に伝えることができる。よって、本実施形態による空気調和装置100aは、暖房デフロスト運転モードにおいて、室外ファン19-1及び室外ファン19-2を個別に運転することにより、デフロスト性能を向上させることができる。
 [第3の実施形態]
 次に、図面を参照して、本開示の第3の実施形態による空気調和装置100bについて説明する。
 図14は、第3の実施形態による空気調和装置100bの一例を示す構成図である。
 図14に示すように、空気調和装置100bは、室外機10bと、室内機20と、制御装置60bとを備える。
 なお、図14において、上述した図1又は図11と同一の構成には、同一の符号を付与して、ここでの説明を省略する。以下、空気調和装置100bが、第1の実施形態及び第2の実施形態と異なる部分を中心に説明する。
 室外機10bは、圧縮機11と、冷暖切替部12と、第1減圧装置13と、複数の並列熱交換器14(14-1、14-2)と、レシーバ15と、第3減圧装置16と、複数の第2減圧装置17(17-1、17-2)と、流量調整装置18と、複数の室外ファン(19-1、19-2)と、流路切替部40aと、複数の温度検出部51(51-1、51-2)及び複数の温度検出部52(52-1、52-2)とを備える。室外機10bは、流路切替部40aの構成が異なる点と、複数の温度検出部52(52-1、52-2)を備える点とが、上述した第2の実施形態の室外機10aと異なる。
 なお、本実施形態において、温度検出部51-1と温度検出部52-1とを並列熱交換器14-1における冷媒の温度を検出する温度検出部50-1とし、温度検出部51-2と温度検出部52-2とを並列熱交換器14-2における冷媒の温度を検出する温度検出部50-2として説明する。
 また、本実施形態において、温度検出部51-1及び温度検出部51-2は、第1温度検出部の一例であり、温度検出部52-1及び温度検出部52-2は、第2温度検出部の一例である。また、温度検出部51-1と温度検出部51-2とは、空気調和装置100bが備える任意の第1温度検出部を示す場合、又は特に区別しない場合には、温度検出部51と記載する。
 また、温度検出部52-1と温度検出部52-2とは、空気調和装置100bが備える任意の第2温度検出部を示す場合、又は特に区別しない場合には、温度検出部52と記載する。また、温度検出部50-1と温度検出部50-2とは、空気調和装置100bが備える任意の温度検出部を示す場合、又は特に区別しない場合には、温度検出部50と記載する。
 温度検出部51は、並列熱交換器14の冷媒の飽和温度を、第1検出温度として検出する。すなわち、温度検出部51-1は、並列熱交換器14-1の冷媒の飽和温度を、検出温度T11として検出する。また、温度検出部51-2は、並列熱交換器14-2の冷媒の飽和温度を、検出温度T12として検出する。
 温度検出部52は、並列熱交換器14のバイパス配管37とは反対側に接続された配管(第1接続配管34)に配置され、デフロスト対象の並列熱交換器14の出口における冷媒の温度を、第2検出温度として検出する。すなわち、温度検出部52-1は、並列熱交換器14-2の第1接続配管34-1部分における冷媒の温度を、検出温度T21として検出する。また、温度検出部52-2は、並列熱交換器14-2の第1接続配管34-2部分における冷媒の温度を、検出温度T22として検出する。なお、温度検出部52は、並列熱交換器14をデフロスト対象とした場合の出口の冷媒温度が検知できればよく、第1接続配管34に限らず、並列熱交換器14の出口付近に配置されてもよい。
 流路切替部40aは、2つの並列熱交換器14のそれぞれに接続され、2つの並列熱交換器14のうちのいずれかの並列熱交換器14を、デフロスト対象に選択する。流路切替部40aは、圧縮機11の吐出側(冷暖切替部12)と、2つの並列熱交換器14(14-1、14-2)との間の第2接続配管35(35-1、35-2)に配置されている。
 流路切替部40aは、切替装置43-1と、切替装置43-2とを備える。
 切替装置43-1は、例えば、三方弁又は四方弁である。切替装置43-1は、並列熱交換器14-1を吸入配管36に接続するか、バイパス配管37に接続するかを切り替える。
 切替装置43-2は、例えば、三方弁又は四方弁である。切替装置43-2は、並列熱交換器14-2を吸入配管36に接続するか、バイパス配管37に接続するかを切り替える。
 なお、本実施形態において、切替装置43-1と切替装置43-2とは、空気調和装置100bが備える任意の切替装置を示す場合、又は特に区別しない場合には、切替装置43と記載する。
 制御装置60bは、例えば、CPUを含み、各種制御機器の動作、及び運転モードの切り替えを制御する。制御装置60bには、例えば、室外機10b及び室内機20に設けられた制御基板、及び室内に接地されたリモコン、等が含まれる。
 また、制御装置60bは、運転制御部61bと、誤取付検知部62bと、報知出力部63とを備える。
 運転制御部61bの基本的な機能は、上述した第2の実施形態の運転制御部61aと同様である。運転制御部61bは、流路切替部40aを操作して、暖房通常運転モードと、暖房デフロスト運転モードとを切り替える。運転制御部61bは、切替装置43-1を操作して、並列熱交換器14-1を吸入配管36に接続するか、バイパス配管37に接続するかを切り替える。また、運転制御部61bは、切替装置43-2を操作して、並列熱交換器14-2を吸入配管36に接続するか、バイパス配管37に接続するかを切り替える。
 ここで、図15を参照して、空気調和装置100bの各運転モードに対応する冷暖切替部12及び流路切替部40aの状態について説明する。
 図15は、本実施形態による空気調和装置100bの運転モードに対応する冷暖切替部12及び流路切替部40aの状態を示す図である。
 図15において、流路切替部40aの切替装置43-1及び切替装置43-2は、“主回路”である状態が、並列熱交換器14を吸入配管36に接続した状態を示し、“バイパス”である状態が、並列熱交換器14をバイパス配管37に接続した状態を示している。
 例えば、運転モードが冷房運転モードである場合に、運転制御部61bは、冷暖切替部12を“切替A”にし、切替装置43-1及び切替装置43-2を“主回路”にすることを示している。
 また、例えば、運転モードが暖房通常運転モードである場合に、運転制御部61bは、冷暖切替部12を“切替B”にし、切替装置43-1及び切替装置43-2を“主回路”にすることを示している。
 また、例えば、運転モードが暖房デフロスト運転モードであり、経路1側をデフロスト対象に選択した場合(“経路1側デフロスト”である場合)に、運転制御部61bは、冷暖切替部12を“切替B”にすることを示している。また、この場合、運転制御部61bは、切替装置43-1を“バイパス”にし、切替装置43-2を“主回路”にすることを示している。
 また、例えば、運転モードが暖房デフロスト運転モードであり、経路2側をデフロスト対象に選択した場合(“経路2側デフロスト”である場合)に、運転制御部61bは、冷暖切替部12を“切替B”にすることを示している。また、この場合、運転制御部61bは、切替装置43-1を“主回路”にし、切替装置43-2を“バイパス”にすることを示している。
 誤取付検知部62bの基本的な機能は、上述した第2の実施形態の誤取付検知部62aと同様である。誤取付検知部62bは、デフロストに関連する取付部品の誤取付を検知する。なお、本実施形態において、デフロストに関連する取付部品には、例えば、流路切替部40a、温度検出部51、温度検出部52、及び室外ファン(19-1、19-2)が含まれる。
 また、誤取付検知部62bは、例えば、デフロスト対象の並列熱交換器14-2における検出温度T12及び検出温度T22と、蒸発器として機能させる並列熱交換器14-1における検出温度T11及び検出温度T22との4つの検出温度の組み合わせに基づいて、流路切替部40a、温度検出部51、温度検出部52、及び室外ファン(19-1、19-2)のいずれかが誤取付されていることを判定する。
 次に、図面を参照して、本実施形態による空気調和装置100bの動作について説明する。
 図16は、本実施形態による空気調和装置100bの誤取付検知処理の一例を示すフローチャートである。
 空気調和装置100bは、誤取付検知処理の開始条件が成立した場合に、図16に示すような誤取付検知処理を実行する。
 図16に示すように、制御装置60bの運転制御部61bは、まず、並列熱交換器14-2をデフロスト対象に選択した暖房デフロスト運転で動作させる(ステップS301)。すなわち、運転制御部61bは、図15に示すように、冷暖切替部12を“切替B”にするとともに、切替装置43-1を“主回路”にし、切替装置43-2を“バイパス”にする。また、運転制御部61bは、流量調整装置18を開き、圧縮機11の動作を開始させる。また、運転制御部61bは、室外ファン19-1をON状態(作動状態)にし、室外ファン19-2をOFF状態(停止状態)にする。
 次に、制御装置60bの誤取付検知部62bは、検出温度T12が、検出温度T11よりも高いか否かを判定する(ステップS302)。誤取付検知部62bは、温度検出部51-2が検出した検出温度T12が、温度検出部51-1が検出した検出温度T11より高いか否かを判定する。誤取付検知部62bは、検出温度T12が、検出温度T11よりも高い場合(ステップS302:YES)に、処理をステップS303に進める。また、誤取付検知部62bは、検出温度T12が、検出温度T11以下である場合(ステップS302:NO)に、処理をステップS308に進める。
 ステップS303において、誤取付検知部62bは、検出温度T22が、検出温度T21よりも高いか否かを判定する。誤取付検知部62bは、温度検出部52-2が検出した検出温度T22が、温度検出部52-1が検出した検出温度T21より高いか否かを判定する。誤取付検知部62bは、検出温度T22が、検出温度T21よりも高い場合(ステップS303:YES)に、処理をステップS304に進める。また、誤取付検知部62bは、検出温度T22が、検出温度T21以下である場合(ステップS303:NO)に、処理をステップS307に進める。
 ステップS304において、誤取付検知部62bは、検出温度T12が、検出温度T22よりも高いか否かを判定する。誤取付検知部62bは、温度検出部51-2が検出した検出温度T12が、温度検出部52-2が検出した検出温度T22より高いか否かを判定する。誤取付検知部62bは、検出温度T12が、検出温度T22よりも高い場合(ステップS304:YES)に、処理をステップS305に進める。また、誤取付検知部62bは、検出温度T12が、検出温度T22以下である場合(ステップS304:NO)に、処理をステップS306に進める。
 ステップS305において、誤取付検知部62bは、室外ファン(19-1、19-2)の誤取付であることを外部に報知する。この場合、誤取付検知部62bは、室外ファン(19-1,19-2)の誤取付であることを示す報知情報を、報知出力部63に出力させて、室外ファン(19-1、19-2)の誤取付を外部に報知する。ステップS305の処理後に、誤取付検知部62bは、誤取付検知処理を終了する。
 また、ステップS306において、誤取付検知部62bは、正常取付であることを外部に報知する。この場合、誤取付検知部62bは、流路切替部40a、温度検出部51、温度検出部52、及び室外ファン(19-1、19-2)の取付が正常であることを示す報知情報を、報知出力部63に出力させて、正常取付であることを外部に報知する。ステップS306の処理後に、誤取付検知部62bは、誤取付検知処理を終了する。
 また、ステップS307において、誤取付検知部62bは、温度検出部51の誤取付であることを外部に報知する。この場合、誤取付検知部62bは、温度検出部51(51-1、51-2)の誤取付であることを示す報知情報を、報知出力部63に出力させて、温度検出部51(51-1、51-2)の誤取付を外部に報知する。ステップS307の処理後に、誤取付検知部62bは、誤取付検知処理を終了する。
 また、ステップS308において、誤取付検知部62bは、検出温度T22が、検出温度T21よりも高いか否かを判定する。誤取付検知部62bは、温度検出部52-2が検出した検出温度T22が、温度検出部52-1が検出した検出温度T21より高いか否かを判定する。誤取付検知部62bは、検出温度T22が、検出温度T21よりも高い場合(ステップS308:YES)に、処理をステップS309に進める。また、誤取付検知部62bは、検出温度T22が、検出温度T21以下である場合(ステップS308:NO)に、処理をステップS310に進める。
 また、ステップS309において、誤取付検知部62bは、温度検出部52の誤取付であることを外部に報知する。この場合、誤取付検知部62bは、温度検出部52(52-1、52-2)の誤取付であることを示す報知情報を、報知出力部63に出力させて、温度検出部52(52-1、52-2)の誤取付を外部に報知する。ステップS309の処理後に、誤取付検知部62bは、誤取付検知処理を終了する。
 また、ステップS310において、誤取付検知部62bは、流路切替部40aの誤取付であることを外部に報知する。この場合、誤取付検知部62bは、流路切替部40a(切替装置43-1、切替装置43-1)の誤取付であることを示す報知情報を、報知出力部63に出力させて、流路切替部40a(切替装置43-1、切替装置43-1)の誤取付を外部に報知する。ステップS310の処理後に、誤取付検知部62bは、誤取付検知処理を終了する。
 ここで、上述したステップS302~ステップS304における誤取付の判定について詳細に説明する。
 まず、流路切替部40a(切替装置43-1、切替装置43-1)と、温度検出部51(51-1、51-2)と、温度検出部52(52-1、52-2)との取付けが正常な場合は、温度検出部51-1及び温度検出部52-1は、蒸発器として機能している並列熱交換器14-1の温度を検出するため、検出温度T11及び検出温度T21は低温になる。
 また、温度検出部52-1及び温度検出部52-2は、吐出ガスが流入している並列熱交換器14-2の温度を検出するため、検出温度T21及び検出温度T22は高温になる。このことから、誤取付検知部62bは、ステップS302において、検出温度T12が検出温度T11よりも高いことにより、流路切替部40aと温度検出部51の取付けが正常であることを確認できる。また、誤取付検知部62bは、ステップS303において、検出温度T22が検出温度T21よりも高いことにより、温度検出部52の取付けが正常であることを確認できる。
 また、ステップS303において、検出温度T22が検出温度T21以下である場合には、誤取付検知部62bは、検出温度T22が蒸発器である並列熱交換器14-1の温度を検出していると判定して、温度検出部52が誤取付されていることを確認できる。
 また、室外ファン19-1及び室外ファン19-2が正常に取り付けられている場合、並列熱交換器14-2に流入した吐出ガスは空気で冷却はされるが、並列熱交換器14-2に対応する室外ファン19-2がOFF状態となっているため、冷却性能は低く、過冷却までは到達しない。このため、検出温度T22は、検出温度T12と同じ飽和温度となる。
 また、室外ファン19-1及び室外ファン19-2が誤取付されている場合、並列熱交換器14-2に対応する室外ファン19-1がON状態となるため、冷却性能が向上し、過冷却まで到達する。これにより、検出温度T22は過冷却温度を検出するため、飽和温度を検出している検出温度T12よりも低くなる。このため、誤取付検知部62bは、ステップS304において、検出温度T12と検出温度T22を比較することで、室外ファン19-1及び室外ファン19-2の誤取付を検知することができる。
 また、誤取付検知部62bは、ステップS302において、検出温度T12が検出温度T11以下である場合に、切替装置43-1及び切替装置43-2と、温度検出部51-1及び温度検出部51-2とのどちらかが誤取付されている。そのため、誤取付検知部62bは、ステップS308において、検出温度T21と検出温度T22とを比較し、検出温度T22が検出温度T21よりも高い場合に、温度検出部51(51-1、51-2)の誤取付であると検知することができる。
 また、誤取付検知部62bは、ステップS310において、検出温度T22が検出温度T21以下である場合に、流路切替部40a(切替装置43-1、切替装置43-1)の誤取付を検知することができる。
 また、温度検出部51(51-1、51-2)が誤取付されている場合、並列熱交換器14-1は、蒸発器として機能し、並列熱交換器14-2に吐出ガスが流入する。そのため、並列熱交換器14-1に接続されている温度検出部51-2は、低温を検出し、並列熱交換器14-2に接続されている温度検出部51-1は、高温を検出する。
 また、温度検出部52(52-1、52-2)が正常取付けである場合、並列熱交換器14-1に接続されている温度検出部52-1は、低温を検出し、並列熱交換器14-2に接続されている温度検出部52-2は、高温を検出する。したがって、誤取付検知部62bは、ステップS302において、検出温度T12が検出温度T11以下であり、且つ、ステップS308において、検出温度T22が検出温度T21よりも高いことを判定することで、温度検出部51(51-1、51-2)の誤取付を検知することができる。
 また、流路切替部40a(切替装置43-1、切替装置43-1)が誤取付されている場合、並列熱交換器14-1に吐出ガスが流入し、並列熱交換器14-2が蒸発器として機能する。そのため、並列熱交換器14-1に接続されている温度検出部51-1及び温度検出部52-1は、高温を検出し、並列熱交換器14-2に接続されている温度検出部51-2及び温度検出部52-2は、低温を検出する。
 したがって、誤取付検知部62bは、ステップS302において、検出温度T12が検出温度T11以下であり、且つ、ステップS308において、検出温度T22が検出温度T21以下であることを判定することで、流路切替部40a(切替装置43-1、切替装置43-1)の誤取付を検知することができる。
 以上説明したように、本実施形態による空気調和装置100bは、複数の並列熱交換器14のそれぞれの冷媒の温度を検出する温度検出部50と、運転制御部61bと、誤取付検知部62bとを備える。温度検出部50には、温度検出部51(第1温度検出部)と、温度検出部52(第2温度検出部)とが含まれる。温度検出部51は、並列熱交換器14の冷媒の飽和温度を、第1検出温度として検出する。温度検出部52は、並列熱交換器14のバイパス配管37とは反対側に接続された配管に配置され、デフロスト対象の並列熱交換器14の出口における冷媒の温度を、第2検出温度として検出する。誤取付検知部62bは、デフロスト対象の並列熱交換器14における第1検出温度及び第2検出温度と、蒸発器として機能させる並列熱交換器14における第1検出温度及び第2検出温度との4つの検出温度の組み合わせに基づいて、流路切替部40、温度検出部51、温度検出部52、及び複数の送風機(室外ファン19-1及び室外ファン19-2)のいずれかが誤取付されていることを判定する。すなわち、誤取付検知部62bは、例えば、デフロスト対象の並列熱交換器14-2の検出温度T21及び検出温度T22と、蒸発器として機能させる並列熱交換器14-1の検出温度T11及び検出温度T12との組み合わせに基づいて、流路切替部40、温度検出部51、温度検出部52、及び複数の送風機(室外ファン19-1及び室外ファン19-2)のいずれかが誤取付されていることを判定する。
 これにより、本実施形態による空気調和装置100bは、流路切替部40、温度検出部51、温度検出部52、及び複数の送風機(室外ファン19-1及び室外ファン19-2)のいずれかの誤取付を適切に検知することができる。よって、本実施形態による空気調和装置100bは、デフロストに関連する取付部品の誤取付を適切に検知し、室内機20の暖房を停止させずにデフロストを正常に行うことができる。
 なお、本開示は、上記の各実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で変更可能である。
 例えば、上記の各実施形態において、主回路RCに使用される冷媒は、フロン冷媒、又はHFO冷媒である例を説明したが、これに限定されるものではない。主回路RCに使用される冷媒は、例えば、CO冷媒、HC冷媒(例えば、プロパン、イソブタン冷媒)、アンモニア冷媒、及び、これらの冷媒の混合冷媒などであってもよい。また、主回路RCに使用される冷媒は、蒸気圧縮式のヒートポンプに用いられる冷媒であってもよい。
 また、上記の各実施形態において、空気調和装置100(100a、100b)は、1台の室外機10(10a、10b)に、1台の室内機20を接続した例について説明したが、これに限定されるものではない。空気調和装置100(100a、100b)は、例えば、室内機20を2台以上並列に接続した構成であってもよいし、2台以上の室外機10(10a、10b)を並列に接続してもよい。また、空気調和装置100(100a、100b)は、室内機20が2台以上である場合に、延長配管を3本並列に接続したり、室内機20側で切替装置を設けたりすることで、それぞれの室内機が冷房、暖房を選択する冷暖同時運転ができるようにした冷媒回路構成であってもよい。
また、上記の各実施形態において、空気調和装置100(100a、100b)は、レシーバ15と第3減圧装置16とを備える例を説明したが、レシーバ15と第3減圧装置16を備えない構成であってもよい。また、室外機10(10a、10b)が、第1減圧装置13を備える例を説明したが、これに限定されるものではなく、第1減圧装置13は、室外機10(10a、10b)の外部に配置されてもよい。例えば、第1減圧装置13は、室内機20の第2延長配管33と接続する配管に配置するようにしてもよい。
 また、上記の各実施形態において、並列熱交換器14(14-1、14-2)は、図2に示す構造に限定されるものではなく、他の構造であってもよい。例えば、並列熱交換器14-1及び並列熱交換器14-2は、フィン14bに熱漏洩を低減するような機構(例えば、フィンに切欠き、もしくはスリットを設けるなど)を持たせたり、並列熱交換器14-1及び並列熱交換器14-2の間に高温の冷媒を流すような伝熱管を設けたりしてもよい。並列熱交換器14-1及び並列熱交換器14-2は、フィン14bの分割や熱漏洩を低減する機構にし、高温冷媒を流す伝熱管を設けることによって、デフロスト対象の並列熱交換器14から蒸発器として機能している並列熱交換器14への熱漏洩を抑え、熱漏洩によって分割の境目でデフロストし難くなることを抑制することができる。
 また、上記の各実施形態において、室外機10(10a、10b)が、2つの並列熱交換器14を備える例を説明したが、3つ以上の複数の並列熱交換器14を備えるようにしてもよい。
 また、上記の各実施形態において、室外機10(10a、10b)が、流量調整装置18を備える例を説明したが、流量調整装置18を備えない構成であってもよい。また、流量調整装置18を備えない場合には、流路切替部40の第2開閉装置42-1及び第2開閉装置42-2、又は流路切替部40aの切替装置43-1及び切替装置43-2が、流量調整装置18の機能を備えるようにしてもよい。
 また、上記の第3の実施形態において、空気調和装置100bは、流路切替部40、温度検出部51、温度検出部52、及び複数の送風機(室外ファン19-1及び室外ファン19-2)のいずれかの誤取付を適切に検知する例を説明したが、これに限定されるものではない。空気調和装置100bは、検出温度T11、検出温度T12、検出温度T21、検出温度T22の4つの温度やそれぞれの温度差の大小関係の組合せを用いて、流路切替部40、温度検出部51、温度検出部52、及び複数の送風機(室外ファン19-1及び室外ファン19-2)のうちいずれか二つ以上が誤取付されている場合や、温度検出部51と温度検出部52とが誤取付されている場合についても検知するようにしてもよい。
 また、上記の第3の実施形態において、空気調和装置100(100a、100b)は、冷房運転と、暖房運転とを切り替える例に説明したが、これに限定されるものではない。空気調和装置100(100a、100b)は、冷暖同時運転が可能な回路構成をそなえるものであってもよいし、冷暖切替部12を省略し、暖房通常運転と暖房デフロスト運転のみを実行するようにしてもよい。
 なお、上述の空気調和装置100(100a、100b)は内部に、コンピュータシステムを有している。そして、上述した誤取付検知処理の処理過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 10,10a,10b…室外機、11…圧縮機、12…冷暖切替部、13…第1減圧装置、14,14-1,14-2…並列熱交換器、15…レシーバ、16…第3減圧装置、17,17-1,17-2…第2減圧装置、18…流量調整装置、19,19-1,19-2…室外ファン、20…室内機、21…室内熱交換器、22…室内ファン、31…吐出配管、32…第1延長配管、33…第2延長配管、34,34-1,34-2…第1接続配管、35,35-1,35-2…第2接続配管、36…吸入配管、37…バイパス配管、40,40a…流路切替部、41-1,41-2…第1開閉装置、42-1,42-2…第2開閉装置、43-1,43-2…切替装置、50,51,51-1,51-2,52-1,52-2…温度検出部、60…制御装置、61,61a,61b…運転制御部、62,62a,62b…誤取付検知部、63…報知出力部、100,100a,100b…空気調和装置、RC…主回路

Claims (8)

  1.  圧縮機と、室内熱交換器と、減圧装置と、互いに並列に接続された複数の並列熱交換器とが、配管により接続され、冷媒が循環する主回路と、
     前記複数の並列熱交換器のそれぞれに接続され、前記複数の並列熱交換器のうちの一部の並列熱交換器を、並列熱交換器に付着した霜を融かすデフロストの対象であるデフロスト対象に選択する流路切替部と、
     前記圧縮機が吐出した冷媒の一部を分岐し、前記流路切替部が前記デフロスト対象に選択した前記並列熱交換器に流入させるバイパス配管と、
     前記複数の並列熱交換器のそれぞれの冷媒の温度を検出する温度検出部と、
     前記流路切替部を操作して、前記複数の並列熱交換器を蒸発器として機能させる暖房通常運転モードと、前記複数の並列熱交換器のうちの一部の並列熱交換器を前記デフロスト対象に選択して前記バイパス配管を経由して前記冷媒の一部を流入させ、前記一部以外の並列熱交換器を蒸発器として機能させる暖房デフロスト運転モードとを切り替える運転制御部と、
     前記温度検出部が検出した前記複数の並列熱交換器における検出温度に基づいて、前記デフロストに関連する取付部品の誤取付を検知する誤取付検知部と
     を備える空気調和装置。
  2.  前記誤取付検知部は、前記暖房デフロスト運転モードに切り替えられた状態において、前記デフロスト対象の並列熱交換器における前記検出温度が、前記蒸発器として機能させる並列熱交換器における前記検出温度以下である場合に、前記流路切替部又は前記温度検出部が誤取付されていることを検知する
     請求項1に記載の空気調和装置。
  3.  前記複数の並列熱交換器のそれぞれに対して空気を送風する複数の送風機を備え、
     前記運転制御部は、前記暖房デフロスト運転モードにおいて、前記デフロスト対象の並列熱交換器に対する風量が、前記蒸発器として機能させる並列熱交換器に対する風量より小さくなるように、前記複数の送風機を制御する
     請求項1又は請求項2に記載の空気調和装置。
  4.  前記誤取付検知部は、前記デフロスト対象の並列熱交換器と前記蒸発器として機能させる並列熱交換器とのいずれか一方に対して前記送風機の風量を変化させた前後の前記検出温度の変化に基づいて、前記複数の送風機の誤取付を検知する
     請求項3に記載の空気調和装置。
  5.  前記誤取付検知部は、前記デフロスト対象の並列熱交換器における前記風量を増加させた後の前記検出温度が、前記風量を増加させる前の検出温度から低下しない場合に、前記複数の送風機が誤取付されていることを検知する
     請求項4に記載の空気調和装置。
  6.  前記温度検出部には、第1温度検出部と、第2温度検出部とが含まれ、
     前記第1温度検出部は、前記並列熱交換器の冷媒の飽和温度を、第1検出温度として検出し、
     前記第2温度検出部は、前記並列熱交換器の前記バイパス配管とは反対側に接続された配管に配置され、前記デフロスト対象の並列熱交換器の出口における冷媒の温度を、第2検出温度として検出し、
     前記誤取付検知部は、前記デフロスト対象の並列熱交換器における前記第1検出温度及び前記第2検出温度と、前記蒸発器として機能させる並列熱交換器における前記第1検出温度及び前記第2検出温度との4つの前記検出温度の組み合わせに基づいて、前記流路切替部、前記第1温度検出部、前記第2温度検出部、及び前記複数の送風機のいずれかが誤取付されていることを判定する
     請求項3に記載の空気調和装置。
  7.  前記誤取付検知部は、前記取付部品の誤取付を検知した場合に、前記取付部品の誤取付の検知結果に基づく報知情報を報知出力部に出力させる
     請求項1から請求項6のいずれか一項に記載の空気調和装置。
  8.  前記誤取付検知部は、前記取付部品の誤取付を検知する処理の開始条件が成立した場合に、前記暖房デフロスト運転モードに切り替えられた状態にして、前記取付部品の誤取付を検知する
     請求項1から請求項7のいずれか一項に記載の空気調和装置。
PCT/JP2021/005332 2021-02-12 2021-02-12 空気調和装置 WO2022172410A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/251,778 US20230408122A1 (en) 2021-02-12 2021-02-12 Air-conditioning device
JP2022581124A JPWO2022172410A1 (ja) 2021-02-12 2021-02-12
DE112021007081.9T DE112021007081T5 (de) 2021-02-12 2021-02-12 Klimaanlage
PCT/JP2021/005332 WO2022172410A1 (ja) 2021-02-12 2021-02-12 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005332 WO2022172410A1 (ja) 2021-02-12 2021-02-12 空気調和装置

Publications (1)

Publication Number Publication Date
WO2022172410A1 true WO2022172410A1 (ja) 2022-08-18

Family

ID=82838548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005332 WO2022172410A1 (ja) 2021-02-12 2021-02-12 空気調和装置

Country Status (4)

Country Link
US (1) US20230408122A1 (ja)
JP (1) JPWO2022172410A1 (ja)
DE (1) DE112021007081T5 (ja)
WO (1) WO2022172410A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288464A (ja) * 1991-03-15 1992-10-13 Mitsubishi Electric Corp 空気調和機
JP2002349927A (ja) * 2001-05-30 2002-12-04 Hitachi Ltd 空気調和機
WO2020121411A1 (ja) * 2018-12-11 2020-06-18 三菱電機株式会社 空気調和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029001B2 (ja) 2006-12-25 2012-09-19 ダイキン工業株式会社 空気調和装置
JP6021940B2 (ja) 2012-11-29 2016-11-09 三菱電機株式会社 空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04288464A (ja) * 1991-03-15 1992-10-13 Mitsubishi Electric Corp 空気調和機
JP2002349927A (ja) * 2001-05-30 2002-12-04 Hitachi Ltd 空気調和機
WO2020121411A1 (ja) * 2018-12-11 2020-06-18 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
DE112021007081T5 (de) 2023-12-07
US20230408122A1 (en) 2023-12-21
JPWO2022172410A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
JP6576552B2 (ja) 空気調和装置
CN107709900B (zh) 制冷循环装置
US10508826B2 (en) Refrigeration cycle apparatus
WO2012066763A1 (ja) 冷凍装置
JPWO2007013382A1 (ja) 冷凍空調装置
WO2007110908A9 (ja) 冷凍空調装置
WO2016113850A1 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
US20130213072A1 (en) Combined air-conditioning and hot-water supply system
JP6661843B1 (ja) 空気調和装置
JP2019184207A (ja) 空気調和装置
JP6257809B2 (ja) 冷凍サイクル装置
JP2015064169A (ja) 温水生成装置
JP6594599B1 (ja) 空気調和装置
WO2022172410A1 (ja) 空気調和装置
JP5506638B2 (ja) 冷凍装置
JP5245510B2 (ja) 空調システム及び空調システムの室外ユニット
JP2002162086A (ja) 空気調和機
JP2006138612A (ja) ヒートポンプシステム
JP7112057B1 (ja) 空気調和装置
JP3513740B2 (ja) 空気調和装置
JPH1144499A (ja) 冷凍サイクル制御装置
US20230056663A1 (en) Refrigeration cycle system
WO2022195727A1 (ja) 冷凍装置の熱源機およびそれを備える冷凍装置
WO2022118841A1 (ja) 冷凍サイクルシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581124

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112021007081

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925661

Country of ref document: EP

Kind code of ref document: A1