WO2022118841A1 - 冷凍サイクルシステム - Google Patents

冷凍サイクルシステム Download PDF

Info

Publication number
WO2022118841A1
WO2022118841A1 PCT/JP2021/043881 JP2021043881W WO2022118841A1 WO 2022118841 A1 WO2022118841 A1 WO 2022118841A1 JP 2021043881 W JP2021043881 W JP 2021043881W WO 2022118841 A1 WO2022118841 A1 WO 2022118841A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
compressor
primary side
secondary side
Prior art date
Application number
PCT/JP2021/043881
Other languages
English (en)
French (fr)
Inventor
悠太 井吉
喜記 山野井
久美子 佐伯
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP21900594.9A priority Critical patent/EP4257891A4/en
Priority to JP2022566935A priority patent/JP7436932B2/ja
Priority to CN202180081056.2A priority patent/CN116601443B/zh
Publication of WO2022118841A1 publication Critical patent/WO2022118841A1/ja
Priority to US18/203,834 priority patent/US20230304709A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/32Expansion valves having flow rate limiting means other than the valve member, e.g. having bypass orifices in the valve body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle

Definitions

  • the present invention relates to a refrigeration cycle system.
  • a dual refrigerating device in which a refrigerant circuit on the primary side and a refrigerant circuit on the secondary side are connected via a cascade heat exchanger has been known.
  • a defrost operation is performed in order to melt the frost adhering to the evaporator of the refrigerant circuit on the primary side during the heating cycle.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2014-109405
  • the water flowing through the water circuit is fed to the secondary side by performing a heating cycle in the refrigerant circuit on the primary side and the refrigerant circuit on the secondary side.
  • a water heating system for heating in a heat exchanger is disclosed.
  • heat is stored in the cascade heat exchanger by stopping the flow of water in the water circuit and the flow of the refrigerant in the refrigerant circuit on the secondary side to operate the refrigerant circuit on the primary side. .. After storing heat in this way, it is said that sufficient frost can be melted by switching the refrigerant circuit on the primary side to the reverse cycle and performing defrost operation.
  • the refrigeration cycle system is a circuit in which the first refrigerant circulates, and includes a first circuit, a second circuit, and a supply unit.
  • the first circuit is a circuit in which the first refrigerant circulates.
  • the first circuit includes a first compressor, a cascade heat exchanger, a first heat exchanger, and a first switching unit.
  • the first switching unit switches the flow path of the first refrigerant.
  • the second circuit is a circuit in which the second refrigerant circulates.
  • the second circuit includes a second compressor, a cascade heat exchanger, and a second heat exchanger.
  • the supply unit supplies a heat medium that exchanges heat with the second refrigerant flowing through the second heat exchanger.
  • the refrigeration cycle system performs the second operation when the first condition is satisfied during the first operation.
  • the refrigeration cycle system performs a third operation after performing a second operation.
  • the first operation the first refrigerant is circulated in the order of the first compressor, the cascade heat exchanger, and the first heat exchanger
  • the second refrigerant is circulated in the order of the second compressor, the second heat exchanger, and the cascade heat exchanger.
  • the supply unit is stopped or the amount of heat medium supplied by the supply unit is reduced to operate the second compressor.
  • the first refrigerant is circulated in the order of the first compressor, the first heat exchanger, and the cascade heat exchanger.
  • the cascade heat exchanger may be one that causes heat exchange between the first refrigerant and the second refrigerant.
  • the second heat exchanger may be one that causes heat exchange between the second refrigerant and the heat medium.
  • the refrigeration cycle system may include a control unit for executing the first operation, the second operation, and the third operation.
  • reducing the supply amount of the heat medium by the supply unit in the second operation may be lower than the supply amount of the heat medium by the supply unit in the first operation.
  • switching between the first operation and the third operation of the flow path through which the first refrigerant flows may be performed by the first switching unit.
  • the first condition is not particularly limited, and is, for example, a condition relating to the occurrence of predetermined frost formation in the first heat exchanger, which is satisfied before the third operation is started. May be.
  • the operating state of the second compressor may be continued from the first operation to the second operation.
  • the second compressor since the second operation is performed before the third operation, the second compressor is operating, the supply unit is stopped, or the supply amount of the heat medium is reduced, so that the second operation is performed.
  • the amount of heat radiated from the second refrigerant in the heat exchanger can be reduced. Therefore, during the third operation, the heat stored in the second circuit during the second operation can be used to melt the frost adhering to the first heat exchanger.
  • the second refrigerant circulates in the order of the second compressor, the second heat exchanger, and the cascade heat exchanger in the second operation.
  • the refrigeration cycle system according to the third aspect is the refrigeration cycle system according to the first aspect, and the second circuit has a second switching unit for switching the flow path of the second refrigerant.
  • the second refrigerant circulates in the order of the second compressor, the cascade heat exchanger, and the second heat exchanger.
  • the refrigeration cycle system according to the fourth aspect is the refrigeration cycle system according to the first aspect, and the second circuit has a bypass circuit and a second switching unit.
  • the bypass circuit connects between the second heat exchanger and the cascade heat exchanger and the suction flow path of the second compressor.
  • the second switching unit switches the flow path of the second refrigerant. In the second operation, at least a part of the second refrigerant that has passed through the cascade heat exchanger flows toward the suction flow path of the second compressor via the bypass circuit.
  • the second operation may be an operation in which the second refrigerant flows from the second compressor toward the cascade heat exchanger.
  • the refrigeration cycle system according to the fifth aspect is the refrigeration cycle system according to any one of the first aspect to the fourth aspect, and in the second operation, the first compressor, the cascade heat exchanger, and the first heat exchanger are ordered in this order. 1 Circulate the refrigerant.
  • the refrigerating cycle system is the pressure of the high-pressure refrigerant of the second refrigerant in the second circuit during the second operation in the refrigerating cycle system according to any one of the first aspect to the fifth aspect.
  • the third operation is performed when the discharge temperature of the second refrigerant discharged from the second compressor satisfies a predetermined condition, or when the second operation is performed for a predetermined time.
  • the refrigeration cycle system according to the seventh aspect is the refrigeration cycle system according to the first aspect, and the second circuit has a bypass circuit.
  • the bypass circuit connects between the second heat exchanger and the cascade heat exchanger and the suction flow path of the second compressor. In the third operation, at least a part of the second refrigerant that has passed through the cascade heat exchanger flows toward the suction flow path of the second compressor via the bypass circuit.
  • the first refrigerant can be heated by the heat of the second refrigerant in the cascade heat exchanger during the third operation. Then, in the first circuit, the first refrigerant thus heated can be further heated by the first compressor and supplied to the first heat exchanger. This makes it possible to efficiently melt the frost adhering to the first heat exchanger.
  • the refrigeration cycle system according to the eighth aspect in the refrigeration cycle system according to the seventh aspect, at least a part of the second refrigerant that has passed through the cascade heat exchanger is sent to the suction flow path of the second compressor via the bypass circuit.
  • the third operation is started by circulating the first refrigerant in the order of the first compressor, the first heat exchanger, and the cascade heat exchanger at the same time as or thereafter when the flow is started.
  • FIG. 1 is a schematic configuration diagram of the refrigeration cycle system 1.
  • FIG. 2 is a schematic functional block configuration diagram of the refrigeration cycle system 1.
  • the refrigeration cycle system 1 is a device used for heating and cooling indoors of buildings and the like by performing a steam compression type refrigeration cycle operation.
  • the refrigeration cycle system 1 has a dual refrigerant circuit including a steam compression type primary side refrigerant circuit 5a (corresponding to the first circuit) and a steam compression type secondary side refrigerant circuit 10 (corresponding to the second circuit). And perform a dual refrigeration cycle.
  • R32 corresponding to the first refrigerant
  • R32 or the like is enclosed in the primary side refrigerant circuit 5a as a refrigerant.
  • carbon dioxide corresponding to the second refrigerant
  • the primary side refrigerant circuit 5a and the secondary side refrigerant circuit 10 are thermally connected via a cascade heat exchanger 35 described later.
  • the refrigeration cycle system 1 is configured by connecting a primary side unit 5, a heat source unit 2, a plurality of branch units 6a, 6b, 6c, and a plurality of utilization units 3a, 3b, 3c to each other via pipes. ing.
  • the primary side unit 5 and the heat source unit 2 are connected by a primary side first connecting pipe 111 and a primary side second connecting pipe 112.
  • the heat source unit 2 and the plurality of branch units 6a, 6b, 6c are connected by three refrigerant connecting pipes, that is, the secondary side second connecting pipe 9, the secondary side first connecting pipe 8, and the secondary side third connecting pipe 7. Has been done.
  • the plurality of branch units 6a, 6b, 6c and the plurality of utilization units 3a, 3b, 3c are connected by the first connection pipes 15a, 15b, 15c and the second connection pipes 16a, 16b, 16c.
  • the primary side unit 5 is one in this embodiment.
  • the heat source unit 2 is one in this embodiment.
  • the plurality of utilization units 3a, 3b, and 3c are the first utilization unit 3a, the second utilization unit 3b, and the third utilization unit 3c.
  • the plurality of branch units 6a, 6b, and 6c are the first branch unit 6a, the second branch unit 6b, and the third branch unit 6c.
  • each of the utilization units 3a, 3b, and 3c can individually perform the cooling operation or the heating operation, and the refrigerant is transferred from the utilization unit that performs the heating operation to the utilization unit that performs the cooling operation. It is configured so that heat can be recovered between the units used by sending it. Specifically, in the present embodiment, heat recovery is performed by performing cooling-based operation or heating-based operation in which cooling operation and heating operation are performed at the same time. Further, in the refrigeration cycle system 1, the heat load of the heat source unit 2 is balanced according to the heat load of the entire plurality of utilization units 3a, 3b, and 3c in consideration of the above heat recovery (cooling main operation and heating main operation). It is configured as follows.
  • the primary side refrigerant circuit 5a includes a primary side compressor 71 (corresponding to the first compressor), a primary side switching mechanism 72, and a primary side heat exchanger 74 (corresponding to the first heat exchanger). ), The primary side expansion valve 76, the first liquid closing valve 108, the primary side first connecting pipe 111, the second liquid closing valve 106, the first connecting pipe 115, and the secondary side refrigerant circuit 10. It has a cascade heat exchanger 35, a second connecting pipe 113, a second gas closing valve 107, a primary side second connecting pipe 112, and a first gas closing valve 109.
  • the primary side compressor 71 is a device for compressing the refrigerant on the primary side. For example, from a displacement type compressor such as a scroll type that can change the operating capacity by controlling the compressor motor 71a with an inverter. Become.
  • the primary side switching mechanism 72 is provided on the suction side of the primary side compressor 71 and the gas side of the primary side flow path 35b of the cascade heat exchanger 35. It becomes the fifth connection state to connect with (see the solid line of the primary side switching mechanism 72 in FIG. 1). Further, when the cascade heat exchanger 35 functions as a radiator of the refrigerant on the primary side, the primary side switching mechanism 72 of the discharge side of the primary side compressor 71 and the primary side flow path 35b of the cascade heat exchanger 35. A sixth connection state is established in which the gas side is connected (see the broken line of the primary side switching mechanism 72 in FIG. 1).
  • the primary side switching mechanism 72 is a device capable of switching the flow path of the refrigerant in the primary side refrigerant circuit 5a, and includes, for example, a four-way switching valve. Then, by changing the switching state of the primary side switching mechanism 72, it is possible to make the cascade heat exchanger 35 function as an evaporator or a radiator of the refrigerant on the primary side.
  • the cascade heat exchanger 35 is a device for allowing heat exchange between a refrigerant such as R32, which is a refrigerant on the primary side, and a refrigerant such as carbon dioxide, which is a refrigerant on the secondary side, without mixing with each other.
  • the cascade heat exchanger 35 comprises, for example, a plate type heat exchanger.
  • the cascade heat exchanger 35 has a secondary side flow path 35a belonging to the secondary side refrigerant circuit 10 and a primary side flow path 35b belonging to the primary side refrigerant circuit 5a.
  • the gas side of the secondary side flow path 35a is connected to the secondary side switching mechanism 22 via the third heat source pipe 25, and the liquid side thereof is connected to the heat source side expansion valve 36 via the fourth heat source pipe 26. ..
  • the gas side of the primary side flow path 35b is compressed on the primary side via a second connection pipe 113, a second gas closing valve 107, a primary side second connecting pipe 112, a first gas closing valve 109, and a primary side switching mechanism 72. It is connected to the machine 71, and its liquid side is connected to the second liquid closing valve 106 via the first connecting pipe 115.
  • the primary side heat exchanger 74 is a device for exchanging heat between the refrigerant on the primary side and the outdoor air.
  • the gas side of the primary side heat exchanger 74 is connected to a pipe extending from the primary side switching mechanism 72.
  • the liquid side of the primary side heat exchanger 74 is connected to the first liquid closing valve 108.
  • the primary side heat exchanger 74 comprises, for example, a fin-and-tube heat exchanger composed of a large number of heat transfer tubes and fins.
  • the primary side expansion valve 76 is provided in a portion between the liquid side of the primary side heat exchanger 74 and the first liquid closing valve 108.
  • the primary side expansion valve 76 is an electric expansion valve capable of adjusting the opening degree, which adjusts the flow rate of the primary side refrigerant flowing through the primary side refrigerant circuit 5a.
  • the primary side first connecting pipe 111 is a pipe connecting the first liquid closing valve 108 and the second liquid closing valve 106, and connects the primary side unit 5 and the heat source unit 2.
  • the primary side second connecting pipe 112 is a pipe connecting the first gas closing valve 109 and the second gas closing valve 107, and connects the primary side unit 5 and the heat source unit 2.
  • the first connection pipe 115 is a pipe that connects the second liquid closing valve 106 and the liquid side of the primary side flow path 35b of the cascade heat exchanger 35, and is provided in the heat source unit 2.
  • the second connection pipe 113 is a pipe that connects the gas side of the primary side flow path 35b of the cascade heat exchanger 35 and the second gas closing valve 107, and is provided in the heat source unit 2.
  • the first gas closing valve 109 is provided between the primary side second connecting pipe 112 and the primary side switching mechanism 72.
  • the secondary refrigerant circuit 10 is configured by connecting a plurality of utilization units 3a, 3b, 3c, a plurality of branch units 6a, 6b, 6c, and a heat source unit 2 to each other. ing.
  • Each utilization unit 3a, 3b, 3c is connected to the corresponding branch units 6a, 6b, 6c on a one-to-one basis.
  • the utilization unit 3a and the branch unit 6a are connected via the first connection pipe 15a and the second connection pipe 16a
  • the utilization unit 3b and the branch unit 6b are connected to the first connection pipe 15b and the second connection pipe.
  • each branch unit 6a, 6b, 6c includes a heat source unit 2, a secondary side third connecting pipe 7, a secondary side first connecting pipe 8, and a secondary side second connecting pipe 9, which are three connecting pipes. It is connected via.
  • the secondary side third connecting pipe 7, the secondary side first connecting pipe 8, and the secondary side second connecting pipe 9 extending from the heat source unit 2 are each branched into a plurality of branches, and each branch is formed. It is connected to the units 6a, 6b, 6c.
  • a refrigerant in either a gas-liquid two-phase state or a gas state refrigerant flows through the secondary side first connecting pipe 8 depending on the operating state.
  • the refrigerant in the supercritical state flows through the first connecting pipe 8 on the secondary side according to the operating state.
  • a refrigerant in either a gas-liquid two-phase state or a gas-state refrigerant flows through the secondary side second connecting pipe 9, depending on the operating state.
  • a refrigerant in either a gas-liquid two-phase state or a liquid-state refrigerant flows through the secondary side third connecting pipe 7, depending on the operating state.
  • the refrigerant in the supercritical state flows through the secondary side third connecting pipe 7 according to the operating state.
  • the secondary side refrigerant circuit 10 is configured by connecting the heat source circuit 12, the branch circuits 14a, 14b, 14c, and the utilization circuits 13a, 13b, 13c to each other.
  • the heat source circuit 12 mainly includes a secondary side compressor 21 (corresponding to a second compressor), a secondary side switching mechanism 22 (corresponding to a second switching unit), a first heat source pipe 28, and a second heat source pipe. 29, the suction flow path 23, the discharge flow path 24, the third heat source pipe 25, the fourth heat source pipe 26, the fifth heat source pipe 27, the cascade heat exchanger 35, and the heat source side expansion valve 36.
  • the secondary side compressor 21 is a device for compressing the refrigerant on the secondary side.
  • positive displacement compression such as a scroll type capable of varying the operating capacity by controlling the compressor motor 21a with an inverter. It consists of a machine.
  • the secondary compressor 21 is controlled so that the larger the load, the larger the operating capacity, depending on the load during operation.
  • the secondary side switching mechanism 22 is a mechanism capable of switching the connection state of the secondary side refrigerant circuit 10, particularly the flow path of the refrigerant in the heat source circuit 12.
  • the secondary side switching mechanism 22 is configured by providing four switching valves 22a, 22b, 22c, and 22d, which are two-way valves, side by side in an annular flow path.
  • the secondary side switching mechanism 22 instead of this, a combination of a plurality of three-way switching valves may be used.
  • the secondary side switching mechanism 22 is a flow that connects the first switching valve 22a provided in the flow path connecting the discharge flow path 24 and the third heat source pipe 25, and the discharge flow path 24 and the first heat source pipe 28.
  • the second switching valve 22b provided in the path, the third switching valve 22c provided in the flow path connecting the suction flow path 23 and the third heat source pipe 25, the suction flow path 23, and the first heat source pipe 28. It has a fourth switching valve 22d provided in the flow path connecting the two.
  • the first switching valve 22a, the second switching valve 22b, the third switching valve 22c, and the fourth switching valve 22d are solenoid valves that can switch between an open state and a closed state, respectively.
  • the secondary side switching mechanism 22 keeps the first switching valve 22a open and cascade heat with the discharge side of the secondary compressor 21.
  • the first connection state is set in which the third switching valve 22c is closed while connecting to the gas side of the secondary side flow path 35a of the exchanger 35.
  • the secondary side switching mechanism 22 opens the third switching valve 22c to the suction side of the secondary compressor 21.
  • the second connection state is set so that the first switching valve 22a is closed while connecting to the gas side of the secondary side flow path 35a of the cascade heat exchanger 35.
  • the secondary side switching mechanism 22 sends the secondary side refrigerant discharged from the secondary side compressor 21 to the secondary side first connecting pipe 8, the second switching valve 22b is opened. While connecting the discharge side of the secondary side compressor 21 and the secondary side first connecting pipe 8, the fourth switching valve 22d is closed in the third connection state. Further, when the refrigerant flowing through the secondary side first connecting pipe 8 is sucked into the secondary side compressor 21, the secondary side switching mechanism 22 keeps the fourth switching valve 22d open and makes the secondary side first contact. While connecting the pipe 8 and the suction side of the secondary compressor 21, the second switching valve 22b is closed in the fourth connection state.
  • the cascade heat exchanger 35 causes heat exchange between the refrigerant such as R32 which is the primary side refrigerant and the refrigerant such as carbon dioxide which is the secondary side refrigerant without mixing with each other. It is a device for.
  • the cascade heat exchanger 35 includes a secondary side flow path 35a through which the secondary side refrigerant of the secondary side refrigerant circuit 10 flows, and a primary side flow path 35b through which the primary side refrigerant of the primary side refrigerant circuit 5a flows. Is shared by the primary side unit 5 and the heat source unit 2.
  • the cascade heat exchanger 35 is arranged inside the heat source casing (not shown) of the heat source unit 2.
  • the gas side of the primary side flow path 35b of the cascade heat exchanger 35 extends to the primary side second connecting pipe 112 via the second connecting pipe 113 and the second gas closing valve 107.
  • the liquid side of the primary side flow path 35b of the cascade heat exchanger 35 extends through the first connecting pipe 115 and the second liquid closing valve 106 to the primary side first connecting pipe 111 outside the heat source casing (not shown).
  • the heat source side expansion valve 36 is an electric expansion valve connected to the liquid side of the cascade heat exchanger 35 and capable of adjusting the opening degree in order to adjust the flow rate of the refrigerant on the secondary side flowing through the cascade heat exchanger 35. Is.
  • the heat source side expansion valve 36 is provided in the fourth heat source pipe 26.
  • the third closing valve 31, the first closing valve 32, and the second closing valve 33 are valves provided at connection ports with external equipment / piping (specifically, connecting pipes 7, 8 and 9). Specifically, the third closing valve 31 is connected to the secondary side third connecting pipe 7 drawn from the heat source unit 2. The first shutoff valve 32 is connected to the secondary side first connecting pipe 8 drawn from the heat source unit 2. The second shutoff valve 33 is connected to the secondary side second connecting pipe 9 drawn from the heat source unit 2.
  • the first heat source pipe 28 is a refrigerant pipe that connects the first closing valve 32 and the secondary side switching mechanism 22. Specifically, the first heat source pipe 28 connects the first closing valve 32 and the portion of the secondary side switching mechanism 22 between the second switching valve 22b and the fourth switching valve 22d. There is.
  • the suction flow path 23 is a flow path that connects the secondary side switching mechanism 22 and the suction side of the secondary side compressor 21. Specifically, the suction flow path 23 has a portion of the secondary side switching mechanism 22 between the third switching valve 22c and the fourth switching valve 22d, and the suction side of the secondary side compressor 21. You are connected.
  • a secondary accumulator 30 is provided in the middle of the suction flow path 23.
  • the second heat source pipe 29 is a refrigerant pipe that connects the second closing valve 33 and the middle of the suction flow path 23.
  • the second heat source pipe 29 is the portion of the suction flow path 23 between the second switching valve 22b and the fourth switching valve 22d in the secondary side switching mechanism 22, and the secondary side accumulator 30. It is connected to the suction flow path 23 at the connection point which is a portion between and.
  • the discharge flow path 24 is a refrigerant pipe that connects the discharge side of the secondary side compressor 21 and the secondary side switching mechanism 22. Specifically, the discharge flow path 24 has a discharge side of the secondary side compressor 21 and a portion of the secondary side switching mechanism 22 between the first switching valve 22a and the second switching valve 22b. You are connected.
  • the third heat source pipe 25 is a refrigerant pipe that connects the secondary side switching mechanism 22 and the gas side of the cascade heat exchanger 35.
  • the third heat source pipe 25 includes a portion of the secondary side switching mechanism 22 between the first switching valve 22a and the third switching valve 22c and the secondary side flow path in the cascade heat exchanger 35. It is connected to the gas side end of 35a.
  • the fourth heat source pipe 26 has the liquid side of the cascade heat exchanger 35 (the side opposite to the gas side and the side opposite to the side where the secondary side switching mechanism 22 is provided) and the secondary side receiver 45. It is a refrigerant pipe to be connected. Specifically, the fourth heat source pipe 26 connects the liquid side end portion (the end portion on the opposite side to the gas side) of the secondary side flow path 35a in the cascade heat exchanger 35 and the secondary side receiver 45. is doing.
  • the secondary side receiver 45 is a refrigerant container for storing excess refrigerant in the secondary side refrigerant circuit 10.
  • a fourth heat source pipe 26, a fifth heat source pipe 27, and a bypass circuit 46 extend from the secondary receiver 45.
  • the bypass circuit 46 is a refrigerant pipe that connects the gas phase region, which is the upper region inside the secondary receiver 45, and the suction flow path 23. Specifically, the bypass circuit 46 is connected between the secondary side switching mechanism 22 and the secondary side accumulator 30 in the suction flow path 23.
  • the bypass circuit 46 is provided with a bypass expansion valve 46a.
  • the bypass expansion valve 46a is an electric expansion valve capable of adjusting the amount of the refrigerant guided from the inside of the secondary side receiver 45 to the suction side of the secondary side compressor 21 by adjusting the opening degree.
  • the fifth heat source pipe 27 is a refrigerant pipe that connects the secondary side receiver 45 and the third closing valve 31.
  • the supercooling circuit 48 is a refrigerant pipe that connects a part of the fifth heat source pipe 27 and the suction flow path 23. Specifically, the supercooling circuit 48 is connected between the secondary side switching mechanism 22 and the secondary side accumulator 30 in the suction flow path 23. In the present embodiment, the supercooling circuit 48 extends so as to branch from between the secondary receiver 45 and the supercooling heat exchanger 47.
  • the overcooling heat exchanger 47 is a heat exchanger that exchanges heat between the refrigerant flowing through the flow path belonging to the fifth heat source pipe 27 and the refrigerant flowing through the flow path belonging to the supercooling circuit 48.
  • the supercooling circuit 48 in the fifth heat source pipe 27, is provided between the branching portion and the third closing valve 31.
  • the supercooling expansion valve 48a is provided between the branch point from the fifth heat source pipe 27 in the supercooling circuit 48 and the supercooling heat exchanger 47.
  • the supercooling expansion valve 48a supplies a reduced pressure refrigerant to the supercooling heat exchanger 47, and is an electric expansion valve whose opening degree can be adjusted.
  • the secondary side accumulator 30 is a container capable of storing the secondary side refrigerant, and is provided on the suction side of the secondary side compressor 21.
  • the oil separator 34 is provided in the middle of the discharge flow path 24.
  • the oil separator 34 is a device for separating the refrigerating machine oil discharged from the secondary side compressor 21 along with the secondary side refrigerant from the secondary side refrigerant and returning it to the secondary side compressor 21. ..
  • the oil return circuit 40 is provided so as to connect the oil separator 34 and the suction flow path 23.
  • the oil return circuit 40 extends so that the flow path extending from the oil separator 34 joins the portion of the suction flow path 23 between the secondary accumulator 30 and the suction side of the secondary compressor 21. It has an oil return flow path 41.
  • An oil return capillary tube 42 and an oil return on-off valve 44 are provided in the middle of the oil return flow path 41.
  • the oil return on-off valve 44 maintains the open state for a predetermined time and the closed state for a predetermined time when the secondary side compressor 21 is in the operating state in the secondary side refrigerant circuit 10. By repeating this, the amount of refrigerating machine oil returned through the oil return circuit 40 is controlled.
  • the oil return on-off valve 44 is a solenoid valve whose opening and closing is controlled in the present embodiment, the oil return capillary tube 42 may be omitted while being an electric expansion valve capable of adjusting the opening degree.
  • the utilization circuits 13a, 13b, and 13c will be described. However, since the utilization circuits 13b and 13c have the same configuration as the utilization circuit 13a, the utilization circuits 13b and 13c are referred to by reference numerals indicating each part of the utilization circuit 13a. Instead of “a”, the subscript of "b” or “c” is added, and the description of each part is omitted.
  • the utilization circuit 13a mainly has a utilization side heat exchanger 52a (corresponding to a second heat exchanger), a first utilization pipe 57a, a second utilization pipe 56a, and a utilization side expansion valve 51a. ..
  • the user-side heat exchanger 52a is a device for exchanging heat between the refrigerant and the indoor air, and includes, for example, a fin-and-tube heat exchanger composed of a large number of heat transfer tubes and fins.
  • the plurality of user-side heat exchangers 52a, 52b, and 52c are connected in parallel to the secondary side switching mechanism 22, the suction flow path 23, and the cascade heat exchanger 35.
  • One end of the second utilization pipe 56a is connected to the liquid side (the side opposite to the gas side) of the utilization side heat exchanger 52a of the first utilization unit 3a.
  • the other end of the second utilization pipe 56a is connected to the second connection pipe 16a.
  • the above-mentioned utilization side expansion valve 51a is provided in the middle of the second utilization pipe 56a.
  • the user-side expansion valve 51a is an electric expansion valve capable of adjusting the opening degree, which adjusts the flow rate of the refrigerant flowing through the user-side heat exchanger 52a.
  • the utilization side expansion valve 51a is provided in the second utilization pipe 56a.
  • One end of the first utilization pipe 57a is connected to the gas side of the utilization side heat exchanger 52a of the first utilization unit 3a.
  • the first utilization pipe 57a is connected to the side opposite to the utilization side expansion valve 51a side of the utilization side heat exchanger 52a.
  • the other end of the first utilization pipe 57a is connected to the first connection pipe 15a.
  • branch circuits 14a, 14b, and 14c will be described. However, since the branch circuits 14b and 14c have the same configuration as the branch circuits 14a, the branch circuits 14b and 14c are referred to by reference numerals indicating each part of the branch circuits 14a. Instead of “a”, the subscript of "b” or “c” is added, and the description of each part is omitted.
  • the branch circuit 14a mainly has a merging pipe 62a, a first branch pipe 63a, a second branch pipe 64a, a first control valve 66a, a second control valve 67a, and a third branch pipe 61a. ing.
  • One end of the merging pipe 62a is connected to the first connecting pipe 15a.
  • a first branch pipe 63a and a second branch pipe 64a are branched and connected to the other end of the merging pipe 62a.
  • the side of the first branch pipe 63a opposite to the merging pipe 62 side is connected to the secondary side first connecting pipe 8.
  • the first branch pipe 63a is provided with a first control valve 66a that can be opened and closed.
  • the first control valve 66a an electric expansion valve capable of adjusting the opening degree is adopted, but an electromagnetic valve or the like capable of only opening and closing may be adopted.
  • the side of the second branch pipe 64a opposite to the merging pipe 62 side is connected to the secondary side second connecting pipe 9.
  • the second branch pipe 64a is provided with a second control valve 67a that can be opened and closed.
  • the second control valve 67a an electric expansion valve capable of adjusting the opening degree is adopted, but a solenoid valve or the like capable of opening and closing only may be adopted.
  • One end of the third branch pipe 61a is connected to the second connection pipe 16a.
  • the other end of the third branch pipe 61a is connected to the secondary side third connecting pipe 7.
  • the first branch unit 6a can function as follows by opening the first control valve 66a and the second control valve 67a when performing the cooling operation described later.
  • the first branch unit 6a sends the refrigerant flowing into the third branch pipe 61a through the secondary side third connecting pipe 7 to the second connecting pipe 16a.
  • the refrigerant flowing through the second utilization pipe 56a of the first utilization unit 3a through the second connection pipe 16a is sent to the utilization side heat exchanger 52a of the first utilization unit 3a through the utilization side expansion valve 51a.
  • the refrigerant sent to the user-side heat exchanger 52a evaporates by heat exchange with the indoor air, and then flows through the first connection pipe 15a via the first utilization pipe 57a.
  • the refrigerant flowing through the first connecting pipe 15a is sent to the merging pipe 62a of the first branch unit 6a.
  • the refrigerant flowing through the merging pipe 62a branches into the first branch pipe 63a and the second branch pipe 64a and flows.
  • the refrigerant that has passed through the first control valve 66a in the first branch pipe 63a is sent to the secondary side first connecting pipe 8.
  • the refrigerant that has passed through the second control valve 67a in the second branch pipe 64a is sent to the secondary side second connecting pipe 9.
  • the first control valve 66a when the room is cooled in the first utilization unit 3a when the cooling main operation and the heating main operation described later are performed, the first control valve 66a is closed. At the same time, by opening the second control valve 67a, the function can be as follows.
  • the first branch unit 6a sends the refrigerant flowing into the third branch pipe 61a through the secondary side third connecting pipe 7 to the second connecting pipe 16a.
  • the refrigerant flowing through the second utilization pipe 56a of the first utilization unit 3a through the second connection pipe 16a is sent to the utilization side heat exchanger 52a of the first utilization unit 3a through the utilization side expansion valve 51a.
  • the refrigerant sent to the user-side heat exchanger 52a evaporates by heat exchange with the indoor air, and then flows through the first connection pipe 15a via the first utilization pipe 57a.
  • the refrigerant flowing through the first connecting pipe 15a is sent to the merging pipe 62a of the first branch unit 6a.
  • the refrigerant that has flowed through the merging pipe 62a flows into the second branch pipe 64a, passes through the second control valve 67a, and is then sent to the secondary side second connecting pipe 9.
  • the second control valve 67a is opened or closed according to the operating condition as described later, and the first control valve 66a is opened.
  • the first branch unit 6a the refrigerant flowing into the first branch pipe 63a through the secondary side first connecting pipe 8 passes through the first control valve 66a and is sent to the merging pipe 62a.
  • the refrigerant flowing through the merging pipe 62a flows through the first utilization pipe 57a of the utilization unit 3a via the first connection pipe 15a and is sent to the utilization side heat exchanger 52a.
  • the refrigerant sent to the user-side heat exchanger 52a dissipates heat by heat exchange with the indoor air, and then passes through the user-side expansion valve 51a provided in the second utilization pipe 56a.
  • the refrigerant that has passed through the second utilization pipe 56a flows through the third branch pipe 61a of the first branch unit 6a via the second connection pipe 16a, and then is sent to the secondary side third communication pipe 7.
  • the second control valve 67a is closed.
  • the function can be as follows.
  • the refrigerant flowing into the first branch pipe 63a through the secondary side first connecting pipe 8 passes through the first control valve 66a and is sent to the merging pipe 62a.
  • the refrigerant flowing through the merging pipe 62a flows through the first utilization pipe 57a of the utilization unit 3a via the first connection pipe 15a and is sent to the utilization side heat exchanger 52a.
  • the refrigerant sent to the user-side heat exchanger 52a dissipates heat by heat exchange with the indoor air, and then passes through the user-side expansion valve 51a provided in the second utilization pipe 56a.
  • the refrigerant that has passed through the second utilization pipe 56a flows through the third branch pipe 61a of the first branch unit 6a via the second connection pipe 16a, and then is sent to the secondary side third communication pipe 7.
  • Such a function has not only the first branch unit 6a but also the second branch unit 6b and the third branch unit 6c. Therefore, the first branch unit 6a, the second branch unit 6b, and the third branch unit 6c each function as a refrigerant evaporator for each of the user-side heat exchangers 52a, 52b, and 52c. , It is possible to switch individually whether to function as a radiator for the refrigerant.
  • the primary side unit 5 is installed in a space different from the space in which the utilization units 3a, 3b, 3c and the branch units 6a, 6b, 6c are arranged, a rooftop, or the like.
  • the primary side unit 5 includes a part of the above-mentioned primary side refrigerant circuit 5a, a primary side fan 75, various sensors, and a primary side control unit 70 in a primary side casing (not shown). ..
  • the primary side unit 5 includes a primary side compressor 71, a primary side switching mechanism 72, a primary side heat exchanger 74, a primary side expansion valve 76, and a first liquid closing valve as a part of the primary side refrigerant circuit 5a. It has 108 and a first gas shutoff valve 109.
  • the primary side fan 75 is provided in the primary side unit 5, and after guiding outdoor air to the primary side heat exchanger 74 and exchanging heat with the primary side refrigerant flowing through the primary side heat exchanger 74, it is outdoors. Creates an air flow that causes the air to be discharged.
  • the primary fan 75 is driven by the primary fan motor 75a.
  • various sensors are provided on the primary side unit 5. Specifically, the outside air temperature sensor 77 that detects the temperature of the outdoor air before passing through the primary side heat exchanger 74, and the primary side discharge that detects the pressure of the primary side refrigerant discharged from the primary side compressor 71.
  • a side suction temperature sensor 81 and a primary side heat exchange temperature sensor 82 for detecting the temperature of the refrigerant flowing through the primary side heat exchanger 74 are provided.
  • the primary side control unit 70 controls the operations of the units 71 (71a), 72, 75 (75a), and 76 provided in the primary side unit 5.
  • the primary side control unit 70 has a processor such as a CPU or a microcomputer provided for controlling the primary side unit 5 and a memory, and has a control signal or the like between the remote controller (not shown). It has become possible to exchange control signals and the like with the heat source side control unit 20, the branch unit control units 60a, 60b, 60c and the user side control units 50a, 50b, 50c. There is.
  • Heat source unit 2 is installed in a space different from the space in which the utilization units 3a, 3b, 3c and the branch units 6a, 6b, 6c are arranged, a rooftop, or the like.
  • the heat source unit 2 is connected to the branch units 6a, 6b, 6c via the connecting pipes 7, 8 and 9, and constitutes a part of the secondary side refrigerant circuit 10. Further, the heat source unit 2 is connected to the primary side unit 5 via the primary side first connecting pipe 111 and the primary side second connecting pipe 112, and constitutes a part of the primary side refrigerant circuit 5a.
  • the heat source unit 2 mainly includes the above-mentioned heat source circuit 12, various sensors, a heat source side control unit 20, a second liquid closing valve 106 constituting a part of the primary side refrigerant circuit 5a, a first connection pipe 115, and a first.
  • the two connecting pipes 113 and the second gas shutoff valve 107 are provided in a heat source casing (not shown).
  • the heat source unit 2 includes a secondary side suction pressure sensor 37 that detects the pressure of the secondary side refrigerant on the suction side of the secondary side compressor 21, and a secondary side refrigerant on the discharge side of the secondary side compressor 21.
  • the secondary side discharge pressure sensor 38 that detects the pressure of the secondary side
  • the secondary side discharge temperature sensor 39 that detects the temperature of the secondary side refrigerant on the discharge side of the secondary side compressor 21, and the secondary side compressor 21.
  • the secondary side refrigerant flowing between the secondary side suction temperature sensor 88 that detects the temperature of the secondary side refrigerant on the suction side, the secondary side flow path 35a of the cascade heat exchanger 35, and the heat source side expansion valve 36.
  • the bypass circuit temperature sensor 85 that detects the temperature of the secondary side refrigerant flowing downstream of the bypass expansion valve 46a in 46, and the secondary side refrigerant flowing between the overcooling heat exchanger 47 and the third closing valve 31.
  • An overcooling outlet temperature sensor 86 for detecting the temperature of the secondary side, and an overcooling circuit temperature sensor 87 for detecting the temperature of the secondary side refrigerant flowing through the outlet of the overcooling heat exchanger 47 in the overcooling circuit 48 are provided. There is.
  • the heat source side control unit 20 controls the operation of each unit 21 (21a), 22, 36, 44, 46a, 48a provided in the heat source unit 2.
  • the heat source side control unit 20 has a processor and memory such as a CPU and a microcomputer provided for controlling the heat source unit 2, and includes the primary side control unit 70 of the primary side unit 5 and the utilization units 3a and 3b. Control signals and the like can be exchanged with the user-side control units 50a, 50b, 50c of 3c and the branch unit control units 60a, 60b, 60c.
  • Utilization unit 3a, 3b, and 3c are installed in the ceiling of a building or the like by embedding or hanging them, or by hanging them on the wall surface of the room.
  • the utilization units 3a, 3b, and 3c are connected to the heat source unit 2 via the connecting pipes 7, 8, and 9.
  • the utilization units 3a, 3b, and 3c have utilization circuits 13a, 13b, and 13c that form a part of the secondary side refrigerant circuit 10.
  • the configurations of the usage units 3a, 3b, and 3c will be described. Since the second utilization unit 3b and the third utilization unit 3c have the same configuration as the first utilization unit 3a, only the configuration of the first utilization unit 3a will be described here, and the second utilization unit 3b and the third utilization unit 3b will be described. Regarding the configuration of the utilization unit 3c, the subscript "b" or “c” is added instead of the subscript "a" of the code indicating each part of the first utilization unit 3a, and the description of each part is omitted.
  • the first utilization unit 3a mainly has the above-mentioned utilization circuit 13a, an indoor fan 53a (corresponding to a supply unit), a utilization side control unit 50a, and various sensors.
  • the indoor fan 53a has an indoor fan motor 54a.
  • the indoor fan 53a sucks indoor air into the unit, exchanges heat with the refrigerant flowing through the user-side heat exchanger 52a, and then generates an air flow to be supplied to the room as supply air.
  • the indoor fan 53a is driven by the indoor fan motor 54a.
  • the utilization unit 3a is provided with a liquid side temperature sensor 58a that detects the temperature of the refrigerant on the liquid side of the utilization side heat exchanger 52a. Further, the utilization unit 3a is provided with an indoor temperature sensor 55a that detects the indoor temperature, which is the temperature of the air taken in from the room and before passing through the utilization side heat exchanger 52a.
  • the user-side control unit 50a controls the operations of the units 51a and 53a (54a) constituting the utilization unit 3a.
  • the user-side control unit 50a has a processor such as a CPU or a microcomputer provided for controlling the user unit 3a and a memory, and controls signals or the like between the remote controller (not shown). It has become possible to exchange control signals and the like with the heat source side control unit 20, the branch unit control units 60a, 60b, 60c, and the primary side control unit 70 of the primary side unit 5. There is.
  • the second utilization unit 3b has a utilization circuit 13b, an indoor fan 53b, a utilization side control unit 50b, and an indoor fan motor 54b.
  • the third utilization unit 3c includes a utilization circuit 13c, an indoor fan 53c, a utilization side control unit 50c, and an indoor fan motor 54c.
  • Branch unit 6a, 6b, and 6c are installed in a space behind the ceiling in a building or the like.
  • the branch units 6a, 6b, 6c are connected to the utilization units 3a, 3b, and 3c in a one-to-one correspondence.
  • the branch units 6a, 6b, 6c are connected to the heat source unit 2 via the connecting pipes 7, 8 and 9.
  • the configurations of the branch units 6a, 6b, and 6c will be described. Since the second branch unit 6b and the third branch unit 6c have the same configuration as the first branch unit 6a, only the configuration of the first branch unit 6a will be described here, and the second branch unit 6b and the third branch unit 6b and the third branch unit 6b will be described. Regarding the configuration of the branch unit 6c, the subscript "b" or “c” is added instead of the subscript "a" of the code indicating each part of the first branch unit 6a, and the description of each part is omitted.
  • the first branch unit 6a mainly has the above-mentioned branch circuit 14a and the branch unit control unit 60a.
  • the branch unit control unit 60a controls the operations of the units 66a and 67a constituting the branch unit 6a.
  • the branch unit control unit 60a has a processor such as a CPU or a microcomputer provided for controlling the branch unit 6a and a memory, and receives a control signal or the like between the remote controller (not shown). It is possible to exchange control signals and the like with the heat source side control unit 20, the utilization units 3a, 3b, 3c, and the primary side control unit 70 of the primary side unit 5.
  • the second branch unit 6b has a branch circuit 14b and a branch unit control unit 60b.
  • the third branch unit 6c has a branch circuit 14c and a branch unit control unit 60c.
  • Control unit 80 In the refrigeration cycle system 1, the heat source side control unit 20, the user side control unit 50a, 50b, 50c, the branch unit control unit 60a, 60b, 60c, and the primary side control unit 70 are wired or wireless.
  • the control unit 80 is configured by being connected to each other so as to be communicable with each other. Therefore, this control unit 80 includes detection information of various sensors 37, 38, 39, 83, 84, 85, 86, 87, 88, 77, 78, 79, 81, 82, 58a, 58b, 58c and the like and is not shown.
  • the refrigeration cycle operation of the refrigeration cycle system 1 can be mainly divided into a cooling operation, a heating operation, a cooling-based operation, and a heating-based operation.
  • a cooling operation a heating operation
  • a cooling-based operation a cooling-based operation
  • a heating-based operation a heating-based operation.
  • the utilization side heat exchanger functions as an evaporator of the refrigerant
  • the cascade heat exchanger 35 is used as the secondary side refrigerant with respect to the evaporation load of the entire utilization unit. It is a refrigeration cycle operation that functions as a radiator.
  • the utilization side heat exchanger functions as a refrigerant radiator
  • the cascade heat exchanger 35 is used as a secondary side refrigerant evaporator for the heat dissipation load of the entire utilization unit. It is a refrigeration cycle operation that functions as.
  • Cooling-based operation is an operation in which a utilization unit in which the user-side heat exchanger functions as a refrigerant evaporator and a utilization unit in which the user-side heat exchanger functions as a refrigerant radiator are mixed. be.
  • the cascade heat exchanger 35 functions as a radiator of the refrigerant on the secondary side with respect to the evaporation load of the entire utilization unit. It is a cycle operation.
  • the heating-based operation is an operation in which a utilization unit in which the user-side heat exchanger functions as a refrigerant evaporator and a utilization unit in which the user-side heat exchanger functions as a refrigerant radiator are mixed. be.
  • the heating main operation when the heat dissipation load is the main heat load of the entire utilization unit, the cascade heat exchanger 35 functions as an evaporator of the refrigerant on the secondary side with respect to the heat dissipation load of the entire utilization unit. It is a cycle operation.
  • the operation of the refrigeration cycle system 1 including these refrigeration cycle operations is performed by the above-mentioned control unit 80.
  • Cooling operation for example, all of the heat exchangers 52a, 52b, 52c on the user side of the utilization units 3a, 3b, and 3c function as refrigerant evaporators, and the cascade heat exchanger 35 is operated. Operates to function as a radiator for the refrigerant on the secondary side.
  • the primary side refrigerant circuit 5a and the secondary side refrigerant circuit 10 of the refrigeration cycle system 1 are configured as shown in FIG.
  • the arrow attached to the primary side refrigerant circuit 5a and the arrow attached to the secondary side refrigerant circuit 10 in FIG. 3 indicate the flow of the refrigerant during the cooling operation.
  • the cascade heat exchanger 35 is made to function as an evaporator of the refrigerant on the primary side by switching the primary side switching mechanism 72 to the fifth connection state.
  • the fifth connection state of the primary side switching mechanism 72 is the connection state shown by the solid line in the primary side switching mechanism 72 of FIG.
  • the refrigerant on the primary side condensed in the primary side heat exchanger 74 is depressurized in the primary side expansion valve 76, then flows through the primary side flow path 35b of the cascade heat exchanger 35 and evaporates, and passes through the primary side switching mechanism 72. Then, it is sucked into the primary side compressor 71.
  • the cascade heat exchanger 35 is made to function as a radiator of the refrigerant on the secondary side by switching the secondary side switching mechanism 22 to the first connection state and the fourth connection state. ing.
  • the first connection state of the secondary side switching mechanism 22 is a connection state in which the first switching valve 22a is in the open state and the third switching valve 22c is in the closed state.
  • the fourth connection state of the secondary side switching mechanism 22 is a connection state in which the fourth switching valve 22d is in the open state and the second switching valve 22b is in the closed state.
  • the opening degree of the heat source side expansion valve 36 is adjusted.
  • the first control valves 66a, 66b, 66c and the second control valves 67a, 67b, 67c are controlled to be in the open state.
  • all of the user-side heat exchangers 52a, 52b, and 52c of the utilization units 3a, 3b, and 3c function as refrigerant evaporators.
  • all of the heat exchangers 52a, 52b and 52c on the side of use of the use units 3a, 3b and 3c and the suction side of the secondary side compressor 21 of the heat source unit 2 are the first use pipes 57a, 57b, 57c and the first.
  • the high pressure refrigerant on the secondary side compressed and discharged by the secondary side compressor 21 is passed through the secondary side switching mechanism 22 to the secondary side flow path of the cascade heat exchanger 35. It is sent to 35a.
  • the high pressure refrigerant on the secondary side flowing through the secondary side flow path 35a dissipates heat, and the primary side refrigerant flowing through the primary side flow path 35b of the cascade heat exchanger 35 evaporates.
  • the secondary-side refrigerant radiated from the cascade heat exchanger 35 passes through the heat source-side expansion valve 36 whose opening degree is adjusted, and then flows into the receiver 45.
  • the supercooling heat exchanger 47 the other part of the refrigerant flowing out of the receiver 45 is cooled by the refrigerant flowing through the supercooling circuit 48, and then sent to the third connecting pipe 7 through the third closing valve 31.
  • the refrigerant sent to the third connecting pipe 7 is branched into three and passes through the third branch pipes 61a, 61b, 61c of the first to third branch units 6a, 6b, 6c, respectively.
  • the refrigerant flowing through the second connection pipes 16a, 16b, 16c is sent to the second utilization pipes 56a, 56b, 56c of the first to third utilization units 3a, 3b, 3c, respectively.
  • the refrigerant sent to the second utilization pipes 56a, 56b, 56c is sent to the utilization side expansion valves 51a, 51b, 51c of the utilization units 3a, 3b, 3c.
  • the refrigerant that has passed through the utilization-side expansion valves 51a, 51b, 51c whose opening degree is adjusted is the indoor air and heat supplied by the indoor fans 53a, 53b, 53c in the utilization-side heat exchangers 52a, 52b, 52c. Make an exchange. As a result, the refrigerant flowing through the heat exchangers 52a, 52b, and 52c on the user side evaporates and becomes a low-pressure gas refrigerant. The indoor air is cooled and supplied to the room. As a result, the indoor space is cooled.
  • the low-pressure gas refrigerant evaporated in the user-side heat exchangers 52a, 52b, 52c flows through the first utilization pipes 57a, 57b, 57c, flows through the first connection pipes 15a, 15b, 15c, and then flows through the first to third pipes. It is sent to the merging pipes 62a, 62b, 62c of the branch units 6a, 6b, 6c.
  • the low-pressure gas refrigerant sent to the merging pipes 62a, 62b, 62c branches into the first branch pipes 63a, 63b, 63c and the second branch pipes 64a, 64b, 64c and flows.
  • the refrigerant that has passed through the first control valves 66a, 66b, 66c in the first branch pipes 63a, 63b, 63c is sent to the first connecting pipe 8.
  • the refrigerant that has passed through the second control valves 67a, 67b, 67c in the second branch pipes 64a, 64b, 64c is sent to the second connecting pipe 9.
  • the low-pressure gas refrigerant sent to the first connecting pipe 8 and the second connecting pipe 9 is the first closing valve 32, the second closing valve 33, the first heat source pipe 28, the second heat source pipe 29, and the secondary side. It is returned to the suction side of the secondary compressor 21 through the switching mechanism 22, the suction flow path 23, and the accumulator 30.
  • the cascade heat exchanger 35 is made to function as a radiator of the refrigerant on the primary side by switching the primary side switching mechanism 72 to the sixth operating state.
  • the sixth operating state of the primary side switching mechanism 72 is the connection state shown by the broken line in the primary side switching mechanism 72 of FIG.
  • the refrigerant on the primary side condensed in the cascade heat exchanger 35 is decompressed in the primary side expansion valve 76, and then evaporates by exchanging heat with the outside air supplied from the primary side fan 75 in the primary side heat exchanger 74. , Is sucked into the primary side compressor 71 via the primary side switching mechanism 72.
  • the secondary side switching mechanism 22 is switched to the second connection state and the third connection state.
  • the cascade heat exchanger 35 is made to function as an evaporator of the refrigerant on the secondary side.
  • the second connection state of the secondary side switching mechanism 22 is a connection state in which the first switching valve 22a is in the closed state and the third switching valve 22c is in the open state.
  • the third connection state of the secondary side switching mechanism 22 is a connection state in which the second switching valve 22b is in the open state and the fourth switching valve 22d is in the closed state. Further, the opening degree of the heat source side expansion valve 36 is adjusted.
  • the first control valves 66a, 66b, 66c are controlled to be in the open state, and the second control valves 67a, 67b, 67c are controlled to be in the closed state.
  • all of the user-side heat exchangers 52a, 52b, and 52c of the utilization units 3a, 3b, and 3c function as refrigerant radiators.
  • the utilization side heat exchangers 52a, 52b, 52c of the utilization units 3a, 3b and 3c and the discharge side of the secondary side compressor 21 of the heat source unit 2 are the discharge flow path 24, the first heat source pipe 28, and the first.
  • the high-pressure refrigerant compressed and discharged by the secondary side compressor 21 is a first heat source through the second switching valve 22b controlled to be in the open state by the secondary side switching mechanism 22. It is sent to the pipe 28.
  • the refrigerant sent to the first heat source pipe 28 is sent to the first connecting pipe 8 through the first closing valve 32.
  • the high-pressure refrigerant sent to the first connecting pipe 8 is branched into three and sent to the first branch pipes 63a, 63b, 63c of the used units 3a, 3b, and 3c which are the operating units. ..
  • the high-pressure refrigerant sent to the first branch pipes 63a, 63b, 63c passes through the first control valves 66a, 66b, 66c and flows through the merging pipes 62a, 62b, 62c.
  • the refrigerant flowing through the first connecting pipes 15a, 15b, 15c and the first utilization pipes 57a, 57b, 57c is sent to the utilization side heat exchangers 52a, 52b, 52c.
  • the high-pressure refrigerant sent to the user-side heat exchangers 52a, 52b, 52c exchanges heat with the indoor air supplied by the indoor fans 53a, 53b, 53c in the user-side heat exchangers 52a, 52b, 52c. ..
  • the refrigerant flowing through the user-side heat exchangers 52a, 52b, and 52c dissipates heat.
  • the indoor air is heated and supplied into the room. This heats the interior space.
  • the refrigerant dissipated in the user-side heat exchangers 52a, 52b, 52c flows through the second utilization pipes 56a, 56b, 56c and passes through the utilization-side expansion valves 51a, 51b, 51c whose opening degree is adjusted.
  • the refrigerant flowing through the second connecting pipes 16a, 16b, 16c flows through the third branch pipes 61a, 61b, 61c of the branch units 6a, 6b, 6c.
  • the refrigerant sent to the third branch pipes 61a, 61b, 61c is sent to the third connecting pipe 7 and merges.
  • the refrigerant sent to the third connecting pipe 7 is sent to the heat source side expansion valve 36 through the third closing valve 31.
  • the refrigerant sent to the heat source side expansion valve 36 is sent to the cascade heat exchanger 35 after the flow rate is adjusted in the heat source side expansion valve 36.
  • the refrigerant on the secondary side flowing through the secondary side flow path 35a evaporates to become a low-pressure gas refrigerant and is sent to the secondary side switching mechanism 22 to flow to the primary side of the cascade heat exchanger 35.
  • the refrigerant on the primary side flowing through the path 35b condenses.
  • the low-pressure gas refrigerant on the secondary side sent to the secondary side switching mechanism 22 is returned to the suction side of the secondary side compressor 21 through the suction flow path 23 and the accumulator 30.
  • the utilization-side heat exchangers 52a and 52b of the utilization units 3a and 3b function as refrigerant evaporators
  • the utilization-side heat exchanger 52c of the utilization unit 3c Operates to function as a refrigerant radiator.
  • the cascade heat exchanger 35 functions as a radiator of the refrigerant on the secondary side.
  • the primary side refrigerant circuit 5a and the secondary side refrigerant circuit 10 of the refrigeration cycle system 1 are configured as shown in FIG.
  • the arrow attached to the primary side refrigerant circuit 5a and the arrow attached to the secondary side refrigerant circuit 10 in FIG. 5 indicate the flow of the refrigerant during the cooling main operation.
  • the cascade heat exchanger 35 is switched by switching the primary side switching mechanism 72 to the fifth connection state (the state shown by the solid line of the primary side switching mechanism 72 in FIG. 5). It is designed to function as an evaporator for the refrigerant on the primary side.
  • the refrigerant on the primary side discharged from the primary side compressor 71 passes through the primary side switching mechanism 72 and is supplied from the primary side fan 75 in the primary side heat exchanger 74. Condenses by exchanging heat with.
  • the refrigerant on the primary side condensed in the primary side heat exchanger 74 is depressurized in the primary side expansion valve 76, then flows through the primary side flow path 35b of the cascade heat exchanger 35 and evaporates, and passes through the primary side switching mechanism 72. Then, it is sucked into the primary side compressor 71.
  • the secondary side switching mechanism 22 is connected in the first connection state (the first switching valve 22a is in the open state and the third switching valve 22c is in the closed state) and in the third connection state (second switching valve 22b).
  • the cascade heat exchanger 35 is made to function as a radiator of the refrigerant on the secondary side.
  • the opening degree of the heat source side expansion valve 36 is adjusted.
  • the first control valve 66c and the second control valves 67a, 67b are controlled to be open, and the first control valves 66a, 66b, and the first 2 The control valve 67c is controlled to be closed.
  • the utilization side heat exchangers 52a and 52b of the utilization units 3a and 3b function as the refrigerant evaporator
  • the utilization side heat exchanger 52c of the utilization unit 3c functions as the refrigerant radiator.
  • the heat exchangers 52a and 52b on the side of use of the use units 3a and 3b and the suction side of the secondary compressor 21 of the heat source unit 2 are connected to each other via the second connecting pipe 9, and are used.
  • the user side heat exchanger 52c of the unit 3c and the discharge side of the secondary side compressor 21 of the heat source unit 2 are connected to each other via the first connecting pipe 8.
  • the supercooling expansion valve 48a is open-controlled so that the degree of supercooling of the refrigerant on the secondary side flowing from the outlet of the supercooling heat exchanger 47 toward the third connecting pipe 7 becomes a predetermined value.
  • the bypass expansion valve 46a is controlled to be closed.
  • the opening degrees of the utilization side expansion valves 51a, 51b, and 51c are adjusted.
  • a part of the secondary side high-pressure refrigerant compressed and discharged by the secondary side compressor 21 is the secondary side switching mechanism 22, the first heat source pipe 28, and the second. 1 It is sent to the first connecting pipe 8 through the closing valve 32, and the rest is sent to the secondary side flow path 35a of the cascade heat exchanger 35 through the secondary side switching mechanism 22 and the third heat source pipe 25.
  • the high-pressure refrigerant sent to the first connecting pipe 8 is sent to the first branch pipe 63c.
  • the high-pressure refrigerant sent to the first branch pipe 63c is sent to the user side heat exchanger 52c of the utilization unit 3c through the first control valve 66c and the merging pipe 62c.
  • the high-pressure refrigerant sent to the user-side heat exchanger 52c exchanges heat with the indoor air supplied by the indoor fan 53c in the user-side heat exchanger 52c.
  • the refrigerant flowing through the heat exchanger 52c on the user side dissipates heat.
  • the indoor air is heated and supplied into the room, and the heating operation of the utilization unit 3c is performed.
  • the refrigerant dissipated in the user-side heat exchanger 52c flows through the second utilization pipe 56c, and the flow rate is adjusted in the utilization-side expansion valve 51c. After that, the refrigerant flowing through the second connecting pipe 16c is sent to the third branch pipe 61c of the branch unit 6c.
  • the high-pressure refrigerant sent to the secondary side flow path 35a of the cascade heat exchanger 35 dissipates heat by exchanging heat with the primary side refrigerant flowing through the primary side flow path 35b in the cascade heat exchanger 35.
  • the secondary side refrigerant radiated in the cascade heat exchanger 35 flows into the receiver 45 after the flow rate is adjusted in the heat source side expansion valve 36.
  • a part of the refrigerant flowing out from the receiver 45 branches into the supercooling circuit 48, is depressurized by the supercooling expansion valve 48a, and then joins the suction flow path 23.
  • the other part of the refrigerant flowing out of the receiver 45 is cooled by the refrigerant flowing through the supercooling circuit 48, and then sent to the third connecting pipe 7 through the third closing valve 31. , It merges with the radiated refrigerant in the user side heat exchanger 52c.
  • the refrigerant merged in the third connecting pipe 7 is branched into two and sent to the third branch pipes 61a and 61b of the branch units 6a and 6b, respectively.
  • the refrigerant flowing through the second connecting pipes 16a and 16b is sent to the second used pipes 56a and 56b of the first and second used units 3a and 3b, respectively.
  • the refrigerant flowing through the second utilization pipes 56a and 56b passes through the utilization side expansion valves 51a and 51b of the utilization units 3a and 3b.
  • the refrigerant that has passed through the utilization side expansion valves 51a and 51b whose opening degree is adjusted exchange heat with the indoor air supplied by the indoor fans 53a and 53b in the utilization side heat exchangers 52a and 52b.
  • the refrigerant flowing through the heat exchangers 52a and 52b on the user side evaporates and becomes a low-pressure gas refrigerant.
  • the indoor air is cooled and supplied to the room.
  • the indoor space is cooled.
  • the low-pressure gas refrigerant evaporated in the user-side heat exchangers 52a and 52b is sent to the merging pipes 62a and 62b of the first and second branch units 6a and 6b.
  • the low-pressure gas refrigerant sent to the merging pipes 62a and 62b is sent to the second connecting pipe 9 through the second control valves 67a and 67b and the second branch pipes 64a and 64b and merges.
  • the low-pressure gas refrigerant sent to the second connecting pipe 9 is returned to the suction side of the secondary compressor 21 through the second closing valve 33, the second heat source pipe 29, the suction flow path 23, and the accumulator 30. ..
  • the utilization-side heat exchangers 52a and 52b of the utilization units 3a and 3b function as a refrigerant radiator, and the utilization-side heat exchanger 52c evaporates the refrigerant. Operate to function as a vessel.
  • the cascade heat exchanger 35 functions as an evaporator of the refrigerant on the secondary side.
  • the primary side refrigerant circuit 5a and the secondary side refrigerant circuit 10 of the refrigeration cycle system 1 are configured as shown in FIG.
  • the arrow attached to the primary side refrigerant circuit 5a and the arrow attached to the secondary side refrigerant circuit 10 in FIG. 6 indicate the flow of the refrigerant during the heating main operation.
  • the cascade heat exchanger 35 is made to function as a radiator of the refrigerant on the primary side by switching the primary side switching mechanism 72 to the sixth operating state.
  • the sixth operating state of the primary side switching mechanism 72 is the connection state shown by the broken line in the primary side switching mechanism 72 of FIG.
  • the refrigerant on the primary side condensed in the cascade heat exchanger 35 is decompressed in the primary side expansion valve 76, and then evaporates by exchanging heat with the outside air supplied from the primary side fan 75 in the primary side heat exchanger 74. , Is sucked into the primary side compressor 71 via the primary side switching mechanism 72.
  • the secondary side switching mechanism 22 is switched to the second connection state and the third connection state.
  • the second connection state of the secondary side switching mechanism 22 is a connection state in which the first switching valve 22a is in the closed state and the third switching valve 22c is in the open state.
  • the third connection state of the secondary side switching mechanism 22 is a connection state in which the second switching valve 22b is in the open state and the fourth switching valve 22d is in the closed state.
  • the first control valve 66a, 66b and the second control valve 67c are controlled to be open, and the first control valve 66c and the second control valve 66c and the second control valve are controlled to be open.
  • the valves 67a and 67b are controlled to be closed.
  • the utilization side heat exchangers 52a and 52b of the utilization units 3a and 3b function as a refrigerant radiator, and the utilization side heat exchanger 52c of the utilization unit 3c functions as a refrigerant evaporator.
  • the utilization side heat exchanger 52c of the utilization unit 3c and the suction side of the secondary side compressor 21 of the heat source unit 2 are the first utilization pipe 57c, the first connection pipe 15c, the merging pipe 62c, and the second branch pipe 64c. , And the state of being connected via the second connecting pipe 9. Further, the heat exchangers 52a and 52b on the side of use of the use units 3a and 3b and the discharge side of the secondary compressor 21 of the heat source unit 2 are connected to the discharge flow path 24, the first heat source pipe 28, and the first connecting pipe 8.
  • the high pressure refrigerant on the secondary side compressed and discharged by the secondary side compressor 21 is passed through the secondary side switching mechanism 22, the first heat source pipe 28, and the first closing valve 32. , Is sent to the first communication pipe 8.
  • the high-pressure refrigerant sent to the first connecting pipe 8 is branched into two, and the first branch is connected to each of the first utilization unit 3a and the second utilization unit 3b, which are the utilization units during operation. It is sent to the first branch pipes 63a and 63b of the unit 6a and the second branch unit 6b.
  • the high-pressure refrigerant sent to the first branch pipes 63a and 63b passes through the first control valves 66a and 66b, the merging pipes 62a and 62b, and the first connection pipes 15a and 15b, and the first utilization unit 3a and the second utilization unit 3b. It is sent to the heat exchangers 52a and 52b on the user side.
  • the high-pressure refrigerant sent to the user-side heat exchangers 52a and 52b exchanges heat with the indoor air supplied by the indoor fans 53a and 53b in the user-side heat exchangers 52a and 52b.
  • the refrigerant flowing through the heat exchangers 52a and 52b on the user side dissipates heat.
  • the indoor air is heated and supplied into the room. This heats the interior space.
  • the refrigerant dissipated in the user-side heat exchangers 52a and 52b flows through the second utilization pipes 56a and 56b and passes through the utilization-side expansion valves 51a and 51b whose opening degree is adjusted.
  • the refrigerant flowing through the second connecting pipes 16a and 16b is sent to the third connecting pipe 7 via the third branch pipes 61a and 61b of the branch units 6a and 6b.
  • the refrigerant sent to the third branch pipe 61c flows through the second utilization pipe 56c of the utilization unit 3c via the second connection pipe 16c and is sent to the utilization side expansion valve 51c.
  • the refrigerant that has passed through the utilization side expansion valve 51c whose opening degree is adjusted exchanges heat with the indoor air supplied by the indoor fan 53c in the utilization side heat exchanger 52c.
  • the refrigerant flowing through the user-side heat exchanger 52c evaporates and becomes a low-pressure gas refrigerant.
  • the indoor air is cooled and supplied to the room.
  • the indoor space is cooled.
  • the low-pressure gas refrigerant evaporated in the user-side heat exchanger 52c passes through the first utilization pipe 57c and the first connection pipe 15c, and is sent to the merging pipe 62c.
  • the low-pressure gas refrigerant sent to the merging pipe 62c is sent to the second connecting pipe 9 through the second control valve 67c and the second branch pipe 64c.
  • the low-pressure gas refrigerant sent to the second connecting pipe 9 is returned to the suction side of the secondary compressor 21 through the second closing valve 33, the second heat source pipe 29, the suction flow path 23, and the accumulator 30. ..
  • the refrigerant sent to the heat source side expansion valve 36 passes through the heat source side expansion valve 36 whose opening degree is adjusted, and then passes through the primary side flow path 35b in the secondary side flow path 35a of the cascade heat exchanger 35. It exchanges heat with the flowing primary refrigerant.
  • the refrigerant flowing through the secondary side flow path 35a of the cascade heat exchanger 35 evaporates to become a low-pressure gas refrigerant, which is sent to the secondary side switching mechanism 22.
  • the low-pressure gas refrigerant sent to the secondary side switching mechanism 22 merges with the low-pressure gas refrigerant evaporated in the user-side heat exchanger 52c in the suction flow path 23.
  • the combined refrigerant is returned to the suction side of the secondary compressor 21 via the accumulator 30.
  • step S1 the control unit 80 controls each device so that the heating operation or the normal operation, which is the heating main operation, is executed in the refrigeration cycle system 1.
  • step S2 the control unit 80 determines whether or not the predetermined defrost condition regarding the frost adhering to the primary side heat exchanger 74 is satisfied.
  • the defrost conditions are not particularly limited, and for example, the outside air temperature is equal to or less than a predetermined value, a predetermined time has passed since the last defrost operation was completed, and the temperature of the primary side heat exchanger 74. Can be determined by using at least one of the conditions such that is not more than a predetermined value, and the evaporation pressure or evaporation temperature of the refrigerant on the primary side is not more than a predetermined value.
  • step S3 If the defrost condition is not satisfied, step S2 is repeated.
  • step S3 the control unit 80 starts the first heat storage operation as the heat storage operation.
  • control unit 80 performs various controls as follows.
  • the flow of the refrigerant during the first heat storage operation is the same as that of the heating operation shown in FIG.
  • the control unit 80 maintains the connection state of the primary side switching mechanism 72 in the normal operation state, maintains the primary side fan 75 in the operating state, and drives the primary side compressor 71. continue.
  • the refrigerant on the primary side flows in the order of the primary side compressor 71, the cascade heat exchanger 35, the primary side expansion valve 76, and the primary side heat exchanger 74.
  • the control unit 80 controls the valve opening degree of the primary side expansion valve 76 so that the degree of superheat of the refrigerant sucked into the primary side compressor 71 becomes a predetermined value.
  • the control unit 80 may control the drive frequency of the primary side compressor 71 to be higher than that during normal operation, or may control the drive frequency of the primary side compressor 71 to a predetermined maximum frequency. ..
  • the control unit 80 stops the indoor fans 53a, 53b, 53c. Further, when the control unit 80 shifts from the heating operation to the first heat storage operation, the control unit 80 maintains the connected state of the secondary side switching mechanism 22, and the utilization side expansion valves 51a, 51b, 51c and the first control valve 66a, The 66b and 66c are maintained in the open state, and the second control valves 67a, 67b and 67c, the supercooled expansion valve 48a and the bypass expansion valve 46a are maintained in the closed state.
  • the control unit 80 shifts from the heating main operation to the first heat storage operation, the control unit 80 maintains the connected state of the secondary side switching mechanism 22, and the user side expansion valves 51a, 51b, 51c and the first control valve 66a. , 66b, 66c are controlled to be in the open state, and the second control valves 67a, 67b, 67c, the supercooling expansion valve 48a and the bypass expansion valve 46a are controlled to be in the closed state.
  • the refrigerant on the secondary side flows in the order of the secondary side compressor 21, the user side heat exchangers 52a, 52b, 52c, the user side expansion valves 51a, 51b, 51c, and the cascade heat exchanger 35.
  • the control unit 80 controls the valve opening degree of the heat source side expansion valve 36 so that the degree of superheat of the refrigerant sucked into the secondary side compressor 21 becomes a predetermined value. Further, the secondary compressor 21 may maintain the drive state or may be controlled so that the drive frequency is higher than that during normal operation.
  • step S4 the control unit 80 determines whether or not the first heat storage completion condition is satisfied.
  • the first heat storage completion condition is not particularly limited, and for example, a predetermined time has elapsed from the start of the first heat storage operation, the temperature of the cascade heat exchanger 35 has reached a predetermined value or more, and the secondary.
  • the pressure of the secondary side refrigerant discharged from the side compressor 21 has exceeded the predetermined value, and the temperature of the secondary side refrigerant discharged from the secondary side compressor 21 has exceeded the predetermined value. It can be determined by using at least one of the conditions such that the temperature of the secondary side refrigerant becomes the predetermined value or more at the predetermined place where the liquid refrigerant flows in the secondary side refrigerant circuit 10.
  • step S5 If the first heat storage completion condition is not satisfied, step S3 is repeated.
  • step S5 after the control unit 80 ends the first heat storage operation and performs the pressure equalizing operation in the secondary side refrigerant circuit 10, the secondary side switching mechanism 22 is in the first connection state and the fourth connection state.
  • the expansion valves 51a, 51b, and 51c on the user side are controlled to be in the closed state, and the second heat storage operation as the heat storage operation is started.
  • the first control valves 66a, 66b, 66c and the second control valves 67a, 67b, 67c may be controlled in the closed state.
  • control unit 80 performs various controls as follows.
  • the state of the flow of the refrigerant during the second heat storage operation is shown in FIG.
  • control unit 80 continues the same operation as the first heat storage operation.
  • the control unit 80 switches the secondary side switching mechanism 22 to the first connection state and the fourth connection state while the indoor fans 53a, 53b, 53c are stopped, and expands on the user side. While controlling the valves 51a, 51b, 51c, the first control valves 66a, 66b, 66c, the second control valves 67a, 67b, 67c, and the supercooled expansion valve 48a in the closed state, the bypass expansion valve 46a is opened. While controlling, the secondary side compressor 21 is driven. As a result, the refrigerant on the secondary side flows in the order of the secondary side compressor 21, the cascade heat exchanger 35, the receiver 45, the bypass circuit 46, and the bypass expansion valve 46a.
  • the heat source side expansion valve 36 is controlled to be fully open.
  • the control unit 80 controls the drive frequency of the secondary side compressor 21 so that the differential pressure between the high pressure refrigerant and the low pressure refrigerant in the secondary side refrigerant circuit 10 is secured at a predetermined value or more.
  • the control unit 80 controls the valve opening degree of the bypass expansion valve 46a based on the temperature of the cascade heat exchanger 35 and the degree of overheating of the discharged refrigerant of the secondary compressor 21. Specifically, the control unit 80 controls to increase the valve opening degree so that the refrigerant flow on the secondary side in the cascade heat exchanger 35 is secured and the temperature of the cascade heat exchanger 35 is maintained at a predetermined value or higher.
  • the valve opening is adjusted so that the degree of overheating of the discharged refrigerant of the secondary side compressor 21 is maintained at a predetermined value or more so that the secondary side refrigerant sucked in the secondary side compressor 21 does not become damp.
  • the valve opening degree of the bypass expansion valve 46a is controlled.
  • step S6 the control unit 80 determines whether or not the second heat storage completion condition is satisfied.
  • the second heat storage completion condition is not particularly limited, and for example, a predetermined time has elapsed from the start of the second heat storage operation, and the pressure of the secondary side refrigerant discharged from the secondary side compressor 21 is used. The value is above the specified value, the temperature of the refrigerant on the secondary side discharged from the secondary compressor 21 is above the specified value, and the pressure of the refrigerant on the primary side discharged from the primary compressor 71 is above the specified value.
  • Conditions such as the condition that the value is equal to or higher than the predetermined value, the temperature of the refrigerant on the primary side discharged from the primary side compressor 71 is equal to or higher than the predetermined value, and the temperature of the cascade heat exchanger 35 is higher than the predetermined value. Can be determined using at least one of. Further, when the control unit 80 determines that the primary side control unit 70, which controls the primary side refrigerant circuit 5a, is ready to start the defrost operation in the primary side refrigerant circuit 5a, the second heat storage completion condition. It may be determined that the above is satisfied. Here, if the second heat storage completion condition is satisfied, the process proceeds to step S7. If the second heat storage completion condition is not satisfied, step S5 is repeated.
  • step S7 the control unit 80 ends the second heat storage operation and starts the defrost operation.
  • control unit 80 performs various controls as follows.
  • the state of the refrigerant flow during the defrost operation is shown in FIG.
  • the control unit 80 switches the primary side switching mechanism 72 to the fifth connection state after performing the pressure equalizing operation in the primary side refrigerant circuit 5a, and maintains the primary side fan 75 in the stopped state.
  • the primary side compressor 71 is driven.
  • the control unit 80 controls the valve opening degree of the primary side expansion valve 76 so that the superheat degree of the intake refrigerant of the primary side compressor 71 is maintained at a predetermined superheat degree.
  • the control unit 80 may control the drive frequency of the primary side compressor 71 to be higher than that during normal operation, or may control the drive frequency of the primary side compressor 71 to a predetermined maximum frequency. ..
  • control unit 80 continues the control during the second heat storage operation.
  • step S8 the control unit 80 determines whether or not the defrost completion condition is satisfied.
  • the conditions for completing the defrosting are not particularly limited, and for example, a predetermined time has elapsed from the start of the defrosting operation, the temperature of the primary side heat exchanger 74 has reached a predetermined value or higher, and the refrigerant on the primary side has been used. It can be determined by using at least one of the conditions such that the condensation pressure or the condensation temperature becomes a predetermined value or more.
  • step S9 If the defrost completion condition is not satisfied, step S7 is repeated.
  • step S9 the control unit 80 controls each device so as to restore the heating operation or the heating main operation in the refrigeration cycle system 1.
  • the secondary side compressor 21 is driven in the secondary side refrigerant circuit 10 with the indoor fans 53a, 53b, and 53c stopped.
  • the indoor fans 53a, 53b, 53c are in a stopped state, the secondary refrigerant that has passed through the utilization side heat exchangers 52a, 52b, 52c while the heat release is suppressed is the cascade heat exchanger 35.
  • the cascade heat exchanger 35 By reaching the secondary side flow path 35a of the above, it is possible to store heat in the cascade heat exchanger 35.
  • the use side expansion valves 51a, 51b, 51c are closed to stop the supply of the secondary side refrigerant to the utilization circuits 13a, 13b, 13c, and the bypass expands.
  • the valve 46a is opened to circulate the bypass circuit 46 so that the refrigerant on the secondary side flows.
  • the high-temperature high-pressure refrigerant discharged from the secondary side compressor 21 is supplied to the secondary side flow path 35a of the cascade heat exchanger 35 to store heat in the cascade heat exchanger 35, while the user side heat exchanger 52a, It is possible to suppress the temperature drop of 52b and 52c to minimize the deterioration of the environment on the user side.
  • the high temperature and high pressure refrigerant discharged from the primary side compressor 71 is sent to the primary side flow path 35b of the cascade heat exchanger 35. .. This also makes it possible to promote heat storage in the cascade heat exchanger 35.
  • the heat used for melting the frost of the primary heat exchanger 74 during the defrost operation can be sufficiently stored before the defrost operation is performed.
  • the high temperature and high pressure refrigerant discharged from the secondary side compressor 21 is cut off while the supply of the secondary side refrigerant to the utilization circuits 13a, 13b, 13c is interrupted.
  • Heat can be supplied to the cascade heat exchanger 35 by sending it to the secondary side flow path 35a of the cascade heat exchanger 35.
  • the heat supplied to the cascade heat exchanger 35 by the secondary side refrigerant can be given to the primary side refrigerant flowing through the primary side flow path 35b of the cascade heat exchanger 35.
  • the primary side refrigerant that has obtained the heat is further pressurized by the primary side compressor 71, and the frost of the primary side heat exchanger 74 can be melted by using the refrigerant that has been in a high temperature and high pressure state. This makes it possible to efficiently melt the frost in the primary heat exchanger 74. Therefore, it is possible to prevent the deterioration of the environment on the user side due to the defrost operation in a short time.
  • the secondary side refrigerant is flowed through the bypass circuit 46 extending from the gas phase region of the receiver 45 in the secondary side refrigerant circuit 10.
  • the refrigerant on the secondary side flowing through the bypass circuit 46 can be mainly used as the gas refrigerant, so that it is easy to prevent the refrigerant sucked by the secondary side compressor 21 from becoming damp.
  • the superheat degree of the discharged refrigerant of the secondary compressor 21 is maintained at a predetermined value or higher while keeping the temperature of the cascade heat exchanger 35 at a predetermined value or higher.
  • the valve opening degree of the bypass expansion valve 46a is controlled.
  • the refrigerant on the primary side in the primary side flow path 35b of the cascade heat exchanger 35 is stagnant.
  • the heat of the refrigerant on the secondary side stagnant in the secondary side flow path 35a continues to be taken away.
  • the temperature of the refrigerant on the secondary side in the secondary side flow path 35a is lowered, the temperature of the cascade heat exchanger 35 is also lowered, and the heat used to melt the frost of the primary side heat exchanger 74 by the defrost operation is generated. It will be less.
  • the valve opening degree of the bypass expansion valve 46a is controlled so that the temperature of the cascade heat exchanger 35 is maintained above a predetermined value, so that the refrigerant on the secondary side in the secondary side flow path 35a is stagnant. It is possible to secure sufficient heat for defrost operation.
  • valve opening degree of the bypass expansion valve 46a is controlled so that the refrigerant on the secondary side sucked by the secondary compressor 21 does not become damp, so that sufficient heat for defrost operation is sufficiently secured. However, it is possible to suppress the liquid compression in the secondary compressor 21.
  • the global warming potential can be suppressed to a low level. Further, even if the refrigerant leaks on the user side, the fluorocarbon does not flow out on the user side because the refrigerant does not contain chlorofluorocarbons.
  • the heat storage operation performed before starting the defrost operation may be only the first heat storage operation or only the second heat storage operation.
  • the defrost operation in the above embodiment may be started when the first heat storage completion condition is satisfied. After the first heat storage operation is completed, the control of the defrost operation may be started in the secondary side refrigerant circuit 10 first, and then the control of the defrost operation may be started in the primary side refrigerant circuit 5a. In other words, the control of the defrost operation in the primary side refrigerant circuit 5a may not be started before the control of the defrost operation in the secondary side refrigerant circuit 10.
  • the secondary side switching mechanism 22 is switched to the first connection state and the fourth connection state in the secondary side refrigerant circuit 10, and the primary side control unit 70 is primary.
  • the primary side compressor 71 of the primary side refrigerant circuit 5a may be stopped until it is determined that the side refrigerant circuit 5a is ready to start the defrost operation.
  • the primary side control unit 70 determines that the preparation for starting the defrost operation in the primary side refrigerant circuit 5a is completed, the secondary side compressor 21 of the secondary side refrigerant circuit 10 is started, and then, further, The primary side compressor 71 of the primary side refrigerant circuit 5a may be started.
  • the process of performing the pressure equalizing operation in the primary side refrigerant circuit 5a to switch the primary side switching mechanism 72 to the fifth connection state may be performed after the first heat storage completion condition is satisfied, or the primary side control unit. This may be performed when the 70 determines that the preparation for starting the defrost operation is completed in the primary side refrigerant circuit 5a.
  • the primary side flow path 35b of the cascade heat exchanger 35 functions as an evaporator of the primary side refrigerant
  • the secondary side flow path 35a functions as an evaporator of the secondary side refrigerant.
  • the second heat storage operation is started when the defrost condition is satisfied, and then the defrost operation is started when the second heat storage completion condition is satisfied.
  • the control of the defrost operation is started in the secondary side refrigerant circuit 10 first, and then the control of the defrost operation is started in the primary side refrigerant circuit 5a, as described above. It is also good.
  • the primary side control unit 70 is in the primary side refrigerant circuit 5a while maintaining the connection state of the secondary side switching mechanism 22 in the secondary side refrigerant circuit 10.
  • the primary side compressor 71 may be stopped until it is determined that the preparation for starting the defrost operation is completed. After that, when the primary side control unit 70 determines that the preparation for starting the defrost operation in the primary side refrigerant circuit 5a is completed, the secondary side compressor 21 of the secondary side refrigerant circuit 10 is started, and then the primary side compressor 21 is started. The primary side compressor 71 of the side refrigerant circuit 5a may be activated. The process of performing the pressure equalizing operation in the primary side refrigerant circuit 5a to switch the primary side switching mechanism 72 to the fifth connection state may be performed after the second heat storage completion condition is satisfied, or the primary side control unit.
  • this bypass circuit 46 is a circuit extending from the gas phase region of the receiver 45, the gas phase refrigerant is directed toward the suction side of the secondary compressor 21 until the receiver 45 is filled with the liquid refrigerant. It is possible to send.
  • the supercooling expansion valve 48a may be opened to allow the refrigerant to flow to the supercooling circuit 48 as well.
  • the full condition regarding the filling of the receiver 45 with the liquid refrigerant may be determined, for example, based on the degree of superheat of the refrigerant flowing on the downstream side of the bypass expansion valve 46a in the bypass circuit 46.
  • the degree of superheat may be grasped from, for example, the temperature detected by the bypass circuit temperature sensor 85 and the pressure detected by the secondary suction pressure sensor 37.
  • the first heat storage operation is not limited to the control of stopping the indoor fans 53a, 53b, 53c during the first heat storage operation. It may be controlled to lower the air volume during a certain normal operation. Even in this case, the release of heat from the secondary side refrigerant from the user side heat exchangers 52a, 52b, 52c is suppressed.
  • the control to open the expansion valves 51a, 51b, 51c on the user side without closing is not performed during the heat storage operation or from the start of the defrost operation to the time when a predetermined condition is satisfied, and after the start of the defrost operation, , May be executed in the following cases.
  • the secondary side discharged from the secondary side compressor 21
  • the degree of overheating of the refrigerant in the secondary side refrigerant circuit 10 becomes a predetermined value or less
  • the high pressure of the secondary side refrigerant in the secondary side refrigerant circuit 10 becomes a predetermined value or less
  • the temperature of the liquid refrigerant in the secondary side refrigerant circuit 10 becomes a predetermined value.
  • Whether or not the high pressure of the secondary side refrigerant in the secondary side refrigerant circuit 10 is equal to or lower than a predetermined value may be determined based on, for example, the pressure detected by the secondary side discharge pressure sensor 38. Further, whether or not the temperature of the liquid refrigerant in the secondary side refrigerant circuit 10 is equal to or lower than a predetermined value may be determined based on, for example, the temperature detected by the receiver outlet temperature sensor 84, or the supercooling outlet temperature. The judgment may be made based on the temperature detected by the sensor 86.
  • the primary side compressor 71 may be stopped during the heat storage operation. Then, the pressure equalization control and the switching control of the primary side switching mechanism 72 are completed so that the connection state can start the defrost operation, and the start of the primary side compressor 71 is made to wait until the heat storage operation is completed. You may do so.
  • the primary side compressor 71 is driven in the same manner as in the above embodiment during the first heat storage operation, and the primary side compressor 71 is stopped during the second heat storage operation to perform pressure equalization control and primary side switching.
  • the switching control of the mechanism 72 may be completed, and the start of the primary compressor 71 may be made to wait until the heat storage operation is completed.
  • both the primary side flow path 35b and the secondary side flow path 35a of the cascade heat exchanger 35 function as a radiator of the refrigerant during the second heat storage operation, and the primary side refrigerant or the primary side refrigerant or It is possible to suppress an abnormal rise in the high pressure of the secondary refrigerant.
  • the secondary side refrigerant circuit 10 is between the secondary side flow path 35a of the cascade heat exchanger 35 and the third connecting pipe 7 like the bypass circuit 46 and the supercooling circuit 48 of the above embodiment. It is not necessary to have a flow path for allowing the refrigerant flowing through the water flow to flow by bypassing the suction flow path 23.
  • the defrost operation may be performed after the first heat storage operation. More specifically, after starting the first heat storage operation, the defrost operation may be performed when a predetermined heat storage completion condition is satisfied.
  • the predetermined heat storage completion condition here is not particularly limited, and for example, a predetermined time has elapsed from the start of the first heat storage operation, and the pressure of the refrigerant on the secondary side discharged from the secondary side compressor 21 is used.
  • the value is equal to or higher than the predetermined value
  • the temperature of the secondary refrigerant discharged from the secondary compressor 21 is equal to or higher than the predetermined value
  • the secondary side refrigerant circuit 10 has a secondary position where the liquid refrigerant flows. It can be determined by using at least one of the conditions such that the temperature of the refrigerant on the side becomes a predetermined value or more, the temperature of the cascade heat exchanger 35 becomes a predetermined value or more, and the like.
  • control unit 80 performs various controls as follows.
  • the control unit 80 switches the primary side switching mechanism 72 to the fifth connection state after performing the pressure equalizing operation as in the above embodiment, and maintains the primary side fan 75 in the stopped state. At the same time, the primary side compressor 71 is driven. Further, the control unit 80 controls the valve opening degree of the primary side expansion valve 76 so that the superheat degree of the intake refrigerant of the primary side compressor 71 is maintained at a predetermined superheat degree.
  • the control unit 80 may control the drive frequency of the primary side compressor 71 to be higher than that during normal operation, or may control the drive frequency of the primary side compressor 71 to a predetermined maximum frequency. ..
  • the control unit 80 switches the secondary side switching mechanism 22 to the first connection state and the fourth connection state after performing the pressure equalizing operation, and stops the indoor fans 53a, 53b, 53c.
  • the secondary side compressor 21 is controlled by controlling the utilization side expansion valves 51a, 51b, 51c, the first control valves 66a, 66b, 66c, and the second control valves 67a, 67b, 67c in the open state while keeping them open. Drive.
  • the heat source side expansion valve 36 is controlled to be fully open.
  • valve opening degrees of the utilization-side expansion valves 51a, 51b, and 51c may be controlled so that, for example, the degree of superheat of the secondary-side refrigerant sucked by the secondary-side compressor 21 becomes equal to or higher than a predetermined value. ..
  • R32 is exemplified as the refrigerant used in the primary side refrigerant circuit 5a
  • carbon dioxide is exemplified as the refrigerant used in the secondary side refrigerant circuit 10.
  • the refrigerant used in the primary side refrigerant circuit 5a is not particularly limited, and is HFC-32, an HFO-based refrigerant, a mixed refrigerant of HFC-32 and an HFO-based refrigerant, carbon dioxide, ammonia, and propane. Etc. can be used.
  • the refrigerant used in the secondary side refrigerant circuit 10 is not particularly limited, and HFC-32, HFO-based refrigerant, a mixed refrigerant of HFC-32 and HFO-based refrigerant, carbon dioxide, ammonia, propane and the like can be used. Can be used.
  • HFO-based refrigerant for example, HFO-1234yf, HFO-1234ze, or the like can be used.
  • the same refrigerant may be used or different refrigerants may be used in the primary side refrigerant circuit 5a and the secondary side refrigerant circuit 10.
  • the secondary side refrigerant circuit 10 is not limited to the refrigerant circuit capable of simultaneous cooling and heating operation, and the heat source unit 2 and the utilization units 3a, 3b, and 3c are connected via two connecting pipes. It may be a circuit that has been used.
  • Refrigeration cycle system 2 Heat source unit 3a: First utilization unit 3b: Second utilization unit 3c: Third utilization unit 4: Secondary side unit 5: Primary side unit 5a: Primary side refrigerant circuit (first circuit) 7: Liquid refrigerant connecting pipe 8: High and low pressure gas refrigerant connecting pipe 9: Low pressure gas refrigerant connecting pipe 10: Secondary side refrigerant circuit (second circuit) 11: Heat source side expansion mechanism 12: Heat source circuit 13a-c: Utilization circuit 20: Heat source side control unit 21: Secondary side compressor (second compressor) 21a: Compressor motor 22: Secondary side switching mechanism (second switching unit) 23: Suction flow path 24: Discharge flow path 25: Third heat source piping 26: Fourth heat source piping 27: Fifth heat source piping 28: First heat source piping 29: Second heat source piping 30: Accumulator 31: Third closing valve 32 : 1st closing valve 33: 2nd closing valve 34: Oil separator 35: Cascade heat exchanger 35a: Secondary side flow path 35b: Primary side flow path

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一次側の熱交換器のデフロストを行うための熱を確保する。一次側圧縮機(71)と、カスケード熱交換器(35)と、一次側熱交換器(74)と、一次側切換機構(72)と、を有し、一次側の冷媒が循環する一次側冷媒回路(5a)と、二次側圧縮機(21)と、カスケード熱交換器(35)と、利用側熱交換器(52a、52b、52c)と、を有し、二次側の冷媒が循環する二次側冷媒回路(10)と、利用側熱交換器(52a、52b、52c)を流れる二次側の冷媒と熱交換する空気を供給する室内ファン(53a、53b、53c)と、を備え、通常運転時にデフロスト条件を満たした場合に、室内ファン(53a、53b、53c)を停止させて二次側圧縮機(21)を運転させた後に、一次側圧縮機(71)、一次側熱交換器(74)、カスケード熱交換器(35)の順に第1側の冷媒を循環させる。

Description

冷凍サイクルシステム
 本発明は、冷凍サイクルシステムに関する。
 従来より、一次側の冷媒回路と二次側の冷媒回路とをカスケード熱交換器を介して接続させた二元冷凍装置が知られている。このような二元冷凍装置では、暖房サイクルが行われている際に一次側の冷媒回路の蒸発器に付着した霜を融解させるために、デフロスト運転が行われる。
 例えば、特許文献1(特開2014-109405号公報)に記載の装置には、一次側の冷媒回路と二次側の冷媒回路において暖房サイクルを行うことで、水回路を流れる水を二次側の熱交換器において加熱する水加熱システムが開示されている。ここでは、デフロスト運転を行う前に、水回路における水の流れと二次側の冷媒回路における冷媒の流れを止めて一次側の冷媒回路を運転させることにより、カスケード熱交換器に蓄熱させている。このようにして蓄熱させた後に、一次側の冷媒回路を逆サイクルに切り換えてデフロスト運転を行うことで、十分な霜の融解が可能になるとされている。
 以上の特許文献1に記載の装置では、一次側の冷媒回路以外の箇所において熱を蓄積することについては、なんら検討されていない。
 第1観点に係る冷凍サイクルシステムは、第1冷媒が循環する回路であって、第1回路と、第2回路と、供給部を備えている。第1回路は、第1冷媒が循環する回路である。第1回路は、第1圧縮機と、カスケード熱交換器と、第1熱交換器と、第1切換部と、を有する。第1切換部は、第1冷媒の流路を切り換える。第2回路は、第2冷媒が循環する回路である。第2回路は、第2圧縮機と、カスケード熱交換器と、第2熱交換器と、を有している。供給部は、第2熱交換器を流れる第2冷媒と熱交換する熱媒体を供給する。冷凍サイクルシステムは、第1運転を行っている際に第1条件を満たした場合に、第2運転を行う。冷凍サイクルシステムは、第2運転を行った後に第3運転を行う。第1運転では、第1圧縮機、カスケード熱交換器、第1熱交換器の順に第1冷媒を循環させ、第2圧縮機、第2熱交換器、カスケード熱交換器の順に第2冷媒を循環させながら、供給部を運転させる。第2運転では、供給部を停止させるか又は供給部による熱媒体の供給量を低下させて第2圧縮機を運転させる。第3運転では、第1圧縮機、第1熱交換器、カスケード熱交換器の順に第1冷媒を循環させる。
 ここで、カスケード熱交換器は、第1冷媒と第2冷媒との間で熱交換を行わせるものであってよい。また、第2熱交換器は、第2冷媒と熱媒体との間で熱交換を行わせるものであってよい。
 また、冷凍サイクルシステムは、第1運転、第2運転、および第3運転を実行させるための制御部を備えるものであってよい。
 また、第2運転において供給部による熱媒体の供給量を低下させることは、第1運転時の供給部による熱媒体の供給量と比べて低下させることであってよい。
 また、第1冷媒の流れる流路の第1運転と第3運転との切り換えは、第1切換部により行われてもよい。
 また、第1条件は、特に限定されるものではなく、例えば、第1熱交換器に所定の着霜が生じていることに関する条件であって、第3運転が開始される前に満たされる条件であってよい。
 なお、第1運転から第2運転にかけて、第2圧縮機は、運転状態が継続されていてもよい。
 この冷凍サイクルシステムでは、第3運転を行う前に第2運転が行われることで、第2圧縮機が運転しており、供給部が停止または熱媒体の供給量が低下されるため、第2熱交換器における第2冷媒からの放熱量を小さくすることができる。このため、第3運転時には、第2運転時に第2回路に蓄熱された熱を利用して第1熱交換器に付着した霜を融解させることができる。
 第2観点に係る冷凍サイクルシステムは、第1観点に係る冷凍サイクルシステムにおいて、第2運転では、第2圧縮機、第2熱交換器、カスケード熱交換器の順に第2冷媒が循環する。
 この冷凍サイクルシステムでは、第2運転時における第2熱交換器の温度の低下を抑制することができる。
 第3観点に係る冷凍サイクルシステムは、第1観点に係る冷凍サイクルシステムにおいて、第2回路は、第2冷媒の流路を切り換える第2切換部を有している。第2運転では、第2圧縮機、カスケード熱交換器、第2熱交換器の順に第2冷媒が循環する。
 この冷凍サイクルシステムでは、第2冷媒を用いてカスケード熱交換器に熱を蓄えさせることが可能になる。
 第4観点に係る冷凍サイクルシステムは、第1観点に係る冷凍サイクルシステムにおいて、第2回路は、バイパス回路と、第2切換部と、を有している。バイパス回路は、第2熱交換器とカスケード熱交換器との間と、第2圧縮機の吸入流路と、を接続する。第2切換部は、第2冷媒の流路を切り換える。第2運転では、カスケード熱交換器を通過した第2冷媒の少なくとも一部が、バイパス回路を介して第2圧縮機の吸入流路に向けて流れる。
 なお、第2運転は、第2圧縮機からカスケード熱交換器に向けて第2冷媒が流れる運転であってよい。
 この冷凍サイクルシステムでは、第2運転時における第2熱交換器の温度の低下を抑制させながら、第2冷媒を用いてカスケード熱交換器に熱を蓄えさせることが可能になる。
 第5観点に係る冷凍サイクルシステムは、第1観点から第4観点のいずれかに係る冷凍サイクルシステムにおいて、第2運転では、第1圧縮機、カスケード熱交換器、第1熱交換器の順に第1冷媒を循環させる。
 この冷凍サイクルシステムでは、第2運転時において第1冷媒を用いてカスケード熱交換器に熱を蓄えさせることが可能になる。
 第6観点に係る冷凍サイクルシステムは、第1観点から第5観点のいずれかに係る冷凍サイクルシステムにおいて、第2運転を行っている際に、第2回路における第2冷媒の高圧冷媒の圧力若しくは第2圧縮機から吐出される第2冷媒の吐出温度が所定条件を満たした場合、又は、第2運転が所定時間行われた場合に、第3運転を行う。
 この冷凍サイクルシステムでは、第2回路における蓄熱量を所定量確保した状態で第3運転を開始することが可能になる。
 第7観点に係る冷凍サイクルシステムは、第1観点に係る冷凍サイクルシステムにおいて、第2回路は、バイパス回路を有している。バイパス回路は、第2熱交換器とカスケード熱交換器との間と、第2圧縮機の吸入流路と、を接続する。第3運転では、カスケード熱交換器を通過した第2冷媒の少なくとも一部が、バイパス回路を介して第2圧縮機の吸入流路に向けて流れる。
 この冷凍サイクルシステムでは、第3運転時に、カスケード熱交換器において第2冷媒の熱によって第1冷媒を加熱することができる。そして、第1回路では、このようにして加熱された第1冷媒を第1圧縮機によりさらに加熱して第1熱交換器に供給することができる。これにより、第1熱交換器に付着した霜を効率的に融解させることが可能になる。
 第8観点に係る冷凍サイクルシステムは、第7観点に係る冷凍サイクルシステムにおいて、カスケード熱交換器を通過した第2冷媒の少なくとも一部を、バイパス回路を介して第2圧縮機の吸入流路に向けて流し始めると同時又はそれ以降に、第1圧縮機、第1熱交換器、カスケード熱交換器の順に第1冷媒を循環させることで第3運転を開始させる。
 この冷凍サイクルシステムでは、カスケード熱交換器において第1冷媒が第2冷媒によって十分に加熱されないままで、第1冷媒が第1圧縮機を介して第1熱交換器に送られることを抑制することが可能になる。
冷凍サイクルシステムの概略構成図である。 冷凍サイクルシステムの概略機能ブロック構成図である。 冷凍サイクルシステムの冷房運転における動作(冷媒の流れ)を示す図である。 冷凍サイクルシステムの暖房運転における動作(冷媒の流れ)を示す図である。 冷凍サイクルシステムの冷暖同時運転(冷房主体)における動作(冷媒の流れ)を示す図である。 冷凍サイクルシステムの冷暖同時運転(暖房主体)における動作(冷媒の流れ)を示す図である。 冷凍サイクルシステムの起動制御フローチャートである。 冷凍サイクルシステムの第2蓄熱運転における動作(冷媒の流れ)を示す図である。 冷凍サイクルシステムのデフロスト運転における動作(冷媒の流れ)を示す図である。
 (1)冷凍サイクルシステムの構成
 図1は、冷凍サイクルシステム1の概略構成図である。図2は、冷凍サイクルシステム1の概略機能ブロック構成図である。
 冷凍サイクルシステム1は、蒸気圧縮式の冷凍サイクル運転を行うことによって、ビル等の室内の冷暖房に使用される装置である。
 冷凍サイクルシステム1は、蒸気圧縮式の一次側冷媒回路5a(第1回路に相当)と蒸気圧縮式の二次側冷媒回路10(第2回路に相当)とからなる二元冷媒回路を有しており、二元冷凍サイクルを行う。一次側冷媒回路5aには、冷媒として、例えば、R32(第1冷媒に相当)等が封入されている。二次側冷媒回路10には、冷媒として、例えば、二酸化炭素(第2冷媒に相当)が封入されている。一次側冷媒回路5aと二次側冷媒回路10とは、後述するカスケード熱交換器35を介して、熱的に接続されている。
 冷凍サイクルシステム1は、一次側ユニット5と、熱源ユニット2と、複数の分岐ユニット6a、6b、6cと、複数の利用ユニット3a、3b、3cと、が互いに配管を介して接続されて構成されている。一次側ユニット5と熱源ユニット2とは、一次側第1連絡管111および一次側第2連絡管112により接続されている。熱源ユニット2と複数の分岐ユニット6a、6b、6cとは、二次側第2連絡管9と二次側第1連絡管8と二次側第3連絡管7の3つの冷媒連絡管により接続されている。複数の分岐ユニット6a、6b、6cと複数の利用ユニット3a、3b、3cとは、第1接続管15a、15b、15cおよび第2接続管16a、16b、16cにより接続されている。一次側ユニット5は、本実施形態では、1台である。熱源ユニット2は、本実施形態では、1台である。複数の利用ユニット3a、3b、3cは、本実施形態では、第1利用ユニット3aと、第2利用ユニット3bと、第3利用ユニット3cと、の3台である。複数の分岐ユニット6a、6b、6cは、本実施形態では、第1分岐ユニット6aと、第2分岐ユニット6bと、第3分岐ユニット6cと、の3台である。
 そして、冷凍サイクルシステム1では、各利用ユニット3a、3b、3cが個別に冷房運転または暖房運転を行うことが可能になっており、暖房運転を行う利用ユニットから冷房運転を行う利用ユニットに冷媒を送ることで利用ユニット間において熱回収を行うことが可能になるように構成されている。具体的には、本実施形態では、冷房運転と暖房運転とを同時に行う冷房主体運転や暖房主体運転を行うことで、熱回収が行われる。また、冷凍サイクルシステム1では、上記の熱回収(冷房主体運転や暖房主体運転)も考慮した複数の利用ユニット3a、3b、3c全体の熱負荷に応じて、熱源ユニット2の熱負荷をバランスさせるように構成されている。
 (2)一次側冷媒回路
 一次側冷媒回路5aは、一次側圧縮機71(第1圧縮機に相当)と、一次側切換機構72と、一次側熱交換器74(第1熱交換器に相当)と、一次側膨張弁76と、第1液閉鎖弁108と、一次側第1連絡管111と、第2液閉鎖弁106と、第1接続配管115と、二次側冷媒回路10と共有しているカスケード熱交換器35と、第2接続配管113と、第2ガス閉鎖弁107と、一次側第2連絡管112と、第1ガス閉鎖弁109と、を有している。
 一次側圧縮機71は、一次側の冷媒を圧縮するための機器であり、例えば、圧縮機モータ71aをインバータ制御することで運転容量を可変することが可能なスクロール型等の容積式圧縮機からなる。
 カスケード熱交換器35を一次側の冷媒の蒸発器として機能させる場合には、一次側切換機構72は、一次側圧縮機71の吸入側とカスケード熱交換器35の一次側流路35bのガス側とを接続する第5接続状態となる(図1の一次側切換機構72の実線を参照)。また、一次側切換機構72は、カスケード熱交換器35を一次側の冷媒の放熱器として機能させる場合には、一次側圧縮機71の吐出側とカスケード熱交換器35の一次側流路35bのガス側とを接続する第6接続状態となる(図1の一次側切換機構72の破線を参照)。このように、一次側切換機構72は、一次側冷媒回路5a内における冷媒の流路を切り換えることが可能な機器であり、例えば、四路切換弁からなる。そして、一次側切換機構72の切り換え状態を変更することによって、カスケード熱交換器35を一次側の冷媒の蒸発器または放熱器として機能させることが可能になっている。
 カスケード熱交換器35は、一次側の冷媒であるR32等の冷媒と、二次側の冷媒である二酸化炭素等の冷媒と、の間で互いに混合させることなく熱交換を行わせるための機器である。カスケード熱交換器35は、例えば、プレート型熱交換器からなる。カスケード熱交換器35は、二次側冷媒回路10に属する二次側流路35aと、一次側冷媒回路5aに属する一次側流路35bと、を有している。二次側流路35aは、そのガス側が第3熱源配管25を介して二次側切換機構22に接続され、その液側が第4熱源配管26を介して熱源側膨張弁36に接続されている。一次側流路35bは、そのガス側が、第2接続配管113、第2ガス閉鎖弁107、一次側第2連絡管112、第1ガス閉鎖弁109、一次側切換機構72を介して一次側圧縮機71に接続され、その液側が、第1接続配管115を介して第2液閉鎖弁106に接続されている。
 一次側熱交換器74は、一次側の冷媒と屋外空気との熱交換を行うための機器である。一次側熱交換器74のガス側は、一次側切換機構72から延びる配管に接続されている。一次側熱交換器74の液側は、第1液閉鎖弁108に接続されている。一次側熱交換器74は、例えば、多数の伝熱管およびフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。
 一次側膨張弁76は、一次側熱交換器74の液側と第1液閉鎖弁108との間の部分に設けられている。一次側膨張弁76は、一次側冷媒回路5aを流れる一次側の冷媒の流量の調節等を行う、開度調節が可能な電動膨張弁である。
 一次側第1連絡管111は、第1液閉鎖弁108と第2液閉鎖弁106を接続する配管であり、一次側ユニット5と熱源ユニット2を接続している。
 一次側第2連絡管112は、第1ガス閉鎖弁109と第2ガス閉鎖弁107を接続する配管であり、一次側ユニット5と熱源ユニット2を接続している。
 第1接続配管115は、第2液閉鎖弁106とカスケード熱交換器35の一次側流路35bの液側とを接続する配管であり、熱源ユニット2に設けられている。
 第2接続配管113は、カスケード熱交換器35の一次側流路35bのガス側と第2ガス閉鎖弁107とを接続する配管であり、熱源ユニット2に設けられている。
 第1ガス閉鎖弁109は、一次側第2連絡管112と一次側切換機構72との間に設けられている。
 (3)二次側冷媒回路
 二次側冷媒回路10は、複数の利用ユニット3a、3b、3cと、複数の分岐ユニット6a、6b、6cと、熱源ユニット2と、が互いに接続されて構成されている。各利用ユニット3a、3b、3cは、対応する分岐ユニット6a、6b、6cと、1対1に接続されている。具体的には、利用ユニット3aと分岐ユニット6aとは第1接続管15aおよび第2接続管16aを介して接続され、利用ユニット3bと分岐ユニット6bとは第1接続管15bおよび第2接続管16bを介して接続され、利用ユニット3cと分岐ユニット6cとは第1接続管15cおよび第2接続管16cを介して接続されている。また、各分岐ユニット6a、6b、6cは、熱源ユニット2と、3つの連絡管である二次側第3連絡管7と二次側第1連絡管8と二次側第2連絡管9とを介して接続されている。具体的には、熱源ユニット2から延び出した二次側第3連絡管7と二次側第1連絡管8と二次側第2連絡管9とは、それぞれ複数に分岐して、各分岐ユニット6a、6b、6cに接続されている。
 二次側第1連絡管8には、運転状態に応じて、気液二相状態の冷媒とガス状態の冷媒とのいずれかの冷媒が流れる。なお、第2冷媒の種類によっては、二次側第1連絡管8には、運転状態に応じて超臨界状態の冷媒が流れる。二次側第2連絡管9には、運転状態に応じて、気液二相状態の冷媒とガス状態の冷媒とのいずれかの冷媒が流れる。二次側第3連絡管7には、運転状態に応じて、気液二相状態の冷媒と液状態の冷媒とのいずれかの冷媒が流れる。なお、第2冷媒の種類によっては、二次側第3連絡管7には、運転状態に応じて超臨界状態の冷媒が流れる。
 二次側冷媒回路10は、熱源回路12と、分岐回路14a、14b、14cと、利用回路13a、13b、13cと、が互いに接続されて構成されている。
 熱源回路12は、主として、二次側圧縮機21(第2圧縮機に相当)と、二次側切換機構22(第2切換部に相当)と、第1熱源配管28と、第2熱源配管29と、吸入流路23と、吐出流路24と、第3熱源配管25と、第4熱源配管26と、第5熱源配管27と、カスケード熱交換器35と、熱源側膨張弁36と、第3閉鎖弁31と、第1閉鎖弁32と、第2閉鎖弁33と、二次側アキュムレータ30と、油分離器34と、油戻し回路40と、二次側レシーバ45と、バイパス回路46(バイパス回路に相当)と、バイパス膨張弁46aと、過冷却熱交換器47と、過冷却回路48(バイパス回路に相当)と、過冷却膨張弁48aと、を有している。
 二次側圧縮機21は、二次側の冷媒を圧縮するための機器であり、例えば、圧縮機モータ21aをインバータ制御することで運転容量を可変することが可能なスクロール型等の容積式圧縮機からなる。なお、二次側圧縮機21は、運転時の負荷に応じて、負荷が大きいほど運転容量が大きくなるように制御される。
 二次側切換機構22は、二次側冷媒回路10の接続状態、特に、熱源回路12内における冷媒の流路を切り換えることが可能な機構である。本実施形態では、二次側切換機構22は、環状の流路に二方弁である切換弁22a、22b、22c、22dが4つ並んで設けられて構成されている。なお、二次側切換機構22としては、これに変えて、複数の三路切換弁を組合せたものを用いてもよい。二次側切換機構22は、吐出流路24と第3熱源配管25とを接続する流路に設けられた第1切換弁22aと、吐出流路24と第1熱源配管28とを接続する流路に設けられた第2切換弁22bと、吸入流路23と第3熱源配管25とを接続する流路に設けられた第3切換弁22cと、吸入流路23と第1熱源配管28とを接続する流路に設けられた第4切換弁22dと、を有している。本実施形態において、第1切換弁22aと、第2切換弁22bと、第3切換弁22cと、第4切換弁22dと、はそれぞれ開状態と閉状態とが切り換えられる電磁弁である。
 二次側切換機構22は、カスケード熱交換器35を二次側の冷媒の放熱器として機能させる場合には、第1切換弁22aを開状態として二次側圧縮機21の吐出側とカスケード熱交換器35の二次側流路35aのガス側とを接続しつつ、第3切換弁22cを閉状態とする第1接続状態とする。また、二次側切換機構22は、カスケード熱交換器35を二次側の冷媒の蒸発器として機能させる場合には、第3切換弁22cを開状態として二次側圧縮機21の吸入側とカスケード熱交換器35の二次側流路35aのガス側とを接続しつつ、第1切換弁22aを閉状態とする第2接続状態とする。また、二次側切換機構22は、二次側圧縮機21から吐出される二次側の冷媒を二次側第1連絡管8に送る場合には、第2切換弁22bを開状態として二次側圧縮機21の吐出側と二次側第1連絡管8とを接続しつつ、第4切換弁22dを閉状態とする第3接続状態とする。また、二次側切換機構22は、二次側第1連絡管8を流れる冷媒を二次側圧縮機21に吸入させる場合には、第4切換弁22dを開状態として二次側第1連絡管8と二次側圧縮機21の吸入側とを接続しつつ、第2切換弁22bを閉状態とする第4接続状態とする。
 カスケード熱交換器35は、上述の通り、一次側の冷媒であるR32等の冷媒と、二次側の冷媒である二酸化炭素等の冷媒と、の間で互いに混合させることなく熱交換を行わせるための機器である。なお、カスケード熱交換器35は、二次側冷媒回路10の二次側の冷媒が流れる二次側流路35aと、一次側冷媒回路5aの一次側の冷媒が流れる一次側流路35bと、を有することで、一次側ユニット5と熱源ユニット2とで共有されている。なお、本実施形態では、カスケード熱交換器35は、熱源ユニット2の図示しない熱源ケーシングの内部に配置されている。カスケード熱交換器35の一次側流路35bのガス側は、第2接続配管113と第2ガス閉鎖弁107を経て、一次側第2連絡管112まで延びている。カスケード熱交換器35の一次側流路35bの液側は、第1接続配管115と第2液閉鎖弁106を経て、図示しない熱源ケーシング外の一次側第1連絡管111まで延びている。
 熱源側膨張弁36は、カスケード熱交換器35を流れる二次側の冷媒の流量の調節等を行うために、カスケード熱交換器35の液側に接続された開度調節が可能な電動膨張弁である。熱源側膨張弁36は、第4熱源配管26に設けられている。
 第3閉鎖弁31、第1閉鎖弁32および第2閉鎖弁33は、外部の機器・配管(具体的には、連絡管7、8および9)との接続口に設けられた弁である。具体的には、第3閉鎖弁31は、熱源ユニット2から引き出される二次側第3連絡管7に接続されている。第1閉鎖弁32は、熱源ユニット2から引き出される二次側第1連絡管8に接続されている。第2閉鎖弁33は、熱源ユニット2から引き出される二次側第2連絡管9に接続されている。
 第1熱源配管28は、第1閉鎖弁32と二次側切換機構22とを接続する冷媒配管である。具体的には、第1熱源配管28は、第1閉鎖弁32と、二次側切換機構22のうちの第2切換弁22bと第4切換弁22dとの間の部分と、を接続している。
 吸入流路23は、二次側切換機構22と二次側圧縮機21の吸入側とを連絡する流路である。具体的には、吸入流路23は、二次側切換機構22のうちの第3切換弁22cと第4切換弁22dとの間の部分と、二次側圧縮機21の吸入側と、を接続している。吸入流路23の途中には、二次側アキュムレータ30が設けられている。
 第2熱源配管29は、第2閉鎖弁33と吸入流路23の途中とを接続する冷媒配管である。なお、本実施形態では、第2熱源配管29は、吸入流路23のうち、二次側切換機構22における第2切換弁22bと第4切換弁22dの間の部分と、二次側アキュムレータ30と、の間の部分である接続箇所において、吸入流路23に接続されている。
 吐出流路24は、二次側圧縮機21の吐出側と二次側切換機構22とを接続する冷媒配管である。具体的には、吐出流路24は、二次側圧縮機21の吐出側と、二次側切換機構22のうちの第1切換弁22aと第2切換弁22bとの間の部分と、を接続している。
 第3熱源配管25は、二次側切換機構22とカスケード熱交換器35のガス側とを接続する冷媒配管である。具体的には、第3熱源配管25は、二次側切換機構22のうちの第1切換弁22aと第3切換弁22cとの間の部分と、カスケード熱交換器35における二次側流路35aのガス側端部とを接続している。
 第4熱源配管26は、カスケード熱交換器35の液側(ガス側とは反対側、二次側切換機構22が設けられている側とは反対側)と、二次側レシーバ45と、を接続する冷媒配管である。具体的には、第4熱源配管26は、カスケード熱交換器35における二次側流路35aの液側端部(ガス側とは反対側の端部)と、二次側レシーバ45とを接続している。
 二次側レシーバ45は、二次側冷媒回路10における余剰冷媒を貯留する冷媒容器である。二次側レシーバ45からは、第4熱源配管26と、第5熱源配管27と、バイパス回路46と、が延びだしている。
 バイパス回路46は、二次側レシーバ45内部の上方の領域である気相領域と、吸入流路23と、を接続する冷媒配管である。具体的には、バイパス回路46は、吸入流路23のうち二次側切換機構22と二次側アキュムレータ30との間に接続されている。バイパス回路46には、バイパス膨張弁46aが設けられている。バイパス膨張弁46aは、開度調節により二次側レシーバ45内から二次側圧縮機21の吸入側に導く冷媒の量を調節可能な電動膨張弁である。
 第5熱源配管27は、二次側レシーバ45と第3閉鎖弁31とを接続する冷媒配管である。
 過冷却回路48は、第5熱源配管27の一部と、吸入流路23と、を接続する冷媒配管である。具体的には、過冷却回路48は、吸入流路23のうち二次側切換機構22と二次側アキュムレータ30との間に接続されている。なお、本実施形態においては、過冷却回路48は、二次側レシーバ45と過冷却熱交換器47との間から分岐するように延びている。
 過冷却熱交換器47は、第5熱源配管27に属する流路を流れる冷媒と、過冷却回路48に属する流路を流れる冷媒と、で熱交換を行わせる熱交換器である。本実施形態においては、第5熱源配管27のうち、過冷却回路48が分岐している箇所と、第3閉鎖弁31と、の間に設けられている。過冷却膨張弁48aは、過冷却回路48における第5熱源配管27からの分岐箇所と、過冷却熱交換器47と、の間に設けられている。過冷却膨張弁48aは、過冷却熱交換器47に対して減圧された冷媒を供給するものであり、開度調節可能な電動膨張弁である。
 二次側アキュムレータ30は、二次側の冷媒を溜めることが可能な容器であり、二次側圧縮機21の吸入側に設けられている。
 油分離器34は、吐出流路24の途中に設けられている。油分離器34は、二次側の冷媒に伴って二次側圧縮機21から吐出された冷凍機油を二次側の冷媒から分離して、二次側圧縮機21に戻すための機器である。
 油戻し回路40は、油分離器34と吸入流路23とを接続するように設けられている。油戻し回路40は、油分離器34から延び出た流路が、吸入流路23のうち二次側アキュムレータ30と二次側圧縮機21の吸入側との間の部分に合流するように延びた油戻し流路41を有している。油戻し流路41の途中には、油戻しキャピラリーチューブ42と油戻し開閉弁44とが設けられている。油戻し開閉弁44が開状態に制御されることで、油分離器34において分離された冷凍機油は、油戻し流路41の油戻しキャピラリーチューブ42を通過して、二次側圧縮機21の吸入側に戻される。ここで、本実施形態では、油戻し開閉弁44は、二次側冷媒回路10において二次側圧縮機21が運転状態の場合には、開状態を所定時間維持し閉状態を所定時間維持することを繰り返すことにより、油戻し回路40を通じた冷凍機油の返油量が制御される。なお、油戻し開閉弁44は、本実施形態では開閉制御される電磁弁であるが、開度調節が可能な電動膨張弁としつつ油戻しキャピラリーチューブ42を省略した構成としてもよい。
 以下、利用回路13a、13b、13cについて説明するが、利用回路13b、13cは利用回路13aと同様の構成であるため、利用回路13b、13cについては、利用回路13aの各部を示す符号の添字「a」の代わりに、「b」または「c」の添字を付すものとして各部の説明を省略する。
 利用回路13aは、主として、利用側熱交換器52a(第2熱交換器に相当)と、第1利用配管57aと、第2利用配管56aと、利用側膨張弁51aと、を有している。
 利用側熱交換器52aは、冷媒と室内空気との熱交換を行うための機器であり、例えば、多数の伝熱管およびフィンによって構成されたフィン・アンド・チューブ型熱交換器からなる。なお、複数の利用側熱交換器52a、52b、52cは、二次側切換機構22と吸入流路23とカスケード熱交換器35に対して互いに並列に接続されている。
 第2利用配管56aは、その一端が第1利用ユニット3aの利用側熱交換器52aの液側(ガス側とは反対側)に接続されている。第2利用配管56aの他端は、第2接続管16aに接続されている。第2利用配管56aの途中には、上述した利用側膨張弁51aが設けられている。
 利用側膨張弁51aは、利用側熱交換器52aを流れる冷媒の流量の調節等を行う、開度調節が可能な電動膨張弁である。利用側膨張弁51aは、第2利用配管56aに設けられている。
 第1利用配管57aは、その一端が第1利用ユニット3aの利用側熱交換器52aのガス側に接続されている。本実施形態では、第1利用配管57aは、利用側熱交換器52aの利用側膨張弁51a側とは反対側に接続されている。第1利用配管57aは、その他端が、第1接続管15aに接続されている。
 以下、分岐回路14a、14b、14cについて説明するが、分岐回路14b、14cは分岐回路14aと同様の構成であるため、分岐回路14b、14cについては、分岐回路14aの各部を示す符号の添字「a」の代わりに、「b」または「c」の添字を付すものとして各部の説明を省略する。
 分岐回路14aは、主として、合流配管62aと、第1分岐配管63aと、第2分岐配管64aと、第1調節弁66aと、第2調節弁67aと、第3分岐配管61aと、を有している。
 合流配管62aは、その一端が第1接続管15aに接続されている。合流配管62aの他端には、第1分岐配管63aと第2分岐配管64aが分岐して接続されている。
 第1分岐配管63aは、合流配管62側とは反対側が、二次側第1連絡管8に接続されている。第1分岐配管63aには、開閉可能な第1調節弁66aが設けられている。なお、ここでは、第1調節弁66aとして、開度調節が可能な電動膨張弁を採用しているが、開閉のみが可能な電磁弁等を採用してもよい。
 第2分岐配管64aは、合流配管62側とは反対側が、二次側第2連絡管9に接続されている。第2分岐配管64aには、開閉可能な第2調節弁67aが設けられている。なお、ここでは、第2調節弁67aとして、開度調節が可能な電動膨張弁を採用しているが、開閉のみが可能な電磁弁等を採用してもよい。
 第3分岐配管61aは、その一端が第2接続管16aに接続されている。第3分岐配管61aは、その他端が二次側第3連絡管7に接続されている。
 そして、第1分岐ユニット6aは、後述の冷房運転を行う際には、第1調節弁66aおよび第2調節弁67aを開けた状態にすることで、以下のように機能することができる。第1分岐ユニット6aは、二次側第3連絡管7を通じて第3分岐配管61aに流入する冷媒を、第2接続管16aに送る。なお、第2接続管16aを通じて第1利用ユニット3aの第2利用配管56aを流れる冷媒は、利用側膨張弁51aを通じて、第1利用ユニット3aの利用側熱交換器52aに送られる。そして、利用側熱交換器52aに送られた冷媒は、室内空気との熱交換によって蒸発した後、第1利用配管57aを介して、第1接続管15aを流れる。第1接続管15aを流れた冷媒は、第1分岐ユニット6aの合流配管62aに送られる。合流配管62aを流れた冷媒は、第1分岐配管63aと第2分岐配管64aに分岐して流れる。第1分岐配管63aにおいて第1調節弁66aを通過した冷媒は、二次側第1連絡管8に送られる。第2分岐配管64aにおいて第2調節弁67aを通過した冷媒は、二次側第2連絡管9に送られる。
 また、第1分岐ユニット6aは、後述の冷房主体運転を行う際と暖房主体運転を行う際に、第1利用ユニット3aにおいて室内を冷房する場合には、第1調節弁66aを閉じた状態にしつつ第2調節弁67aを開けた状態にすることで、以下のように機能することができる。第1分岐ユニット6aは、二次側第3連絡管7を通じて第3分岐配管61aに流入する冷媒を、第2接続管16aに送る。なお、第2接続管16aを通じて第1利用ユニット3aの第2利用配管56aを流れる冷媒は、利用側膨張弁51aを通じて、第1利用ユニット3aの利用側熱交換器52aに送られる。そして、利用側熱交換器52aに送られた冷媒は、室内空気との熱交換によって蒸発した後、第1利用配管57aを介して、第1接続管15aを流れる。第1接続管15aを流れた冷媒は、第1分岐ユニット6aの合流配管62aに送られる。合流配管62aを流れた冷媒は、第2分岐配管64aに流れて第2調節弁67aを通過した後、二次側第2連絡管9に送られる。
 また、第1分岐ユニット6aは、後述の暖房運転を行う際には、第2調節弁67aを後述するように運転状況に応じて開状態か閉状態にし、かつ、第1調節弁66aを開けた状態にすることで、次のように機能することができる。第1分岐ユニット6aでは、二次側第1連絡管8を通じて第1分岐配管63aに流入する冷媒が、第1調節弁66aを通過して、合流配管62aに送られる。合流配管62aを流れた冷媒は、第1接続管15aを介して、利用ユニット3aの第1利用配管57aを流れて、利用側熱交換器52aに送られる。そして、利用側熱交換器52aに送られた冷媒は、室内空気との熱交換によって放熱した後、第2利用配管56aに設けられた利用側膨張弁51aを通過する。第2利用配管56aを通過した冷媒は、第2接続管16aを介して、第1分岐ユニット6aの第3分岐配管61aを流れた後、二次側第3連絡管7に送られる。
 また、第1分岐ユニット6aは、後述の冷房主体運転を行う際と暖房主体運転を行う際に、第1利用ユニット3aにおいて室内を暖房する場合には、第2調節弁67aを閉状態にし、かつ、第1調節弁66aを開けた状態にすることで、次のように機能することができる。第1分岐ユニット6aでは、二次側第1連絡管8を通じて第1分岐配管63aに流入する冷媒が、第1調節弁66aを通過して、合流配管62aに送られる。合流配管62aを流れた冷媒は、第1接続管15aを介して、利用ユニット3aの第1利用配管57aを流れて、利用側熱交換器52aに送られる。そして、利用側熱交換器52aに送られた冷媒は、室内空気との熱交換によって放熱した後、第2利用配管56aに設けられた利用側膨張弁51aを通過する。第2利用配管56aを通過した冷媒は、第2接続管16aを介して、第1分岐ユニット6aの第3分岐配管61aを流れた後、二次側第3連絡管7に送られる。
 このような機能は、第1分岐ユニット6aだけでなく、第2分岐ユニット6b、第3分岐ユニット6cも同様に有している。このため、第1分岐ユニット6a、第2分岐ユニット6b、第3分岐ユニット6cは、ぞれぞれ、各利用側熱交換器52a、52b、52cについて、冷媒の蒸発器として機能させるか、または、冷媒の放熱器として機能させるか、を個別に切り換えることが可能になっている。
 (4)一次側ユニット
 一次側ユニット5は、利用ユニット3a、3b、3cや分岐ユニット6a、6b、6cが配置された空間とは異なる空間や屋上等に設置されている。
 一次側ユニット5は、上述の一次側冷媒回路5aの一部と、一次側ファン75と、各種センサと、一次側制御部70と、を図示しない一次側ケーシング内に有して構成されている。
 一次側ユニット5は、一次側冷媒回路5aの一部として、一次側圧縮機71と、一次側切換機構72と、一次側熱交換器74と、一次側膨張弁76と、第1液閉鎖弁108と、第1ガス閉鎖弁109と、を有している。
 一次側ファン75は、一次側ユニット5内に設けられており、屋外空気を一次側熱交換器74に導いて、一次側熱交換器74を流れる一次側の冷媒と熱交換させた後に、屋外に排出させる、という空気流れを生じさせる。一次側ファン75は、一次側ファンモータ75aによって駆動される。
 また、一次側ユニット5には、各種のセンサが設けられている。具体的には、一次側熱交換器74を通過する前の屋外空気の温度を検出する外気温度センサ77と、一次側圧縮機71から吐出された一次側の冷媒の圧力を検出する一次側吐出圧力センサ78と、一次側圧縮機71に吸入される一次側の冷媒の圧力を検出する一次側吸入圧力センサ79と、一次側圧縮機71に吸入される一次側の冷媒の温度を検出する一次側吸入温度センサ81と、一次側熱交換器74を流れる冷媒の温度を検出する一次側熱交温度センサ82と、が設けられている。
 一次側制御部70は、一次側ユニット5内に設けられている各部71(71a)、72、75(75a)、76の動作を制御する。そして、一次側制御部70は、一次側ユニット5の制御を行うために設けられたCPUやマイクロコンピュータ等のプロセッサとメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行うことや、熱源側制御部20や分岐ユニット制御部60a、60b、60cや利用側制御部50a、50b、50cとの間で制御信号等のやりとりを行うことができるようになっている。
 (5)熱源ユニット
 熱源ユニット2は、利用ユニット3a、3b、3cや分岐ユニット6a、6b、6cが配置された空間とは異なる空間や屋上等に設置されている。
 熱源ユニット2は、連絡管7、8、9を介して分岐ユニット6a、6b、6cに接続されており、二次側冷媒回路10の一部を構成している。また、熱源ユニット2は、一次側第1連絡管111および一次側第2連絡管112を介して、一次側ユニット5と接続されており、一次側冷媒回路5aの一部を構成している。
 熱源ユニット2は、主として、上述した熱源回路12と、各種センサと、熱源側制御部20と、一次側冷媒回路5aの一部を構成する第2液閉鎖弁106、第1接続配管115、第2接続配管113、および、第2ガス閉鎖弁107とを、図示しない熱源ケーシング内に有して構成されている。
 熱源ユニット2には、二次側圧縮機21の吸入側における二次側の冷媒の圧力を検出する二次側吸入圧力センサ37と、二次側圧縮機21の吐出側における二次側の冷媒の圧力を検出する二次側吐出圧力センサ38と、二次側圧縮機21の吐出側における二次側の冷媒の温度を検出する二次側吐出温度センサ39と、二次側圧縮機21の吸入側における二次側の冷媒の温度を検出する二次側吸入温度センサ88と、カスケード熱交換器35の二次側流路35aと熱源側膨張弁36との間を流れる二次側の冷媒の温度を検出する二次側カスケード温度センサ83と、二次側レシーバ45から過冷却熱交換器47との間を流れる二次側の冷媒の温度を検出するレシーバ出口温度センサ84と、バイパス回路46におけるバイパス膨張弁46aの下流側を流れる二次側の冷媒の温度を検出するバイパス回路温度センサ85と、過冷却熱交換器47と第3閉鎖弁31との間を流れる二次側の冷媒の温度を検出する過冷却出口温度センサ86と、過冷却回路48における過冷却熱交換器47の出口を流れる二次側の冷媒の温度を検出する過冷却回路温度センサ87と、が設けられている。
 熱源側制御部20は、熱源ユニット2に設けられた各部21(21a)、22、36、44、46a、48aの動作を制御する。熱源側制御部20は、熱源ユニット2の制御を行うために設けられたCPUやマイクロコンピュータ等のプロセッサとメモリを有しており、一次側ユニット5の一次側制御部70や利用ユニット3a、3b、3cの利用側制御部50a、50b、50cや分岐ユニット制御部60a、60b、60cとの間で制御信号等のやりとりを行うことができるようになっている。
 (6)利用ユニット
 利用ユニット3a、3b、3cは、ビル等の室内の天井に埋め込みや吊り下げ等、または、室内の壁面に壁掛け等により設置されている。
 利用ユニット3a、3b、3cは、連絡管7、8、9を介して熱源ユニット2に接続されている。
 利用ユニット3a、3b、3cは、二次側冷媒回路10の一部を構成する利用回路13a、13b、13cを有している。
 以下、利用ユニット3a、3b、3cの構成について説明する。なお、第2利用ユニット3bおよび第3利用ユニット3cは、第1利用ユニット3aと同様の構成であるため、ここでは、第1利用ユニット3aの構成のみ説明し、第2利用ユニット3bおよび第3利用ユニット3cの構成については、それぞれ、第1利用ユニット3aの各部を示す符号の添字「a」の代わりに、「b」または「c」の添字を付して、各部の説明を省略する。
 第1利用ユニット3aは、主として、上述の利用回路13aと、室内ファン53a(供給部に相当)と、利用側制御部50aと、各種センサと、を有している。なお、室内ファン53aは、室内ファンモータ54aを有している。
 室内ファン53aは、ユニット内に室内空気を吸入して、利用側熱交換器52aを流れる冷媒と熱交換させた後に、供給空気として室内に供給する空気流れを生じさせる。室内ファン53aは、室内ファンモータ54aによって駆動される。
 利用ユニット3aには、利用側熱交換器52aの液側における冷媒の温度を検出する液側温度センサ58aが設けられている。また、利用ユニット3aには、室内から取り込まれた空気であって、利用側熱交換器52aを通過する前の空気の温度である室内温度を検出する室内温度センサ55aが設けられている。
 利用側制御部50aは、利用ユニット3aを構成する各部51a、53a(54a)の動作を制御する。そして、利用側制御部50aは、利用ユニット3aの制御を行うために設けられたCPUやマイクロコンピュータ等のプロセッサとメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行うことや、熱源側制御部20や分岐ユニット制御部60a、60b、60cや一次側ユニット5の一次側制御部70との間で制御信号等のやりとりを行うことができるようになっている。
 なお、第2利用ユニット3bは、利用回路13b、室内ファン53b、利用側制御部50b、室内ファンモータ54bを有している。第3利用ユニット3cは、利用回路13c、室内ファン53c、利用側制御部50c、室内ファンモータ54cを有している。
 (7)分岐ユニット
 分岐ユニット6a、6b、6cは、ビル等の室内の天井裏の空間等に設置されている。
 分岐ユニット6a、6b、6cは、利用ユニット3a、3b、3cと1対1に対応しつつ接続されている。分岐ユニット6a、6b、6cは、連絡管7、8、9を介して熱源ユニット2に接続されている。
 次に、分岐ユニット6a、6b、6cの構成について説明する。なお、第2分岐ユニット6bおよび第3分岐ユニット6cは、第1分岐ユニット6aと同様の構成であるため、ここでは、第1分岐ユニット6aの構成のみ説明し、第2分岐ユニット6bおよび第3分岐ユニット6cの構成については、それぞれ、第1分岐ユニット6aの各部を示す符号の添字「a」の代わりに、「b」または「c」の添字を付して、各部の説明を省略する。
 第1分岐ユニット6aは、主として、上述の分岐回路14aと、分岐ユニット制御部60aと、を有している。
 分岐ユニット制御部60aは、分岐ユニット6aを構成する各部66a、67aの動作を制御する。そして、分岐ユニット制御部60aは、分岐ユニット6aの制御を行うために設けられたCPUやマイクロコンピュータ等のプロセッサとメモリを有しており、リモコン(図示せず)との間で制御信号等のやりとりを行うことや、熱源側制御部20や利用ユニット3a、3b、3cや一次側ユニット5の一次側制御部70との間で制御信号等のやりとりを行うことができるようになっている。
 なお、第2分岐ユニット6bは、分岐回路14bと分岐ユニット制御部60bを有している。第3分岐ユニット6cは、分岐回路14cと分岐ユニット制御部60cを有している。
 (8)制御部
 冷凍サイクルシステム1では、上述の熱源側制御部20、利用側制御部50a、50b、50c、分岐ユニット制御部60a、60b、60c、一次側制御部70が、有線または無線を介して相互に通信可能に接続されることで、制御部80を構成している。したがって、この制御部80は、各種センサ37、38、39、83、84、85、86、87、88、77、78、79、81、82、58a、58b、58c等の検出情報および図示しないリモコン等から受け付けた指示情報等に基づいて、各部21(21a)、22、36、44、46a、48a、51a、51b、51c、53a、53b、53c(54a、54b、54c)、66a、66b、66c、67a、67b、67c、71(71a)、72、75(75a)、76の動作を制御する。
 (9)冷凍サイクルシステムの動作
 次に、冷凍サイクルシステム1の動作について、図3~図6を用いて説明する。
 冷凍サイクルシステム1の冷凍サイクル運転は、主として、冷房運転と、暖房運転と、冷房主体運転と、暖房主体運転と、に分けることができる。なお、暖房運転と暖房主体運転が行われている場合には、所定条件を満たすことで、後述の蓄熱運転およびデフロスト運転が行われる。
 ここで、冷房運転は、利用側熱交換器が冷媒の蒸発器として機能する運転を行う利用ユニットだけが存在し、利用ユニット全体の蒸発負荷に対してカスケード熱交換器35を二次側の冷媒の放熱器として機能させる冷凍サイクル運転である。
 暖房運転は、利用側熱交換器が冷媒の放熱器として機能する運転を行う利用ユニットだけが存在し、利用ユニット全体の放熱負荷に対してカスケード熱交換器35を二次側の冷媒の蒸発器として機能させる冷凍サイクル運転である。
 冷房主体運転は、利用側熱交換器が冷媒の蒸発器として機能する運転を行う利用ユニットと、利用側熱交換器が冷媒の放熱器として機能する運転を行う利用ユニットと、を混在させる運転である。冷房主体運転は、利用ユニット全体の熱負荷のうち蒸発負荷が主体である場合に、この利用ユニット全体の蒸発負荷に対してカスケード熱交換器35を二次側の冷媒の放熱器として機能させる冷凍サイクル運転である。
 暖房主体運転は、利用側熱交換器が冷媒の蒸発器として機能する運転を行う利用ユニットと、利用側熱交換器が冷媒の放熱器として機能する運転を行う利用ユニットと、を混在させる運転である。暖房主体運転は、利用ユニット全体の熱負荷のうち放熱負荷が主体である場合に、この利用ユニット全体の放熱負荷に対してカスケード熱交換器35を二次側の冷媒の蒸発器として機能させる冷凍サイクル運転である。
 なお、これらの冷凍サイクル運転を含む冷凍サイクルシステム1の動作は、上記の制御部80によって行われる。
 (9-1)冷房運転
 冷房運転では、例えば、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cの全てが冷媒の蒸発器として機能する運転を行い、カスケード熱交換器35が二次側の冷媒の放熱器として機能する運転を行う。この冷房運転では、冷凍サイクルシステム1の一次側冷媒回路5aおよび二次側冷媒回路10は、図3に示すように構成される。なお、図3の一次側冷媒回路5aに付された矢印および二次側冷媒回路10に付された矢印は、冷房運転時の冷媒の流れを示している。
 具体的には、一次側ユニット5においては、一次側切換機構72を第5接続状態に切り換えることによって、カスケード熱交換器35を一次側の冷媒の蒸発器として機能させるようになっている。なお、一次側切換機構72の第5接続状態は、図3の一次側切換機構72において実線で示す接続状態である。これにより、一次側ユニット5では、一次側圧縮機71から吐出された一次側の冷媒は、一次側切換機構72を通過して、一次側熱交換器74において一次側ファン75から供給される外気と熱交換を行うことで凝縮する。一次側熱交換器74において凝縮した一次側の冷媒は、一次側膨張弁76において減圧された後、カスケード熱交換器35の一次側流路35bを流れて蒸発し、一次側切換機構72を介して、一次側圧縮機71に吸入される。
 また、熱源ユニット2においては、二次側切換機構22を第1接続状態でかつ第4接続状態に切り換えることによって、カスケード熱交換器35を二次側の冷媒の放熱器として機能させるようになっている。なお、二次側切換機構22の第1接続状態は、第1切換弁22aが開状態で第3切換弁22cが閉状態となる接続状態である。二次側切換機構22の第4接続状態は、第4切換弁22dが開状態で第2切換弁22bが閉状態となる接続状態である。ここで、熱源側膨張弁36は、開度調節されている。第1~第3利用ユニット3a、3b、3cにおいては、第1調節弁66a、66b、66c、および、第2調節弁67a、67b、67cは、開状態に制御される。これにより、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cの全てが、冷媒の蒸発器として機能する。また、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cの全てと熱源ユニット2の二次側圧縮機21の吸入側とは、第1利用配管57a、57b、57c、第1接続管15a、15b、15c、合流配管62a、62b、62c、第1分岐配管63a、63b、63c、第2分岐配管64a、64b、64c、第1連絡管8および第2連絡管9を介して接続された状態になっている。また、過冷却膨張弁48aは、過冷却熱交換器47の出口を第3連絡管7に向けて流れる二次側の冷媒の過冷却度が所定値になるように開度制御されている。バイパス膨張弁46aは、閉状態に制御される。利用ユニット3a、3b、3cにおいては、利用側膨張弁51a、51b、51cは、開度調節されている。
 このような二次側冷媒回路10において、二次側圧縮機21で圧縮され吐出された二次側の高圧冷媒は、二次側切換機構22を通じて、カスケード熱交換器35の二次側流路35aに送られる。カスケード熱交換器35では、二次側流路35aを流れる二次側の高圧冷媒は放熱し、カスケード熱交換器35の一次側流路35bを流れる一次側の冷媒は蒸発する。カスケード熱交換器35において放熱した二次側の冷媒は、開度調節されている熱源側膨張弁36を通過した後、レシーバ45に流入する。レシーバ45から流出した冷媒の一部は、過冷却回路48に分岐して流れ、過冷却膨張弁48aにおいて減圧された後に、吸入流路23に合流する。過冷却熱交換器47では、レシーバ45から流出した冷媒の他の一部が、過冷却回路48を流れる冷媒によって冷却された後、第3閉鎖弁31を通じて、第3連絡管7に送られる。
 そして、第3連絡管7に送られた冷媒は、3つに分岐されて、各第1~第3分岐ユニット6a、6b、6cの第3分岐配管61a、61b、61cを通過する。その後、各第2接続管16a、16b、16cを流れた冷媒は、各第1~第3利用ユニット3a、3b、3cの第2利用配管56a、56b、56cに送られる。第2利用配管56a、56b、56cに送られた冷媒は、利用ユニット3a、3b、3cの利用側膨張弁51a、51b、51cに送られる。
 そして、開度調節されている利用側膨張弁51a、51b、51cを通過した冷媒は、利用側熱交換器52a、52b、52cにおいて、室内ファン53a、53b、53cによって供給される室内空気と熱交換を行う。これにより、利用側熱交換器52a、52b、52cを流れる冷媒は、蒸発し、低圧のガス冷媒となる。室内空気は、冷却されて室内に供給される。これにより、室内空間が冷房される。利用側熱交換器52a、52b、52cにおいて蒸発した低圧のガス冷媒は、第1利用配管57a、57b、57cを流れ、第1接続管15a、15b、15cを流れた後、第1~第3分岐ユニット6a、6b、6cの合流配管62a、62b、62cに送られる。
 そして、合流配管62a、62b、62cに送られた低圧のガス冷媒は、第1分岐配管63a、63b、63cと、第2分岐配管64a、64b、64cと、に分岐して流れる。第1分岐配管63a、63b、63cにおいて第1調節弁66a、66b、66cを通過した冷媒は、第1連絡管8に送られる。第2分岐配管64a、64b、64cにおいて第2調節弁67a、67b、67cを通過した冷媒は、第2連絡管9に送られる。
 そして、第1連絡管8および第2連絡管9に送られた低圧のガス冷媒は、第1閉鎖弁32、第2閉鎖弁33、第1熱源配管28、第2熱源配管29、二次側切換機構22、吸入流路23およびアキュムレータ30を通じて、二次側圧縮機21の吸入側に戻される。
 このようにして、冷房運転における動作が行われる。
 (9-2)暖房運転
 暖房運転では、例えば、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cの全てが冷媒の放熱器として機能する運転を行う。また、暖房運転では、カスケード熱交換器35が二次側の冷媒の蒸発器として機能する運転を行う。暖房運転では、冷凍サイクルシステム1の一次側冷媒回路5aおよび二次側冷媒回路10は、図4に示すように構成される。図4の一次側冷媒回路5aに付された矢印および二次側冷媒回路10に付された矢印は、暖房運転時の冷媒の流れを示している。
 具体的には、一次側ユニット5においては、一次側切換機構72を第6運転状態に切り換えることによって、カスケード熱交換器35を一次側の冷媒の放熱器として機能させるようになっている。一次側切換機構72の第6運転状態は、図4の一次側切換機構72において破線で示す接続状態である。これにより、一次側ユニット5では、一次側圧縮機71から吐出された一次側の冷媒は、一次側切換機構72を通過して、カスケード熱交換器35の一次側流路35bを流れて凝縮する。カスケード熱交換器35において凝縮した一次側の冷媒は、一次側膨張弁76において減圧された後、一次側熱交換器74において一次側ファン75から供給される外気と熱交換を行うことで蒸発し、一次側切換機構72を介して、一次側圧縮機71に吸入される。
 また、熱源ユニット2においては、二次側切換機構22を第2接続状態でかつ第3接続状態に切り換える。これにより、カスケード熱交換器35を二次側の冷媒の蒸発器として機能させるようになっている。二次側切換機構22の第2接続状態は、第1切換弁22aが閉状態で第3切換弁22cが開状態の接続状態である。二次側切換機構22の第3接続状態は、第2切換弁22bが開状態で第4切換弁22dが閉状態の接続状態である。また、熱源側膨張弁36は、開度調節されている。第1~第3分岐ユニット6a、6b、6cにおいては、第1調節弁66a、66b、66cが開状態に制御され、第2調節弁67a、67b、67cが閉状態に制御される。これにより、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cの全てが冷媒の放熱器として機能する。そして、利用ユニット3a、3b、3cの利用側熱交換器52a、52b、52cと熱源ユニット2の二次側圧縮機21の吐出側とは、吐出流路24、第1熱源配管28、第1連絡管8、第1分岐配管63a、63b、63c、合流配管62a、62b、62c、第1接続管15a、15b、15c、第1利用配管57a、57b、57cを介して接続された状態になっている。また、過冷却膨張弁48aおよびバイパス膨張弁46aは、閉状態に制御される。利用ユニット3a、3b、3cにおいては、利用側膨張弁51a、51b、51cは、開度調節されている。
 このような二次側冷媒回路10において、二次側圧縮機21で圧縮され吐出された高圧冷媒は、二次側切換機構22において開状態に制御された第2切換弁22bを通じて、第1熱源配管28に送られる。第1熱源配管28に送られた冷媒は、第1閉鎖弁32を通じて、第1連絡管8に送られる。
 そして、第1連絡管8に送られた高圧冷媒は、3つに分岐されて、運転中の利用ユニットである各利用ユニット3a、3b、3cの第1分岐配管63a、63b、63cに送られる。第1分岐配管63a、63b、63cに送られた高圧冷媒は、第1調節弁66a、66b、66cを通過し、合流配管62a、62b、62cを流れる。その後、第1接続管15a、15b、15cおよび第1利用配管57a、57b、57cを流れた冷媒が、利用側熱交換器52a、52b、52cに送られる。
 そして、利用側熱交換器52a、52b、52cに送られた高圧冷媒は、利用側熱交換器52a、52b、52cにおいて、室内ファン53a、53b、53cによって供給される室内空気と熱交換を行う。これにより、利用側熱交換器52a、52b、52cを流れる冷媒は、放熱する。室内空気は、加熱されて室内に供給される。これにより、室内空間が暖房される。利用側熱交換器52a、52b、52cにおいて放熱した冷媒は、第2利用配管56a、56b、56cを流れて、開度調節されている利用側膨張弁51a、51b、51cを通過する。その後、第2接続管16a、16b、16cを流れた冷媒は、各分岐ユニット6a、6b、6cの第3分岐配管61a、61b、61cを流れる。
 そして、第3分岐配管61a、61b、61cに送られた冷媒は、第3連絡管7に送られて合流する。
 そして、第3連絡管7に送られた冷媒は、第3閉鎖弁31を通じて、熱源側膨張弁36に送られる。熱源側膨張弁36に送られた冷媒は、熱源側膨張弁36において流量調節された後、カスケード熱交換器35に送られる。カスケード熱交換器35では、二次側流路35aを流れる二次側の冷媒は蒸発して低圧のガス冷媒となって二次側切換機構22に送られ、カスケード熱交換器35の一次側流路35bを流れる一次側の冷媒は凝縮する。そして、二次側切換機構22に送られた二次側の低圧のガス冷媒は、吸入流路23およびアキュムレータ30通じて、二次側圧縮機21の吸入側に戻される。
 このようにして、暖房運転における動作が行われる。
 (9-3)冷房主体運転
 冷房主体運転では、例えば、利用ユニット3a、3bの利用側熱交換器52a、52bが冷媒の蒸発器として機能し、かつ、利用ユニット3cの利用側熱交換器52cが冷媒の放熱器として機能する運転を行う。冷房主体運転では、カスケード熱交換器35は、二次側の冷媒の放熱器として機能する。冷房主体運転では、冷凍サイクルシステム1の一次側冷媒回路5aおよび二次側冷媒回路10は、図5に示されるように構成される。図5の一次側冷媒回路5aに付された矢印および二次側冷媒回路10に付された矢印は、冷房主体運転時の冷媒の流れを示している。
 具体的には、一次側ユニット5においては、一次側切換機構72を第5接続状態(図5の一次側切換機構72の実線で示された状態)に切り換えることによって、カスケード熱交換器35を一次側の冷媒の蒸発器として機能させるようになっている。これにより、一次側ユニット5では、一次側圧縮機71から吐出された一次側の冷媒は、一次側切換機構72を通過して、一次側熱交換器74において一次側ファン75から供給される外気と熱交換を行うことで凝縮する。一次側熱交換器74において凝縮した一次側の冷媒は、一次側膨張弁76において減圧された後、カスケード熱交換器35の一次側流路35bを流れて蒸発し、一次側切換機構72を介して、一次側圧縮機71に吸入される。
 また、熱源ユニット2においては、二次側切換機構22を第1接続状態(第1切換弁22aが開状態で第3切換弁22cが閉状態)でかつ第3接続状態(第2切換弁22bが開状態で第4切換弁22dが閉状態)に切り換えることによって、カスケード熱交換器35を二次側の冷媒の放熱器として機能させるようになっている。また、熱源側膨張弁36は、開度調節されている。第1~第3分岐ユニット6a、6b、6cにおいては、第1調節弁66c、および、第2調節弁67a、67bが開状態に制御され、かつ、第1調節弁66a、66b、および、第2調節弁67cが閉状態に制御される。これにより、利用ユニット3a、3bの利用側熱交換器52a、52bが冷媒の蒸発器として機能し、かつ、利用ユニット3cの利用側熱交換器52cが冷媒の放熱器として機能する。また、利用ユニット3a、3bの利用側熱交換器52a、52bと熱源ユニット2の二次側圧縮機21の吸入側とが第2連絡管9を介して接続された状態になり、かつ、利用ユニット3cの利用側熱交換器52cと熱源ユニット2の二次側圧縮機21の吐出側とが第1連絡管8を介して接続された状態になっている。また、過冷却膨張弁48aは、過冷却熱交換器47の出口を第3連絡管7に向けて流れる二次側の冷媒の過冷却度が所定値になるように開度制御されている。バイパス膨張弁46aは、閉状態に制御される。利用ユニット3a、3b、3cにおいては、利用側膨張弁51a、51b、51cは、開度調節されている。
 このような二次側冷媒回路10において、二次側圧縮機21で圧縮され吐出された二次側の高圧冷媒は、その一部が、二次側切換機構22、第1熱源配管28および第1閉鎖弁32を通じて、第1連絡管8に送られ、残りが、二次側切換機構22および第3熱源配管25を通じて、カスケード熱交換器35の二次側流路35aに送られる。
 そして、第1連絡管8に送られた高圧冷媒は、第1分岐配管63cに送られる。第1分岐配管63cに送られた高圧冷媒は、第1調節弁66cおよび合流配管62cを通じて、利用ユニット3cの利用側熱交換器52cに送られる。
 そして、利用側熱交換器52cに送られた高圧冷媒は、利用側熱交換器52cにおいて、室内ファン53cによって供給される室内空気と熱交換を行う。これにより、利用側熱交換器52cを流れる冷媒は、放熱する。室内空気は、加熱されて室内に供給されて、利用ユニット3cの暖房運転が行われる。利用側熱交換器52cにおいて放熱した冷媒は、第2利用配管56cを流れ、利用側膨張弁51cにおいて流量調節される。その後、第2接続管16cを流れた冷媒は、分岐ユニット6cの第3分岐配管61cに送られる。
 そして、第3分岐配管61cに送られた冷媒は、第3連絡管7に送られる。
 また、カスケード熱交換器35の二次側流路35aに送られた高圧冷媒は、カスケード熱交換器35において、一次側流路35bを流れる一次側の冷媒と熱交換を行うことによって放熱する。カスケード熱交換器35において放熱した二次側の冷媒は、熱源側膨張弁36において流量調節された後、レシーバ45に流入する。レシーバ45から流出した冷媒の一部は、過冷却回路48に分岐して流れ、過冷却膨張弁48aにおいて減圧された後に、吸入流路23に合流する。過冷却熱交換器47では、レシーバ45から流出した冷媒の他の一部が、過冷却回路48を流れる冷媒によって冷却された後、第3閉鎖弁31を通じて、第3連絡管7に送られて、利用側熱交換器52cにおいて放熱した冷媒と合流する。
 そして、第3連絡管7において合流した冷媒は、2つに分岐して、分岐ユニット6a、6bの各第3分岐配管61a、61bに送られる。その後、第2接続管16a、16bを流れた冷媒は、各第1~第2利用ユニット3a、3bの第2利用配管56a、56bに送られる。第2利用配管56a、56bを流れる冷媒は、利用ユニット3a、3bの利用側膨張弁51a、51bを通過する。
 そして、開度調節されている利用側膨張弁51a、51bを通過した冷媒は、利用側熱交換器52a、52bにおいて、室内ファン53a、53bによって供給される室内空気と熱交換を行う。これにより、利用側熱交換器52a、52bを流れる冷媒は、蒸発し、低圧のガス冷媒となる。室内空気は、冷却されて室内に供給される。これにより、室内空間が冷房される。利用側熱交換器52a、52bにおいて蒸発した低圧のガス冷媒は、第1~第2分岐ユニット6a、6bの合流配管62a、62bに送られる。
 そして、合流配管62a、62bに送られた低圧のガス冷媒は、第2調節弁67a、67bおよび第2分岐配管64a、64bを通じて、第2連絡管9に送られて合流する。
 そして、第2連絡管9に送られた低圧のガス冷媒は、第2閉鎖弁33、第2熱源配管29、吸入流路23およびアキュムレータ30を通じて、二次側圧縮機21の吸入側に戻される。
 このようにして、冷房主体運転における動作が行われる。
 (9-4)暖房主体運転
 暖房主体運転では、例えば、利用ユニット3a、3bの利用側熱交換器52a、52bが冷媒の放熱器として機能し、かつ、利用側熱交換器52cが冷媒の蒸発器として機能する運転を行う。暖房主体運転では、カスケード熱交換器35は、二次側の冷媒の蒸発器として機能する。暖房主体運転では、冷凍サイクルシステム1の一次側冷媒回路5aおよび二次側冷媒回路10は、図6に示すように構成される。図6の一次側冷媒回路5aに付された矢印および二次側冷媒回路10に付された矢印は、暖房主体運転時の冷媒の流れを示している。
 具体的には、一次側ユニット5においては、一次側切換機構72を第6運転状態に切り換えることによって、カスケード熱交換器35を一次側の冷媒の放熱器として機能させるようになっている。一次側切換機構72の第6運転状態は、図6の一次側切換機構72において破線で示された接続状態である。これにより、一次側ユニット5では、一次側圧縮機71から吐出された一次側の冷媒は、一次側切換機構72を通過して、カスケード熱交換器35の一次側流路35bを流れて凝縮する。カスケード熱交換器35において凝縮した一次側の冷媒は、一次側膨張弁76において減圧された後、一次側熱交換器74において一次側ファン75から供給される外気と熱交換を行うことで蒸発し、一次側切換機構72を介して、一次側圧縮機71に吸入される。
 熱源ユニット2においては、二次側切換機構22を第2接続状態でかつ第3接続状態に切り換える。二次側切換機構22の第2接続状態は、第1切換弁22aが閉状態で第3切換弁22cが開状態の接続状態である。二次側切換機構22の第3接続状態は、第2切換弁22bが開状態で第4切換弁22dが閉状態の接続状態である。これによって、カスケード熱交換器35を二次側の冷媒の蒸発器として機能させるようになっている。また、熱源側膨張弁36は、開度調節されている。第1~第3分岐ユニット6a、6b、6cにおいては、第1調節弁66a、66b、および、第2調節弁67cが開状態に制御され、かつ、第1調節弁66c、および、第2調節弁67a、67bが閉状態に制御される。これによって、利用ユニット3a、3bの利用側熱交換器52a、52bは冷媒の放熱器として機能し、利用ユニット3cの利用側熱交換器52cは冷媒の蒸発器として機能する。そして、利用ユニット3cの利用側熱交換器52cと熱源ユニット2の二次側圧縮機21の吸入側とは、第1利用配管57c、第1接続管15c、合流配管62c、第2分岐配管64c、および第2連絡管9を介して接続された状態になる。また、利用ユニット3a、3bの利用側熱交換器52a、52bと熱源ユニット2の二次側圧縮機21の吐出側とは、吐出流路24、第1熱源配管28、第1連絡管8、第1分岐配管63a、63b、合流配管62a、62b、第1接続管15a、15b、第1利用配管57a、57bを介して接続された状態になっている。また、過冷却膨張弁48aおよびバイパス膨張弁46aは、閉状態に制御される。利用ユニット3a、3b、3cにおいては、利用側膨張弁51a、51b、51cは、開度調節されている。
 このような二次側冷媒回路10において、二次側圧縮機21で圧縮され吐出された二次側の高圧冷媒は、二次側切換機構22、第1熱源配管28および第1閉鎖弁32を通じて、第1連絡管8に送られる。
 そして、第1連絡管8に送られた高圧冷媒は、2つに分岐されて、運転中の利用ユニットである各第1利用ユニット3aと第2利用ユニット3bにそれぞれ接続されている第1分岐ユニット6aと第2分岐ユニット6bの第1分岐配管63a、63bに送られる。第1分岐配管63a、63bに送られた高圧冷媒は、第1調節弁66a、66b、合流配管62a、62b、および第1接続管15a、15bを通じて、第1利用ユニット3aと第2利用ユニット3bの利用側熱交換器52a、52bに送られる。
 そして、利用側熱交換器52a、52bに送られた高圧冷媒は、利用側熱交換器52a、52bにおいて、室内ファン53a、53bによって供給される室内空気と熱交換を行う。これにより、利用側熱交換器52a、52bを流れる冷媒は、放熱する。室内空気は、加熱されて室内に供給される。これにより、室内空間が暖房される。利用側熱交換器52a、52bにおいて放熱した冷媒は、第2利用配管56a、56bを流れ、開度調節されている利用側膨張弁51a、51bを通過する。その後、第2接続管16a、16bを流れた冷媒は、分岐ユニット6a、6bの第3分岐配管61a、61bを介して、第3連絡管7に送られる。
 そして、第3連絡管7に送られた冷媒は、その一部が、分岐ユニット6cの第3分岐配管61cに送られ、残りが、第3閉鎖弁31を通じて、熱源側膨張弁36に送られる。
 そして、第3分岐配管61cに送られた冷媒は、第2接続管16cを介して、利用ユニット3cの第2利用配管56cを流れ、利用側膨張弁51cに送られる。
 そして、開度調節されている利用側膨張弁51cを通過した冷媒は、利用側熱交換器52cにおいて、室内ファン53cによって供給される室内空気と熱交換を行う。これにより、利用側熱交換器52cを流れる冷媒は、蒸発し、低圧のガス冷媒となる。室内空気は、冷却されて室内に供給される。これにより、室内空間が冷房される。利用側熱交換器52cにおいて蒸発した低圧のガス冷媒は、第1利用配管57cと第1接続管15cを通過し、合流配管62cに送られる。
 そして、合流配管62cに送られた低圧のガス冷媒は、第2調節弁67cおよび第2分岐配管64cを通じて、第2連絡管9に送られる。
 そして、第2連絡管9に送られた低圧のガス冷媒は、第2閉鎖弁33、第2熱源配管29、吸入流路23およびアキュムレータ30を通じて、二次側圧縮機21の吸入側に戻される。
 また、熱源側膨張弁36に送られた冷媒は、開度調節されている熱源側膨張弁36を通過した後、カスケード熱交換器35の二次側流路35aにおいて、一次側流路35bを流れる一次側の冷媒と熱交換を行う。これにより、カスケード熱交換器35の二次側流路35aを流れる冷媒は、蒸発して低圧のガス冷媒になり、二次側切換機構22に送られる。二次側切換機構22に送られた低圧のガス冷媒は、吸入流路23において利用側熱交換器52cにおいて蒸発した低圧のガス冷媒と合流する。合流した冷媒は、アキュムレータ30を介して、二次側圧縮機21の吸入側に戻される。
 このようにして、暖房主体運転における動作が行われる。
 (10)蓄熱運転およびデフロスト運転
 冷凍サイクルシステム1では、暖房運転時または暖房主体運転時である通常運転時に所定条件を満たした場合に、蓄熱運転およびデフロスト運転が行われる。以下、蓄熱運転およびデフロスト運転について、図7のフローチャートを参照しつつ説明する。
 なお、ここでは、暖房運転または暖房主体運転が行われている状態から蓄熱運転およびデフロスト運転が行われ、その後、再度、暖房運転または暖房主体運転に復帰するまでの処理の流れ説明する。
 ステップS1では、制御部80は、冷凍サイクルシステム1において暖房運転または暖房主体運転である通常運転が実行されるように、各機器を制御する。
 ステップS2では、制御部80は、一次側熱交換器74に霜が付着していることに関する所定のデフロスト条件を満たしているか否かを判断する。ここで、デフロスト条件としては、特に限定されず、例えば、外気温度が所定値以下であること、最後にデフロスト運転を完了した後から所定時間経過していること、一次側熱交換器74の温度が所定値以下であること、一次側の冷媒の蒸発圧力または蒸発温度が所定値以下であること等の条件の少なくとも1つを用いて判断することができる。ここで、デフロスト条件を満たしている場合には、ステップS3に移行する。また、デフロスト条件を満たしていない場合には、ステップS2を繰り返す。
 ステップS3では、制御部80は、蓄熱運転としての第1蓄熱運転を開始する。
 第1蓄熱運転では、制御部80は、以下のように各種制御を行う。なお、第1蓄熱運転時の冷媒の流れは、図4に示す暖房運転と同様である。
 一次側冷媒回路5aについては、制御部80は、一次側切換機構72の接続状態を通常運転時の状態に維持し、一次側ファン75を運転状態に維持し、一次側圧縮機71を駆動させ続ける。これにより、一次側の冷媒は、一次側圧縮機71、カスケード熱交換器35、一次側膨張弁76、一次側熱交換器74の順に流れる。また、制御部80は、一次側圧縮機71に吸入される冷媒の過熱度が所定値となるように、一次側膨張弁76の弁開度を制御する。なお、制御部80は、一次側圧縮機71の駆動周波数を通常運転時よりも上げるように制御してもよいし、一次側圧縮機71の駆動周波数を所定の最大周波数に制御してもよい。
 二次側冷媒回路10については、制御部80は、室内ファン53a、53b、53cを停止させる。また、制御部80は、暖房運転から第1蓄熱運転に移行する場合には、二次側切換機構22の接続状態を維持し、利用側膨張弁51a、51b、51cと第1調節弁66a、66b、66cを開状態に維持し、第2調節弁67a、67b、67cと過冷却膨張弁48aとバイパス膨張弁46aを閉状態に維持する。また、制御部80は、暖房主体運転から第1蓄熱運転に移行する場合には、二次側切換機構22の接続状態を維持し、利用側膨張弁51a、51b、51cと第1調節弁66a、66b、66cを開状態に制御し、第2調節弁67a、67b、67cと過冷却膨張弁48aとバイパス膨張弁46aを閉状態に制御する。これにより、二次側の冷媒は、二次側圧縮機21、利用側熱交換器52a、52b、52c、利用側膨張弁51a、51b、51c、カスケード熱交換器35の順に流れる。なお、制御部80は、二次側圧縮機21に吸入される冷媒の過熱度が所定値となるように、熱源側膨張弁36の弁開度を制御する。また、二次側圧縮機21は、駆動状態を維持してもよいし、駆動周波数を通常運転時よりも上げるように制御してもよい。
 ステップS4では、制御部80は、第1蓄熱完了条件を満たしているか否かを判断する。ここで、第1蓄熱完了条件としては、特に限定されず、例えば、第1蓄熱運転の開始から所定時間が経過したこと、カスケード熱交換器35の温度が所定値以上になったこと、二次側圧縮機21から吐出される二次側の冷媒の圧力が所定値以上になったこと、二次側圧縮機21から吐出される二次側の冷媒の温度が所定値以上になったこと、二次側冷媒回路10において液冷媒が流れる所定箇所における二次側の冷媒の温度が所定値以上になったこと等の条件の少なくとも1つを用いて判断することができる。ここで、第1蓄熱完了条件を満たしている場合には、ステップS5に移行する。また、第1蓄熱完了条件を満たしていない場合には、ステップS3を繰り返す。
 ステップS5では、制御部80は、第1蓄熱運転を終了させ、二次側冷媒回路10において、均圧動作を行った後に、二次側切換機構22を第1接続状態でかつ第4接続状態に切り換え、利用側膨張弁51a、51b、51cを閉状態に制御して、蓄熱運転としての第2蓄熱運転を開始する。なお、ここで、第1調節弁66a、66b、66cおよび第2調節弁67a、67b、67cを閉状態に制御してもよい。
 第2蓄熱運転では、制御部80は、以下のように各種制御を行う。なお、第2蓄熱運転時の冷媒の流れの様子を、図8に示す。
 一次側冷媒回路5aについては、制御部80は、第1蓄熱運転と同じ運転を継続させる。
 二次側冷媒回路10については、制御部80は、室内ファン53a、53b、53cを停止させたまま、二次側切換機構22を第1接続状態でかつ第4接続状態に切り換え、利用側膨張弁51a、51b、51c、第1調節弁66a、66b、66c、第2調節弁67a、67b、67c、および、過冷却膨張弁48aを閉状態に制御しつつ、バイパス膨張弁46aを開状態に制御しながら、二次側圧縮機21を駆動させる。これにより、二次側の冷媒は、二次側圧縮機21、カスケード熱交換器35、レシーバ45、バイパス回路46およびバイパス膨張弁46aの順に流れる。なお、熱源側膨張弁36は、全開状態に制御される。ここで、制御部80は、二次側圧縮機21について、二次側冷媒回路10における高圧冷媒と低圧冷媒との差圧が所定値以上確保されるように、駆動周波数を制御する。また、制御部80は、バイパス膨張弁46aの弁開度を、カスケード熱交換器35の温度および二次側圧縮機21の吐出冷媒の過熱度に基づいて制御する。具体的には、制御部80は、カスケード熱交換器35における二次側の冷媒流れが確保されてカスケード熱交換器35の温度が所定値以上に保たれるように弁開度を上げる制御と、二次側圧縮機21において吸入される二次側の冷媒が湿り状態とならないように、二次側圧縮機21の吐出冷媒の過熱度が所定値以上に維持されるように弁開度を下げる制御と、を行うことにより、バイパス膨張弁46aの弁開度を制御する。
 ステップS6では、制御部80は、第2蓄熱完了条件を満たしているか否かを判断する。ここで、第2蓄熱完了条件としては、特に限定されず、例えば、第2蓄熱運転の開始から所定時間が経過したこと、二次側圧縮機21から吐出される二次側の冷媒の圧力が所定値以上になったこと、二次側圧縮機21から吐出される二次側の冷媒の温度が所定値以上になったこと、一次側圧縮機71から吐出される一次側の冷媒の圧力が所定値以上になったこと、一次側圧縮機71から吐出される一次側の冷媒の温度が所定値以上になったこと、カスケード熱交換器35の温度が所定値以上になったこと等の条件の少なくとも1つを用いて判断することができる。また、制御部80は、一次側冷媒回路5aの制御を行っている一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断した場合に、第2蓄熱完了条件を満たしていると判断するようにしてもよい。ここで、第2蓄熱完了条件を満たしている場合には、ステップS7に移行する。また、第2蓄熱完了条件を満たしていない場合には、ステップS5を繰り返す。
 ステップS7では、制御部80は、第2蓄熱運転を終了させ、デフロスト運転を開始する。
 デフロスト運転では、制御部80は、以下のように各種制御を行う。なお、デフロスト運転時の冷媒の流れの様子を、図9に示す。
 一次側冷媒回路5aについては、制御部80は、一次側冷媒回路5aにおいて均圧動作を行った後、一次側切換機構72を第5接続状態に切り換え、一次側ファン75を停止状態に維持しつつ、一次側圧縮機71を駆動させる。これにより、一次側の冷媒は、一次側圧縮機71、一次側熱交換器74、一次側膨張弁76、カスケード熱交換器35の順に流れる。また、制御部80は、一次側圧縮機71の吸入冷媒の過熱度が所定の過熱度に維持されるように、一次側膨張弁76の弁開度を制御する。なお、制御部80は、一次側圧縮機71の駆動周波数を通常運転時よりも上げるように制御してもよいし、一次側圧縮機71の駆動周波数を所定の最大周波数に制御してもよい。
 二次側冷媒回路10については、制御部80は、第2蓄熱運転時の制御を継続させる。
 ステップS8では、制御部80は、デフロスト完了条件を満たしているか否かを判断する。ここで、デフロスト完了条件としては、特に限定されず、例えば、デフロスト運転の開始から所定時間が経過したこと、一次側熱交換器74の温度が所定値以上になったこと、一次側の冷媒の凝縮圧力または凝縮温度が所定値以上になったこと等の条件の少なくとも1つを用いて判断することができる。ここで、デフロスト完了条件を満たしている場合には、ステップS9に移行する。また、デフロスト完了条件を満たしていない場合には、ステップS7を繰り返す。
 ステップS9では、制御部80は、冷凍サイクルシステム1において暖房運転または暖房主体運転を復帰させるように、各機器を制御する。
 (11)実施形態の特徴
 本実施形態の冷凍サイクルシステム1では、デフロスト運転を開始する前に、蓄熱運転としての第1蓄熱運転および第2蓄熱運転を行っている。
 ここで、第1蓄熱運転では、二次側冷媒回路10において、室内ファン53a、53b、53cを停止させた状態で二次側圧縮機21を駆動させている。これにより、利用側熱交換器52a、52b、52cにおける二次側の冷媒の熱の放出を抑制させて、二次側冷媒回路10において蓄熱させることを可能にしている。特に、室内ファン53a、53b、53cが停止した状態であるため、熱の放出が抑えられたまま利用側熱交換器52a、52b、52cを通過した二次側の冷媒は、カスケード熱交換器35の二次側流路35aに至ることで、カスケード熱交換器35に蓄熱させることが可能になっている。
 さらに、第2蓄熱運転では、二次側冷媒回路10において、利用側膨張弁51a、51b、51cを閉じて利用回路13a、13b、13cに対する二次側の冷媒の供給を途絶えさせつつ、バイパス膨張弁46aを開けてバイパス回路46に二次側の冷媒を流すように循環させている。これにより、二次側圧縮機21から吐出される高温高圧冷媒をカスケード熱交換器35の二次側流路35aに供給してカスケード熱交換器35に蓄熱させながら、利用側熱交換器52a、52b、52cの温度低下を抑えて、利用側の環境の悪化を小さく抑えることが可能になっている。
 また、第1蓄熱運転および第2蓄熱運転では、一次側冷媒回路5aでは、一次側圧縮機71から吐出された高温高圧の冷媒がカスケード熱交換器35の一次側流路35bに送られている。これによっても、カスケード熱交換器35での蓄熱を促進させることが可能になっている。
 このように、本実施形態の冷凍サイクルシステム1では、デフロスト運転を行う前に、デフロスト運転時に一次側熱交換器74の霜を融解させるために用いる熱を十分に蓄積させることができる。
 また、デフロスト運転時には、二次側冷媒回路10においては、利用回路13a、13b、13cに対する二次側の冷媒の供給を途絶えさせつつ、二次側圧縮機21から吐出された高温高圧の冷媒をカスケード熱交換器35の二次側流路35aに送ることで、カスケード熱交換器35に熱を供給することができる。そして、一次側冷媒回路5aにおいては、カスケード熱交換器35の一次側流路35bを流れる一次側の冷媒に、二次側の冷媒によってカスケード熱交換器35に供給された熱を与えることができ、当該熱を得た一次側の冷媒を、さらに、一次側圧縮機71によって加圧して、高温高圧状態となった冷媒を用いて、一次側熱交換器74の霜を融解させることができる。これにより、一次側熱交換器74の霜を効率的に融解させることが可能になる。したがって、デフロスト運転を行うことに伴う利用側の環境の悪化を短時間で留めることが可能になる。
 なお、上記第2蓄熱運転およびデフロスト運転時には、二次側冷媒回路10におけるレシーバ45のうち気相領域から延び出したバイパス回路46に二次側の冷媒を流している。これにより、バイパス回路46を流れる二次側の冷媒を主としてガス冷媒とすることができるため、二次側圧縮機21が吸入する冷媒が湿り状態になることを抑制しやすくなっている。
 また、上記第2蓄熱運転およびデフロスト運転時には、カスケード熱交換器35の温度を所定値以上に保ちつつ、二次側圧縮機21の吐出冷媒の過熱度が所定値以上に維持されるように、バイパス膨張弁46aの弁開度が制御されている。ここで、仮に、カスケード熱交換器35の二次側流路35aにおいて二次側の冷媒の流れが停滞している状況では、カスケード熱交換器35の一次側流路35bにおいて一次側の冷媒が蒸発することで、二次側流路35aで停滞している二次側の冷媒の熱が奪われ続けてしまう。このため、二次側流路35aにおける二次側の冷媒の温度が低下し、カスケード熱交換器35の温度も低下し、デフロスト運転により一次側熱交換器74の霜を溶かすために用いる熱が少なくなってしまう。これに対して、バイパス膨張弁46aの弁開度はカスケード熱交換器35の温度が所定値以上に保たれるように制御されるため、二次側流路35aにおける二次側の冷媒の停滞を抑制し、デフロスト運転のための熱を十分に確保することが可能になっている。さらに、バイパス膨張弁46aの弁開度は、二次側圧縮機21において吸入される二次側の冷媒が湿り状態とならないように制御されているため、デフロスト運転のための熱を十分に確保しつつ、二次側圧縮機21における液圧縮を抑制させることが可能になっている。
 さらに、以上の本実施形態の冷凍サイクルシステム1では、二次側冷媒回路10において、冷媒として二酸化炭素の冷媒を用いた場合には、地球温暖化係数(GWP)を低く抑えることができる。また、利用側において冷媒漏洩が生じたとしても、冷媒にフロンが含まれていないため、利用側においてフロンが流出することがない。
 また、以上の本実施形態の冷凍サイクルシステム1では、二元冷凍サイクルが採用されているため、二次側冷媒回路10において十分な能力を出すことが可能となっている。
 (12)他の実施形態
 (12-1)他の実施形態A
 上記実施形態では、デフロスト運転を開始する前に、蓄熱運転としての第1蓄熱運転および第2蓄熱運転を行う場合を例として挙げて説明した。
 これに対して、例えば、デフロスト運転を開始する前に行う蓄熱運転としては、第1蓄熱運転のみであってもよいし、第2蓄熱運転のみであってもよい。
 蓄熱運転として第1蓄熱運転のみを行う場合には、第1蓄熱完了条件を満たした場合に、上記実施形態におけるデフロスト運転を開始するようにしてもよい。なお、第1蓄熱運転を終了した後に、二次側冷媒回路10において先にデフロスト運転の制御を開始した後に、一次側冷媒回路5aにおいてデフロスト運転の制御を開始するようにしてもよい。言い換えれば、一次側冷媒回路5aにおけるデフロスト運転の制御が二次側冷媒回路10におけるデフロスト運転の制御よりも先に開始されないようにしてもよい。ここで、例えば、第1蓄熱完了条件を満たした場合に、二次側冷媒回路10において二次側切換機構22を第1接続状態でかつ第4接続状態に切り換え、一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断するまでの間、一次側冷媒回路5aの一次側圧縮機71を停止させておいてもよい。その後、一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断した場合に、二次側冷媒回路10の二次側圧縮機21を起動させ、さらにその後に、一次側冷媒回路5aの一次側圧縮機71を起動させるようにしてもよい。なお、一次側冷媒回路5aにおいて均圧動作を行って、一次側切換機構72を第5接続状態に切り換えるという処理は、第1蓄熱完了条件を満たした後に行ってもよいし、一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断した場合に行ってもよい。以上の制御を行うことで、カスケード熱交換器35の一次側流路35bが一次側の冷媒の蒸発器として機能して二次側流路35aが二次側の冷媒の蒸発器として機能することにより、一次側流路35bを流れる一次側の冷媒が二次側流路35aを流れる二次側の冷媒から熱を得にくくなる、という状態を避けることができる。
 蓄熱運転として第2蓄熱運転のみを行う場合には、デフロスト条件を満たした場合に第2蓄熱運転を開始し、その後、第2蓄熱完了条件を満たした場合にデフロスト運転を開始することになる。なお、第2蓄熱完了条件を満たした場合に、上記同様、二次側冷媒回路10において先にデフロスト運転の制御を開始した後に、一次側冷媒回路5aにおいてデフロスト運転の制御を開始するようにしてもよい。ここで、例えば、第2蓄熱運転完了条件を満たした場合に、二次側冷媒回路10において二次側切換機構22の接続状態を維持しつつ、一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断するまでの間、一次側冷媒回路5aの一次側圧縮機71を停止させておいてもよい。その後、一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断した場合に、二次側冷媒回路10の二次側圧縮機21を起動させ、その後に、一次側冷媒回路5aの一次側圧縮機71を起動させるようにしてもよい。なお、一次側冷媒回路5aにおいて均圧動作を行って、一次側切換機構72を第5接続状態に切り換えるという処理は、第2蓄熱完了条件を満たした後に行ってもよいし、一次側制御部70が一次側冷媒回路5aにおいてデフロスト運転を開始する準備が完了したと判断した場合に行ってもよい。なお、一次側流路35bを流れる一次側の冷媒が二次側流路35aを流れる二次側の冷媒から熱を得にくくなる、という状態を避けることができる点は、上記同様である。
 (12-2)他の実施形態B
 上記実施形態では、第2蓄熱運転およびデフロスト運転時に、バイパス回路46に冷媒を流す場合を例として挙げて説明した。
 このバイパス回路46は、レシーバ45のうち気相領域から延び出した回路であるため、レシーバ45が液状態の冷媒で満たされるまでは、二次側圧縮機21の吸入側に向けて気相冷媒を送ることが可能である。
 ここで、例えば、第2蓄熱運転やデフロスト運転が継続されることにより、レシーバ45内が液冷媒で満たされることに関する満液条件を満たした場合には、バイパス膨張弁46aを開ける代わりに、または、バイパス膨張弁46aを開けるのと共に、過冷却膨張弁48aを開けて、過冷却回路48にも冷媒を流すようにしてもよい。
 なお、レシーバ45内が液冷媒で満たされることに関する満液条件は、例えば、バイパス回路46におけるバイパス膨張弁46aの下流側を流れる冷媒の過熱度に基づいて判断するようにしてもよい。ここで、当該過熱度は、例えば、バイパス回路温度センサ85が検知する温度と、二次側吸入圧力センサ37が検知する圧力から把握してもよい。
 (12-3)他の実施形態C
 上記実施形態では、第1蓄熱運転時に、室内ファン53a、53b、53cを停止させる場合を例に挙げて説明した。
 しかし、第1蓄熱運転としては、第1蓄熱運転時に、室内ファン53a、53b、53cを停止させる制御に限られず、例えば、室内ファン53a、53b、53cの風量を、暖房運転または暖房主体運転である通常運転時の風量よりも低下させる制御としてもよい。この場合であっても、利用側熱交換器52a、52b、52cからの二次側の冷媒の熱の放出が抑制される。
 (12-4)他の実施形態D
 上記実施形態では、第2蓄熱運転時およびデフロスト運転時に、利用側膨張弁51a、51b、51cを閉状態に制御する場合を例に挙げて説明した
 これに対して、第2蓄熱運転およびデフロスト運転としては、利用側膨張弁51a、51b、51cを完全に閉止する制御に限られず、例えば、利用側膨張弁51a、51b、51cの弁開度を、暖房運転または暖房主体運転である通常運転時の弁開度よりも低下させる制御としてもよい。この場合であっても、利用側熱交換器52a、52b、52cに送られる二次側の冷媒の量が抑制されることにより、利用側熱交換器52a、52b、52cでの熱の放出が抑制される。
 なお、利用側膨張弁51a、51b、51cを閉止せずに開ける制御は、蓄熱運転の間やデフロスト運転開始から所定条件を満たすまでの間は行われずに、デフロスト運転開始後であって、且つ、以下に示す場合に実行されてもよい。具体的には、二次側冷媒回路10において二次側圧縮機21が吸入する二次側の冷媒の過熱度が所定値以下になった場合、二次側圧縮機21から吐出した二次側の冷媒の過熱度が所定値以下になった場合、二次側冷媒回路10における二次側の冷媒の高圧が所定値以下になった場合、二次側冷媒回路10の液冷媒の温度が所定値以下になった場合、または、デフロスト運転開始から所定時間経過してもデフロスト運転を終了できない場合が挙げられる。
 なお、二次側冷媒回路10における二次側の冷媒の高圧が所定値以下になっているか否かは、例えば、二次側吐出圧力センサ38が検出する圧力に基づいて判断してもよい。また、二次側冷媒回路10の液冷媒の温度が所定値以下になっているか否かは、例えば、レシーバ出口温度センサ84が検出する温度に基づいて判断してもよいし、過冷却出口温度センサ86が検出する温度に基づいて判断してもよい。
 (12-5)他の実施形態E
 上記実施形態では、蓄熱運転時に、一次側冷媒回路5aにおいて一次側圧縮機71から吐出された冷媒をカスケード熱交換器35の一次側流路35bに供給させる制御を例に挙げて説明した。
 これに対して、蓄熱運転時には、一次側圧縮機71を停止させておいてもよい。そして、デフロスト運転を開始させることが可能な接続状態となるように均圧制御および一次側切換機構72の切換制御を完了させて、蓄熱運転が完了するまで一次側圧縮機71の起動を待機させるようにしてもよい。
 また、蓄熱運転時のうち、第1蓄熱運転時には上記実施形態と同様に一次側圧縮機71を駆動させ、第2蓄熱運転時には一次側圧縮機71を停止させて、均圧制御および一次側切換機構72の切換制御を完了させて、蓄熱運転が完了するまで一次側圧縮機71の起動を待機させるようにしてもよい。これにより、第2蓄熱運転時にカスケード熱交換器35の一次側流路35bと二次側流路35aの両方が冷媒の放熱器として機能することになる状態を避けることができ、一次側冷媒または二次側冷媒の高圧の異常上昇を抑制することができる。
 (12-6)他の実施形態F
 上記実施形態では、二次側冷媒回路10が、バイパス回路46および過冷却回路48を有している場合を例に挙げて説明した。
 これに対して、二次側冷媒回路10は、上記実施形態のバイパス回路46や過冷却回路48のように、カスケード熱交換器35の二次側流路35aから第3連絡管7までの間を流れる冷媒を吸入流路23にバイパスさせて流すような流路を有していなくてもよい。
 この場合には、例えば、上記実施形態において、バイパス膨張弁46aや過冷却膨張弁48aに関する制御以外の制御として、第1蓄熱運転を行った後にデフロスト運転を行うようにしてもよい。より具体的には、第1蓄熱運転を開始した後、所定の蓄熱完了条件を満たした場合に、デフロスト運転を行うようにしてもよい。
 ここでの所定の蓄熱完了条件としては、特に限定されず、例えば、第1蓄熱運転の開始から所定時間が経過したこと、二次側圧縮機21から吐出される二次側の冷媒の圧力が所定値以上になったこと、二次側圧縮機21から吐出される二次側の冷媒の温度が所定値以上になったこと、二次側冷媒回路10において液冷媒が流れる所定箇所における二次側の冷媒の温度が所定値以上になったこと、カスケード熱交換器35の温度が所定値以上になったこと等の条件の少なくとも1つを用いて判断することができる。
 また、所定の蓄熱完了条件を満たした場合に行うデフロスト運転では、制御部80は、以下のように各種制御を行う。
 一次側冷媒回路5aでは、制御部80は、上記実施形態と同様に、均圧動作を行った後、一次側切換機構72を第5接続状態に切り換え、一次側ファン75を停止状態に維持しつつ、一次側圧縮機71を駆動させる。また、制御部80は、一次側圧縮機71の吸入冷媒の過熱度が所定の過熱度に維持されるように、一次側膨張弁76の弁開度を制御する。なお、制御部80は、一次側圧縮機71の駆動周波数を通常運転時よりも上げるように制御してもよいし、一次側圧縮機71の駆動周波数を所定の最大周波数に制御してもよい。
 二次側冷媒回路10では、制御部80は、均圧動作を行った後に、二次側切換機構22を第1接続状態でかつ第4接続状態に切り換え、室内ファン53a、53b、53cを停止させたまま、利用側膨張弁51a、51b、51c、第1調節弁66a、66b、66c、および、第2調節弁67a、67b、67cを開状態に制御して、二次側圧縮機21を駆動させる。なお、熱源側膨張弁36は、全開状態に制御される。ここで、利用側膨張弁51a、51b、51cの弁開度は、例えば、二次側圧縮機21が吸入する二次側の冷媒の過熱度が所定値以上となるように制御されてもよい。
 (12-7)他の実施形態G
 上記実施形態では、一次側冷媒回路5aにおいて用いられる冷媒としてR32を例示し、二次側冷媒回路10において用いられる冷媒として二酸化炭素を例示した。
 これに対して、一次側冷媒回路5aにおいて用いられる冷媒としては、特に限定されるものではなく、HFC-32、HFO系冷媒、HFC-32とHFO系冷媒の混合冷媒、二酸化炭素、アンモニア、プロパン等を用いることができる。
 また、二次側冷媒回路10において用いられる冷媒としては、特に限定されるものではなく、HFC-32、HFO系冷媒、HFC-32とHFO系冷媒の混合冷媒、二酸化炭素、アンモニア、プロパン等を用いることができる。
 なお、HFO系冷媒としては、例えば、HFO-1234yfやHFO-1234ze等を用いることができる。
 また、一次側冷媒回路5aと二次側冷媒回路10とでは、同じ冷媒が用いられていてもよいし、異なる冷媒が用いられていてもよい。
 (12-8)他の実施形態H
 上記実施形態では、二次側冷媒回路10として、第1連絡管8と第2連絡管9と第3連絡管7を有する三管式の冷暖同時運転可能な冷媒回路を例に挙げて例示した。
 これに対して、二次側冷媒回路10としては、冷暖同時運転可能な冷媒回路に限定されるものではなく、熱源ユニット2と利用ユニット3a、3b、3cが2本の連絡配管を介して接続された回路であってもよい。
 (付記)
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
1    :冷凍サイクルシステム
2    :熱源ユニット
3a   :第1利用ユニット
3b   :第2利用ユニット
3c   :第3利用ユニット
4    :二次側ユニット
5    :一次側ユニット
5a   :一次側冷媒回路(第1回路)
7    :液冷媒連絡管
8    :高低圧ガス冷媒連絡管
9    :低圧ガス冷媒連絡管
10   :二次側冷媒回路(第2回路)
11   :熱源側膨張機構
12   :熱源回路
13a-c:利用回路
20   :熱源側制御部
21   :二次側圧縮機(第2圧縮機)
21a  :圧縮機モータ
22   :二次側切換機構(第2切換部)
23   :吸入流路
24   :吐出流路
25   :第3熱源配管
26   :第4熱源配管
27   :第5熱源配管
28   :第1熱源配管
29   :第2熱源配管
30   :アキュムレータ
31   :第3閉鎖弁
32   :第1閉鎖弁
33   :第2閉鎖弁
34   :油分離器
35   :カスケード熱交換器
35a  :二次側流路
35b  :一次側流路
36   :熱源側膨張弁
37   :二次側吸入圧力センサ
38   :二次側吐出圧力センサ
39   :二次側吐出温度センサ
40   :油戻し回路
41   :油戻し流路
42   :油戻しキャピラリーチューブ
44   :油戻し開閉弁
45   :レシーバ
46   :バイパス回路(バイパス回路)
46a  :バイパス膨張弁
47   :過冷却熱交換器
48   :過冷却回路(バイパス回路)
48a  :過冷却膨張弁
50a-c:利用側制御部
51a-c:利用側膨張弁
52a-c:利用側熱交換器(第2熱交換器)
53a-c:室内ファン(供給部)
56a、56b、56c:第2利用配管
57a、57b、57c:第1利用配管
58a、58b、58c:液側温度センサ
60a、60b、60c:分岐ユニット制御部
61a、61b、61c:第3分岐配管
62a、62b、62c:合流配管
63a、63b、63c:第1分岐配管
64a、64b、64c:第2分岐配管
66a、66b、66c:第1調節弁
67a、67b、67c:第2調節弁
70   :一次側制御部
71   :一次側圧縮機(第1圧縮機)
72   :一次側切換機構(第1切換部)
74   :一次側熱交換器(第1熱交換器)
76   :一次側膨張弁
77   :外気温度センサ
78   :一次側吐出圧力センサ
79   :一次側吸入圧力センサ
81   :一次側吸入温度センサ
82   :一次側熱交温度センサ
83   :二次側カスケード温度センサ
84   :レシーバ出口温度センサ
85   :バイパス回路温度センサ
86   :過冷却出口温度センサ
87   :過冷却回路温度センサ
88   :二次側吸入温度センサ
80   :制御部
特開2014-109405号公報

Claims (8)

  1.  第1冷媒が循環する回路であって、第1圧縮機(71)と、カスケード熱交換器(35)と、第1熱交換器(74)と、前記第1冷媒の流路を切り換える第1切換部(72)と、を有する第1回路(5a)と、
     第2冷媒が循環する回路であって、第2圧縮機(21)と、前記カスケード熱交換器(35)と、第2熱交換器(52a、52b、52c)と、を有する第2回路(10)と、
     前記第2熱交換器を流れる前記第2冷媒と熱交換する熱媒体を供給する供給部(53a、53b、53c)と、
    を備え、
     前記第1圧縮機、前記カスケード熱交換器、前記第1熱交換器の順に前記第1冷媒を循環させつつ、前記第2圧縮機、前記第2熱交換器、前記カスケード熱交換器の順に前記第2冷媒を循環させながら、前記供給部を運転させる第1運転を行っている際に、第1条件を満たした場合に、前記供給部を停止させるか又は前記供給部による前記熱媒体の供給量を低下させて前記第2圧縮機を運転させる第2運転を行い、
     前記第2運転を行った後に、前記第1圧縮機、前記第1熱交換器、前記カスケード熱交換器の順に前記第1冷媒を循環させる第3運転を行う、
    冷凍サイクルシステム(1)。
  2.  前記第2運転では、前記第2圧縮機、前記第2熱交換器、前記カスケード熱交換器の順に前記第2冷媒を循環させる、
    請求項1に記載の冷凍サイクルシステム。
  3.  前記第2回路は、前記第2冷媒の流路を切り換える第2切換部(22)を有しており、
     前記第2運転では、前記第2圧縮機、前記カスケード熱交換器、前記第2熱交換器の順に前記第2冷媒を循環させる、
    請求項1に記載の冷凍サイクルシステム。
  4.  前記第2回路は、前記第2熱交換器と前記カスケード熱交換器との間と、前記第2圧縮機の吸入流路と、を接続するバイパス回路(46、48)と、前記第2冷媒の流路を切り換える第2切換部(22)と、を有しており、
     前記第2運転では、前記カスケード熱交換器を通過した前記第2冷媒の少なくとも一部が、前記バイパス回路を介して前記第2圧縮機の前記吸入流路に向けて流れる、
    請求項1に記載の冷凍サイクルシステム。
  5.  前記第2運転では、前記第1圧縮機、前記カスケード熱交換器、前記第1熱交換器の順に前記第1冷媒を循環させる、
    請求項1から4のいずれか1項に記載の冷凍サイクルシステム。
  6.  前記第2運転を行っている際に、前記第2回路における前記第2冷媒の高圧冷媒の圧力若しくは前記第2圧縮機から吐出される前記第2冷媒の吐出温度が所定条件を満たした場合、又は、前記第2運転が所定時間行われた場合に、前記第3運転を行う、
    請求項1から5のいずれか1項に記載の冷凍サイクルシステム。
  7.  前記第2回路は、前記第2熱交換器と前記カスケード熱交換器との間と、前記第2圧縮機の吸入流路と、を接続するバイパス回路(46、48)を有しており、
     前記第3運転では、前記カスケード熱交換器を通過した前記第2冷媒の少なくとも一部が、前記バイパス回路を介して前記第2圧縮機の前記吸入流路に向けて流れる、
    請求項1に記載の冷凍サイクルシステム。
  8.  前記カスケード熱交換器を通過した前記第2冷媒の少なくとも一部を前記バイパス回路を介して前記第2圧縮機の前記吸入流路に向けて流し始めると同時又はそれ以降に、前記第1圧縮機、前記第1熱交換器、前記カスケード熱交換器の順に前記第1冷媒を循環させることで前記第3運転を開始させる、
    請求項7に記載の冷凍サイクルシステム。
PCT/JP2021/043881 2020-12-01 2021-11-30 冷凍サイクルシステム WO2022118841A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21900594.9A EP4257891A4 (en) 2020-12-01 2021-11-30 REFRIGERATION CYCLE SYSTEM
JP2022566935A JP7436932B2 (ja) 2020-12-01 2021-11-30 冷凍サイクルシステム
CN202180081056.2A CN116601443B (zh) 2020-12-01 2021-11-30 冷冻循环系统
US18/203,834 US20230304709A1 (en) 2020-12-01 2023-05-31 Refrigeration cycle system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199793 2020-12-01
JP2020199793 2020-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/203,834 Continuation US20230304709A1 (en) 2020-12-01 2023-05-31 Refrigeration cycle system

Publications (1)

Publication Number Publication Date
WO2022118841A1 true WO2022118841A1 (ja) 2022-06-09

Family

ID=81853274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043881 WO2022118841A1 (ja) 2020-12-01 2021-11-30 冷凍サイクルシステム

Country Status (4)

Country Link
US (1) US20230304709A1 (ja)
EP (1) EP4257891A4 (ja)
JP (1) JP7436932B2 (ja)
WO (1) WO2022118841A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315023A (ja) * 1986-07-07 1988-01-22 Matsushita Refrig Co 空気調和機
JPS6358048A (ja) * 1986-08-27 1988-03-12 Daikin Ind Ltd 空気調和機における除霜装置
JPS6365245A (ja) * 1986-09-05 1988-03-23 Matsushita Refrig Co 空気調和機の除霜装置
JPH07120121A (ja) * 1993-10-29 1995-05-12 Daikin Ind Ltd 空気調和装置の運転制御装置
WO2012128229A1 (ja) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 二元冷凍サイクル装置
JP2014109405A (ja) 2012-11-30 2014-06-12 Daikin Ind Ltd 水加熱システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043297A1 (ja) * 2010-09-27 2012-04-05 東芝キヤリア株式会社 給湯システム
JP6365245B2 (ja) 2014-11-04 2018-08-01 トヨタ自動車株式会社 熱可塑性樹脂の切削加工装置
JP6358048B2 (ja) 2014-11-05 2018-07-18 株式会社豊田自動織機 電池モジュール
JP6315023B2 (ja) 2016-04-20 2018-04-25 トヨタ自動車株式会社 内燃機関
JP7120121B2 (ja) 2019-03-29 2022-08-17 新東工業株式会社 付加製造装置及び付加製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6315023A (ja) * 1986-07-07 1988-01-22 Matsushita Refrig Co 空気調和機
JPS6358048A (ja) * 1986-08-27 1988-03-12 Daikin Ind Ltd 空気調和機における除霜装置
JPS6365245A (ja) * 1986-09-05 1988-03-23 Matsushita Refrig Co 空気調和機の除霜装置
JPH07120121A (ja) * 1993-10-29 1995-05-12 Daikin Ind Ltd 空気調和装置の運転制御装置
WO2012128229A1 (ja) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 二元冷凍サイクル装置
JP2014109405A (ja) 2012-11-30 2014-06-12 Daikin Ind Ltd 水加熱システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257891A4

Also Published As

Publication number Publication date
CN116601443A (zh) 2023-08-15
US20230304709A1 (en) 2023-09-28
EP4257891A1 (en) 2023-10-11
EP4257891A4 (en) 2024-05-01
JP7436932B2 (ja) 2024-02-22
JPWO2022118841A1 (ja) 2022-06-09

Similar Documents

Publication Publication Date Title
JP5791785B2 (ja) 空気調和装置
EP2878902B1 (en) Air-conditioning device
AU2010219037B2 (en) Heat pump system
WO2013144994A1 (ja) 空気調和装置
US8794020B2 (en) Air-conditioning apparatus
WO2012077166A1 (ja) 空気調和装置
WO2013088484A1 (ja) 空気調和装置
JP5908183B1 (ja) 空気調和装置
WO2021225177A1 (ja) 冷凍サイクル装置
WO2022118842A1 (ja) 冷凍サイクルシステム
WO2022118841A1 (ja) 冷凍サイクルシステム
CN116601443B (zh) 冷冻循环系统
WO2022118844A1 (ja) 冷凍サイクルシステム
WO2022118843A1 (ja) 冷凍サイクルシステム
WO2024071215A1 (ja) 冷凍サイクル装置
JP7372556B2 (ja) 冷媒容器および冷凍サイクル装置
WO2021225178A1 (ja) 冷凍サイクルシステム
WO2024071213A1 (ja) 冷凍サイクル装置
JP7197815B1 (ja) 冷凍サイクル装置
WO2021225176A1 (ja) 冷凍サイクルシステム、熱源ユニット、および冷凍サイクル装置
JP5884422B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566935

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180081056.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021900594

Country of ref document: EP

Effective date: 20230703