WO2013144994A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2013144994A1
WO2013144994A1 PCT/JP2012/002096 JP2012002096W WO2013144994A1 WO 2013144994 A1 WO2013144994 A1 WO 2013144994A1 JP 2012002096 W JP2012002096 W JP 2012002096W WO 2013144994 A1 WO2013144994 A1 WO 2013144994A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
side heat
refrigerant
heat
heat medium
Prior art date
Application number
PCT/JP2012/002096
Other languages
English (en)
French (fr)
Inventor
啓輔 高山
森本 修
嶋本 大祐
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/387,610 priority Critical patent/US9958171B2/en
Priority to EP12873137.9A priority patent/EP2833086B1/en
Priority to PCT/JP2012/002096 priority patent/WO2013144994A1/ja
Priority to JP2014506989A priority patent/JP5984914B2/ja
Priority to CN201320145117XU priority patent/CN203249455U/zh
Publication of WO2013144994A1 publication Critical patent/WO2013144994A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1084Arrangement or mounting of control or safety devices for air heating systems
    • F24D19/1087Arrangement or mounting of control or safety devices for air heating systems system using a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/12Hot-air central heating systems; Exhaust gas central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/08Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with separate supply and return lines for hot and cold heat-exchange fluids i.e. so-called "4-conduit" system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/13Pump speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a multi-room air conditioner used for, for example, a building multi-air conditioner.
  • An air conditioner having a multi-chamber heat pump type refrigeration cycle that is generally used includes a compressor, a four-way valve, and an outdoor heat exchanger as outdoor units, each of which has an expansion valve and an indoor heat exchange as a plurality of indoor units. (Use side heat exchanger). These components are sequentially communicated via a refrigerant pipe to constitute a heat pump type refrigeration cycle. That is, the indoor units are configured in parallel, and a predetermined refrigeration cycle is configured by switching between the cooling operation and the heating operation. There is also a multi-room air conditioner that can perform cooling operation and heating operation simultaneously.
  • the refrigerant flow rate of the entire refrigeration cycle is adjusted by adjusting the operating capacity of the compressor with the condensation temperature of the indoor heat exchanger as a target value.
  • the refrigerant flow rate of the indoor heat exchanger is adjusted by adjusting the degree of subcooling of the indoor heat exchanger as a target value and adjusting the opening of the expansion valve.
  • the capacity of the indoor heat exchanger is designed so as to exert a predetermined heating capacity with respect to the load of the indoor unit by adjusting the condensation pressure and the degree of supercooling within a predetermined range in the heating operation. ing.
  • the evaporation pressure and superheat degree are adjusted within a predetermined range.
  • the load of the cooling operation is large in the load ratio between the cooling operation load and the heating operation load of the indoor unit.
  • the outdoor heat exchanger serves as a condenser, and the heat radiation amount of the outdoor heat exchanger is adjusted by setting the condensation temperature of the indoor heat exchanger of the indoor unit that performs the heating operation as a target value.
  • any one of the indoor units An air conditioner that performs an air conditioning capability saving operation has been proposed (see, for example, Patent Document 2). This air conditioner determines whether the capacity of the compressor has reached the maximum capacity during heating operation. When it is determined that the maximum value has been reached, it is determined whether the overall capacity of the system with respect to the heating load is excessive or insufficient based on a value obtained by subtracting the calculated high pressure saturation temperature from the target value of the high pressure saturation temperature.
  • the supercooling degree (subcool) target value is set to a larger value in order of lower priority, and the heating capacity saving operation is performed.
  • the superheat target value is changed to a larger value.
  • JP-A-2-217738 (for example, page 6) JP 2007-271112 A (for example, pages 5 and 6)
  • the pressure reducing device that controls the refrigerant flow rate of the indoor unit with a low priority is adjusted to increase the heating capacity of the indoor unit with a high priority, but only the pressure reducing device is adjusted.
  • the heating capacity of the indoor unit could not be increased beyond the designed capacity.
  • the pressure reducing device that controls the refrigerant flow rate of the indoor unit with a high priority and increasing the refrigerant flow rate of the indoor unit with a high priority level, the heating capacity is increased beyond the designed capacity.
  • the degree of supercooling of the refrigerant in the indoor unit is reduced, making it difficult to control the refrigerant flow rate.
  • the heating capacity of an indoor unit with a high priority can be made higher than the designed capacity only by controlling to increase the refrigerant flow rate by the decompression device. Can not.
  • a plurality of heat exchangers between heat media that exchange heat between a refrigerant and a heat medium such as water to heat or cool the heat medium, and an indirect indoor room that circulates the heat medium to cool and heat the indoor space An air conditioner including a heat exchanger has also been proposed.
  • an air conditioner when it becomes a cold / hot water mixed mode in which a part of the heat exchanger between heat media is a condenser and the remaining part is an evaporator, when the heating load of the indirect indoor unit is sufficiently large, The heat transfer area of the heat exchanger related to heat medium functioning as a condenser is small with respect to the heating load.
  • the heat medium cannot be sufficiently heated with respect to the heating load only by adjusting the condensation temperature with the expansion device.
  • the heating medium delivery flow rate of the pump that delivers the heating medium related to heating is insufficient, and the heating capacity of the indirect indoor unit is reduced.
  • the present invention has been made to solve at least one of the above-described problems, and when there is a request for increasing the capacity from some of the use-side heat exchangers, the use-side heat that has been requested to increase the capacity.
  • An object of the present invention is to provide an air conditioner capable of making the capacity of the exchanger larger than the design capacity.
  • An air conditioner according to the present invention is provided corresponding to a compressor for compressing a refrigerant, a plurality of use side heat exchangers functioning as a condenser or an evaporator, and the use side heat exchanger, and the use side
  • a plurality of expansion devices that adjust the flow rate of the refrigerant flowing in the heat exchanger, a heat source side heat exchanger that functions as a condenser or an evaporator, the opening of the plurality of expansion devices, and saturation of refrigerant condensation or evaporation
  • a control device that controls the heat exchange capacity of the heat source side heat exchanger so that the temperature becomes a predetermined saturation temperature target value, and the control device is a part of the plurality of use side heat exchangers Is a part of the use side heat exchanger that is operating in the same operation mode as the heat source side heat exchanger among the plurality of use side heat exchangers during operation in which the condenser is the condenser and the other is the evaporator.
  • the air conditioner according to the present invention makes the heat exchange capacity of the heat source side heat exchanger smaller than usual when there is a request for capacity increase from the first use side heat exchanger during the simultaneous cooling and heating operation, and the second Since the refrigerant flow rate is reduced in the use side heat exchanger, the capacity of the first use side heat exchanger can be increased more effectively. Therefore, according to the air conditioning apparatus according to the present invention, the capacity of the first usage-side heat exchanger is made larger than the design capacity, and the capacity of the second usage-side heat exchanger is suppressed from becoming excessive. be able to.
  • FIG. 1 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • an alphabet may be added to the end of the reference symbol.
  • the air conditioning apparatus according to Embodiment 1 is capable of individually selecting the operation mode of each indoor unit, that is, capable of simultaneous cooling and heating.
  • the solid line arrows indicate the refrigerant flow during the heating only operation
  • the broken line arrows indicate the refrigerant flow during the cooling only operation.
  • the air-conditioning apparatus has a part of the indoor heat exchanger 31 in the same operation mode as the outdoor heat exchanger 13 by reducing the heat exchange capacity of the outdoor heat exchanger 13 during simultaneous cooling and heating.
  • the expansion valve 32 is adjusted to reduce the refrigerant flow rate, thereby suppressing the capacity from becoming excessive.
  • the air conditioner according to the first embodiment includes a compressor 11, a four-way valve 12 that is a refrigerant flow switching device, an outdoor heat exchanger 13 that is a heat source side heat exchanger, an accumulator 14, check valves 15, 58, 59, gas-liquid separator 51, internal heat exchangers 52 and 53, a plurality of indoor heat exchangers 31 which are use side heat exchangers, and a plurality of expansion valves 32 (corresponding to each indoor heat exchanger 31)
  • An expansion device), expansion valves 54 and 55, and electromagnetic valves 56 and 57 as opening / closing devices are connected by piping to constitute a refrigeration cycle.
  • the compressor 11, the four-way valve 12, the outdoor heat exchanger 13, the accumulator 14, and the check valves 15a, 15b, 15c, and 15d are placed in the outdoor unit 1 that is a heat source unit. Is housed in.
  • the outdoor unit 1 also includes an outdoor controller 202 that regulates the control of the outdoor unit 1 and the control of the entire air conditioner.
  • the indoor heat exchanger 31 and the expansion valve 32 are accommodated in the indoor unit 2.
  • the air conditioner according to Embodiment 1 includes a repeater 3 interposed between the outdoor unit 1 and the indoor unit 2.
  • the relay unit 3 includes a gas-liquid separator 51, internal heat exchangers 52 and 53, expansion valves 54 and 55, electromagnetic valves 56 and 57 as opening / closing devices, check valves 58 and 59, pressure sensors 76 and 77, A repeater controller 206 and the like are accommodated.
  • the repeater 3 is connected to the outdoor unit 1 through a high-pressure pipe 6 and a low-pressure pipe 7 that are refrigerant pipes.
  • Each indoor unit 2 is connected in parallel to the relay unit 3 by a gas branch pipe 41 and a liquid branch pipe 42 which are refrigerant pipes.
  • the indoor unit 2 houses an indoor controller 203 that controls the indoor unit 2.
  • the number of indoor units 2 and repeaters 3 is arbitrary.
  • the outdoor controller 202, the indoor controller 203, and the relay controller 206 will be described with reference to FIG.
  • the compressor 11 pressurizes and discharges (sends out) the sucked refrigerant.
  • the four-way valve 12 serving as the refrigerant flow switching device is provided on the discharge side of the compressor 11 and switches the refrigerant path.
  • the four-way valve 12 switches a valve corresponding to an operation mode related to air conditioning based on an instruction from an outdoor controller 202 described later.
  • the refrigerant path is switched between the cooling only operation, the cooling main operation, the heating only operation, and the heating main operation.
  • the outdoor heat exchanger 13 includes, for example, a heat transfer tube through which the refrigerant passes, a fin (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air, and a fan 101 (see FIG. It has a blower) and performs heat exchange between the refrigerant and air (outside air).
  • the outdoor heat exchanger 13 functions as an evaporator during the heating only operation or during the heating main operation, and evaporates the refrigerant to gas (gas).
  • the outdoor heat exchanger 13 functions as a condenser or a gas cooler (hereinafter referred to as a condenser) during the cooling only operation or the cooling main operation, and condenses and liquefies the refrigerant.
  • the gas may not be completely gasified or liquefied, but may be in a two-phase mixed state of gas and liquid (gas-liquid two-phase refrigerant).
  • the indoor heat exchanger 31 is, for example, a heat transfer tube that allows refrigerant to pass through, a fin (not shown) for increasing the heat transfer area between the refrigerant flowing through the heat transfer tube and the outside air, and a fan that conveys air (see FIG. (Not shown), and performs heat exchange between the refrigerant and air (inside the room).
  • the indoor heat exchanger 31 functions as a condenser or a gas cooler (hereinafter referred to as a condenser) during heating operation, and condenses and liquefies the refrigerant.
  • the indoor heat exchanger 31 functions as an evaporator during the cooling operation, and evaporates the refrigerant to gasify it.
  • the gas may not be completely gasified or liquefied, but may be in a two-phase mixed state of gas and liquid (gas-liquid two-phase refrigerant).
  • the expansion valve 32 such as an electronic expansion valve depressurizes the refrigerant by adjusting the refrigerant flow rate.
  • the accumulator 14 functions to store excess refrigerant in the refrigeration cycle circuit and to prevent the compressor 11 from being damaged by returning a large amount of refrigerant liquid to the compressor 11.
  • the air conditioner according to Embodiment 1 is provided with various pressure sensors and temperature sensors.
  • a pressure sensor 71 serving as a refrigerant pressure detecting means is installed between the discharge side of the compressor 11 and the four-way valve 12 and detects a discharge pressure (pressure of the refrigerant discharged from the compressor 11).
  • the pressure sensor 72 is installed between the accumulator 14 and the compressor 11 and detects the suction pressure (the pressure of the refrigerant sucked by the compressor 11).
  • the pressure sensor 76 detects high pressure (pressure on the inlet side of the expansion valve 54).
  • the pressure sensor 77 detects intermediate pressure (pressure on the outlet side of the expansion valve 54, that is, pressure between high pressure and low pressure).
  • the pressure sensor 71, the pressure sensor 72, the pressure sensor 76, and the pressure sensor 77 may be installed at locations where the discharge pressure of the compressor 11, the suction pressure, the high pressure, and the intermediate pressure of the compressor 11 can be detected.
  • the installed position is not limited.
  • the temperature sensor 74 which is a refrigerant temperature detecting means is installed in the gas branch pipe 41 of each indoor unit 2 and detects the gas side temperature of the indoor heat exchanger 31.
  • the temperature sensor 75 is installed between the indoor heat exchanger 31 and the expansion valve 32 of each indoor unit 2 and detects the liquid side temperature of the indoor heat exchanger 31.
  • the temperature sensor 73 detects the intake air temperature of the indoor heat exchanger 31 (in other words, each indoor unit 2).
  • the check valve 15 a is provided between the outdoor heat exchanger 13 and the high-pressure pipe 6 and allows refrigerant to flow only from the outdoor heat exchanger 13 toward the high-pressure pipe 6.
  • the check valve 15 b is provided between the low-pressure pipe 7 and the four-way valve 12 and allows the refrigerant to flow only from the low-pressure pipe 7 to the four-way valve 12.
  • the check valve 15 c is provided between the four-way valve 12 and the high-pressure pipe 6 and allows the refrigerant to flow only from the four-way valve 12 to the high-pressure pipe 6.
  • the check valve 15 d is provided between the low pressure pipe 7 and the outdoor heat exchanger 13 and allows the refrigerant to flow only from the low pressure pipe 7 to the outdoor heat exchanger 13.
  • the electromagnetic valves 56 and 57 are used to switch the gas branch pipe 41 of the indoor unit 2 to the high-pressure gas pipe 61 or the low-pressure pipe 7 for connection.
  • the electromagnetic valve 56 is opened and the electromagnetic valve 57 is closed, the gas branch pipe 41 and the high-pressure gas pipe 61 are connected.
  • the electromagnetic valve 57 is opened and the electromagnetic valve 56 is closed, the gas branch pipe 41 and the low-pressure pipe 7 are connected.
  • One ends of the check valves 58 and 59 are connected to the liquid branch pipe 42 in an antiparallel relationship.
  • the other end of the check valve 58 is connected to the liquid pipe 63 and allows the refrigerant to flow only from the liquid pipe 63 toward the liquid branch pipe 42.
  • the other end of the check valve 59 is connected to the liquid pipe 64 and allows the refrigerant to flow only in the direction from the liquid branch pipe 42 to the liquid pipe 64.
  • the gas-liquid separator 51 separates the gas and the liquid and flows the gas refrigerant to the high-pressure gas pipe 61 and the liquid refrigerant to the liquid pipe 62.
  • the expansion valve 54 is provided between the gas-liquid separator 51 and the liquid pipes 63 and 64.
  • the bypass pipe 65 connects the liquid pipe 63 and the low pressure pipe 7.
  • the expansion valve 55 is provided in the middle of the bypass pipe 65.
  • the internal heat exchanger 53 performs heat exchange between the downstream portion of the expansion valve 55 of the bypass pipe 65 and the pipe extending from the expansion valve 54 to the liquid pipe 63.
  • the internal heat exchanger 52 performs heat exchange between the downstream portion of the internal heat exchanger 53 of the bypass pipe 65 and the pipe connecting the gas-liquid separator 51 and the expansion valve 54.
  • the relay controller 206 controls (commands) the opening adjustment of the expansion valves 54 and 55 and the opening and closing of the electromagnetic valves 56 and 57.
  • FIG. 2 is a control circuit diagram of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • an inverter circuit 201 is connected to the outdoor controller 202.
  • the outdoor controller 202 includes a microcomputer and its peripheral circuits.
  • the inverter circuit 201 outputs AC power having an operation frequency (and voltage) according to a command from the outdoor controller 202 to the motor of the compressor 11.
  • the outdoor controller 202 determines the operating frequency (that is, the rotational speed of the compressor 11) to be commanded to the inverter circuit 201 in accordance with the detected pressure detected by the pressure sensors 71 and 72.
  • a valve drive circuit 205 is connected to each of the indoor controllers 203.
  • the indoor controller 203 includes a microcomputer and its peripheral circuits, and communicates with the outdoor controller 202 via the relay controller 206.
  • the valve drive circuit 205 sets the opening degree of the expansion valve 32 in response to a command from the indoor controller 203.
  • the indoor controller 203 determines the opening degree of the expansion valve 32 in accordance with the request content from the operation unit 204 and the temperature detected by the temperature sensors 73-75. Details of this determination method will be described later.
  • the indoor controller 203 also controls the rotation speed of the fan 211.
  • the repeater controller 206 communicates with the indoor controllers 203a, 203b, 203c, and 203d of the indoor units 2a, 2b, 2c, and 2d connected to the repeater 3 to operate the indoor units 2a, 2b, 2c, and 2d.
  • the information is integrated and communicated with the outdoor controller 202.
  • Various control commands for the indoor unit 2 are supplied from the outdoor controller 202 to the indoor controller 203 via the relay controller 206 as serial signals.
  • the relay controller 206 determines the opening degree of the expansion valves 54 and 55 according to the detected pressure detected by the pressure sensors 76 and 77.
  • refrigerant used in the air conditioner configured as described above examples include single refrigerants such as R-22 and R-134a, pseudo-azeotropic refrigerant mixtures such as R-410A and R-404A, and R-407C.
  • Non-azeotropic refrigerant mixtures refrigerants containing a double bond in the chemical formula, such as CF 3 CF ⁇ CH 2, which have a relatively low global warming potential, mixtures thereof, CO 2 , propane, etc.
  • FIG. 3 is a partial circuit diagram showing an example of the configuration of the outdoor heat exchanger 13.
  • FIG. 4 is a partial circuit diagram showing another example of the configuration of the outdoor heat exchanger 13. Based on FIG.3 and FIG.4, the structure of the outdoor heat exchanger 13 is demonstrated.
  • the solid arrows indicate the refrigerant flow during the heating only operation and the heating main operation
  • the broken arrows indicate the refrigerant flow during the cooling main operation and the cooling main operation, respectively. .
  • the outdoor heat exchanger 13 includes outdoor heat exchange units 16 and 17, heat exchanger on / off valves 21, 22, 23, and 24 that are electromagnetic switch devices (heat exchanger switch devices), a heat exchanger. It has a bypass valve 25 (heat exchanger bypass device).
  • the heat exchanger on / off valves 21, 22, 23, 24 and the heat exchanger bypass valve 25 are opened / closed based on an instruction from the outdoor controller 202, and refrigerant flows into the outdoor heat exchanger 13, that is, the outdoor heat exchange units 16, 17. Control the exit.
  • either the heat exchanger on / off valve 21 (heat exchanger on / off valve 22) or the heat exchanger on / off valve 23 (heat exchanger on / off valve 24) is closed by the outdoor controller 202.
  • coolant is not flowed into any one of the outdoor heat exchange parts 16 and 17, heat exchange cannot be performed, and the heat exchange capacity
  • the fan 101 can adjust the air volume by changing the number of rotations based on an instruction from the outdoor controller 202, and the heat exchange capacity in the outdoor heat exchanger 13 can also be changed by this air volume change. For example, when the rotational speed of the fan 101 is reduced, the air volume is reduced, so that the heat exchange capacity of the outdoor heat exchanger 13 as a whole can be reduced.
  • the refrigerant can be passed through the heat exchanger bypass valve 25 without passing through the outdoor heat exchanger 13, so that the outdoor heat exchanger 13 as a whole
  • the heat exchange capacity can be reduced.
  • the heat exchanger on / off valve 21 (heat exchanger on / off valve 22) or the heat exchanger on / off valve 23 (heat exchanger on / off valve 24) is closed, the air volume of the fan 101 is changed, and the heat exchanger In the outdoor heat exchanger 13, the heat exchange capacity can be continuously changed by adjusting by appropriately combining the bypassing of the refrigerant through the bypass valve 25.
  • the outdoor heat exchangers 16 and 17 of the outdoor heat exchanger 13 are shown as having two cases, but may be three or more. Moreover, the ratio of the sizes of the outdoor heat exchange units 16 and 17 may be the same or different. Further, the heat exchange capacity of the outdoor heat exchanger 13 may be adjusted only by the fan 101.
  • the level of the pressure in the refrigerant circuit or the like is not determined by the relationship with the reference pressure, but is a high pressure as a relative pressure that can be achieved by compression of the compressor 11, refrigerant flow control of the expansion valve 32, and the like. It shall be expressed as low pressure. The same applies to the temperature level.
  • all the indoor units 2 perform a heating operation that performs a heating operation that heats the indoor space
  • all the indoor units 2 perform a cooling operation that performs a cooling operation that cools the indoor space
  • the indoor unit 2 includes both a cooling operation and a heating operation.
  • FIG. 1 (All heating operation) In FIG. 1, a heating only operation will be described.
  • the flow of the refrigerant is indicated by solid arrows in FIG.
  • the refrigerant sucked into the compressor 11 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant that has exited the compressor 11 flows through the four-way valve 12, and further flows out of the outdoor unit 1 through the check valve 15 c and the high-pressure pipe 6.
  • the refrigerant that has flowed into the relay unit 3 flows into each indoor unit 2 through the gas-liquid separator 51, the high-pressure gas pipe 61, the electromagnetic valve 56, and the gas branch pipe 41.
  • the gas refrigerant flowing into the indoor unit 2 flows into the indoor heat exchanger 31 and heats it.
  • the liquid refrigerant that has flowed out of the indoor heat exchanger 31 is decompressed to an intermediate pressure by the expansion valve 32, and becomes an intermediate-pressure liquid refrigerant.
  • the intermediate-pressure liquid refrigerant flows out of the indoor unit 2, passes through the liquid branch pipe 42 and the check valve 59, joins in the liquid pipe 64, enters the bypass pipe 65 from here through the internal heat exchanger 53, It flows into the expansion valve 55 and is depressurized to a low-temperature low-pressure gas-liquid two-phase state.
  • the decompressed refrigerant passes through the bypass pipe 65, the internal heat exchanger 53, and the internal heat exchanger 52, and then returns to the outdoor unit through the low pressure pipe 7.
  • the refrigerant that has flowed into the outdoor unit flows into the outdoor heat exchanger 13 through the check valve 15d, evaporates by exchanging heat with air, and flows out as a gas refrigerant or a gas-liquid two-phase refrigerant.
  • the evaporated refrigerant is sucked into the compressor 11 again via the four-way valve 12 and the accumulator 14.
  • the high pressure pipe 6 is high pressure
  • the outdoor heat exchanger 13 is low pressure
  • the high pressure is between the compressor 11 and the check valve 15b
  • the low pressure pipe 7 is low pressure, so the check valves 15a and 15b Does not flow refrigerant.
  • the electromagnetic valve 57 is closed.
  • FIG. 1 (Cooling only) In FIG. 1, the cooling operation will be described.
  • the flow of the refrigerant is indicated by the dashed arrows in FIG.
  • the refrigerant sucked into the compressor 11 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant leaving the compressor 11 flows through the four-way valve 12 to the outdoor heat exchanger 13 that functions as a condenser, condenses, flows out as high-pressure liquid refrigerant, passes through the check valve 15 a and the high-pressure pipe 6. Out of the outdoor unit.
  • the refrigerant flowing into the relay unit 3 passes through the gas-liquid separator 51, the liquid pipe 62, the internal heat exchanger 52, the expansion valve 54, and the internal heat exchanger 53 in this order, and is divided in the liquid pipe 63.
  • the divided refrigerant flows into the indoor units 2 through the check valve 58 and the liquid branch pipe 42.
  • the refrigerant that has flowed into the indoor unit 2 expands by adjusting the opening degree of the expansion valve 32, and the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 31 and cools it.
  • the gas refrigerant that has flowed out exits the indoor unit 2 merges through the gas branch pipe 41 and the electromagnetic valve 57, passes through the low pressure pipe 7, and returns to the outdoor unit.
  • the refrigerant flowing into the outdoor unit is sucked into the compressor 11 again via the check valve 15b, the four-way valve 12, and the accumulator 14.
  • the high pressure pipe 6 is high pressure
  • the pressure between the compressor 11 and the check valve 15c is low pressure
  • the high pressure between the outdoor heat exchanger 13 and the check valve 15d is low pressure
  • the low pressure pipe 7 is low pressure.
  • FIG. 5 is a refrigerant circuit diagram illustrating a heating main operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the heating main operation will be described.
  • the indoor units 2a, 2b, and 2c perform the heating operation and the indoor unit 2d performs the cooling operation.
  • the refrigerant sucked into the compressor 11 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant that has exited the compressor 11 flows through the four-way valve 12 and then flows out of the outdoor unit through the check valve 15 c and the high-pressure pipe 6.
  • the refrigerant flowing into the relay unit 3 passes through the gas-liquid separator 51 and the high-pressure gas pipe 61, passes through the electromagnetic valves 56a, 56b, and 56c, and the gas branch pipes 41a, 41b, and 41c. Flows into 2b and 2c.
  • the gas refrigerant that has flowed into the indoor units 2a, 2b, and 2c flows into the indoor heat exchangers 31a, 31b, and 31c and is heated.
  • the liquid refrigerant that has flowed out of the indoor heat exchangers 31a, 31b, and 31c is reduced to an intermediate pressure by the expansion valves 32a, 32b, and 32c, and becomes an intermediate-pressure liquid refrigerant.
  • the intermediate-pressure liquid refrigerant flows out of the indoor units 2a, 2b, and 2c, passes through the liquid branch pipes 42a, 42b, and 42c, and the check valves 59a, 59b, and 59c, and then joins in the liquid pipe 64.
  • the combined intermediate-pressure liquid refrigerant passes through the internal heat exchanger 53, and partly flows into the indoor unit 2d through the liquid pipe 63, the check valve 58d, and the liquid branch pipe 42d.
  • the refrigerant that has flowed into the indoor unit 2d expands by adjusting the opening of the expansion valve 32d, and the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 31d and cools it.
  • the gas refrigerant that has flowed out exits the indoor unit 2d, passes through the gas branch pipe 41d and the electromagnetic valve 57d, and reaches the low-pressure pipe 7.
  • the refrigerant that has flowed into the outdoor unit flows into the outdoor heat exchanger 13 through the check valve 15d, evaporates by exchanging heat with air, and flows out as a gas refrigerant or a gas-liquid two-phase refrigerant.
  • the evaporated refrigerant is sucked into the compressor 11 again via the four-way valve 12 and the accumulator 14.
  • the high pressure pipe 6 is high pressure
  • the outdoor heat exchanger 13 is low pressure
  • the high pressure is between the compressor 11 and the check valve 15b
  • the low pressure pipe 7 is low pressure
  • the check valves 15a and 15b Does not flow refrigerant.
  • the electromagnetic valves 56d, 57a, 57b, and 57c are closed.
  • the refrigerant entering the bypass pipe 65 is decompressed by the expansion valve 55 and then exchanges heat with the refrigerant flowing in from the liquid pipe 64 in the internal heat exchanger 53.
  • the refrigerant flowing into the indoor unit 2d through the stop valve 58d and the liquid branch pipe 42d is cooled and sufficiently subcooled.
  • FIG. 6 is a refrigerant circuit diagram illustrating a cooling main operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the cooling main operation will be described.
  • the indoor units 2a, 2b, and 2c perform the cooling operation and the indoor unit 2d performs the heating operation.
  • the refrigerant sucked into the compressor 11 is compressed and discharged as a high-pressure gas refrigerant.
  • the refrigerant that has exited the compressor 11 flows through the four-way valve 12 to the outdoor heat exchanger 13 that functions as a condenser, and is condensed in an arbitrary amount to flow out as a high-pressure gas-liquid two-phase refrigerant.
  • the outdoor unit flows out through the high-pressure pipe 6.
  • the refrigerant flowing into the relay unit 3 flows into the gas-liquid separator 51 and is separated into a gas refrigerant and a liquid refrigerant.
  • the separated gas refrigerant passes through the high-pressure gas pipe 61, passes through the electromagnetic valve 56d and the gas branch pipe 41d, and flows into the indoor unit 2d that performs the heating operation.
  • the gas refrigerant that has flowed into the indoor unit 2d flows into the indoor heat exchanger 31d to be heated.
  • the liquid refrigerant that has flowed out of the indoor heat exchanger 31d is decompressed to an intermediate pressure by the expansion valve 32d, and becomes an intermediate-pressure liquid refrigerant.
  • the intermediate-pressure liquid refrigerant flows out of the indoor unit 2d, passes through the liquid branch pipe 42d and the check valve 59d, and then reaches the liquid pipe 64.
  • the liquid refrigerant separated by the gas-liquid separator 51 flows out from the liquid pipe 62, and the difference between the high pressure of the internal heat exchanger 52 and the high pressure pipe 6 and the intermediate pressure that is the pressure of the liquid pipes 63 and 64.
  • the indoor unit 2d is heated through the expansion valve 54 that is controlled so as to be constant, and merges with the liquid refrigerant passing through the liquid pipe 64.
  • the merged liquid refrigerant passes through the internal heat exchanger 53, partly flows into the liquid pipe 63, passes through the check valves 58a, 58b, 58c, and the liquid branch pipes 42a, 42b, 42c, and the indoor units 2a, Flows into 2b and 2c.
  • the refrigerant flowing into the indoor units 2a, 2b, 2c expands by adjusting the opening degree of the expansion valves 32a, 32b, 32c, and the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchangers 31a, 31b, 31c. Then cool.
  • the refrigerant flowing into the outdoor unit is sucked into the compressor 11 again via the check valve 15b, the four-way valve 12, and the accumulator 14.
  • the high pressure pipe 6 is high pressure
  • the pressure between the compressor 11 and the check valve 15c is low pressure
  • the high pressure between the outdoor heat exchanger 13 and the check valve 15d is low pressure
  • the low pressure pipe 7 is low pressure.
  • the electromagnetic valves 56a, 56b, 56c, 57d are closed.
  • a part of the refrigerant in the liquid pipe 63 flows into the bypass pipe 65 and is decompressed by the expansion valve 55, and in the internal heat exchanger 53, the refrigerant flowing from the expansion valve 54 to the liquid pipe 63 Heat exchange between the two.
  • the refrigerant that has passed through the internal heat exchanger 53 is further subjected to heat exchange with the refrigerant flowing into the expansion valve 54 in the internal heat exchanger 52.
  • the refrigerant evaporated by heat exchange in the internal heat exchanger 52 merges with the refrigerant cooled in the indoor units 2a, 2b, and 2c in the low-pressure pipe 7, and returns to the outdoor unit.
  • the refrigerant cooled by heat exchange in the internal heat exchanger 52 and the internal heat exchanger 53 and having a sufficient degree of supercooling passes through the check valves 58a, 58b, 58c and the liquid branch pipes 42a, 42b, 42c. And flows into the indoor units 2a, 2b, 2c.
  • the capacity control of the compressor 11 will be described.
  • the rotation speed of the compressor 11 is controlled by a command from the outdoor controller 202. Specifically, during the heating only operation or the heating main operation, the number of revolutions of the compressor 11 is controlled with the discharge pressure detected by the pressure sensor 71 as a target value, and the air conditioner according to Embodiment 1 is controlled.
  • the refrigerant flow rate of the entire refrigeration cycle is adjusted.
  • the outdoor controller 202 rotates the compressor 11 so that the condensation saturation temperature of the refrigerant (hereinafter also referred to simply as the condensation temperature) becomes a predetermined condensation saturation temperature target value. Control the number.
  • the discharge pressure is preferably about 50 degrees (° C.) in terms of the refrigerant saturation temperature.
  • the rotation speed of the compressor 11 is controlled with the suction pressure detected by the pressure sensor 72 as a target value, and the entire refrigeration cycle of the air-conditioning apparatus according to Embodiment 1 is controlled.
  • the refrigerant flow rate is adjusted.
  • the outdoor controller 202 rotates the compressor 11 so that the evaporation saturation temperature of the refrigerant (hereinafter also simply referred to as the evaporation temperature) becomes a predetermined evaporation saturation temperature target value.
  • the suction pressure is preferably about 0 degrees (° C.) in terms of the saturation temperature.
  • the heat exchange capacity control of the outdoor heat exchanger 13 will be described. As described above, the heat exchange capacity of the outdoor heat exchanger 13 is controlled by a command from the outdoor controller 202. During the heating main operation, a part of the refrigerant evaporation performed in the outdoor heat exchanger 13 during the all heating operation is performed in the indoor unit 2 that performs the cooling operation, thereby realizing the simultaneous cooling and heating operation. At this time, the balance between the cooling load of the indoor unit 2 to be cooled and the heat absorption amount of the outdoor heat exchanger 13 can be adjusted by controlling the heat exchange capacity with the suction pressure detected by the pressure sensor 72 as a target value. it can. For example, the suction pressure is preferably about 0 degree (° C.) in terms of the saturation temperature.
  • the balance between the heating load of the indoor unit 2 to be heated and the heat radiation amount of the outdoor heat exchanger 13 can be adjusted by controlling the heat exchange capacity with the discharge pressure detected by the pressure sensor 71 as a target value. It can.
  • the discharge pressure is preferably about 50 ° C. in terms of the saturation temperature.
  • the heat exchange capacity of the outdoor heat exchanger 13 when controlling the heat exchange capacity of the outdoor heat exchanger 13 with the evaporation temperature as a target value, the heat exchange capacity becomes smaller when the evaporation temperature target value is lowered. Since the heat exchange capacity (heat transfer area) of the indoor heat exchanger 31 of the indoor unit 2 performing the cooling operation has not changed, the cooling capacity of the indoor unit 2 increases when the evaporation temperature decreases. On the other hand, in the outdoor heat exchanger 13 having a reduced heat exchange capacity, the amount of heat exchange is reduced.
  • the heating load (indoor suction temperature) of the indoor unit 2 is constant, if the heat exchange capacity of the outdoor heat exchanger 13 is reduced, the indoor unit 2 that performs heating operation with the outdoor heat exchanger 13 The heat exchange capacity of the condenser of the entire refrigeration cycle including the heat exchanger 31 is reduced. At this time, if the heat exchange amount of the refrigerant condensed in the condenser is not changed, the condensation temperature becomes high in order to increase the temperature difference between the air and the refrigerant.
  • the heat exchange capacity of the outdoor heat exchanger 13 when the heat exchange capacity of the outdoor heat exchanger 13 is controlled with the condensation temperature as a target value, the heat exchange capacity decreases as the condensation temperature target value is increased. Since the heat exchange capacity (heat transfer area) of the indoor heat exchanger 31 of the indoor unit 2 that performs the heating operation does not change, the heating capacity of the indoor unit 2 increases when the condensation temperature increases. On the other hand, in the outdoor heat exchanger 13 having a reduced heat exchange capacity, the amount of heat exchange is reduced.
  • the refrigerant flow control of the indoor unit 2 will be described.
  • the opening degree of the expansion valve 32 is controlled by a command from the indoor controller 203. Specifically, during heating operation, the degree of supercooling of the indoor heat exchanger 31 is set as a target value, the opening degree of the expansion valve 32 is controlled, and the refrigerant flow rate flowing into each indoor unit 2 is adjusted.
  • the calculation method of the degree of supercooling is as follows. The discharge pressure detected by the pressure sensor 71 of the outdoor unit is converted into a condensation temperature which is a saturation temperature in the outdoor controller 202 and transmitted to the indoor controller 203 of each indoor unit.
  • the indoor controller 203 calculates the degree of supercooling from the difference between the condensation temperature and the liquid side temperature of the refrigerant detected by the temperature sensor 75. At this time, the degree of supercooling is desirably about 8 degrees (° C.).
  • the opening degree of the expansion valve 32 is controlled with the degree of superheat of the indoor heat exchanger 31 as a target value, and the flow rate of refrigerant flowing into each indoor unit 2 is adjusted.
  • the degree of supercooling is calculated from the difference between the refrigerant gas side temperature detected by the temperature sensor 74 and the refrigerant liquid side temperature detected by the temperature sensor 75 in the indoor controller 203. At this time, the degree of superheat is preferably about 3 degrees (° C.).
  • the indoor unit 2 is performing the heating operation at a certain condensation temperature and the degree of supercooling.
  • the intake air temperature of the indoor unit 2 is lowered, that is, the load is increased, if the refrigerant flow rate of the indoor heat exchanger 31 is constant without changing the opening degree of the expansion valve 32, the indoor heat exchanger 31 Since the amount of heat exchange increases and more refrigerant condenses, the degree of supercooling increases.
  • the opening degree of the expansion valve 32 is increased, the flow rate of the refrigerant condensed in the indoor heat exchanger 31 is increased, so that the degree of supercooling is reduced and approaches the target value. Moreover, since the heat exchange amount of the indoor heat exchanger 31 is increased, the heating capacity of the indoor unit 2 can be further increased.
  • the degree of supercooling decreases.
  • the opening degree of the expansion valve 32 is reduced, the flow rate of the refrigerant condensed in the indoor heat exchanger 31 is reduced, so that the degree of supercooling increases and approaches the target value.
  • the heat exchange amount of the indoor heat exchanger 31 becomes smaller, the heating capacity of the indoor unit 2 can be further reduced.
  • the degree of supercooling is set to the target value and the opening degree of the expansion valve 32 is controlled, if the degree of supercooling degree target value is increased, the degree of opening of the expansion valve 32 is reduced.
  • FIG. 7 is a flowchart showing heating capacity increase control of the air-conditioning apparatus according to Embodiment 1 of the present invention. Based on FIG. 7, the case where the condensation temperature target value Tcm and the supercooling degree target value SCm are changed to increase the heating capacity of the indoor unit 2b will be described as an example. At this time, it is assumed that the indoor units 2a and 2b perform the heating operation, and the indoor units 2c and 2d perform the cooling operation.
  • the indoor heat exchanger 31b corresponds to the “first user-side heat exchanger” of the present invention.
  • the indoor heat exchanger 31a corresponds to the “second use side heat exchanger” of the present invention.
  • the indoor controller 203b When the indoor controller 203b receives a heating capacity increase request from the operation unit 204b of the indoor unit 2b, the indoor controller 203b transmits heating capacity priority to the outdoor controller 202.
  • the outdoor controller 202 When the outdoor controller 202 receives the heating capacity priority, the outdoor controller 202 starts the flow of FIG. 7 and sets the operation mode of the air conditioner to the capacity priority mode (step S101).
  • the outdoor controller 202 increases the condensation temperature target value Tcm by ⁇ Tcm.
  • the heat exchange capacity AK of the outdoor heat exchanger 13 is controlled based on the condensation temperature Tc. For this reason, if the heat exchange capacity AK is larger than the heat exchange capacity minimum value AKmin, the heat exchange capacity AK decreases as the condensation temperature target value Tcm increases.
  • step S103 the outdoor controller 202 transmits the capability suppression mode to the indoor units 2 other than capability priority (herein, the indoor unit 2a).
  • step S104 the indoor controller 203a of the indoor unit 2a that has received the capability suppression mode increases the subcooling target value SCm of the indoor heat exchanger 31a by ⁇ SCm.
  • the opening degree L of the expansion valve 32a is controlled based on the calculated value of the supercooling degree SC, the opening degree L decreases as the supercooling degree target value SCm increases.
  • the outdoor controller 202 causes the operation time of the refrigeration cycle to change due to a change in the heat exchange capacity AK and the expansion valve opening degree of the outdoor heat exchanger 13, so that a certain period of time elapses in step S105.
  • This fixed time is preferably about 3 to 5 minutes.
  • the outdoor controller 202 determines whether the heat exchange capacity AK of the outdoor heat exchanger 13 is larger than the heat exchange capacity minimum value AKmin. If the heat exchange capacity AK is larger than the heat exchange capacity minimum value AKmin (Yes), in step S107, the outdoor controller 202 transmits the refrigerant flow rate increase mode to the capacity priority indoor unit 2b. In step S106, if the heat exchange capacity AK is the heat exchange capacity minimum value AKmin (No), the flow ends.
  • step S108 the indoor controller 203b that has received the refrigerant flow rate increase mode decreases the supercooling degree target value SCm of the indoor heat exchanger 31b by ⁇ SCm.
  • the opening degree L of the expansion valve 32b is controlled based on the calculated value of the degree of supercooling SC, the degree of opening L increases as the supercooling degree target value SCm decreases.
  • the flow for changing the condensing temperature target value Tcm and the supercooling degree target value SCm ends, but the changed Tcm and SCm cancel the heating capacity priority request from the operation unit 204b of the indoor unit 2b. Until it is done.
  • the heat exchange capacity AK of the outdoor heat exchanger 13 is the predetermined value of the refrigeration cycle. It becomes smaller than the heat exchange capacity AK for exhibiting the heating capacity. That is, since the heat radiation amount of the indoor heat exchanger 31b increases, the heating capacity can be made larger than the predetermined capacity.
  • Step S104 in the indoor heat exchanger 31a other than capacity priority, the degree of opening L of the expansion valve 32a is decreased in order to increase the supercooling target value SCm. That is, since the flow rate of the refrigerant flowing through the indoor heat exchanger 31a becomes small, an increase in heating capacity due to a decrease in the heat exchange capacity AK of the outdoor heat exchanger 13 can be suppressed in the indoor units 2a other than capacity priority.
  • the condensation temperature target value Tcm is increased and only the heat exchange capacity AK of the outdoor heat exchanger 13 is reduced without changing the subcooling target value SCm of the indoor heat exchanger 31a
  • the heating operation is performed.
  • the heating capacity of all the indoor heat exchangers 31 is increased, and the capacity increasing effect of the capacity priority indoor unit 2b is reduced. Therefore, in the indoor heat exchanger 31a other than capacity priority, the capacity increase effect of the capacity priority indoor unit 2b can be further increased by increasing the supercooling degree target value SCm.
  • step S108 in the capacity priority indoor heat exchanger 31b, the opening degree L of the expansion valve 32b is increased in order to decrease the supercooling degree target value SCm. That is, since the refrigerant
  • the heating capacity of the capacity priority indoor heat exchanger 31b is increased by increasing only the opening degree L of the expansion valve 32b without increasing the condensation temperature target value Tcm, the opening degree L of the expansion valve 32b is further increased. There is a need. Then, since the degree of supercooling of the indoor heat exchanger 31b becomes extremely small, it becomes difficult for the expansion valve 32b to control the opening degree L with the degree of supercooling as a target value.
  • the degree of supercooling is small, for example, if the refrigerant outlet of the indoor heat exchanger 31b is in a gas-liquid two-phase state, the density of the refrigerant flowing into the expansion valve 32b may fluctuate and the refrigerant flow control may become unstable. There is. Therefore, the heating capability of the capacity priority indoor unit heat exchanger 31b can be increased more effectively by increasing the condensation temperature target value Tcm.
  • step S102 when the heat exchange capacity AK of the outdoor heat exchanger 13 is the heat exchange capacity minimum value AKmin, the heat exchange capacity AK cannot be reduced.
  • the heating capacity of the capacity-priority indoor unit 2b can be increased by decreasing the refrigerant flow rate flowing through the indoor heat exchanger 31a and increasing the refrigerant flow rate flowing through the capacity-priority indoor heat exchanger 31b in step S108. it can.
  • Step S106 when the heat exchange capacity AK of the outdoor heat exchanger 13 is the heat exchange capacity minimum value AKmin, the supercooling degree target value SCm of the capacity-priority indoor heat exchanger 31b is not changed. This is because when the opening degree L of the expansion valve 32b is increased and the refrigerant flow rate of the indoor heat exchanger 31b is increased while the heat exchange capacity AK is the heat exchange capacity minimum value AKmin, the condensation temperature Tc is set to the condensation temperature target value. This is to prevent the Tcm from being lowered.
  • the heating capacity of the indoor unit 2 for heating can be increased even when the air-conditioning apparatus performs the cooling main operation.
  • the operation mode of the outdoor unit is changed from the cooling main operation to the heating main operation, it is necessary to switch the four-way valve 12 and switch the outdoor heat exchanger 13 from the condenser to the evaporator. In that case, it takes time until the air conditioner is stabilized in a steady state. Therefore, even when a lot of heating capacity is required temporarily, it is not necessary to change the operation mode of the outdoor unit from the cooling main operation to the heating main operation, and the refrigeration cycle can be stably operated.
  • Embodiment 1 although the heating capacity increase control of the indoor unit 2 during the cooling main operation has been described, control for increasing the cooling capacity during the heating main operation may be performed.
  • the evaporation temperature target value Tem is lowered by ⁇ Tem, and the heat exchange capacity AK of the outdoor heat exchanger 13 may be made smaller than the heat exchange capacity AK for exhibiting a predetermined cooling capacity of the refrigeration cycle.
  • the superheat degree target value SHm of the indoor heat exchanger 31 is decreased by ⁇ SHm to increase the refrigerant flow rate, so that the indoor heat exchanger 31 other than capacity priority has superheat.
  • the refrigerant flow rate can be reduced by increasing the degree target value SHm by ⁇ SHm.
  • Embodiment 2 shows an embodiment of an air conditioner including an indirect indoor unit (indirect indoor heat exchanger) that performs indoor air conditioning using a heat medium.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the points not particularly mentioned are the same as those in the first embodiment.
  • the air conditioner according to the second embodiment reduces the heat exchange capacity of the outdoor heat exchanger 13 during the simultaneous cooling and heating operation, thereby reducing the outdoor heat exchanger 13.
  • the capacity of the indoor heat exchanger 31 in the same operation mode is increased, and the capacity of the other indoor heat exchanger 31 in the same mode is increased by adjusting the expansion valve 32 to reduce the refrigerant flow rate. It is intended to suppress becoming.
  • FIG. 8 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioner according to the second embodiment is obtained by adding the heat medium relay unit 8 and the indoor units 2e, 2f, 2g, and 2h to the configuration of the air conditioner described in the first embodiment.
  • This heat medium relay unit 8 includes heat medium heat exchangers 81 and 82, four-way valves 83 and 84, expansion valves 85, 86 and 87, an internal heat exchanger 88, pumps 91 and 92 as heat medium delivery means, The three-way valves 93 and 94 as the heat medium flow switching means, the flow rate adjusting valve 95 as the heat medium flow rate adjusting means, and the heat medium relay controller 207 are accommodated.
  • the indoor units 2e, 2f, 2g, and 2h accommodate indoor heat exchangers 31e, 31f, 31g, and 31h.
  • the number of the heat medium relay unit 8 and the indoor unit 2 is arbitrary.
  • the heat medium relay unit 8 connects the high pressure gas pipe 66 and the high pressure gas pipe 61, connects the liquid pipe 67 and the liquid pipe 64, connects the low pressure pipe 68 and the low pressure pipe 7, Piping is connected.
  • Each of the heat medium relay unit 8 and the indoor unit 2 (each of the indoor heat exchanger 31) is connected by heat medium pipes 111 and 112 through which a safe heat medium such as water and antifreeze liquid flows. That is, each of the heat medium relay unit 8 and the indoor unit 2 (each of the indoor heat exchangers 31) is connected by one heat medium path.
  • the indoor heat exchangers 31a, 31b, 31c, and 31d are refrigerants. Circulates directly and performs air conditioning. That is, the indoor units 2a, 2b, 2c, 2d are direct expansion indoor units.
  • the indoor units 2e, 2f, 2g, and 2h are connected to each other by the heat medium relay unit 8 and the heat medium pipes 111 and 112, the heat medium is circulated through the indoor heat exchangers 31e, 31f, 31g, and 31h. Air conditioning. That is, the indoor units 2e, 2f, 2g, and 2h are indirect indoor units.
  • FIG. 9 is a control circuit diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the heat medium relay unit 8 includes a heat medium relay unit controller 207, to which a valve drive circuit 209 and a pump drive circuit 210 are connected.
  • the heat medium relay controller 207 includes a microcomputer and its peripheral circuits, and various control commands are supplied from the outdoor controller 202 as serial signals.
  • the repeater controller 206 communicates with the indoor controllers 203a, 203b, 203c, and 203d of the indoor units 2a, 2b, 2c, and 2d connected to the repeater 3, and the repeater controller 206 communicates with the indoor units 2a and 2b. , 2c, 2d are integrated and communicated with the outdoor controller 202. Furthermore, the heat medium relay controller 207 communicates with the indoor controllers 203e, 203f, 203g, and 203h of the indoor units 2e, 2f, 2g, and 2h connected to the heat medium relay 8 by piping, so that the heat medium relay controller 207 is connected. Integrates the operation information of the indoor units 2e, 2f, 2g, and 2h and communicates with the outdoor controller 202. In FIG. 9, only the indoor unit 2e and its indoor controller 203e are shown.
  • the heat exchangers between heat mediums 81 and 82 include a heat transfer section that allows the refrigerant to pass therethrough and a heat transfer section that allows the heat medium to pass therethrough, and performs heat exchange between the medium using the refrigerant and the heat medium.
  • the heat exchangers 81 and 82 are configured to heat the heat medium by dissipating heat to the refrigerant as a condenser and to heat the heat medium to be absorbed by the refrigerant as an evaporator depending on the operation mode of the indoor unit 2 that is an indirect indoor unit. May be cooled.
  • Pumps 91 and 92 are pressurized to circulate the heat medium.
  • the flow rate (discharge flow rate) for sending the heat medium can be changed by changing the rotation speed of a built-in motor (not shown) within a certain range.
  • the three-way valve 93 is connected to the heat medium pipe 111 by switching the heat medium pipe 115 or the heat medium pipe 116.
  • the three-way valve 94 is connected to the heat medium pipe 112 by switching the heat medium pipe 113 or the heat medium pipe 114.
  • the flow rate adjusting valves 95 each adjust the flow rate of the heat medium flowing into the indoor unit 2.
  • the outdoor unit and the relay unit 3 are connected by a high pressure pipe 6 and a low pressure pipe 7 which are refrigerant pipes. Further, the relay unit 3 and the indoor unit 2 are connected by a gas branch pipe 41 and a liquid branch pipe 42 which are refrigerant pipes.
  • the air conditioner according to Embodiment 2 is provided with various pressure sensors and temperature sensors.
  • the pressure sensor 138 detects the condensation pressure when the heat exchangers 81 and 82 function as a condenser. However, the pressure sensor 138 should just be a position which can detect the condensation pressure of the heat exchangers 81 and 82 between heat media.
  • the temperature sensor 131 is installed between the four-way valve 83 and the heat exchanger 81
  • the temperature sensor 132 is installed between the heat exchanger 81 and the expansion valve 85
  • the temperature sensor 133 is the four-way valve.
  • the temperature sensor 134 is installed between the heat exchanger related to heat medium 82 and the expansion valve 86, and detects the temperature of the refrigerant.
  • the temperature sensor 135 is installed in the heat medium pipe 115 and detects the temperature of the heat medium flowing out from the heat exchanger related to heat medium 81.
  • the temperature sensor 136 is installed in the heat medium pipe 116 and detects the temperature of the heat medium flowing out from the intermediate heat exchanger 82.
  • the temperature sensor 137 is installed in the heat medium pipe 112 and detects the temperature of the heat medium flowing out from each indoor unit 2 serving as an indirect indoor unit.
  • (Warm water mode) A warm water mode in which the operation modes of the indoor units 2e, 2f, 2g, and 2h are all heating operations will be described with reference to FIG.
  • the flow of the refrigerant is indicated by a solid line arrow in the figure, and the flow of the heat medium is indicated by a dashed line arrow in the figure.
  • the four-way valve 83 connects the high-pressure gas pipe 66 and the heat exchanger related to heat medium 81 by piping.
  • the four-way valve 84 connects the high-pressure gas pipe 66 and the heat exchanger related to heat medium 82 by piping.
  • the three-way valve 93 has an intermediate opening so that the heat medium flowing through the heat medium pipe 115 and the heat medium flowing through the heat medium pipe 116 are mixed and flow to the heat medium pipe 111.
  • the three-way valve 94 has an intermediate opening so that the heat medium flowing through the heat medium pipe 112 is divided into the heat medium pipe 113 and the heat medium pipe 114.
  • the gas refrigerant that has flowed into the heat medium relay unit 8 through the high-pressure gas pipe flows into the heat exchangers 81 and 82 through the four-way valves 83 and 84. Since the heat exchangers 81 and 82 function as a condenser with respect to the refrigerant, the refrigerant passing through the heat exchangers 81 and 82 heats and liquefies the heat medium to be heat exchanged ( Radiates heat to the heat medium).
  • the liquid refrigerant that has flowed out of the heat exchangers 81 and 82 is depressurized to an intermediate pressure by the expansion valves 85 and 86 to become an intermediate pressure liquid refrigerant.
  • the liquid refrigerant merges in the liquid pipe 67, flows out of the heat medium relay unit 8, and returns to the liquid pipe 64 of the relay unit 3.
  • the heat medium in the heat medium circuit is heated by heat exchange with the refrigerant.
  • the heat medium heated in the heat exchanger related to heat medium 81 is sent out to the heat medium pipe 115
  • the heat medium heated in the heat exchanger related to heat medium 82 is sent out to the heat medium pipe 116. Since the three-way valve 93 has an intermediate opening, the heat medium flowing from the heat medium pipe 115 and the heat medium flowing from the heat medium pipe 116 are mixed at a ratio of approximately half, and the heat medium is supplied to the heat medium pipe 111. Flows out of the heat medium relay unit 8.
  • the heat medium flowing into the indoor unit 2 exchanges heat with air conveyed by a fan (not shown) in the indoor heat exchanger 31, and heats the air to lower the temperature of the heat medium (dissipates heat to the air). ). Thereby, the indoor unit 2 performs heating.
  • the heat medium exiting the indoor unit 2 flows into the heat medium relay unit 8 through the heat medium pipe 112.
  • the inflowing heat medium passes through the flow rate adjustment valve 95 and is distributed to the heat medium pipe 113 and the heat medium pipe 114 in the three-way valve 94.
  • the heat medium flowing through the heat medium pipe 113 is pressurized by the pump 91 and returns to the heat exchanger related to heat medium 81 again.
  • the heat medium flowing through the heat medium pipe 114 is pressurized by the pump 92 and returns to the heat exchanger related to heat medium 82 again.
  • (Cold water mode) A cold water mode in which the operation modes of the indoor units 2e, 2f, 2g, and 2h are all cooling operations will be described with reference to FIG.
  • the flow of the refrigerant is indicated by a broken line arrow in the figure, and the flow of the heat medium is indicated by a dashed line arrow in the figure.
  • the four-way valve 83 connects the low-pressure pipe 68 and the heat exchanger related to heat medium 81 by piping.
  • the four-way valve 84 connects the low pressure pipe 68 and the heat exchanger related to heat medium 82 by piping.
  • the three-way valve 93 has an intermediate opening so that the heat medium flowing through the heat medium pipe 115 and the heat medium flowing through the heat medium pipe 116 are mixed and flow to the heat medium pipe 111.
  • the three-way valve 94 has an intermediate opening so that the heat medium flowing through the heat medium pipe 112 is divided into the heat medium pipe 113 and the heat medium pipe 114.
  • the intermediate pressure refrigerant flowing into the heat medium relay unit 8 through the liquid pipe 67 passes through the internal heat exchanger 88 and is decompressed by the expansion valves 85 and 86 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure refrigerant flows into the heat exchangers 81 and 82. Since the heat exchangers 81 and 82 function as an evaporator with respect to the refrigerant, the refrigerant passing through the heat exchangers 81 and 82 cools the heat medium to be heat exchanged (heat medium). The heat is absorbed from the gas and flows out as a gas refrigerant.
  • the refrigerant that has flowed out passes through the four-way valves 83 and 84 and joins in the low-pressure pipe 68 and flows out of the heat medium relay unit 8.
  • the refrigerant that has flowed out flows into the low-pressure pipe 7 of the relay unit 3.
  • the heat medium in the heat medium circuit is cooled by heat exchange with the refrigerant.
  • the heat medium cooled in the heat exchanger related to heat medium 81 is sent out to the heat medium pipe 115, and the heat medium cooled in the heat exchanger related to heat medium 82 is sent out to the heat medium pipe 116. Since the three-way valve 93 has an intermediate opening, the heat medium flowing from the heat medium pipe 115 and the heat medium flowing from the heat medium pipe 116 are mixed at a ratio of approximately half, and the heat medium is supplied to the heat medium pipe 111. Flows out of the heat medium relay unit 8.
  • the heat medium flowing into the indoor unit 2 exchanges heat with air conveyed by a fan (not shown) in the indoor heat exchanger 31, and cools the air to raise the temperature of the heat medium (absorbs heat from the air). ). Thereby, the indoor unit 2 performs cooling.
  • the heat medium exiting the indoor unit 2 flows into the heat medium relay unit 8 through the heat medium pipe 112.
  • the inflowing heat medium passes through the flow rate adjustment valve 95 and is distributed to the heat medium pipe 113 and the heat medium pipe 114 in the three-way valve 94.
  • the heat medium flowing through the heat medium pipe 113 is pressurized by the pump 91 and returns to the heat exchanger related to heat medium 81 again.
  • the heat medium flowing through the heat medium pipe 114 is pressurized by the pump 92 and returns to the heat exchanger related to heat medium 82 again.
  • the heat medium relay unit 8 connects the refrigerant pipes of the heat exchangers 81 and 82 in parallel in the hot water mode and the cold water mode.
  • FIG. 10 is a refrigerant circuit diagram showing a cold / hot water mixed mode of the air-conditioning apparatus according to Embodiment 2.
  • the refrigerant flow is indicated by solid arrows, and the heat medium flow is indicated by broken arrows.
  • the indoor units 2e and 2f perform the heating operation and the indoor units 2g and 2h perform the cooling operation will be described.
  • the four-way valve 83 connects the low pressure pipe 68 and the heat exchanger related to heat medium 81 by piping.
  • the four-way valve 84 connects the high-pressure gas pipe 66 and the heat exchanger related to heat medium 82 by piping.
  • the three-way valves 93e and 93f allow the heat medium flowing through the heat medium pipe 116 to flow into the heat medium pipes 111e and 111f.
  • the three-way valves 93g and 93h allow the heat medium flowing through the heat medium pipe 115 to flow into the heat medium pipes 111g and 111h.
  • the three-way valves 94e and 94f allow the heat medium flowing through the heat medium pipes 112e and 112f to flow through the heat medium pipe 114.
  • the three-way valves 94g and 94h allow the heat medium flowing through the heat medium pipes 112g and 112h to flow through the heat medium pipe 113.
  • the liquid refrigerant condensed and flowing out in the heat exchanger related to heat medium 82 is decompressed to an intermediate pressure by the expansion valve 86, and all or part of the liquid refrigerant is decompressed by the expansion valve 85, and the low-temperature low-pressure gas-liquid two-phase refrigerant and become.
  • the low-temperature and low-pressure refrigerant flows into the intermediate heat exchanger 81.
  • the refrigerant evaporated and flowing out in the heat exchanger related to heat medium 81 flows out of the heat medium relay unit 8 through the four-way valve 83 and the low pressure pipe 68.
  • the refrigerant that has flowed out flows into the low-pressure pipe 7 of the relay unit 3.
  • the flow of the intermediate-pressure liquid refrigerant in the liquid pipe 67 varies depending on whether the heating load in the heat medium relay unit 8 is large with respect to the cooling load or the heating load is small with respect to the cooling load.
  • the refrigerant flow rate related to evaporation in the heat exchanger related to heat medium 81 is smaller than the refrigerant flow rate related to condensation in the heat exchanger related to heat medium 82. Therefore, a part of the intermediate-pressure liquid refrigerant decompressed by the expansion valve 86 returns to the relay unit 3 through the liquid pipe 67.
  • the refrigerant flow rate related to evaporation increases in the heat exchanger related to heat medium 81 compared to the refrigerant flow rate related to condensation in the heat exchanger related to heat medium 82. Therefore, in addition to the intermediate-pressure liquid refrigerant decompressed by the expansion valve 86, the liquid refrigerant flowing from the liquid pipe 67 into the heat medium relay unit 8 flows into the expansion valve 85.
  • the heat medium related to the heating operation is heated by heat exchange with the refrigerant in the intermediate heat exchanger 82.
  • the heat medium heated in the heat exchanger related to heat medium 82 is sent out to the heat medium pipe 116.
  • the heat medium flowing through the heat medium pipe 116 passes through the three-way valves 93e and 93f, flows through the heat medium pipes 111e and 111f, and flows out of the heat medium relay unit 8.
  • the heat medium flowing into the indoor units 2e and 2f is heated in the indoor heat exchangers 31e and 31f.
  • the heat medium exiting the indoor units 2e and 2f flows into the heat medium relay unit 8 through the heat medium pipes 112e and 112f.
  • the flowing heat medium flows into the heat medium pipe 114 through the flow rate adjusting valves 95e and 95f and the three-way valves 94e and 94f.
  • the heat medium flowing through the heat medium pipe 114 is pressurized by the pump 92 and returns to the heat exchanger related to heat medium 82 again.
  • the heat medium related to the cooling operation is cooled by heat exchange with the refrigerant in the intermediate heat exchanger 81.
  • the heat medium cooled in the heat exchanger related to heat medium 81 is sent out to the heat medium pipe 115.
  • the heat medium flowing through the heat medium pipe 115 passes through the three-way valves 93g and 93h, flows through the heat medium pipes 111g and 111h, and flows out of the heat medium relay unit 8.
  • the heat medium flowing into the indoor units 2g and 2h is cooled in the indoor heat exchangers 31g and 31h.
  • the heat medium exiting the indoor units 2g and 2h flows into the heat medium relay unit 8 through the heat medium pipes 112g and 112h.
  • the inflowing heat medium flows into the heat medium pipe 113 through the flow rate adjusting valves 95g and 95h and the three-way valves 94g and 94h.
  • the heat medium flowing through the heat medium pipe 113 is pressurized by the pump 91 and returns to the heat exchanger related to heat medium 81 again.
  • the operation mode of the heat medium relay unit 8 and the indirect indoor unit 2 has been described.
  • the operation mode of the entire air conditioner is the indoor units 2a, 2b, 2c,
  • a heating only operation, a cooling only operation, a heating main operation, and a cooling main operation are set according to the balance of the heating and cooling loads of 2d, 2e, 2f, 2g, and 2h.
  • the opening degree of the expansion valves 85 and 86 is controlled by a command from the heat medium relay controller 207. Specifically, during heating operation, the degree of supercooling of the heat exchangers 81 and 82 is controlled to a target value, and the opening is controlled to adjust the flow rate of refrigerant flowing into the heat exchangers 81 and 82. .
  • the calculation method of the degree of supercooling is as follows. The condensation pressure detected by the pressure sensor 138 is converted into a condensation temperature, which is a saturation temperature, in the heat medium relay controller 207. The heat medium relay controller 207 calculates the degree of supercooling from the difference between the condensation temperature and the liquid side temperature of the refrigerant detected by the temperature sensors 132 and 134.
  • the degree of superheat of the heat exchangers 81 and 82 is controlled to a target value, and the opening is controlled to adjust the flow rate of refrigerant flowing into the heat exchangers 81 and 82.
  • the degree of superheat is calculated from the difference between the refrigerant gas side temperature detected by the temperature sensors 131 and 133 and the refrigerant liquid side temperature detected by the temperature sensors 132 and 134 in the heat medium relay controller 207.
  • the opening degree of the flow rate adjusting valve 95 is controlled by a command from the heat medium relay controller 207. Specifically, the opening degree is controlled with the temperature difference between the heat medium inlet and outlet of the indoor heat exchanger 31 as a target value, and the flow rate of the heat medium flowing into the indoor heat exchanger 31 is adjusted.
  • the inlet temperature of the indoor heat exchanger 31 is the average value of the heat medium temperature detected by the temperature sensor 135 and the temperature sensor 136 in the hot water mode and the cold water mode.
  • the flow control valve 95 connected to the indoor unit 2 that performs the heating operation is connected to the indoor unit 2 that performs the cooling operation using the heat medium temperature detected by the temperature sensor 136.
  • the heat medium temperature detected by the temperature sensor 135 is used for the flow rate adjusting valve 95.
  • the heat medium inlet / outlet temperature difference is calculated from the difference between the inlet temperature and the outlet temperature by using the heat medium temperature detected by the temperature sensor 137.
  • the temperature difference between the inlet and outlet of the heat medium is preferably about 5 to 7 degrees (° C.).
  • the rotation speeds of the pumps 91 and 92 are controlled by a command from the heat medium relay controller 207.
  • the pump 92 has the largest opening of the flow adjustment valve 95 having the largest opening among the flow adjustment valves 95 connected to the indoor unit 2 performing the heating operation.
  • the rotational speed is adjusted so that For example, when the indoor units 2e and 2f perform heating operation, the opening degree of the flow rate adjustment valve 95e is 70% with respect to the maximum opening degree value of 100%, and the opening degree of the flow rate adjustment valve 95f is 50%.
  • the repeater controller 207 determines that the total circulation amount of the heat medium is excessive, and the rotation speed of the pump 92 so that the opening degree of the flow rate adjustment valve 95e approaches a stable opening degree, that is, a range where the rotation speed control of the pump 92 is not performed. Make it smaller.
  • the stable opening degree of the flow rate adjusting valve 95e is preferably about 90 to 95%.
  • the heat medium relay controller 207 determines that the entire circulation amount of the heat medium is insufficient and determines the flow rate adjusting valve 95e.
  • the rotational speed of the pump 92 is increased so that the opening degree approaches the stable opening degree.
  • the pump 91 is similarly controlled for the indoor unit 2 that is performing the cooling operation.
  • the pumps 91 and 92 are set to the same rotation speed, and the same control is performed.
  • the flow rate adjustment valve 95 is set to an opening degree at which the heat medium does not flow.
  • the heat transfer area is designed so that the heat exchangers 81 and 82 can exhibit the total heating capacity of the indirect indoor unit 2 together. ing. For example, when the condensation temperature is about 50 degrees (° C.), the heat medium inlet temperature of the indoor heat exchanger 31 is about 45 degrees (° C.). At this time, the indoor unit 2 can exhibit the rated heating capacity.
  • the heat transfer area of the heat exchanger related to heat medium 82 that functions as a condenser is larger than that in the case where both the heat exchangers 81 and 82 are used as condensers in the hot water mode. Approximately half. That is, in the cold / hot water mixed mode, a part of the heat exchanger related to heat medium becomes an evaporator, so that the heat transfer area of the heat exchanger related to heat medium acting as a condenser is reduced.
  • the heat transfer area of the heat exchanger related to heat medium 82 is small with respect to the heating load.
  • the heat transfer area of the heat exchanger related to heat medium 82 is only 50%. If it becomes like this, the heat-medium entrance temperature of the indoor heat exchanger 31 will become low, and the heating capability of the indoor unit 2 will become small.
  • the heat medium delivery flow rate of the pump 92 that sends out the heat medium related to heating is approximately half that in the case where the pumps 91 and 92 send out the heat medium related to heating. In other words, the number of pumps will decrease with respect to the rating. Therefore, in the cold / hot water mixed mode, when the heating load is large, such as when the number of indoor units 2 that perform the heating operation is large, the amount of water supplied by the pump is small with respect to the heating load.
  • the heat medium flow rate per unit of the indoor heat exchanger 31 is lowered, the heat transfer property of the indoor heat exchanger 31 is lowered, and the heating capacity is reduced.
  • changing the size and number of the heat exchangers 81 and 82 and the pumps 91 and 92 in preparation for a sufficiently large heating load only increases the size of the device. It is not expensive because it is expensive.
  • the air conditioner is cooled. It is driven by the main driving. At this time, in order to increase the heating capacity of the indirect indoor unit 2, it is difficult to make the air-conditioning apparatus a heating-main operation.
  • the capacity is increased with respect to the heat exchanger related to heat medium 81 or the heat exchanger related to heat medium 82.
  • Control is implemented.
  • the heat exchanger related to heat medium 81 or the heat exchanger related to heat medium 82 corresponds to the first use side heat exchanger.
  • the directly expanded indoor heat exchangers 31a, 31b, 31c, and 31d correspond to a second usage-side heat exchanger. Specific control will be described with reference to the flowchart of FIG.
  • FIG. 11 is a flowchart showing the capacity increase control of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • a heating capacity increase request is sent from the operation unit 208 of the heat medium relay unit 8 to the heat medium relay unit controller 207.
  • the controller 207 transmits the capability priority to the outdoor controller 202.
  • the outdoor controller 202 receives the capacity priority, the outdoor controller 202 starts the flow of FIG. 11 and sets the operation mode of the air conditioner to the capacity priority mode (step S301).
  • step S302 the outdoor controller 202 increases the condensation temperature target value Tcm by ⁇ Tcm.
  • the heat exchange capacity AK of the outdoor heat exchanger 13 is controlled based on the condensation temperature Tc. For this reason, if the heat exchange capacity AK is larger than the heat exchange capacity minimum value AKmin, the heat exchange capacity AK decreases as the condensation temperature target value Tcm increases.
  • step S303 the outdoor controller 202 transmits the heating capacity suppression mode to the relay controller 206.
  • the repeater controller 206 transmits the capability suppression mode to the indoor unit 2 in the heating operation among the directly expanded indoor units 2a, 2b, 2c, and 2d.
  • step S304 the indoor controller 203 of the indoor unit 2 that has received the capability suppression mode increases the supercooling degree target value SCm of the indoor heat exchanger 31 by ⁇ SCm.
  • the opening degree L of the expansion valve 32 is controlled based on the calculated value of the degree of supercooling SC, the degree of opening L decreases as the supercooling degree target value SCm increases.
  • the outdoor controller 202 determines whether or not the heat exchange capacity AK of the outdoor heat exchanger 13 is larger than the heat exchange capacity minimum value AKmin in step S306 after a predetermined time has elapsed in step S305. If the heat exchange capacity AK is larger than the heat exchange capacity minimum value AKmin (Yes), the outdoor controller 202 transmits a refrigerant flow rate increase mode to the heat medium relay unit 8 in step S307. In step S306, if the heat exchange capacity AK is the heat exchange capacity minimum value AKmin (No), the flow ends.
  • step S308 the heat medium relay controller 207 that has received the refrigerant flow rate increase mode decreases the subcooling target value SCm of the heat exchanger related to heat medium 82 by ⁇ SCm.
  • the opening degree L of the expansion valve 86 is controlled based on the calculated value of the degree of supercooling SC, the degree of opening L increases when the degree of supercooling degree target value SCm decreases.
  • the flow for changing the values of the condensation temperature target value Tcm and the supercooling degree target value SCm ends, but the changed Tcm and SCm are sent from the operation unit 208 of the heat medium relay unit 8 to the heating capacity priority request. Maintained until is canceled.
  • the operation unit 208 requests the heating capacity increase when the heat medium relay unit 8 and the indirect indoor unit 2 are in the cold / hot water mixed mode.
  • Conditions for the operation unit 208 to request an increase in heating capacity include that the heating capacity of the operating indirect indoor unit 2 is sufficiently larger than the cooling capacity, and that the heating load is actually large. . Therefore, in this Embodiment 2, the following three conditions are judged and the operation part 208 requests
  • the operation unit 208 may request an increase in heating capacity.
  • the actuators of the refrigerant path and the heat medium path are sufficiently stable, and it is desirable that the predetermined time be about 10 to 30 minutes.
  • the heat medium inlet temperature of the indoor unit 2 that performs the heating operation can be increased by increasing the condensation temperature. it can. Therefore, by making the heat medium inlet temperature higher than that in the normal operation, it is possible to compensate for a decrease in the heating capacity of the indoor heat exchanger 31 due to a decrease in the heat medium flow rate.
  • the air conditioner according to the second embodiment it is not necessary to increase the number of heat exchangers 82 and pumps 92 or increase the number of heat exchangers, and the size and cost of the air conditioner can be reduced. Can be.
  • the heating capacity increase is required when the heating load is large, the capacity increase control is not performed unnecessarily, and the apparatus is excellent in energy saving.
  • the capacity of the directly expanded indoor unit 2 is suppressed when the capacity increase control is performed on the heat exchanger related to heat medium 82.
  • the refrigerant circulates directly as described above, and the heating capacity increases as the condensation temperature increases. Therefore, by suppressing the capacity, it is possible to suppress the capacity from becoming excessive in the directly expanded indoor unit 2.
  • the heating capacity increase control is performed on the heat exchanger related to heat medium 82 during the cooling main operation.
  • Control for increasing the cooling capacity of the exchanger 81 may be performed.
  • the evaporation temperature target value Tem is lowered by ⁇ Tem
  • the heat exchange capacity AK of the outdoor heat exchanger 13 may be made smaller than the heat exchange capacity AK for exhibiting a predetermined cooling capacity of the refrigeration cycle.
  • the refrigerant flow rate is increased by reducing the superheat degree target value SHm of the heat exchanger 81 with heat capacity by ⁇ SHm.
  • the refrigerant flow rate can be reduced by increasing the superheat degree target value SHm of the inflatable indoor unit 2 by ⁇ SHm.
  • Tem may be set to a temperature at which the heat medium does not freeze.
  • the heating capacity of the first heating utilization side heat exchanger is adjusted by adjusting the heat exchange capacity AK of the outdoor heat exchanger 13 during the cooling main operation.
  • the cooling capacity of some cooling use side heat exchangers (corresponding to the third use side heat exchanger) is adjusted by adjusting the rotation speed F of the compressor 11 to lower the evaporation temperature. It may be increased.
  • a part of the other cooling use side heat exchanger (corresponding to the fourth use side heat exchanger) reduces the refrigerant flow rate and suppresses the cooling capacity from becoming excessive.
  • the rotation speed F of the compressor 11 is adjusted, and a part of heating utilization side heat exchanger (The heating capacity of the third use side heat exchanger may be increased.
  • a part of the other heating use side heat exchanger (corresponding to the fourth use side heat exchanger) suppresses the heating capacity from becoming excessive by reducing the refrigerant flow rate.
  • the heat source may be water or brine.
  • the heat exchange capacity may be controlled by adjusting the flow rate of the heat source water based on, for example, the pump speed of the heat source water or the opening of the flow rate adjustment valve.
  • the control for suppressing the capacity of the indoor unit 2 is performed by the refrigerant flow rate control by the expansion valve 32, but the fan 210 (The capacity adjustment of the indoor unit 2 may be performed by forcibly controlling the rotation speed of the indoor fan.
  • the refrigerant flow rate is decreased in all the heat exchangers other than the heat exchanger that increases the capacity, but other than the heat exchanger that increases the capacity. If the refrigerant flow rate can be reduced in a part of the heat exchanger, the present invention can be implemented.
  • the present invention can be applied to a multi-room air conditioner used for a building multi-air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 本発明に係る空気調和装置は、複数の利用側熱交換器のうちの一部が凝縮器、その他が蒸発器となる運転中、熱源側熱交換器と同じ運転モードで運転している利用側熱交換器(31a,31b)のうち、第1の利用側熱交換器(31b)から熱交換能力を増大させる要求があると、熱源側熱交換器(13)の熱交換容量を小さくし、熱交換能力増大要求の無い第2の利用側熱交換器(31a)に対応する膨張弁(32a)の開度を制御して、第2の利用側熱交換器(31a)に流れる冷媒の流量を減少させる。 これにより、第1の利用側熱交換器の能力を設計容量よりも大きくするとともに、第2の利用側熱交換器の能力が過大となるのを抑制することができる。

Description

空気調和装置
 本発明は、例えばビル用マルチエアコンなどに用いる多室形空気調和装置に関するものである。
 一般的に用いられる多室形ヒートポンプ式の冷凍サイクルを備える空気調和装置は、室外ユニットとして圧縮機、四方弁、室外熱交換器を備え、複数の室内ユニットとして、それぞれに膨張弁、室内熱交換器(利用側熱交換器)を備えている。これら構成部品は順次冷媒管を介して連通され、ヒートポンプ式の冷凍サイクルが構成される。すなわち、室内ユニットを並列構成としており、冷房運転と暖房運転との切換えで、所定の冷凍サイクルを構成する。また、冷房運転と暖房運転とが同時に行える多室形空気調和装置がある。
 このような多室形空気調和装置では、暖房運転であれば室内熱交換器の凝縮温度を目標値にして、圧縮機の運転容量を調整することで、冷凍サイクル全体の冷媒流量を調整している。また、各室内ユニットでは、室内熱交換器の過冷却度を目標値にして、膨張弁の開度を調整することで、室内熱交換器の冷媒流量を調整している。すなわち、室内熱交換器は暖房運転であればある程度決められた範囲で凝縮圧力と過冷却度を調整することで、室内ユニットの負荷に対して所定の暖房能力を発揮するように容量が設計されている。冷房運転であればある程度決められた範囲で蒸発圧力と過熱度を調整している。
 また、冷暖同時運転が可能な多室形空気調和装置において冷暖同時運転を行う場合、一般的に、室内ユニットの冷房運転の負荷と暖房運転の負荷との負荷比率において、冷房運転の負荷が大きい冷房主体運転の際は、室外熱交換器が凝縮器となり、暖房運転する室内ユニットの室内熱交換器の凝縮温度を目標値にして、室外熱交換器の放熱量を調整している。
 また、複数の各室内機の運転モード及びその設定温度と各室内温度との差を検知するとともに、その情報により空気調和装置全体としての運転状態を判定し、圧縮機の容量と室外熱交換器の熱交換量を制御する制御器を設けた空気調和装置が提案されている(例えば、特許文献1参照)。この空気調和装置は、冷房主体運転モードであるとき、暖房室内機の設定温度と吸込空気温度の差温であるΔTjの最大値(MAXΔTjH)が、制御目標範囲の上限値αより大きいときは、暖房室内機の中で能力不足のユニットがあると判断して室外ファンの回転数の現在の指令値ffanからΔffanを差し引いた値を新しい指令値ffan*として室外ファンへ出力する。すなわち、暖房室内機のうち最も負荷が大きい室内機のΔTjが上限値αより大きいときは、室外ファンの回転数を低くしている。
 また、複数の室内ユニットが同じ室内に配備されている空気調和装置においては、検知された冷媒回路の空調負荷が冷媒回路について予め設定されている定格暖房能力より大きい場合、いずれかの室内ユニットについて、空調能力セーブ運転を実施する空気調和装置が提案されている(例えば、特許文献2参照)。この空気調和装置は、暖房運転時に圧縮機の容量が最大容量に達しているか否かを判断する。また、最大値に達していると判断した場合、高圧飽和温度の目標値から演算高圧飽和温度を引いた値に基づいて、暖房負荷に対するシステム全体の能力の過不足を判断する。そして、システム全体の能力が不足気味の場合、優先順位の低い順番に過冷却度(サブクール)目標値を大きい値に設定変更し、暖房能力セーブ運転を行っている。冷房運転時は過熱度(スーパーヒート)目標値を大きい値に設定変更している。
特開平2-217738号公報(たとえば、第6ページ) 特開2007-271112号公報(たとえば、第5、6ページ)
 特許文献1のような従来の空気調和装置では、暖房室内機のうち最も負荷の大きい室内ユニットに対して室外熱交換器の熱交換量を制御している。そのため、暖房室内機全体の能力が増加して、負荷の小さい暖房室内機の能力も増加するという課題があった。
 特許文献1のような従来の空気調和装置では、室内ユニットの凝縮温度(高圧飽和温度)が目標値よりも低いときに、優先順位の低い室内ユニットの冷媒流量を小さくして、凝縮温度を目標値に近づけるような制御を行っている。これは、優先順位の高い室内機が設計された容量以内の能力を発揮するための能力制御である。すなわち、この能力制御は、優先順位の高い室内ユニットが当該制御前に設定されていた空調能力を発揮できるようになるものの、設計された容量以上の能力を発揮できるようなものではなかった。
 また、従来の空気調和装置では、優先順位の低い室内ユニットの冷媒流量を制御する減圧装置を調整して、優先順位の高い室内ユニットの暖房能力を大きくしているが、減圧装置を調整するのみでは室内ユニットの暖房能力を、設計された容量以上の能力にすることができないという課題があった。さらに、優先順位の高い室内ユニットの冷媒流量を制御する減圧装置を調整して、優先順位の高い室内ユニットの冷媒流量を大きくするのみで暖房能力を設計された容量以上の能力にしようとすると、室内ユニットの冷媒の過冷却度が小さくなり、冷媒流量制御が困難になるという課題があった。
 すなわち、冷暖同時運転が可能な多室形空気調和装置においては、減圧装置によって冷媒流量を増加させる制御だけでは、優先順位の高い室内ユニットの暖房能力を設計された容量以上の能力にすることができない。しかも、このような多室形空気調和装置では、減圧装置の制御によって、優先順位の高い室内ユニットの暖房能力を設計された容量以上の能力にしようとすると、冷媒流量制御が困難になるという別の課題が生じてしまう。
 また、例えば冷媒と水などの熱媒体との間で熱交換を行い、熱媒体を加熱又は冷却する複数の熱媒体間熱交換器と、熱媒体を循環させて室内空間を冷暖房する間接式室内熱交換器と、を備えた空気調和装置も従来より提案されている。このような空気調和装置において、熱媒体間熱交換器の一部を凝縮器、残りの一部を蒸発器とした冷温水混在モードになると、間接式室内ユニットの暖房負荷が十分に大きい場合、凝縮器として機能する熱媒体間熱交換器の伝熱面積が暖房負荷に対して小さいものになっている。そのため、凝縮温度の調整を膨張装置で調整するのみでは、暖房負荷に対して熱媒体を十分に加熱できない。また、暖房に係る熱媒体を送出するポンプの熱媒体送出流量が不足して、間接式室内ユニットの暖房能力が低下するという課題があった。
 本発明は、上記のような課題の少なくとも1つを解決するためになされたものであり、一部の利用側熱交換器から能力増大要求があったとき、能力増大要求があった利用側熱交換器の能力を設計容量より大きくすることが可能な空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、冷媒を圧縮する圧縮機と、凝縮器又は蒸発器として機能する複数の利用側熱交換器と、前記利用側熱交換器に対応して設けられ、前記利用側熱交換器に流れる冷媒の流量を調整する複数の膨張装置と、凝縮器又は蒸発器として機能する熱源側熱交換器と、前記複数の膨張装置の開度、及び、冷媒の凝縮又は蒸発の飽和温度が所定の飽和温度目標値となるように前記熱源側熱交換器の熱交換容量を制御する制御装置と、を備え、前記制御装置は、前記複数の利用側熱交換器のうちの一部が凝縮器、その他が蒸発器となる運転中、前記複数の利用側熱交換器のうち、前記熱源側熱交換器と同じ運転モードで運転している前記利用側熱交換器の一部である第1の利用側熱交換器から熱交換能力を増大させる要求があると、前記熱源側熱交換器の飽和温度目標値の値を変更することによって、前記熱源側熱交換器の熱交換容量を小さくするとともに、前記第1の利用側熱交換器以外の前記利用側熱交換器であって、前記第1の利用側熱交換器と同じ運転モードで運転している前記利用側熱交換器のうちの少なくとも1つである第2の利用側熱交換器に対応する前記膨張装置の開度を制御して、前記第2の利用側熱交換器に流れる冷媒の流量を減少させるものである。
 本発明に係る空気調和装置は、冷暖同時運転時において第1の利用側熱交換器から能力増大要求があるときに、熱源側熱交換器の熱交換容量を通常より小さくするとともに、第2の利用側熱交換器においては冷媒流量を減少させるので、第1の利用側熱交換器の能力をより効果的に大きくすることができる。したがって、本発明に係る空気調和装置によれば、第1の利用側熱交換器の能力を設計容量よりも大きくするとともに、第2の利用側熱交換器の能力が過大となるのを抑制することができる。
本発明の実施の形態1に係る空気調和装置の冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の制御回路図である。 本発明の実施の形態1に係る空気調和装置の室外熱交換器の構成の一例を示す部分回路図である。 本発明の実施の形態1に係る空気調和装置の室外熱交換器の構成の他の一例と示す部分回路図である。 本発明の実施の形態1に係る空気調和装置の暖房主体運転を示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の冷房主体運転を示す冷媒回路図である。 本発明の実施の形態1に係る空気調和装置の暖房能力増大制御を示すフローチャートである。 本発明の実施の形態2に係る空気調和装置の冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の制御回路図である。 本発明の実施の形態2に係る空気調和装置の冷温水混在モードを示す冷媒回路図である。 本発明の実施の形態2に係る空気調和装置の能力増大制御を示すフローチャートである。
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路図である。なお、以下の説明では、同一構成を区別して記載する必要がある場合等、符号の末尾にアルファベットを付して記載することがある。本実施の形態1に係る空気調和装置は、各室内ユニットの運転モードを個別に選択、つまり冷暖同時運転が可能なものである。なお、図1では、実線矢印で全暖房運転時の冷媒の流れを、破線矢印で全冷房運転時の冷媒の流れを、それぞれ示している。
 本実施の形態1に係る空気調和装置は、冷暖同時運転時において、室外熱交換器13の熱交換容量を小さくして、室外熱交換器13と同じ運転モードの室内熱交換器31の一部の能力を増大、同じモードのその他の室内熱交換器31に対しては膨張弁32を調整して冷媒流量を減少させて、能力が過剰になるのを抑制するようにしたものである。
 本実施の形態1に係る空気調和装置は、圧縮機11、冷媒流路切替装置である四方弁12、熱源側熱交換器である室外熱交換器13、アキュムレータ14、逆止弁15,58,59、気液分離器51、内部熱交換器52,53、利用側熱交換器である複数の室内熱交換器31、各室内熱交換器31に対応して設けられた複数の膨張弁32(膨張装置)、膨張弁54,55、開閉装置である電磁弁56,57を配管接続して冷凍サイクルを構成している。
 本実施の形態1に係る空気調和装置では、圧縮機11、四方弁12、室外熱交換器13、アキュムレータ14、逆止弁15a,15b,15c,15dを、熱源機である室外ユニット1の中に収容している。また、室外ユニット1には、室外ユニット1の制御と空気調和装置全体の制御を統制する室外コントローラ202も収容されている。本実施の形態1に係る空気調和装置では、室内熱交換器31、膨張弁32を、室内ユニット2に収容している。また、本実施の形態1に係る空気調和装置は、室外ユニット1と室内ユニット2との間に介在する中継機3を備えている。
 この中継機3には、気液分離器51、内部熱交換器52,53、膨張弁54,55、開閉装置である電磁弁56,57、逆止弁58,59、圧力センサ76,77、中継機コントローラ206等が収容されている。そして、中継機3は、冷媒配管である高圧管6と低圧管7とで、室外ユニット1と接続されている。また、各室内ユニット2は、冷媒配管であるガス枝管41と液枝管42とで、中継機3に並列接続されている。この室内ユニット2には、室内ユニット2を制御する室内コントローラ203が収容されている。
 なお、室内ユニット2、中継機3の台数は任意である。また、室外コントローラ202、室内コントローラ203、中継機コントローラ206については、図2で説明する。
 圧縮機11は、吸入した冷媒を加圧して吐出する(送り出す)ものである。冷媒流路切替装置となる四方弁12は、圧縮機11の吐出側に設けられるものであり、冷媒の経路を切り替えるものである。なお、四方弁12は、後述する室外コントローラ202の指示に基づいて、冷暖房に係る運転モードに対応した弁の切り替えを行う。本実施の形態1では、全冷房運転時、冷房主体運転時と、全暖房運転時、暖房主体運転時とによって冷媒経路が切り替わるようにする。
 室外熱交換器13は、例えば、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)と空気を搬送するファン101(送風装置)を有し、冷媒と空気(外気)との熱交換を行うものである。例えば、室外熱交換器13は、全暖房運転時、暖房主体運転時においては蒸発器として機能し、冷媒を蒸発させてガス(気体)化させる。一方、室外熱交換器13は、全冷房運転時、冷房主体運転時においては凝縮器又はガスクーラ(以下では凝縮器とする)として機能し、冷媒を凝縮させて液化させる。場合によっては、完全にガス化、液化させず、液体とガスとの二相混合(気液二相冷媒)の状態にすることもある。室外熱交換器13の構成例については図3、図4で説明する。
 室内熱交換器31は、例えば、冷媒を通過させる伝熱管及びその伝熱管を流れる冷媒と外気との間の伝熱面積を大きくするためのフィン(図示せず)と空気を搬送するファン(図示せず)を有し、冷媒と空気(室内)との熱交換を行うものである。例えば、室内熱交換器31は、暖房運転時においては凝縮器またはガスクーラ(以下では凝縮器とする)として機能し、冷媒を凝縮させて液化する。一方、室内熱交換器31は、冷房運転時においては蒸発器として機能し、冷媒を蒸発させてガス(気体)化させる。場合によっては、完全にガス化、液化させず、液体とガスとの二相混合(気液二相冷媒)の状態にすることもある。
 例えば電子式膨張弁等の膨張弁32は、冷媒流量を調整することにより冷媒を減圧させる。アキュムレータ14は冷凍サイクル回路中の過剰な冷媒を貯留したり、圧縮機11に冷媒液が多量に戻って圧縮機11が破損したりするのを防止する働きがある。
 また、実施の形態1に係る空気調和装置には、各種の圧力センサや温度センサが設けられている。
 冷媒圧力検出手段である圧力センサ71は、圧縮機11の吐出側と四方弁12の間に設置され吐出圧力(圧縮機11が吐出する冷媒の圧力)を検知する。圧力センサ72は、アキュムレータ14と圧縮機11の間に設置され吸入圧力(圧縮機11が吸入する冷媒の圧力)を検知する。圧力センサ76は、高圧(膨張弁54の入口側の圧力)を検知する。圧力センサ77は、中間圧(膨張弁54の出口側の圧力、つまり高圧と低圧の間の圧力)を検知する。ただし、圧力センサ71、圧力センサ72、圧力センサ76、圧力センサ77は、それぞれ圧縮機11の吐出圧力、圧縮機11の吸入圧力、高圧、中間圧が検知できる場所に設置されればよく、図示した設置位置を限定するものではない。
 冷媒温度検出手段である温度センサ74は、各室内ユニット2のガス枝管41に設置され、室内熱交換器31のガス側温度を検知する。温度センサ75は、各室内ユニット2の室内熱交換器31と膨張弁32の間に設置され、室内熱交換器31の液側温度を検知する。温度センサ73は、室内熱交換器31(換言すると、各室内ユニット2)の吸込空気温度を検知する。
 逆止弁15aは、室外熱交換器13と高圧管6の間に設けられ、室外熱交換器13から高圧管6の方向へのみ冷媒流通を許容するものである。逆止弁15bは、低圧管7と四方弁12の間に設けられ、低圧管7から四方弁12の方向へのみ冷媒流通を許容するものである。逆止弁15cは四方弁12と高圧管6の間に設けられ、四方弁12から高圧管6の方向へのみ冷媒流通を許容するものである。逆止弁15dは、低圧管7と室外熱交換器13の間に設けられ、低圧管7から室外熱交換器13の方向へのみ冷媒流通を許容するものである。
 電磁弁56,57は室内ユニット2のガス枝管41を、高圧ガス管61または低圧管7に切り替えて接続するものである。電磁弁56を開放、電磁弁57を閉止すると、ガス枝管41と高圧ガス管61が接続し、電磁弁57を開放、電磁弁56を閉止すると、ガス枝管41と低圧管7が接続する。
 逆止弁58,59は液枝管42にそれぞれ逆並列関係に一端が接続されている。逆止弁58の他端は液管63に接続され、液管63から液枝管42の方向へのみ冷媒流通を許容する。逆止弁59の他端は液管64に接続され、液枝管42から液管64の方向へのみ冷媒流通を許容する。
 気液分離器51は、高圧管6から気液二相冷媒が流入した場合、ガスと液を分離して、ガス冷媒を高圧ガス管61、液冷媒を液管62に流す。
 膨張弁54は気液分離器51と液管63,64の間に設けられる。バイパス配管65は、液管63と低圧管7とを結んでいる。膨張弁55は、バイパス配管65の途中に設けられる。内部熱交換器53は、バイパス配管65の膨張弁55の下流部分と膨張弁54から液管63にいたる配管との間で熱交換を行うものである。一方、内部熱交換器52は、バイパス配管65の内部熱交換器53の下流部分と、気液分離器51と膨張弁54を接続する配管との間で熱交換を行う。
 膨張弁54,55の開度調整、電磁弁56,57の開閉は、中継機コントローラ206が制御(指令)する。
 図2は、本発明の実施の形態1に係る空気調和装置の制御回路図である。図2に示すように、室外コントローラ202には、インバータ回路201が接続されている。この室外コントローラ202は、マイクロコンピュータ及びその周辺回路等からなる。また、インバータ回路201は、室外コントローラ202の指令に応じた運転周波数(及び電圧)の交流電力を圧縮機11のモータに出力するものである。なお、室外コントローラ202は、圧力センサ71,72が検知する検知圧力に応じて、インバータ回路201に指令する運転周波数(つまり、圧縮機11の回転数)を決定する。
 室内コントローラ203のそれぞれには、弁駆動回路205が接続される。この室内コントローラ203は、マイクロコンピュータおよびその周辺回路からなり、中継機コントローラ206を介して室外コントローラ202と通信する。また、弁駆動回路205は、それぞれ室内コントローラ203の指令に応じて膨張弁32の開度をそれぞれ設定するものである。なお、室内コントローラ203は、操作部204からの要求内容や温度センサ73~75の検知温度に応じて、膨張弁32の開度を決定する。この決定方法の詳細については後述する。また、室内コントローラ203は、ファン211の回転数制御も行う。
 中継機コントローラ206は、中継機3に配管接続されている室内ユニット2a,2b,2c,2dの室内コントローラ203a,203b,203c,203dと通信して、室内ユニット2a,2b,2c,2dの運転情報を統合して室外コントローラ202と通信する。室内ユニット2の各種制御指令は、シリアル信号にて室外コントローラ202から中継機コントローラ206を介して、室内コントローラ203に供給されるようになっている。なお、中継機コントローラ206は、圧力センサ76,77が検知する検知圧力に応じて、膨張弁54,55の開度を決定する。
 上記のように構成された空気調和装置に用いられる冷媒としては、たとえばR-22、R-134a等の単一冷媒、R-410A、R-404A等の擬似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含む、CF3 CF=CH2 等の地球温暖化係数が比較的小さい値とされている冷媒や、それらの混合物、あるいはCO2 やプロパン等の自然冷媒がある。
 図3は、室外熱交換器13の構成の一例を示す部分回路図である。図4は、室外熱交換器13の構成の他の一例と示す部分回路図である。図3及び図4に基づいて、室外熱交換器13の構成について説明する。なお、図3及び図4には、実線矢印で全暖房運転時、暖房主体運時の冷媒の流れを、破線矢印で全冷房運転時、冷房主体運転時の冷媒の流れを、それぞれ示している。
 図3に示す構成では、室外熱交換器13は、室外熱交換部16,17、電磁開閉装置(熱交換器開閉装置)である熱交換器開閉弁21,22,23,24、熱交換器バイパス弁25(熱交換器バイパス装置)を有している。熱交換器開閉弁21,22,23,24、熱交換器バイパス弁25は、室外コントローラ202の指示に基づいて開閉し、室外熱交換器13、つまり室外熱交換部16,17への冷媒流入出を制御する。例えば、熱交換器開閉弁21(熱交換器開閉弁22)又は熱交換器開閉弁23(熱交換器開閉弁24)のいずれか一方を室外コントローラ202により閉止する。これにより、室外熱交換部16,17のいずれか一方に冷媒を流入させず、熱交換できないようにし、室外熱交換器13全体としての熱交換容量を減らすことができる。
 また、ファン101は、室外コントローラ202からの指示に基づいて回転数を変化させて風量を調整することができ、この風量変化によっても室外熱交換器13における熱交換容量を変化させることができる。例えば、ファン101の回転数を低下させると、風量が低下するため、室外熱交換器13全体としての熱交換容量を減らすことができる。
 さらに、熱交換器バイパス弁25を開放することで、室外熱交換器13を通過させずに、熱交換器バイパス弁25を介して冷媒を通過させることができるため、室外熱交換器13全体としての熱交換容量を減らすことができる。
 また、熱交換器開閉弁21(熱交換器開閉弁22)又は熱交換器開閉弁23(熱交換器開閉弁24)を閉止することと、ファン101の風量を変化させることと、熱交換器バイパス弁25を介して冷媒をバイパスさせることを適宜組み合わせて調整することにより、室外熱交換器13においては、熱交換容量を連続的に変化させることができる。
 室外熱交換器13の室外熱交換部16,17は、2つの場合を示したが、3つ以上であってもよい。また、室外熱交換部16,17の大きさの比率は同一でも異なってもよい。また、ファン101のみで、室外熱交換器13の熱交換容量を調整するようにしてもよい。
 図4に示す構成では、室外熱交換器13に、逆止弁26,27を設置することで、室外熱交換器13に流入する冷媒の流れを一方向にできる。そのため、熱交換器開閉弁22,24を、逆止弁28,29に置き換えることができ、室外コントローラ202による熱交換容量の制御が簡略化できる。
<運転モード>
 続いて、各運転モードにおける空気調和装置の動作について、冷媒の流れに基づいて説明する。ここで、冷媒回路等における圧力の高低については、基準となる圧力との関係により定まるものではなく、圧縮機11の圧縮、膨張弁32等の冷媒流量制御等によりできる相対的な圧力として高圧、低圧として表すものとする。また、温度の高低についても同様であるものとする。
 本実施の形態1に係る空気調和装置では、大きく4つの形態の運転が行われる。すなわち、室内ユニット2がすべて室内空間を加熱する暖房運転を行う全暖房運転、室内ユニット2がすべて室内空間を冷却する冷房運転を行う全冷房運転、室内ユニット2が冷房運転と暖房運転を混在して行い、暖房運転の容量が大きい暖房主体運転、冷房運転の容量が大きい冷房主体運転である。
(全暖房運転)
 図1において、全暖房運転を説明する。冷媒の流れは、図1の実線の矢印で示す。室外ユニット1において、圧縮機11に吸入された冷媒は、圧縮され、高圧のガス冷媒として吐出される。圧縮機11を出た冷媒は、四方弁12を流れ、さらに逆止弁15c、高圧管6を通って室外ユニット1を流出する。中継機3に流入した冷媒は、気液分離器51、高圧ガス管61、電磁弁56、ガス枝管41を通って各室内ユニット2に流入する。
 室内ユニット2に流入したガス冷媒は室内熱交換器31に流入して暖房する。室内熱交換器31を流出した液冷媒は、膨張弁32により中間圧まで減圧され、中間圧の液冷媒となる。中間圧の液冷媒は室内ユニット2を流出して、液枝管42、逆止弁59を通った後液管64で合流し、ここから内部熱交換器53を通ってバイパス配管65に入り、膨張弁55に流入して低温低圧の気液二相状態まで減圧される。減圧された冷媒は、バイパス配管65、内部熱交換器53、内部熱交換器52を経た後、低圧管7を通って室外ユニットへ戻る。
 室外ユニットに流入した冷媒は、逆止弁15dを通って、室外熱交換器13に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁12、アキュムレータ14を介して再度圧縮機11へ吸い込まれる。
 このとき、高圧管6は高圧で、室外熱交換器13は低圧であり、圧縮機11と逆止弁15bの間は高圧で、低圧管7は低圧であるため、逆止弁15a,15bには冷媒が流れない。また、電磁弁57は閉止している。
(全冷房運転)
 図1において、冷房運転を説明する。冷媒の流れは、図1の破線の矢印で示す。室外ユニットにおいて、圧縮機11に吸入された冷媒は、圧縮され、高圧のガス冷媒として吐出される。圧縮機11を出た冷媒は、四方弁12を経て、凝縮器として機能する室外熱交換器13に流れ凝縮し、高圧の液冷媒となって流出し、逆止弁15a、高圧管6を通って室外ユニットを流出する。中継機3に流入した冷媒は、気液分離器51、液管62、内部熱交換器52、膨張弁54、内部熱交換器53の順に通って、液管63において分流する。分流した冷媒は逆止弁58、液枝管42を通って各室内ユニット2に流入する。
 室内ユニット2に流入した冷媒は膨張弁32の開度を調整することで膨張し、低温低圧の気液二相冷媒が室内熱交換器31に流入して冷房する。流出したガス冷媒は、室内ユニット2を出てガス枝管41、電磁弁57を通って合流し、低圧管7を通過して、室外ユニットに戻る。室外ユニットに流入した冷媒は、逆止弁15b、四方弁12、アキュムレータ14を介して再度圧縮機11へ吸い込まれる。
 このとき、高圧管6は高圧で、圧縮機11と逆止弁15cの間は低圧であり、室外熱交換器13と逆止弁15dの間は高圧で、低圧管7は低圧であるので、逆止弁15c,15dには冷媒が流れない。また、電磁弁56は閉止している。
 また、このサイクルのときは、膨張弁54を通過した冷媒の一部がバイパス配管65へ流入し、膨張弁55で減圧されて、内部熱交換器53において、膨張弁54から液管63に向かう冷媒との間で熱交換が行われる。内部熱交換器53を通過した冷媒は、さらに、内部熱交換器52において、膨張弁54に流入する冷媒との間で熱交換が行われる。内部熱交換器52における熱交換により蒸発した冷媒は、室内ユニット2において冷房した冷媒と低圧管7で合流し、室外ユニットへ戻る。一方、内部熱交換器52および内部熱交換器53における熱交換により冷却され過冷却度を十分につけられた冷媒は、逆止弁58、液枝管42を経由して、室内ユニット2に流入する。
(暖房主体運転)
 図5は、本発明の実施の形態1に係る空気調和装置の暖房主体運転を示す冷媒回路図である。図5において、暖房主体運転を説明する。ここでは、一例として、室内ユニット2a,2b,2cが暖房運転、室内ユニット2dが冷房運転を行うとする。
 室外ユニットにおいて、圧縮機11に吸入された冷媒は、圧縮され、高圧のガス冷媒として吐出される。圧縮機11を出た冷媒は、四方弁12を流れ、さらに逆止弁15c、高圧管6を通って室外ユニットを流出する。中継機3に流入した冷媒は、気液分離器51、高圧ガス管61を通り、電磁弁56a,56b,56c、ガス枝管41a,41b,41cを通って、暖房運転する各室内ユニット2a,2b,2cに流入する。
 室内ユニット2a,2b,2cに流入したガス冷媒は室内熱交換器31a,31b,31cに流入して暖房する。室内熱交換器31a,31b,31cを流出した液冷媒は、膨張弁32a,32b,32cにより中間圧まで減圧され、中間圧の液冷媒となる。中間圧の液冷媒は室内ユニット2a,2b,2cを流出して、液枝管42a,42b,42c、逆止弁59a,59b,59cを通った後、液管64で合流する。
 合流した中間圧の液冷媒は、内部熱交換器53を通り、一部が液管63、逆止弁58d、液枝管42dを通って室内ユニット2dに流入する。室内ユニット2dに流入した冷媒は膨張弁32dの開度を調整することで膨張し、低温低圧の気液二相冷媒が室内熱交換器31dに流入して冷房する。流出したガス冷媒は、室内ユニット2dを出てガス枝管41d、電磁弁57dを通って、低圧管7に至る。一方で、内部熱交換器53を通った中間圧の液冷媒の他の一部は、バイパス配管65に流入し、高圧管6の高圧と液管63,64の圧力である中間圧との差を一定にするように制御される膨張弁55を通って、内部熱交換器53、内部熱交換器52を通過して低圧管7に至り、室内ユニット2dを冷房した冷媒と合流して、低温低圧の気液二相冷媒として室外ユニットへ戻る。
 室外ユニットに流入した冷媒は、逆止弁15dを通って、室外熱交換器13に流入して空気と熱交換することで蒸発し、ガス冷媒もしくは気液二相冷媒で流出する。蒸発した冷媒は、四方弁12、アキュムレータ14を介して再度圧縮機11へ吸い込まれる。
 このとき、高圧管6は高圧で、室外熱交換器13は低圧であり、圧縮機11と逆止弁15bの間は高圧で、低圧管7は低圧であるため、逆止弁15a,15bには冷媒が流れない。また、電磁弁56d,57a,57b,57cは閉止している。また、このサイクルのとき、バイパス配管65へ入った冷媒は、膨張弁55で減圧された後、内部熱交換器53において液管64から流入する冷媒との間で熱交換が行われるため、逆止弁58d、液枝管42dを経由して、室内ユニット2dに流入する冷媒は、冷却され過冷却度を十分につけられる。
(冷房主体運転)
 図6は、本発明の実施の形態1に係る空気調和装置の冷房主体運転を示す冷媒回路図である。図6において、冷房主体運転を説明する。ここでは、一例として、室内ユニット2a,2b,2cが冷房運転、室内ユニット2dが暖房運転を行うとする。
 室外ユニットにおいて、圧縮機11に吸入された冷媒は、圧縮され、高圧のガス冷媒として吐出される。圧縮機11を出た冷媒は、四方弁12を経て、凝縮器として機能する室外熱交換器13に流れ任意量凝縮し、高圧の気液二相冷媒となって流出し、逆止弁15a、高圧管6を通って室外ユニットを流出する。中継機3に流入した冷媒は、気液分離器51に流入して、ガス冷媒と液冷媒に分離される。分離されたガス冷媒は、高圧ガス管61を通り、電磁弁56d、ガス枝管41dを通って、暖房運転する室内ユニット2dに流入する。
 室内ユニット2dに流入したガス冷媒は室内熱交換器31dに流入して暖房する。室内熱交換器31dを流出した液冷媒は、膨張弁32dにより中間圧まで減圧され、中間圧の液冷媒となる。中間圧の液冷媒は室内ユニット2dを流出して、液枝管42d、逆止弁59dを通った後、液管64に至る。
 一方で、気液分離器51にて分離された液冷媒は、液管62から流出し、内部熱交換器52、高圧管6の高圧と液管63,64の圧力である中間圧との差を一定にするように制御される膨張弁54を通って、室内ユニット2dを暖房して液管64を通る液冷媒と合流する。合流した液冷媒は、内部熱交換器53を通って、一部は液管63に流入して、逆止弁58a,58b,58c、液枝管42a,42b,42cを通って室内ユニット2a,2b,2cに流入する。
 室内ユニット2a,2b,2cに流入した冷媒は膨張弁32a,32b,32cの開度を調整することで膨張し、低温低圧の気液二相冷媒が室内熱交換器31a,31b,31cに流入して冷房する。流出したガス冷媒は、室内ユニット2a,2b,2cを出てガス枝管41a,41b,41c、電磁弁57a,57b,57cを通って合流し、低圧管7を通過して、室外ユニットに戻る。室外ユニットに流入した冷媒は、逆止弁15b、四方弁12、アキュムレータ14を介して再度圧縮機11へ吸い込まれる。
 このとき、高圧管6は高圧で、圧縮機11と逆止弁15cの間は低圧であり、室外熱交換器13と逆止弁15dの間は高圧で、低圧管7は低圧であるので、逆止弁15c,15dには冷媒が流れない。また、電磁弁56a,56b,56c,57dは閉止している。
 また、このサイクルのときは、液管63の冷媒の一部がバイパス配管65へ流入し、膨張弁55で減圧されて、内部熱交換器53において、膨張弁54から液管63に向かう冷媒との間で熱交換が行われる。内部熱交換器53を通過した冷媒は、さらに、内部熱交換器52において、膨張弁54に流入する冷媒との間で熱交換が行われる。内部熱交換器52における熱交換により蒸発した冷媒は、室内ユニット2a,2b,2cにおいて冷房した冷媒と低圧管7で合流し、室外ユニットへ戻る。一方、内部熱交換器52および内部熱交換器53における熱交換により冷却され過冷却度を十分につけられた冷媒は、逆止弁58a,58b,58c、液枝管42a,42b,42cを経由して、室内ユニット2a,2b,2cに流入する。
<本実施の形態1に係る空気調和装置のアクチュエータ制御>
 続いて、上記のように運転される本実施の形態1に係る空気調和装置に設けられた各種アクチュエータの制御方法について説明する。
(圧縮機11の容量制御)
 圧縮機11の容量制御について説明する。圧縮機11は、室外コントローラ202からの指令により回転数が制御される。具体的には、全暖房運転時、暖房主体運転時は、圧力センサ71が検知する吐出圧力を目標値にして圧縮機11の回転数が制御され、本実施の形態1に係る空気調和装置の冷凍サイクル全体の冷媒流量が調整される。換言すると、全暖房運転時、暖房主体運転時、室外コントローラ202は、冷媒の凝縮飽和温度(以下、単に凝縮温度ともいう)が所定の凝縮飽和温度目標値となるように、圧縮機11の回転数を制御する。このとき、吐出圧力は、冷媒の飽和温度に換算しておよそ50度(℃)程度とするのが望ましい。
 また、全冷房運転時、冷房主体運転時は、圧力センサ72が検知する吸入圧力を目標値にして圧縮機11の回転数が制御され、本実施の形態1に係る空気調和装置の冷凍サイクル全体の冷媒流量が調整される。換言すると、全冷房運転時、冷房主体運転時、室外コントローラ202は、冷媒の蒸発飽和温度(以下、単に蒸発温度ともいう)が所定の蒸発飽和温度目標値となるように圧縮機11の回転数を制御する。このとき、吸入圧力は、飽和温度に換算しておよそ0度(℃)程度とするのが望ましい。
(室外熱交換器13の熱交換容量制御)
 室外熱交換器13の熱交換容量制御について説明する。前述のように室外熱交換器13は、室外コントローラ202からの指令により熱交換容量が制御される。暖房主体運転時は、全暖房運転時に室外熱交換器13において行っていた冷媒の蒸発の一部を、冷房運転する室内ユニット2において行うことで、冷暖同時運転を実現している。このとき、圧力センサ72が検知する吸入圧力を目標値にして熱交換容量を制御することで、冷房する室内ユニット2の冷房負荷と室外熱交換器13の吸熱量とのバランスを調整することができる。例えば、吸入圧力は飽和温度に換算しておよそ0度(℃)程度とするのが望ましい。
 一方で、冷房主体運転時は、全冷房運転時に室外熱交換器13において行っていた冷媒の凝縮の一部を、暖房運転する室内ユニット2において行うことで、冷暖同時運転を実現している。このとき、圧力センサ71が検知する吐出圧力を目標値にして熱交換容量を制御することで、暖房する室内ユニット2の暖房負荷と室外熱交換器13の放熱量とのバランスを調整することができる。例えば、吐出圧力は飽和温度に換算しておよそ50℃程度とするのが望ましい。
(圧縮機11の容量制御に対する冷凍サイクルの作用)
 圧縮機11の容量制御に対する冷凍サイクルの作用について説明する。全暖房運転、暖房主体運転時は、暖房負荷(室内ユニット2の吸込み空気温度)が一定とすれば、圧縮機11の回転数を高くすると、暖房運転する室内ユニット2において凝縮する冷媒流量が増加する。そのため、冷媒と空気の温度差を大きくするために凝縮温度が高くなる。言い換えると、凝縮温度を目標値に圧縮機11の回転数を制御する場合、凝縮温度目標値を高くすると、圧縮機11の回転数が高くなる。
 全冷房運転、冷房主体運転時は、冷房負荷(室内ユニット2の吸込み空気温度)が一定とすれば、圧縮機11の回転数を高くすると、冷房運転する室内ユニット2において蒸発する冷媒流量が増加する。そのため、空気と冷媒の温度差を大きくするために蒸発温度が低くなる。言い換えると、蒸発温度を目標値に圧縮機11の回転数を制御する場合、蒸発温度目標値を低くすると、圧縮機11の回転数が高くなる。
(室外熱交換器13の熱交換容量制御に対する冷凍サイクルの作用)
 室外熱交換器13の熱交換容量制御に対する冷凍サイクルの作用について説明する。暖房主体運転時は、室内ユニット2の冷房負荷(室内吸込温度)が一定とすれば、室外熱交換器13の熱交換容量を小さくすると、室外熱交換器13と冷房運転する室内ユニット2の室内熱交換器31を合わせた冷凍サイクル全体の蒸発器の熱交換容量が減少する。このとき、蒸発器で蒸発する冷媒の熱交換量が変わらないとすれば、空気と冷媒の温度差を大きくするために蒸発温度が低くなる。
 言い換えると、蒸発温度を目標値に室外熱交換器13の熱交換容量を制御する場合、蒸発温度目標値を低くすると、熱交換容量が小さくなる。冷房運転する室内ユニット2の室内熱交換器31の熱交換容量(伝熱面積)は変化していないため、蒸発温度が低くなると室内ユニット2の冷房能力が増加する。一方で、熱交換容量が小さくなった室外熱交換器13においては、熱交換量が減少する。
 冷房主体運転時は、室内ユニット2の暖房負荷(室内吸込温度)が一定とすれば、室外熱交換器13の熱交換容量を小さくすると、室外熱交換器13と暖房運転する室内ユニット2の室内熱交換器31を合わせた冷凍サイクル全体の凝縮器の熱交換容量が減少する。このとき、凝縮器で凝縮する冷媒の熱交換量が変わらないとすれば、空気と冷媒の温度差を大きくするために凝縮温度が高くなる。
 言い換えると、凝縮温度を目標値に室外熱交換器13の熱交換容量を制御する場合、凝縮温度目標値を高くすると、熱交換容量が小さくなる。暖房運転する室内ユニット2の室内熱交換器31の熱交換容量(伝熱面積)は変化していないため、凝縮温度が高くなると室内ユニット2の暖房能力が増加する。一方で、熱交換容量が小さくなった室外熱交換器13においては、熱交換量が減少する。
(膨張弁32の流量制御)
 室内ユニット2の冷媒流量制御について説明する。膨張弁32は、室内コントローラ203からの指令により開度が制御される。具体的には、暖房運転時は、室内熱交換器31の過冷却度を目標値にして膨張弁32の開度が制御され、各室内ユニット2に流入する冷媒流量が調整される。過冷却度の算出方法は次の通りである。室外ユニットの圧力センサ71が検知する吐出圧力を、室外コントローラ202において飽和温度である凝縮温度に換算して、各室内ユニットの室内コントローラ203に送信する。室内コントローラ203は、凝縮温度と、温度センサ75が検知する冷媒の液側温度の差から、過冷却度を算出する。このとき、過冷却度は、およそ8度(℃)程度とするのが望ましい。
 冷房運転時は、室内熱交換器31の過熱度を目標値にして膨張弁32の開度が制御され、各室内ユニット2に流入する冷媒流量が調整される。過冷却度は、室内コントローラ203において、温度センサ74が検知する冷媒のガス側温度と、温度センサ75が検知する冷媒の液側温度の差から算出する。このとき、過熱度は、およそ3度(℃)程度とするのが望ましい。
<室内負荷と冷媒のアクチュエータ制御の関係>
 まず、凝縮温度(吐出圧力)と蒸発温度(吸入圧力)の制御について述べる。暖房運転時は、冷媒の凝縮温度をある範囲で制御しており、これによって多室形の空気調和装置のように室内ユニット2の暖房負荷がそれぞれ異なる場合でも、所定の暖房能力を発揮することができる。冷房運転時は、冷媒の蒸発温度をある範囲で制御しており、これによって多室形の空気調和装置のように室内ユニット2の冷房負荷がそれぞれ異なる場合でも、所定の冷房能力を発揮することができる。
 次に、過冷却度と過熱度の制御について述べる。例えば、ある凝縮温度と過冷却度で室内ユニット2が暖房運転を行っているとする。このとき、室内ユニット2の吸込空気温度が低下、すなわち負荷が増加すると、膨張弁32の開度を変化させずに室内熱交換器31の冷媒流量が一定であれば、室内熱交換器31の熱交換量が増加して冷媒がより多く凝縮するため、過冷却度が大きくなる。このとき、膨張弁32の開度を大きくすると、室内熱交換器31において凝縮する冷媒流量が増加するため、過冷却度が小さくなり目標値に近づく。また、室内熱交換器31の熱交換量がより大きくなるため、室内ユニット2の暖房能力をより大きくすることができる。
 一方で、室内ユニット2の吸込空気温度が上昇、すなわち負荷が減少すると、室内熱交換器31の熱交換量が減少して冷媒がより少なく凝縮するため、過冷却度が小さくなる。このとき、膨張弁32の開度を小さくすると、室内熱交換器31において凝縮する冷媒流量が減少するため、過冷却度が大きくなり目標値に近づく。また、室内熱交換器31の熱交換量がより小さくなるため、室内ユニット2の暖房能力をより小さくすることができる。言い換えると、過冷却度を目標値に膨張弁32の開度を制御する場合、過冷却度目標値を大きくすると、膨張弁32の開度が小さくなる。
 以上のように、凝縮温度と過冷却度を制御することで、室内負荷に対して所定の暖房能力を発揮することができる。
 冷房運転においては、室内ユニット2の吸込空気温度が高く、すなわち負荷が増加すると過熱度が大きくなり、室内ユニット2の吸込空気温度が低く、すなわち負荷が減少すると過熱度が小さくなる。よって、蒸発温度と過熱度を制御することで、室内負荷に対して所定の冷房能力を発揮することができる。言い換えると、過熱度を目標値に膨張弁32の開度を制御する場合、過熱度目標値を大きくすると、膨張弁32の開度が小さくなる。
<一部の室内ユニットの暖房能力増大制御方法>
 本実施の形態1に係る空気調和装置において、冷房主体運転時に、ある一部の室内ユニット2から暖房能力増大要求があるときに、室外熱交換器13の熱交換容量を通常より小さくして、要求のあった室内ユニット2の暖房能力を設計容量よりも大きくするとともに、他の室内ユニット2においては冷媒流量を抑制して、暖房能力が過大となるのを抑制する制御について説明する。ここでは、室内ユニット2bから暖房能力増大要求があった場合について述べる。
 図7は、本発明の実施の形態1に係る空気調和装置の暖房能力増大制御を示すフローチャートである。図7に基づいて、凝縮温度目標値Tcmと過冷却度目標値SCmの値を変更して室内ユニット2bの暖房能力を増大させる場合を一例として説明する。このとき、室内ユニット2a,2bが暖房運転を行い、室内ユニット2c,2dが冷房運転を行っているとする。ここで、室内熱交換器31bが本発明の「第1の利用側熱交換器」に相当する。また、室内熱交換器31aが本発明の「第2の利用側熱交換器」に相当する。
 室内コントローラ203bは、室内ユニット2bの操作部204bから、暖房能力増大要求を受けると、暖房能力優先を室外コントローラ202に送信する。室外コントローラ202は、暖房能力優先を受信すると、図7のフローを開始して、空気調和装置の運転モードを能力優先モードに設定する(ステップS101)。ステップS102において、室外コントローラ202は、凝縮温度目標値TcmをΔTcmだけ高くする。このとき、室外熱交換器13は、凝縮温度Tcを基に熱交換容量AKが制御されている。このため、熱交換容量AKが熱交換容量最小値AKminより大きければ、凝縮温度目標値Tcmが高くなると熱交換容量AKが小さくなる。
 ステップS103において、室外コントローラ202は、能力優先以外の室内ユニット2(ここでは室内ユニット2aとする)に、能力抑制モードを送信する。能力抑制モードを受信した室内ユニット2aの室内コントローラ203aは、ステップS104において、室内熱交換器31aの過冷却度目標値SCmをΔSCmだけ大きくする。このとき、膨張弁32aは、過冷却度SCの演算値を基に開度Lが制御されているので、過冷却度目標値SCmが大きくなると開度Lが小さくなる。
 室外コントローラ202は、室外熱交換器13の熱交換容量AKと膨張弁開度の変化により、冷凍サイクルの運転状態が変化するため、ステップS105において一定時間経過させる。この一定時間は、およそ3分から5分程度が望ましい。ステップS106において、室外コントローラ202は、室外熱交換器13の熱交換容量AKが熱交換容量最小値AKminより大きいかを判断する。熱交換容量AKが熱交換容量最小値AKminより大きければ(Yes)、ステップS107において、室外コントローラ202は、能力優先室内ユニット2bに、冷媒流量増加モードを送信する。なお、ステップS106において、熱交換容量AKが熱交換容量最小値AKminであれば(No)、フローは終了する。
 冷媒流量増加モードを受信した室内コントローラ203bは、ステップS108において、室内熱交換器31bの過冷却度目標値SCmをΔSCmだけ小さくする。このとき、膨張弁32bは、過冷却度SCの演算値を基に開度Lが制御されているので、過冷却度目標値SCmが小さくなると開度Lが大きくなる。この時点で、凝縮温度目標値Tcmと過冷却度目標値SCmの値を変更するフローは終了するが、変更されたTcmとSCmは、室内ユニット2bの操作部204bから、暖房能力優先要求が取り消しされるまで維持される。
<暖房能力増大制御の効果>
 以上、本実施の形態1のように構成された空気調和装置においては、ステップS102において、凝縮温度目標値Tcmを高くするため、室外熱交換器13の熱交換容量AKは、冷凍サイクルの所定の暖房能力を発揮するための熱交換容量AKより小さくなる。すなわち、室内熱交換器31bの放熱量が増加するため、暖房能力を所定の能力よりも大きくすることができる。
 また、ステップS104において、能力優先以外の室内熱交換器31aでは、過冷却度目標値SCmを大きくするため、膨張弁32aの開度Lは小さくなる。すなわち、室内熱交換器31aを流れる冷媒流量が小さくなるため、能力優先以外の室内ユニット2aにおいて、室外熱交換器13の熱交換容量AKが小さくなることによる暖房能力の増大を抑制できる。
 冷房主体運転のとき、圧縮機11の運転容量を大きくすると、冷凍サイクル全体の冷媒流量が増加するため、凝縮温度目標値Tcmを高くすることができるが、その場合、冷房運転する2c,2dの冷房能力も同時に増加してしまう。そのため、凝縮温度目標値Tcmを高くするためには、室外熱交換器13の熱交換容量AKを小さくする方がより効果的である。
 また、凝縮温度目標値Tcmを高くして、室内熱交換器31aの過冷却度目標値SCmを変化させずに室外熱交換器13の熱交換容量AKのみ小さくする場合、暖房運転を行っている室内熱交換器31すべての暖房能力が増大して、能力優先室内ユニット2bの能力増大効果が小さくなってしまう。そのため、能力優先以外の室内熱交換器31aにおいて、過冷却度目標値SCmを大きくすることで、能力優先室内ユニット2bの能力増大効果をより大きくすることができる。
 また、ステップS108において、能力優先室内熱交換器31bでは、過冷却度目標値SCmを小さくするため、膨張弁32bの開度Lは大きくなる。すなわち、室内熱交換器31bを流れる冷媒流量が大きくなるため、室内ユニット2bの暖房能力をより大きくすることができる。このとき、凝縮温度目標値Tcmを高くせずに膨張弁32bの開度Lのみ大きくして能力優先室内熱交換器31bの暖房能力を増大させる場合、膨張弁32bの開度Lをより大きくする必要がある。そうすると、室内熱交換器31bの過冷却度が極端に小さくなるため、膨張弁32bが過冷却度を目標値に開度Lを制御することが困難になる。
 さらに、過冷却度が小さく、例えば室内熱交換器31bの冷媒出口が気液二相状態となると、膨張弁32bに流入する冷媒の密度が変動して、冷媒流量制御が不安定になる可能性がある。よって、凝縮温度目標値Tcmを高くすることで、能力優先室内機熱交換器31bの暖房能力をより効果的に増大できる。
 また、ステップS102において、室外熱交換器13の熱交換容量AKが熱交換容量最小値AKminであった場合、熱交換容量AKを小さくすることができないが、この場合でも、ステップS104において能力優先以外の室内熱交換器31aを流れる冷媒流量を小さくして、ステップS108において能力優先の室内熱交換器31bを流れる冷媒流量を大きくすることで、能力優先の室内ユニット2bの暖房能力を増大することができる。
 また、ステップS106において、室外熱交換器13の熱交換容量AKが熱交換容量最小値AKminであった場合、能力優先の室内熱交換器31bの過冷却度目標値SCmを変更しない。これは、熱交換容量AKが熱交換容量最小値AKminの状態で、膨張弁32bの開度Lを大きくして、室内熱交換器31bの冷媒流量を大きくすると、凝縮温度Tcを凝縮温度目標値Tcmに維持できず低下するのを防止するためである。
 また、本実施の形態1においては、空気調和装置が冷房主体運転を実施している場合であっても、暖房する室内ユニット2の暖房能力を増大することができる。例えば、室外ユニットの運転モードを冷房主体運転から暖房主体運転に変更する場合、四方弁12を切り替えて、室外熱交換器13を凝縮器から蒸発器へ切り替える必要がある。その場合、空気調和装置が定常状態に安定するまで時間がかかる。よって、一時的に暖房能力が多く必要となるような場合でも、室外ユニットの運転モードを冷房主体運転から暖房主体運転に変更する必要がなく、冷凍サイクルを安定して運転することができる。
 本実施の形態1においては、冷房主体運転時の室内ユニット2の暖房能力増大制御について述べたが、暖房主体運転時に冷房能力を増大させる制御を実施してもよい。この場合、蒸発温度目標値TemをΔTemだけ低くして、室外熱交換器13の熱交換容量AKを冷凍サイクルの所定の冷房能力を発揮するための熱交換容量AKより小さくすればよい。また、能力優先の室内ユニット2に対しては、室内熱交換器31の過熱度目標値SHmを、ΔSHmだけ小さくすることで冷媒流量を大きくして、能力優先以外の室内熱交換器31の過熱度目標値SHmをΔSHmだけ大きくすることで冷媒流量を小さくできる。
実施の形態2.
 以上の実施の形態1では、室内ユニット2に直接冷媒を循環させて、冷暖房を行う空気調和装置を示した。次に、熱媒体間熱交換器において冷媒と水などの熱媒体を熱交換させて、室内ユニット2に熱媒体を循環させるユニットを接続する空気調和装置の実施の形態を示す。つまり、本実施の形態2では、熱媒体を用いて室内の空調を行う間接式の室内ユニット(間接式室内熱交換器)を備えた空気調和装置の実施の形態を示す。なお、本実施の形態2においては、実施の形態1と同様の構成については同一の符号を付し、特に言及しない点については実施の形態1と同様とする。
 本実施の形態2に係る空気調和装置は、実施の形態1に係る空気調和装置と同様に、冷暖同時運転時において、室外熱交換器13の熱交換容量を小さくして、室外熱交換器13と同じ運転モードの室内熱交換器31の一部の能力を増大させ、同じモードのその他の室内熱交換器31に対しては膨張弁32を調整して冷媒流量を減少させて、能力が過剰になるのを抑制するようにしたものである。
 図8は、本発明の実施の形態2に係る空気調和装置の冷媒回路図である。本実施の形態2に係る空気調和装置は、実施の形態1で示した空気調和装置の構成に、熱媒体中継機8及び室内ユニット2e,2f,2g,2hを追加したものである。この熱媒体中継機8には、熱媒体間熱交換器81,82、四方弁83,84、膨張弁85,86,87、内部熱交換器88、熱媒体送出手段であるポンプ91,92、熱媒体流路切替手段である三方弁93,94、熱媒体流量調整手段である流量調整弁95、熱媒体中継機コントローラ207を収容する。また、室内ユニット2e,2f,2g,2hには、室内熱交換器31e,31f,31g,31hを収容する。なお、熱媒体中継機8、室内ユニット2の台数は任意である。
 熱媒体中継機8は、高圧ガス管66と高圧ガス管61とを接続し、液管67と液管64とを接続し、低圧管68と低圧管7とを接続して、中継機3と配管接続している。熱媒体中継機8と室内ユニット2のそれぞれ(室内熱交換器31のそれぞれ)は水や不凍液等の安全な熱媒体が流れる熱媒体配管111,112で接続されている。つまり、熱媒体中継機8と室内ユニット2のそれぞれ(室内熱交換器31のそれぞれ)は、1つの熱媒体経路で接続されている。
 室内ユニット2a,2b,2c,2dは、中継機3と冷媒配管であるガス枝管41と液枝管42とで配管接続されているので、室内熱交換器31a,31b,31c,31dは冷媒が直接循環して冷暖房を行う。すなわち、室内ユニット2a,2b,2c,2dは、直膨式室内機である。一方、室内ユニット2e,2f,2g,2hは、熱媒体中継機8と熱媒体配管111,112で配管接続されているので、室内熱交換器31e,31f,31g,31hは熱媒体が循環して冷暖房を行う。すなわち、室内ユニット2e,2f,2g,2hは、間接式室内機である。
 図9は、本発明の実施の形態2に係る空気調和装置の制御回路図である。熱媒体中継機8は熱媒体中継機コントローラ207を備え、弁駆動回路209、ポンプ駆動回路210が接続される。この熱媒体中継機コントローラ207は、マイクロコンピュータおよびその周辺回路からなり、各種制御指令をシリアル信号にて前記室外コントローラ202から供給されるようになっている。
 また、中継機コントローラ206は中継機3に配管接続されている室内ユニット2a,2b,2c,2dの室内コントローラ203a,203b,203c,203dと通信して、中継機コントローラ206は室内ユニット2a,2b,2c,2dの運転情報を統合して室外コントローラ202と通信する。さらに、熱媒体中継機コントローラ207は熱媒体中継機8に配管接続されている室内ユニット2e,2f,2g,2hの室内コントローラ203e,203f,203g,203hと通信して、熱媒体中継機コントローラ207は室内ユニット2e,2f,2g,2hの運転情報を統合して室外コントローラ202と通信する。なお、図9では、室内ユニット2e及びその室内コントローラ203eのみ記載している。
 熱媒体間熱交換器81,82は、冷媒を通過させる伝熱部と熱媒体を通過させる伝熱部とを有し、冷媒と熱媒体とによる媒体間の熱交換を行わせる。熱媒体間熱交換器81,82は間接式室内ユニットである室内ユニット2の運転モードによって、凝縮器として冷媒に放熱させて熱媒体を加熱する場合と、蒸発器として冷媒に吸熱させて熱媒体を冷却する場合がある。
 ポンプ91,92は、熱媒体を循環させるために加圧する。ここで、ポンプ91,92については、内蔵するモータ(図示せず)の回転数を一定の範囲内で変化させることで、熱媒体を送り出す流量(吐出流量)を変化させることができる。
 三方弁93は、熱媒体配管115または熱媒体配管116を切り替えて、熱媒体配管111と接続する。三方弁94は、熱媒体配管113または熱媒体配管114を切り替えて、熱媒体配管112と接続する。流量調整弁95は、それぞれ、室内ユニット2に流入する熱媒体の流量を調整する。
 室外ユニットと中継機3は冷媒配管である高圧管6と低圧管7で接続されている。また、中継機3と室内ユニット2は冷媒配管であるガス枝管41と液枝管42で接続されている。
 また、本実施の形態2に係る空気調和装置には、各種の圧力センサや温度センサが設けられている。
 圧力センサ138は、熱媒体間熱交換器81,82が凝縮器として機能する場合に、凝縮圧力を検知する。ただし、圧力センサ138は熱媒体間熱交換器81,82の凝縮圧力が検知できる位置であればよい。温度センサ131は四方弁83と熱媒体間熱交換器81との間に設置され、温度センサ132は熱媒体間熱交換器81と膨張弁85との間に設置され、温度センサ133は四方弁84と熱媒体間熱交換器82との間に設置され、温度センサ134は熱媒体間熱交換器82と膨張弁86との間に設置され、それぞれ冷媒の温度を検知する。
 温度センサ135は熱媒体配管115に設置され、熱媒体間熱交換器81から流出する熱媒体の温度を検知する。温度センサ136は熱媒体配管116に設置され、熱媒体間熱交換器82から流出する熱媒体の温度を検知する。温度センサ137は熱媒体配管112に設置され、間接式室内ユニットとなる各室内ユニット2から流出する熱媒体の温度を検知する。
<運転モード>
 続いて、各運転モードにおける空気調和装置の動作について、冷媒及び熱媒体の流れに基づいて説明する。ただし、中継機3と直膨式の室内ユニット2の動作は、実施の形態1と同じであるため、熱媒体中継機8と、間接式の室内ユニット2のみの動作について説明する。熱媒体中継機8と間接式の室内ユニット2の運転モードとして、室内ユニット2がすべて暖房運転である温水モード、すべて冷房運転である冷水モード、冷暖房運転が混在する冷温水混在モードを説明する。
(温水モード)
 室内ユニット2e,2f,2g,2hの運転モードがすべて暖房運転である温水モードについて、図8を用いて説明する。冷媒の流れは、図の実線の矢印、熱媒体の流れは、図の一点鎖線の矢印で示す。このとき、四方弁83は高圧ガス管66と熱媒体間熱交換器81を配管接続するようにする。四方弁84は高圧ガス管66と熱媒体間熱交換器82を配管接続するようにする。三方弁93は、熱媒体配管115を流れる熱媒体と、熱媒体配管116を流れる熱媒体が、混合して熱媒体配管111に流れるように中間開度にする。三方弁94は、熱媒体配管112を流れる熱媒体が、熱媒体配管113と熱媒体配管114に分流するように中間開度にする。
 まず、冷凍サイクルにおける冷媒の流れについて説明する。高圧ガス管を通って熱媒体中継機8に流入したガス冷媒は、四方弁83,84を通って熱媒体間熱交換器81,82に流入する。熱媒体間熱交換器81,82は冷媒に対して凝縮器として機能するため、熱媒体間熱交換器81,82を通過する冷媒は、熱交換対象となる熱媒体を加熱して液化する(熱媒体に放熱する)。熱媒体間熱交換器81,82を流出した液冷媒は、膨張弁85,86により中間圧まで減圧されて中間圧の液冷媒となる。液冷媒は、液管67において合流して熱媒体中継機8を流出して、中継機3の液管64に戻る。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体間熱交換器81,82において熱媒体は冷媒との熱交換により加熱される。熱媒体間熱交換器81において加熱された熱媒体は熱媒体配管115に送り出され、熱媒体間熱交換器82において加熱された熱媒体は熱媒体配管116に送り出される。三方弁93は、中間開度となっているため、熱媒体配管115から流れる熱媒体と熱媒体配管116から流れる熱媒体をおよそ半分ずつの比率で混合して、熱媒体は熱媒体配管111に流れ、熱媒体中継機8を流出する。室内ユニット2に流入した熱媒体は、室内熱交換器31において、ファン(図示せず)によって搬送される空気と熱交換し、空気を加熱して熱媒体の温度が低下する(空気に放熱する)。これによって、室内ユニット2は暖房を行う。
 室内ユニット2を出た熱媒体は、熱媒体配管112を通って熱媒体中継機8に流入する。流入した熱媒体は、流量調整弁95を通って、三方弁94において熱媒体配管113と熱媒体配管114に分配される。熱媒体配管113に流れる熱媒体は、ポンプ91に加圧されて再び熱媒体間熱交換器81に戻る。熱媒体配管114に流れる熱媒体は、ポンプ92に加圧されて再び熱媒体間熱交換器82に戻る。
(冷水モード)
 室内ユニット2e,2f,2g,2hの運転モードがすべて冷房運転である冷水モードについて、図8を用いて説明する。冷媒の流れは、図の破線の矢印、熱媒体の流れは、図の一点鎖線の矢印で示す。このとき、四方弁83は低圧管68と熱媒体間熱交換器81を配管接続するようにする。四方弁84は低圧管68と熱媒体間熱交換器82を配管接続するようにする。三方弁93は、熱媒体配管115を流れる熱媒体と、熱媒体配管116を流れる熱媒体が、混合して熱媒体配管111に流れるように中間開度にする。三方弁94は、熱媒体配管112を流れる熱媒体が、熱媒体配管113と熱媒体配管114に分流するように中間開度にする。
 まず、冷凍サイクルにおける冷媒の流れについて説明する。液管67を通って熱媒体中継機8に流入した中間圧の冷媒は、内部熱交換器88を通って、膨張弁85,86により減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は熱媒体間熱交換器81,82に流入する。熱媒体間熱交換器81,82は冷媒に対して蒸発器として機能するため、熱媒体間熱交換器81,82を通過する冷媒は、熱交換対象となる熱媒体を冷却して(熱媒体から吸熱する)、ガス冷媒となり流出する。流出した冷媒は、四方弁83,84を通って低圧管68において合流し、熱媒体中継機8を流出する。流出した冷媒は、中継機3の低圧管7に流れる。
 また、このサイクルのときは、液管67を流れる冷媒の一部がバイパス配管69へ流入し、膨張弁87で減圧されて、内部熱交換器88において、液管67から膨張弁85,86へ流入する冷媒との間で熱交換が行われる。内部熱交換器88における熱交換により蒸発した冷媒は、熱媒体間熱交換器81,82において蒸発した冷媒と低圧管68で合流し、中継機3へ戻る。一方、内部熱交換器88における熱交換により冷却され過冷却度を十分につけられた冷媒は、膨張弁85,86を経由して、熱媒体間熱交換器81,82に流入する。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。熱媒体間熱交換器81,82において熱媒体は冷媒との熱交換により冷却される。熱媒体間熱交換器81において冷却された熱媒体は熱媒体配管115に送り出され、熱媒体間熱交換器82において冷却された熱媒体は熱媒体配管116に送り出される。三方弁93は、中間開度となっているため、熱媒体配管115から流れる熱媒体と熱媒体配管116から流れる熱媒体をおよそ半分ずつの比率で混合して、熱媒体は熱媒体配管111に流れ、熱媒体中継機8を流出する。室内ユニット2に流入した熱媒体は、室内熱交換器31において、ファン(図示せず)によって搬送される空気と熱交換し、空気を冷却して熱媒体の温度が上昇する(空気から吸熱する)。これによって、室内ユニット2は冷房を行う。
 室内ユニット2を出た熱媒体は、熱媒体配管112を通って熱媒体中継機8に流入する。流入した熱媒体は、流量調整弁95を通って、三方弁94において熱媒体配管113と熱媒体配管114に分配される。熱媒体配管113に流れる熱媒体は、ポンプ91に加圧されて再び熱媒体間熱交換器81に戻る。熱媒体配管114に流れる熱媒体は、ポンプ92に加圧されて再び熱媒体間熱交換器82に戻る。
 以上のように、熱媒体中継機8は、温水モードと冷水モードにおいて、熱媒体間熱交換器81,82の冷媒配管を並列に接続している。
(冷温水混在モード)
 室内ユニット2e,2f,2g,2hの運転モードが暖房運転と冷房運転が混在する冷温水混在モードについて、図10を用いて説明する。図10は、本実施の形態2に係る空気調和装置の冷温水混在モードを示す冷媒回路図である。なお、冷媒の流れは、実線矢印、熱媒体の流れは、破線矢印で示す。例えば、室内ユニット2e,2fが暖房運転を行い、室内ユニット2g,2hが冷房運転を行う場合について説明する。
 このとき、四方弁83は低圧管68と熱媒体間熱交換器81を配管接続するようにする。四方弁84は高圧ガス管66と熱媒体間熱交換器82を配管接続するようにする。三方弁93e,93fは、熱媒体配管116を流れる熱媒体が熱媒体配管111e,111fに流れるようにする。三方弁93g,93hは、熱媒体配管115を流れる熱媒体が熱媒体配管111g,111hに流れるようにする。三方弁94e,94fは、熱媒体配管112e,112fを流れる熱媒体が熱媒体配管114を流れるようにする。三方弁94g,94hは、熱媒体配管112g,112hを流れる熱媒体が熱媒体配管113を流れるようにする。
 まず、冷凍サイクルにおける冷媒の流れについて説明する。高圧ガス管66を通って熱媒体中継機8に流入したガス冷媒は、四方弁84を通って熱媒体間熱交換器82に流入する。熱媒体間熱交換器82において凝縮して流出した液冷媒は、膨張弁86により中間圧まで減圧され、そのすべてまたは一部は、膨張弁85により減圧され、低温低圧の気液二相冷媒となる。低温低圧の冷媒は熱媒体間熱交換器81に流入する。熱媒体間熱交換器81において蒸発して流出した冷媒は、四方弁83、低圧管68を通って、熱媒体中継機8を流出する。流出した冷媒は、中継機3の低圧管7に流れる。
 ここで、液管67の中間圧の液冷媒の流れは、熱媒体中継機8において暖房負荷が冷房負荷に対して大きい場合と、暖房負荷が冷房負荷に対して小さい場合により変化する。まず、暖房負荷が冷房負荷に対して大きい場合、熱媒体間熱交換器82において凝縮に係る冷媒流量に対して、熱媒体間熱交換器81において蒸発に係る冷媒流量が少なくなる。よって、膨張弁86で減圧された中間圧の液冷媒の一部は、液管67を通って中継機3に戻る。一方で、暖房負荷が冷房負荷に対して小さい場合、熱媒体間熱交換器82において凝縮に係る冷媒流量に対して、熱媒体間熱交換器81において蒸発に係る冷媒流量が多くなる。よって、膨張弁86で減圧された中間圧の液冷媒に加えて、液管67から熱媒体中継機8に流入する液冷媒が膨張弁85に流入することになる。
 次に、熱媒体循環回路における熱媒体の流れについて説明する。暖房運転に係る熱媒体は、熱媒体間熱交換器82において熱媒体は冷媒との熱交換により加熱される。熱媒体間熱交換器82において加熱された熱媒体は熱媒体配管116に送り出される。熱媒体配管116を流れる熱媒体は、三方弁93e,93fを通過して熱媒体配管111e,111fを流れ、熱媒体中継機8を流出する。室内ユニット2e,2fに流入した熱媒体は、室内熱交換器31e,31fにおいて、暖房する。
 室内ユニット2e,2fを出た熱媒体は、熱媒体配管112e,112fを通って熱媒体中継機8に流入する。流入した熱媒体は、流量調整弁95e,95f、三方弁94e,94fを通り、熱媒体配管114に流入する。熱媒体配管114に流れる熱媒体は、ポンプ92に加圧されて再び熱媒体間熱交換器82に戻る。
 冷房運転に係る熱媒体は、熱媒体間熱交換器81において熱媒体は冷媒との熱交換により冷却される。熱媒体間熱交換器81において冷却された熱媒体は熱媒体配管115に送り出される。熱媒体配管115を流れる熱媒体は、三方弁93g,93hを通過して熱媒体配管111g,111hを流れ、熱媒体中継機8を流出する。室内ユニット2g,2hに流入した熱媒体は、室内熱交換器31g,31hにおいて、冷房する。
 室内ユニット2g,2hを出た熱媒体は、熱媒体配管112g,112hを通って熱媒体中継機8に流入する。流入した熱媒体は、流量調整弁95g,95h、三方弁94g,94hを通り、熱媒体配管113に流入する。熱媒体配管113に流れる熱媒体は、ポンプ91に加圧されて再び熱媒体間熱交換器81に戻る。
 以上より、熱媒体中継機8と間接式の室内ユニット2の運転モードについて説明したが、空気調和装置全体の運転モードは、実施の形態1において示したように、室内ユニット2a,2b,2c,2d,2e,2f,2g,2h全体の、暖房と冷房の負荷のバランスにより、全暖房運転、全冷房運転、暖房主体運転、冷房主体運転が設定される。
<冷凍サイクル(冷媒経路)のアクチュエータ制御>
 膨張弁85,86は、熱媒体中継機コントローラ207からの指令により開度が制御される。具体的には、暖房運転時は熱媒体間熱交換器81,82の過冷却度を目標値にして開度を制御し、熱媒体間熱交換器81,82に流入する冷媒流量を調整する。過冷却度の算出方法は次の通りである。圧力センサ138が検知する凝縮圧力を、熱媒体中継機コントローラ207において飽和温度である凝縮温度に換算する。熱媒体中継機コントローラ207は、凝縮温度と、温度センサ132,134が検知する冷媒の液側温度の差から、過冷却度を算出する。
 冷房運転時は熱媒体間熱交換器81,82の過熱度を目標値にして開度を制御し、熱媒体間熱交換器81,82に流入する冷媒流量を調整する。過熱度は、熱媒体中継機コントローラ207において、温度センサ131,133が検知する冷媒のガス側温度と、温度センサ132,134が検知する冷媒の液側温度の差から算出する。
<熱媒体経路のアクチュエータ制御>
 流量調整弁95は、熱媒体中継機コントローラ207からの指令により開度が制御される。具体的には、室内熱交換器31の熱媒体出入口温度差を目標値にして開度が制御され、室内熱交換器31に流入する熱媒体流量を調整する。室内熱交換器31の入口温度は、温水モードと冷水モードでは、温度センサ135と温度センサ136の検知する熱媒体温度の平均値とする。
 冷温水混在モードの際は、暖房運転する室内ユニット2と配管接続する流量調整弁95に対しては、温度センサ136の検知する熱媒体温度を用いて、冷房運転する室内ユニット2と配管接続する流量調整弁95に対しては、温度センサ135の検知する熱媒体温度を用いる。室内熱交換器31の出口温度は、温度センサ137の検知する熱媒体温度を用いて、入口温度と出口温度の差から、熱媒体出入口温度差を算出する。熱媒体出入口温度差は、およそ5~7度(℃)程度とするのがよい。
 ポンプ91,92は、熱媒体中継機コントローラ207の指令により回転数が制御される。具体的には、冷温水混在モードのとき、ポンプ92は、暖房運転を行っている室内ユニット2と配管接続する流量調整弁95のうち、最も開度が大きい流量調整弁95の開度が最大になるように、回転数が調整される。例えば、室内ユニット2e,2fが暖房運転を行って、流量調整弁95eの開度が開度最大値100%に対して70%、流量調整弁95fの開度が50%であるとき、熱媒体中継機コントローラ207は熱媒体の全体の循環量が過剰と判断して流量調整弁95eの開度を安定開度、すなわちポンプ92の回転数制御を行わない範囲に近づくようにポンプ92の回転数を小さくする。このとき、流量調整弁95eの安定開度はおよそ90~95%程度とするのが望ましい。
 また、流量調整弁95eの開度が安定開度を超えて、例えば100%になった場合、熱媒体中継機コントローラ207は熱媒体の全体の循環量が不足と判断して流量調整弁95eの開度を安定開度に近づくようにポンプ92の回転数を大きくする。
 冷房運転を行っている室内ユニット2に対してもポンプ91は同様に制御が実施される。温水モード、冷水モードの場合、ポンプ91,92は同一回転数に設定し、同様の制御を実施する。
 このように、流量調整弁95の開度が最大となるようにポンプ91,92の回転数を制御することで、熱媒体の搬送動力を小さくすることができる。停止している室内ユニット2に対しては、流量調整弁95は熱媒体が流れないような開度とする。
<冷温水混在モードの熱媒体間熱交換器の能力増大制御方法>
 本実施の形態2に係る空気調和装置では、熱媒体間熱交換器81と82は、両方合わせて間接式室内ユニット2の合計の定格の暖房能力が発揮できるように、伝熱面積が設計されている。例えば、凝縮温度が50度(℃)程度のとき、室内熱交換器31の熱媒体入口温度が45度(℃)程度となり、このとき室内ユニット2では定格の暖房能力が発揮できる。
 冷温水混在モードになると、凝縮器として機能する熱媒体間熱交換器82の伝熱面積は、温水モードのときに熱媒体間熱交換器81,82が両方凝縮器となる場合に比べて、およそ半分となる。すなわち、冷温水混在モードになると、熱媒体間熱交換器の一部が蒸発器となるため、凝縮器として作用する熱媒体間熱交換器の伝熱面積が減少することになる。
 そのため、冷温水混在モードにおいて、暖房運転する室内ユニット2の台数が多い場合など、暖房負荷が大きいと、暖房負荷に対して熱媒体間熱交換器82の伝熱面積が小さい状態となる。例えば、間接式室内ユニット2が定格暖房容量の80%運転しているのに、熱媒体間熱交換器82の伝熱面積が50%しかないことになってしまう。こうなると、室内熱交換器31の熱媒体入口温度が低くなり、室内ユニット2の暖房能力が小さくなってしまう。
 また、暖房に係る熱媒体を送出するポンプ92の熱媒体送出流量は、ポンプ91,92が暖房に係る熱媒体を送出する場合と比べて、およそ半分となる。つまり、ポンプも定格に対して台数が減少してしまうことになってしまう。そのため、冷温水混在モードにおいて、暖房運転する室内ユニット2の台数が多い場合など、暖房負荷が大きいと、暖房負荷に対してポンプの送水量が小さい状態となる。
 その結果、室内熱交換器31の1台あたりの熱媒体流量が低下することになり、室内熱交換器31の伝熱性が低下して、暖房能力が小さくなってしまう。ところが、冷温水混在モードにおいて、暖房負荷が十分に大きい場合に備えて、熱媒体間熱交換器81,82、ポンプ91,92の大きさや台数を変更することは、機器の大型化をもたらすだけでなく、高価となり経済的でない。
 また、例えば間接式の室内ユニット2において暖房負荷が十分に大きい場合であっても、空気調和装置全体で見て直膨式の室内ユニット2の冷房負荷の方が大きければ、空気調和装置は冷房主体運転で運転される。このとき、間接式の室内ユニット2の暖房能力を増大させるために、空気調和装置を暖房主体運転にすることは困難である。
 そこで、本実施の形態2では、熱媒体中継機8と間接式の室内ユニット2が冷温水混在モードのとき、熱媒体間熱交換器81または熱媒体間熱交換器82に対して、能力増大制御を実施している。ここで、熱媒体間熱交換器81または熱媒体間熱交換器82が第1の利用側熱交換器に相当する。直膨式の室内熱交換器31a,31b,31c,31dが第2の利用側熱交換器に相当する。具体的な制御について、図11のフローチャートで説明する。
 図11は、本発明の実施の形態2に係る空気調和装置の能力増大制御を示すフローチャートである。
 熱媒体中継機8と間接式の室内ユニット2が冷温水混在モードのとき、熱媒体中継機8の操作部208より暖房能力増大要求が熱媒体中継機コントローラ207に送られると、熱媒体中継機コントローラ207は能力優先を室外コントローラ202に送信する。室外コントローラ202は、能力優先を受信すると、図11のフローを開始して、空気調和装置の運転モードを能力優先モードに設定する(ステップS301)。
 ステップS302において、室外コントローラ202は、凝縮温度目標値TcmをΔTcmだけ高くする。このとき、室外熱交換器13は凝縮温度Tcを基に熱交換容量AKが制御されている。このため、熱交換容量AKが熱交換容量最小値AKminより大きければ、凝縮温度目標値Tcmが高くなると熱交換容量AKが小さくなる。
 ステップS303において、室外コントローラ202は、暖房能力抑制モードを中継機コントローラ206に送信する。中継機コントローラ206は、直膨式の室内ユニット2a,2b,2c,2dのうち、暖房運転中の室内ユニット2に能力抑制モードを送信する。能力抑制モードを受信した室内ユニット2の室内コントローラ203は、ステップS304において、室内熱交換器31の過冷却度目標値SCmをΔSCmだけ大きくする。このとき、膨張弁32は、過冷却度SCの演算値を基に開度Lが制御されているので、過冷却度目標値SCmが大きくなると開度Lが小さくなる。
 室外コントローラ202は、ステップS305において一定時間経過させた後、ステップS306において、室外熱交換器13の熱交換容量AKが熱交換容量最小値AKminより大きいかを判断する。熱交換容量AKが熱交換容量最小値AKminより大きければ(Yes)、ステップS307において、室外コントローラ202は熱媒体中継機8に、冷媒流量増加モードを送信する。なお、ステップS306において、熱交換容量AKが熱交換容量最小値AKminであれば(No)、フローは終了する。
 冷媒流量増加モードを受信した熱媒体中継機コントローラ207は、ステップS308において、熱媒体間熱交換器82の過冷却度目標値SCmをΔSCmだけ小さくする。このとき、膨張弁86は、過冷却度SCの演算値を基に開度Lが制御されているので、過冷却度目標値SCmが小さくなると開度Lが大きくなる。この時点で、凝縮温度目標値Tcmと過冷却度目標値SCmの値を変更するフローは終了するが、変更されたTcmとSCmは、熱媒体中継機8の操作部208から、暖房能力優先要求が取り消しされるまで維持される。
(暖房能力増大要求の条件)
 前述のように、操作部208が暖房能力増大を要求するのは、熱媒体中継機8と間接式の室内ユニット2が冷温水混在モードのときである。
 ここで、操作部208が暖房能力増大を要求する条件について説明する。熱媒体間熱交換器82の暖房能力増大が必要な条件として、運転している間接式の室内ユニット2の暖房容量が冷房容量に比べて十分大きいこと、実際に暖房負荷が大きいことが挙げられる。よって、本実施の形態2では、以下の3つの条件を判断して、操作部208は暖房能力増大を要求する。
(条件1:暖房容量と冷房容量の比)
・ΣQh>ΣQc+α ・・・(1)
 ここで、ΣQhは暖房運転中の間接式の室内ユニット2の定格能力合計値、ΣQcは冷房運転中の間接式の室内ユニット2の定格能力合計値、αは尤度である。
(条件2:室内熱交換器31の熱媒体入口温度)
・Twhin<Twhm-β ・・・(2)
 ここで、Twhinは暖房時の室内ユニット2の熱媒体入口温度であり、Twhmは暖房時の室内ユニット2の熱媒体入口温度目標値であり、βは尤度である。暖房運転中の室内ユニット2の負荷が大きい(吸込空気温度が低い)場合、Twhinが低下する。
(条件3:熱媒体出入口温度差、流量調整弁開度、ポンプ回転数)
・「ΔTwhmax>ΔTwhm+γ、かつ、Lmax=100%」かつ「Fp=100%」 ・・・(3)
 ここで、ΔTwhmaxは暖房中の室内ユニット2(より詳しくは、当該室内ユニット2の室内熱交換器31)の熱媒体出入口温度差のうちの最大値であり、ΔTwhmは暖房中の室内ユニット2の熱媒体出入口温度差目標値であり、γは尤度である。暖房負荷が大きい場合、熱媒体出入口温度差が大きくなる。ここで、暖房中の室内ユニット2の熱媒体出入口温度差は、温度センサ136が検知する温度から温度センサ137が検知する温度を引いたものである。
 また、Lは暖房中の室内ユニット2の流量調整弁95の開度であり、Lmaxはそのうちの最大値である。Lmax=100%となっている場合、暖房に係る熱媒体の全体の流量が不足していることを意味する。
 また、Fpはポンプ92の回転数であり、100%となっている場合、暖房に係る熱媒体の全体の流量が不足していることを意味する。
 以上をまとめると、
・(条件1)かつ(条件2) ・・・(4)
または、
・(条件1)かつ(条件3) ・・・(5)
 を一定時間満たすとき、操作部208は暖房能力増大を要求するとよい。この条件を判定する際は、冷媒経路と熱媒体経路のアクチュエータが十分安定している状態が必要であり、一定時間は10~30分程度とすることが望ましい。
<能力増大制御の効果>
 以上のように、本実施の形態2に係る空気調和装置では、熱媒体中継機8と間接式の室内ユニット2が冷温水混在モードのとき、能力増大制御を実施することで、熱媒体間熱交換器82の伝熱面積が小さい場合でも、凝縮温度を高くすることで、暖房運転する室内ユニット2の熱媒体入口温度を高くすることができる。よって、熱媒体間熱交換器82の伝熱面積が小さくなることにより室内ユニット2の暖房能力が低下してしまうということを防ぐことができる。
 また、本実施の形態2に係る空気調和装置では、ポンプ92の熱媒体送水量が小さい場合でも、凝縮温度を高くすることで、暖房運転する室内ユニット2の熱媒体入口温度を高くすることができる。よって、熱媒体入口温度を通常運転より高くすることで、熱媒体流量低下による室内熱交換器31の暖房能力低下を補うことができる。
 その結果、本実施の形態2に係る空気調和装置によれば、熱媒体間熱交換器82やポンプ92を大きくしたり、台数を増加させたりする必要がなく、空気調和装置を小型化、安価にすることができる。
 また、本実施の形態2に係る空気調和装置では、暖房負荷が大きいときに暖房能力増大を要求するため、無駄に能力増大制御を実施することがなく、省エネ性に優れたものになる。
 また、本実施の形態2に係る空気調和装置では、熱媒体間熱交換器82に対して能力増大制御を実施する際に、直膨式の室内ユニット2の能力を抑制している。直膨式の室内熱交換器31は、前述のように冷媒が直接循環しており、凝縮温度が高くなれば暖房能力が増加する。よって、能力を抑制することで、直膨式の室内ユニット2において能力が過剰になるのを抑制できる。
 また、本実施の形態2に係る空気調和装置においては、冷房主体運転時に熱媒体間熱交換器82に対して暖房能力増大制御を実施する場合について述べたが、暖房主体運転時に熱媒体間熱交換器81に対して冷房能力を増大させる制御を実施してもよい。この場合、蒸発温度目標値TemをΔTemだけ低くして、室外熱交換器13の熱交換容量AKを冷凍サイクルの所定の冷房能力を発揮するための熱交換容量AKより小さくすればよい。また、能力優先の熱媒体間熱交換器81に対しては、熱媒体間熱交換器81の過熱度目標値SHmを、ΔSHmだけ小さくすることで冷媒流量を大きくして、能力優先以外の直膨式の室内ユニット2の過熱度目標値SHmをΔSHmだけ大きくすることで冷媒流量を小さくできる。
 また、冷房運転時の蒸発温度目標値Temについては、低下し過ぎると熱媒体間熱交換器81において熱媒体が凍結し、熱媒体間熱交換器81が破壊してしまう可能性があるため、Temは熱媒体が凍結しないような温度に設定するとよい。
 なお、本実施の形態1または2に係る空気調和装置では、冷房主体運転時に、室外熱交換器13の熱交換容量AKを調整することで、第1の暖房利用側熱交換器の暖房能力を増大させているが、圧縮機11の回転数Fを調整して、蒸発温度を低くすることで一部の冷房利用側熱交換器(第3の利用側熱交換器に相当)の冷房能力を増大させてもよい。このとき、他の冷房利用側熱交換器の一部(第4の利用側熱交換器に相当)は、冷媒流量を小さくして冷房能力が過剰になるのを抑制する。
 また、本実施の形態1または2に係る空気調和装置では、暖房主体運転時に、圧縮機11の回転数Fを調整して、凝縮温度を高くすることで一部の暖房利用側熱交換器(第3の利用側熱交換器に相当)の暖房能力を増大させてもよい。このとき、他の暖房利用側熱交換器の一部(第4の利用側熱交換器に相当)は、冷媒流量を小さくして暖房能力が過剰になるのを抑制する。
 さらに、本実施の形態1または2に係る空気調和装置では、熱源を空気とした空気調和装置について述べたが、熱源を水またはブラインとしてもよい。この場合、熱交換容量は、例えば熱源水のポンプ回転数や流量調整弁の開度による熱源水の流量調整により制御すればよい。
 またさらに、本実施の形態1または2に係る空気調和装置では、室内ユニット2の能力を抑制する制御を、膨張弁32による冷媒流量制御により実施しているが、例えば室内コントローラ203によりファン210(室内ファン)の回転数を強制的に制御して、室内ユニット2の能力調整を行ってもよい。
 なお、上記の実施の形態1または2に係る空気調和装置では、能力を増大させる熱交換器を1台のみとしたが、能力を増大させる熱交換器の数は任意である。また、上記の実施の形態1または2に係る空気調和装置では、能力を増大させる熱交換器以外の熱交換器の全てにおいて冷媒流量を減少させていたが、能力を増大させる熱交換器以外の熱交換器の一部において冷媒流量を減少させることができれば、本発明を実施することができる。
 本発明の活用例として、ビル用マルチエアコンなどに用いる多室形空気調和装置に適用できる。
 1 室外ユニット、2 室内ユニット、2a 室内ユニット、2b 室内ユニット、2c 室内ユニット、2d 室内ユニット、2e 室内ユニット、2f 室内ユニット、2g 室内ユニット、2h 室内ユニット、3 中継機、6 高圧管、7 低圧管、8 熱媒体中継機、11 圧縮機、12 四方弁、13 室外熱交換器、14 アキュムレータ、15a 逆止弁、15b 逆止弁、15c 逆止弁、15d 逆止弁、16 室外熱交換部、17 室外熱交換部、21 熱交換器開閉弁、22 熱交換器開閉弁、23 熱交換器開閉弁、24 熱交換器開閉弁、25 熱交換器バイパス弁、26 逆止弁、27 逆止弁、28 逆止弁、29 逆止弁、31 室内熱交換器、31a 室内熱交換器、31b 室内熱交換器、31c 室内熱交換器、31d 室内熱交換器、31e 室内熱交換器、31f 室内熱交換器、31g 室内熱交換器、31h 室内熱交換器、32 膨張弁、32a 膨張弁、32c 膨張弁、32b 膨張弁、32d 膨張弁、41 ガス枝管、41a ガス枝管、41b ガス枝管、41c ガス枝管、41d ガス枝管、42 液枝管、42a 液枝管、42b 液枝管、42c 液枝管、42d 液枝管、51 気液分離器、52 内部熱交換器、53 内部熱交換器、54 膨張弁、55 膨張弁、56 電磁弁、56 電磁弁、56a 電磁弁、56b 電磁弁、56c 電磁弁、56d 電磁弁、57 電磁弁、57a 電磁弁、57b 電磁弁、57c 電磁弁、57d 電磁弁、58 逆止弁、58a 逆止弁、58b 逆止弁、58c 逆止弁、58d 逆止弁、59 逆止弁、59a 逆止弁、59b 逆止弁、59c 逆止弁、59d 逆止弁、61 高圧ガス管、62 液管、63 液管、64 液管、65 バイパス配管、66 高圧ガス管、67 液管、68 低圧管、69 バイパス配管、71 圧力センサ、72 圧力センサ、73 温度センサ、73a 温度センサ、73b 温度センサ、73c 温度センサ、73d 温度センサ、74 温度センサ、74a 温度センサ、74b 温度センサ、74c 温度センサ、74d 温度センサ、75 温度センサ、75a 温度センサ、75b 温度センサ、75c 温度センサ、75d 温度センサ、76 圧力センサ、77 圧力センサ、81 熱媒体間熱交換器、82 熱媒体間熱交換器、83 四方弁、84 四方弁、85 膨張弁、86 膨張弁、87 膨張弁、88 内部熱交換器、91 ポンプ、92 ポンプ、93 三方弁、93e 三方弁、93f 三方弁、93g 三方弁、93h 三方弁、94 三方弁、94e 三方弁、94f 三方弁、94g 三方弁、94h 三方弁、95 流量調整弁、95e 流量調整弁、95f 流量調整弁、95g 流量調整弁、95h 流量調整弁、101 ファン、111 熱媒体配管、112 熱媒体配管、111e 熱媒体配管、111f 熱媒体配管、111g 熱媒体配管、111h 熱媒体配管、112 熱媒体配管、112e 熱媒体配管、112f 熱媒体配管、112g 熱媒体配管、112h 熱媒体配管、113 熱媒体配管、114 熱媒体配管、115 熱媒体配管、116 熱媒体配管、131 温度センサ、132 温度センサ、133 温度センサ、134 温度センサ、135 温度センサ、136 温度センサ、137 温度センサ、138 圧力センサ、201 インバータ回路、202 室外コントローラ、203 室内コントローラ、203a 室内コントローラ、203b 室内コントローラ、203c 室内コントローラ、203d 室内コントローラ、203e 室内コントローラ、203f 室内コントローラ、203g 室内コントローラ、203h 室内コントローラ、204 操作部、204a 操作部、204b 操作部、205 弁駆動回路、206 中継機コントローラ、207 熱媒体中継機コントローラ、208 操作部、209 弁駆動回路、210 ポンプ駆動回路。

Claims (14)

  1.  冷媒を圧縮する圧縮機と、
     凝縮器又は蒸発器として機能する複数の利用側熱交換器と、
     前記利用側熱交換器に対応して設けられ、前記利用側熱交換器に流れる冷媒の流量を調整する複数の膨張装置と、
     凝縮器又は蒸発器として機能する熱源側熱交換器と、
     前記複数の膨張装置の開度、及び、冷媒の凝縮又は蒸発の飽和温度が所定の飽和温度目標値となるように前記熱源側熱交換器の熱交換容量を制御する制御装置と、を備え、
     前記制御装置は、
     前記複数の利用側熱交換器のうちの一部が凝縮器、その他が蒸発器となる運転中、
     前記複数の利用側熱交換器のうち、前記熱源側熱交換器と同じ運転モードで運転している前記利用側熱交換器の一部である第1の利用側熱交換器から熱交換能力を増大させる要求があると、
     前記熱源側熱交換器の飽和温度目標値の値を変更することによって、前記熱源側熱交換器の熱交換容量を小さくするとともに、
     前記第1の利用側熱交換器以外の前記利用側熱交換器であって、前記第1の利用側熱交換器と同じ運転モードで運転している前記利用側熱交換器のうちの少なくとも1つである第2の利用側熱交換器に対応する前記膨張装置の開度を制御して、前記第2の利用側熱交換器に流れる冷媒の流量を減少させる
     ことを特徴とする空気調和装置。
  2.  前記制御装置は、
     前記熱源側熱交換器の熱交換容量を小さくした後も、前記熱源側熱交換器の熱交換容量が下限に達していないと判断すると、
     前記第1の利用側熱交換器に対応する前記膨張装置の開度を制御して、当該第1の利用側熱交換器の冷媒流量を増加させる
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記制御装置は、
     前記熱源側熱交換器、前記第1の利用側熱交換器及び前記第2の利用側熱交換器を、いずれも凝縮器として機能させ、前記熱源側熱交換器、前記第1の利用側熱交換器及び前記第2の利用側熱交換器を流れる冷媒の凝縮飽和温度が所定の凝縮飽和温度目標値となるように前記熱源側熱交換器の熱交換容量を制御している状態において、
     前記第1の利用側熱交換器の熱交換能力を増大させる際、
     前記凝縮飽和温度目標値の値を高くすることによって前記熱源側熱交換器の熱交換容量を小さくする
     ことを特徴とする請求項1又は2に記載の空気調和装置。
  4.  前記制御装置は、
     前記熱源側熱交換器、前記第1の利用側熱交換器及び前記第2の利用側熱交換器を、いずれも蒸発器として機能させ、前記熱源側熱交換器、前記第1の利用側熱交換器及び前記第2の利用側熱交換器を流れる冷媒の蒸発飽和温度が所定の蒸発飽和温度目標値となるように前記熱源側熱交換器の熱交換容量を制御している状態において、
     前記第1の利用側熱交換器の熱交換能力を増大させる際、
     前記蒸発飽和温度目標値の値を低くすることによって前記熱源側熱交換器の熱交換容量を小さくする
     ことを特徴とする請求項1又は2に記載の空気調和装置。
  5.  前記制御装置は、
     凝縮器として機能する前記利用側熱交換器に流れる冷媒の過冷却度が所定の目標過冷却度となるように、当該利用側熱交換器に対応する前記膨張装置の開度を制御しており、
     前記第1の利用側熱交換器の熱交換能力を増大させる際、
     前記目標過冷却度を大きくすることによって、前記第2の利用側熱交換器の流量を減少させる
     ことを特徴とする請求項3に記載の空気調和装置。
  6.  前記制御装置は、
     蒸発器として機能する前記利用側熱交換器に流れる冷媒の過熱度が所定の目標過熱度となるように、当該利用側熱交換器に対応する前記膨張装置の開度を制御しており、
     前記第1の利用側熱交換器の熱交換能力を増大させる際、
     前記目標過熱度を大きくすることによって、前記第2の利用側熱交換器の流量を減少させる
     ことを特徴とする請求項4に記載の空気調和装置。
  7.  前記熱源側熱交換器に空気を搬送する送風装置を備え、
     前記制御装置は、
     前記送風装置の回転数によって、前記熱源側熱交換器の熱交換容量を制御する
     ことを特徴とする請求項1~6のいずれか一項に記載の空気調和装置。
  8.  前記熱源側熱交換器の冷媒伝熱管の一部またはすべてを閉止する熱交換器開閉装置と、 前記熱源側熱交換器に流れる冷媒の一部またはすべてをバイパスする熱交換器バイパス装置と、を備え、
     前記制御装置は、
     前記熱交換器開閉装置及び前記熱交換器バイパス装置の開閉によって、前記熱源側熱交換器の熱交換容量を制御する
     ことを特徴とする請求項1~7のいずれか一項に記載の空気調和装置。
  9.  前記利用側熱交換器の一部が、前記熱源側熱交換器から供給された冷媒と該冷媒とは異なる熱媒体とが熱交換する熱媒体間熱交換器であり、
     前記利用側熱交換器の残りの一部が、前記熱源側熱交換器から供給された冷媒と室内の空気とが熱交換する直膨式熱交換器であって、
     前記熱媒体間熱交換器の熱媒体側流路に接続され、熱媒体と室内の空気とが熱交換する少なくとも1つの間接式熱交換器を備え、
     前記第1の利用側熱交換器が前記熱媒体間熱交換器であり、
     前記第1の利用側熱交換器の熱交換能力を増大させる際に冷媒流量を減少させる前記第2の利用側熱交換器が前記直膨式熱交換器である
     ことを特徴とする請求項1~8のいずれか一項に記載の空気調和装置。
  10.  前記利用側熱交換器の一部が、前記熱源側熱交換器から供給された冷媒と該冷媒とは異なる熱媒体とが熱交換する熱媒体間熱交換器であり、
     前記利用側熱交換器の残りの一部が、前記熱源側熱交換器から供給された冷媒と室内の空気とが熱交換する直膨式熱交換器であって、
     前記熱媒体間熱交換器の熱媒体側流路に接続され、熱媒体と室内の空気とが熱交換する少なくとも1つの間接式熱交換器を備え、
     前記熱媒体間熱交換器のうちの一部が凝縮器、その他が蒸発器となる状態において、
     前記第1の利用側熱交換器が、接続されている前記間接式熱交換器の熱交換負荷が大きい側の前記熱媒体間熱交換器であり、
     前記第1の利用側熱交換器の熱交換能力を増大させる際に冷媒流量を減少させる前記第2の利用側熱交換器が前記直膨式熱交換器である
     ことを特徴とする請求項1~8のいずれか一項に記載の空気調和装置。
  11.  前記熱源側熱交換器が水またはブラインを熱源としているものであるとき、
     前記制御装置は、
     前記水またはブラインの流量調整によって、前記熱源側熱交換器の熱交換容量を制御する
     ことを特徴とする請求項1~6のいずれか一項に記載の空気調和装置。
  12.  前記第2の利用側熱交換器に空気を搬送する送風装置を備え、
     前記制御装置は、
     前記第1の利用側熱交換器の熱交換能力を増大させる際、
     前記第2の利用側熱交換器の送風装置の回転数を小さくして、該第2の利用側熱交換器の熱交換容量を減少させる
     ことを特徴とする請求項1に記載の空気調和装置。
  13.  前記制御装置は、
     前記蒸発器として機能する利用側熱交換器を流れる冷媒の蒸発飽和温度が所定の蒸発飽和温度目標値となるように前記圧縮機の運転容量を制御するものであって、
     前記蒸発器として機能する利用側熱交換器の一部である第3の利用側熱交換器から熱交換能力を増大させる要求があると、
     前記蒸発飽和温度目標値の値を低くすることによって前記圧縮機の運転容量を大きくするとともに、
     前記第3の利用側熱交換器以外の前記利用側熱交換器であって、蒸発器として機能する前記利用側熱交換器のうちの少なくとも1つである第4の利用側熱交換器に対応する前記膨張装置の開度を制御して、前記第4の利用側熱交換器に流れる冷媒の流量を減少させる
     ことを特徴とする請求項3に記載の空気調和装置。
  14.  前記制御装置は、
     前記凝縮器として機能する利用側熱交換器を流れる冷媒の凝縮飽和温度が所定の凝縮飽和温度目標値となるように前記圧縮機の運転容量を制御するものであって、
     前記凝縮器として機能する利用側熱交換器の一部である第3の利用側熱交換器から熱交換能力を増大させる要求があると、
     前記凝縮飽和温度目標値の値を高くすることによって前記圧縮機の運転容量を大きくするとともに、
     前記第3の利用側熱交換器以外の前記利用側熱交換器であって、凝縮器として機能する前記利用側熱交換器のうちの少なくとも1つである第4の利用側熱交換器に対応する前記膨張装置の開度を制御して、前記第4の利用側熱交換器に流れる冷媒の流量を減少させる
     ことを特徴とする請求項4に記載の空気調和装置。
PCT/JP2012/002096 2012-03-27 2012-03-27 空気調和装置 WO2013144994A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/387,610 US9958171B2 (en) 2012-03-27 2012-03-27 Air-conditioning apparatus
EP12873137.9A EP2833086B1 (en) 2012-03-27 2012-03-27 Air-conditioning apparatus
PCT/JP2012/002096 WO2013144994A1 (ja) 2012-03-27 2012-03-27 空気調和装置
JP2014506989A JP5984914B2 (ja) 2012-03-27 2012-03-27 空気調和装置
CN201320145117XU CN203249455U (zh) 2012-03-27 2013-03-27 空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/002096 WO2013144994A1 (ja) 2012-03-27 2012-03-27 空気調和装置

Publications (1)

Publication Number Publication Date
WO2013144994A1 true WO2013144994A1 (ja) 2013-10-03

Family

ID=49258370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002096 WO2013144994A1 (ja) 2012-03-27 2012-03-27 空気調和装置

Country Status (5)

Country Link
US (1) US9958171B2 (ja)
EP (1) EP2833086B1 (ja)
JP (1) JP5984914B2 (ja)
CN (1) CN203249455U (ja)
WO (1) WO2013144994A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097787A1 (ja) * 2013-12-25 2015-07-02 三菱電機株式会社 空気調和装置
WO2015162679A1 (ja) * 2014-04-21 2015-10-29 三菱電機株式会社 冷凍サイクル装置
JP5908183B1 (ja) * 2014-11-19 2016-04-26 三菱電機株式会社 空気調和装置
KR20180082145A (ko) * 2017-01-10 2018-07-18 삼성전자주식회사 공조 장치, 공조 장치의 제어 장치 및 공조 장치의 제어 방법
JPWO2019138473A1 (ja) * 2018-01-10 2020-01-16 三菱電機株式会社 空気調和制御システム及び空気調和制御方法
JP2020169807A (ja) * 2020-07-08 2020-10-15 三菱電機株式会社 冷凍装置
WO2022239212A1 (ja) * 2021-05-14 2022-11-17 三菱電機株式会社 空気調和装置、及び空気調和システム

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955383B2 (ja) * 2012-04-23 2016-07-20 三菱電機株式会社 空気調和システム
WO2016009488A1 (ja) * 2014-07-14 2016-01-21 三菱電機株式会社 空気調和装置
JP2016169893A (ja) * 2015-03-11 2016-09-23 株式会社デンソー 膨張弁装置
CN104748261B (zh) * 2015-03-31 2019-12-03 广东美的暖通设备有限公司 多联机系统
CN104748239B (zh) * 2015-03-31 2017-10-31 广东美的暖通设备有限公司 多联机系统
CN104764243B (zh) * 2015-03-31 2017-03-08 广东美的暖通设备有限公司 多联机系统
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
CN105115199B (zh) * 2015-07-06 2017-10-31 广东美的暖通设备有限公司 多联机系统的冷媒分流控制方法和装置
CN105066501B (zh) * 2015-07-22 2017-05-03 广东美的暖通设备有限公司 多联机室外机和具有其的多联机
CN206001759U (zh) * 2016-08-23 2017-03-08 广东美的暖通设备有限公司 用于多联机空调的切换装置及具有其的多联机空调
WO2018036217A1 (zh) * 2016-08-23 2018-03-01 广东美的暖通设备有限公司 用于多联机空调的切换装置及具有其的多联机空调
EP3521731B1 (en) * 2016-09-30 2022-06-15 Daikin Industries, Ltd. Refrigeration device
EP3534087B1 (en) * 2016-10-25 2022-03-30 Mitsubishi Electric Corporation Refrigeration cycle device
US11402112B2 (en) * 2017-07-04 2022-08-02 Mitsubishi Electric Corporation Heat exchange unit and air-conditioning apparatus
JP2019023537A (ja) * 2017-07-25 2019-02-14 日本ピーマック株式会社 水熱源ヒートポンプユニットシステム
JP6451798B1 (ja) * 2017-07-31 2019-01-16 ダイキン工業株式会社 空気調和装置
JP6575625B1 (ja) * 2018-03-22 2019-09-18 株式会社富士通ゼネラル 空気調和機
KR102599897B1 (ko) * 2018-09-19 2023-11-09 삼성전자주식회사 공조 장치 및 공조 장치의 제어 방법
WO2020066015A1 (ja) * 2018-09-28 2020-04-02 三菱電機株式会社 空気調和機
CN109237644B (zh) * 2018-10-16 2023-09-05 珠海格力电器股份有限公司 热泵机组及其控制方法
CN109855245B (zh) * 2019-02-13 2021-09-21 青岛海尔空调电子有限公司 多联机空调系统及其换热量计算方法
EP3957925A4 (en) * 2019-04-18 2022-04-06 Mitsubishi Electric Corporation AIR CONDITIONER CONTROL DEVICE, OUTDOOR UNIT, RELAY DEVICE, HEAT SOURCE UNIT AND AIR CONDITIONER
CN110260452B (zh) * 2019-05-24 2022-01-04 青岛海尔空调电子有限公司 多联机空调系统及其换热量计算方法
JP7495594B2 (ja) * 2020-02-05 2024-06-05 ダイキン工業株式会社 空気調和システム
CN113108433A (zh) * 2021-03-23 2021-07-13 珠海格力电器股份有限公司 一种多联机空调系统的控制方法
CN114216177A (zh) * 2021-12-23 2022-03-22 珠海格力电器股份有限公司 一种多联空调系统及其控制方法
CN114811868B (zh) * 2022-02-14 2023-09-08 宁波奥克斯电气股份有限公司 电子膨胀阀的控制方法、装置及多联机系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110833A (ja) * 1984-11-05 1986-05-29 Daikin Ind Ltd 熱回収形空気調和機
JPS62141163U (ja) * 1986-02-28 1987-09-05
JPH02217738A (ja) 1989-02-17 1990-08-30 Mitsubishi Electric Corp 空気調和装置
JPH02279962A (ja) * 1989-04-20 1990-11-15 Sanyo Electric Co Ltd 空気調和装置
JPH04110573A (ja) * 1990-08-28 1992-04-13 Mitsubishi Electric Corp 空気調和装置
JPH08291952A (ja) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp 空気調和装置
JPH08320158A (ja) * 1995-05-26 1996-12-03 Matsushita Refrig Co Ltd 冷暖房装置
JP2002317996A (ja) * 2001-04-20 2002-10-31 Hitachi Ltd 多室形空気調和機
JP2007271112A (ja) 2006-03-30 2007-10-18 Mitsubishi Electric Corp 空気調和装置
WO2011099067A1 (ja) * 2010-02-10 2011-08-18 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336474A (ja) * 1989-07-03 1991-02-18 Toshiba Corp 空気調和機
JP2839343B2 (ja) * 1990-08-10 1998-12-16 株式会社日立製作所 マルチエアコン
JP2983269B2 (ja) * 1990-09-14 1999-11-29 株式会社東芝 空気調和機
JPH04327751A (ja) * 1991-04-25 1992-11-17 Toshiba Corp 空気調和機
KR0129641Y1 (ko) * 1995-03-30 1999-01-15 김광호 공기조화기의 실내기
JP3655681B2 (ja) * 1995-06-23 2005-06-02 三菱電機株式会社 冷媒循環システム
JP3576092B2 (ja) * 2000-11-10 2004-10-13 松下冷機株式会社 冷蔵庫
US6415619B1 (en) * 2001-03-09 2002-07-09 Hewlett-Packard Company Multi-load refrigeration system with multiple parallel evaporators
KR100437802B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 냉난방 동시형 멀티공기조화기
JP4396521B2 (ja) * 2002-10-30 2010-01-13 三菱電機株式会社 空気調和装置
KR20040064452A (ko) * 2003-01-13 2004-07-19 엘지전자 주식회사 냉난방 동시형 멀티공기조화기의 운전방법
KR20060034109A (ko) * 2004-10-18 2006-04-21 삼성전자주식회사 공기 조화기 및 그 제어 방법
JP4752765B2 (ja) * 2004-11-25 2011-08-17 三菱電機株式会社 空気調和装置
KR100640858B1 (ko) * 2004-12-14 2006-11-02 엘지전자 주식회사 공기조화기 및 그 제어방법
JP4001171B2 (ja) * 2005-07-26 2007-10-31 ダイキン工業株式会社 冷凍装置
JP2007170686A (ja) * 2005-12-19 2007-07-05 Sanyo Electric Co Ltd 空気調和装置
KR101282565B1 (ko) * 2006-07-29 2013-07-04 엘지전자 주식회사 냉난방 동시형 멀티 공기 조화기
JP5055884B2 (ja) * 2006-08-03 2012-10-24 ダイキン工業株式会社 空気調和装置
JP4952210B2 (ja) * 2006-11-21 2012-06-13 ダイキン工業株式会社 空気調和装置
JP4389927B2 (ja) * 2006-12-04 2009-12-24 ダイキン工業株式会社 空気調和装置
KR101176635B1 (ko) * 2007-06-22 2012-08-24 삼성전자주식회사 동시 냉난방형 멀티 공기조화기 및 그 제어방법
EP2204626B1 (en) * 2007-09-26 2018-05-23 Mitsubishi Electric Corporation Air conditioner
WO2009122512A1 (ja) * 2008-03-31 2009-10-08 三菱電機株式会社 空気調和装置
JP5045524B2 (ja) * 2008-03-31 2012-10-10 ダイキン工業株式会社 冷凍装置
US20100282434A1 (en) * 2008-03-31 2010-11-11 Mitsubishi Electric Corporation Air conditioning and hot water supply complex system
US8820106B2 (en) * 2008-04-30 2014-09-02 Mitsubishi Electric Corporation Air conditioning apparatus
TWI360631B (en) * 2009-03-13 2012-03-21 Ind Tech Res Inst Air condition system
US8616017B2 (en) * 2009-05-08 2013-12-31 Mitsubishi Electric Corporation Air conditioning apparatus
EP2508819B1 (en) * 2009-11-30 2019-09-04 Mitsubishi Electric Corporation Air-conditioning device
EP2363663B1 (en) * 2009-12-28 2015-04-08 Daikin Industries, Ltd. Heat-pump system
KR101153513B1 (ko) * 2010-01-15 2012-06-11 엘지전자 주식회사 냉매시스템 및 그 제어방법
KR20110102613A (ko) * 2010-03-11 2011-09-19 엘지전자 주식회사 공기조화장치
JP5404487B2 (ja) * 2010-03-23 2014-01-29 三菱電機株式会社 多室形空気調和機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110833A (ja) * 1984-11-05 1986-05-29 Daikin Ind Ltd 熱回収形空気調和機
JPS62141163U (ja) * 1986-02-28 1987-09-05
JPH02217738A (ja) 1989-02-17 1990-08-30 Mitsubishi Electric Corp 空気調和装置
JPH02279962A (ja) * 1989-04-20 1990-11-15 Sanyo Electric Co Ltd 空気調和装置
JPH04110573A (ja) * 1990-08-28 1992-04-13 Mitsubishi Electric Corp 空気調和装置
JPH08291952A (ja) * 1991-01-10 1996-11-05 Mitsubishi Electric Corp 空気調和装置
JPH08320158A (ja) * 1995-05-26 1996-12-03 Matsushita Refrig Co Ltd 冷暖房装置
JP2002317996A (ja) * 2001-04-20 2002-10-31 Hitachi Ltd 多室形空気調和機
JP2007271112A (ja) 2006-03-30 2007-10-18 Mitsubishi Electric Corp 空気調和装置
WO2011099067A1 (ja) * 2010-02-10 2011-08-18 三菱電機株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2833086A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015097787A1 (ja) * 2013-12-25 2017-03-23 三菱電機株式会社 空気調和装置
US10393418B2 (en) 2013-12-25 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2015097787A1 (ja) * 2013-12-25 2015-07-02 三菱電機株式会社 空気調和装置
EP3088809A4 (en) * 2013-12-25 2017-08-09 Mitsubishi Electric Corporation Air conditioner
US9964343B2 (en) 2014-04-21 2018-05-08 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JPWO2015162679A1 (ja) * 2014-04-21 2017-04-13 三菱電機株式会社 冷凍サイクル装置
WO2015162679A1 (ja) * 2014-04-21 2015-10-29 三菱電機株式会社 冷凍サイクル装置
EP3136019A4 (en) * 2014-04-21 2017-12-27 Mitsubishi Electric Corporation Refrigeration cycle device
KR101901540B1 (ko) * 2014-11-19 2018-09-21 미쓰비시덴키 가부시키가이샤 공기 조화 장치
EP3222924A4 (en) * 2014-11-19 2018-06-20 Mitsubishi Electric Corporation Air conditioning device
JP5908183B1 (ja) * 2014-11-19 2016-04-26 三菱電機株式会社 空気調和装置
US10247440B2 (en) 2014-11-19 2019-04-02 Mitsubishi Electric Corporation Air-conditioning apparatus with control of expansion valve to maintain desired degree of subcooling
WO2016079834A1 (ja) * 2014-11-19 2016-05-26 三菱電機株式会社 空気調和装置
KR20180082145A (ko) * 2017-01-10 2018-07-18 삼성전자주식회사 공조 장치, 공조 장치의 제어 장치 및 공조 장치의 제어 방법
KR102572079B1 (ko) * 2017-01-10 2023-08-30 삼성전자주식회사 공조 장치, 공조 장치의 제어 장치 및 공조 장치의 제어 방법
JPWO2019138473A1 (ja) * 2018-01-10 2020-01-16 三菱電機株式会社 空気調和制御システム及び空気調和制御方法
JP2020169807A (ja) * 2020-07-08 2020-10-15 三菱電機株式会社 冷凍装置
WO2022239212A1 (ja) * 2021-05-14 2022-11-17 三菱電機株式会社 空気調和装置、及び空気調和システム

Also Published As

Publication number Publication date
US20150034293A1 (en) 2015-02-05
JPWO2013144994A1 (ja) 2015-08-03
US9958171B2 (en) 2018-05-01
EP2833086A4 (en) 2015-12-02
EP2833086B1 (en) 2017-06-21
CN203249455U (zh) 2013-10-23
JP5984914B2 (ja) 2016-09-06
EP2833086A1 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5984914B2 (ja) 空気調和装置
JP5791785B2 (ja) 空気調和装置
US9322562B2 (en) Air-conditioning apparatus
JP5855312B2 (ja) 空気調和装置
JP5518089B2 (ja) 空気調和装置
JP5279919B2 (ja) 空気調和装置
JP6005255B2 (ja) 空気調和装置
JP5847366B1 (ja) 空気調和装置
JP5137933B2 (ja) 空気調和装置
WO2012077166A1 (ja) 空気調和装置
JP5968519B2 (ja) 空気調和装置
JP6019837B2 (ja) ヒートポンプシステム
WO2013072969A1 (ja) 空気調和装置
JP3998024B2 (ja) ヒートポンプ床暖房空調装置
WO2013179334A1 (ja) 空気調和装置
JP2009228979A (ja) 空気調和装置
WO2011089652A1 (ja) 空調給湯複合システム
JP5908183B1 (ja) 空気調和装置
WO2011052049A1 (ja) 空気調和装置
JP5312681B2 (ja) 空気調和装置
JP4902585B2 (ja) 空気調和機
JP2009293887A (ja) 冷凍装置
JPWO2015177852A1 (ja) 冷凍サイクル装置
JP5141364B2 (ja) 冷凍装置
JP2017227396A (ja) 二元冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506989

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012873137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012873137

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14387610

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE