WO2022165623A1 - 一种1,1,1,3‐四氯丙烷的制备方法 - Google Patents

一种1,1,1,3‐四氯丙烷的制备方法 Download PDF

Info

Publication number
WO2022165623A1
WO2022165623A1 PCT/CN2021/074800 CN2021074800W WO2022165623A1 WO 2022165623 A1 WO2022165623 A1 WO 2022165623A1 CN 2021074800 W CN2021074800 W CN 2021074800W WO 2022165623 A1 WO2022165623 A1 WO 2022165623A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
preparation
tetrachloropropane
active component
phosphate
Prior art date
Application number
PCT/CN2021/074800
Other languages
English (en)
French (fr)
Inventor
张业新
邓艳艳
张建
陈慧
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to PCT/CN2021/074800 priority Critical patent/WO2022165623A1/zh
Publication of WO2022165623A1 publication Critical patent/WO2022165623A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/275Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of hydrocarbons and halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine

Definitions

  • the present application relates to a preparation method of 1,1,1,3-tetrachloropropane, which belongs to the technical field of chemical industry.
  • Carbon tetrachloride is a by-product of a methane chloride plant. Carbon tetrachloride is a controlled substance that depletes the ozone layer under the Montreal Protocol, abbreviated as CTC. Completely stop the production and consumption of CTC except for raw material use, reagent use and special exempted use. In recent years, China's methane chloride has developed rapidly. Depending on the raw material market, it is difficult to digest and produce CTC. The cost of incinerating carbon tetrachloride is about 3,000 to 4,000 yuan per ton. Therefore, the comprehensive utilization of CTC has very important practical significance, which is related to the survival and safety of the entire industry chain.
  • the metals and cocatalysts reported in literature reports mainly include: organic copper compounds and organic nitrile compounds; iron or its compounds, organic phosphorus compounds.
  • the iron powder is commercially available iron powder; when the commercially available iron powder is used as the main catalyst, it is easy to agglomerate at the bottom of the reactor. membrane, which reduces the reactivity.
  • a preparation method of 1,1,1,3-tetrachloropropane is provided.
  • the preparation method adopts a supported iron main catalyst, which can significantly improve the problem of easy agglomeration of commercially available iron powders, while increasing the The specific surface area of iron is enlarged, and the second nano-metal component is added at the same time, which effectively solves the problem that the freshly prepared nano-iron catalyst is easily oxidized when exposed to the air, which is beneficial to the reaction.
  • a preparation method of 1,1,1,3-tetrachloropropane comprises:
  • the first catalyst includes a carrier and an active component supported on the carrier;
  • the active component includes nano-zero valent iron
  • the second catalyst includes an ester compound.
  • the active component further includes at least one of platinum and copper.
  • the active ingredient is selected from any one of zero-valent iron nanoparticles, Pd-Fe bimetallic nanoparticles, and Cu-Fe bimetallic nanoparticles.
  • the carrier includes at least one of porous materials
  • the porous material includes bentonite and/or activated carbon.
  • the bentonite is obtained by modifying with a surfactant
  • the activated carbon is obtained by acid modification treatment.
  • the surfactant includes at least one of quaternary ammonium salts
  • the acid includes any one of HCl, H 3 PO 4 , HNO 3 .
  • the quaternary ammonium salt includes cetyltrimethylammonium bromide.
  • the acid modification treatment is as follows: mixing activated carbon with an acid solution, and refluxing at 80-100° C. for 3-8 hours.
  • the concentration of the acid solution is 10-30%.
  • the mass-volume ratio of the activated carbon to the acid solution is 5-15:80-120 g/mL.
  • the surfactant modification treatment is as follows: mixing the bentonite aqueous solution with the surfactant, adjusting the pH value to be acidic, stirring and washing at 50-80°C.
  • the mass ratio of the bentonite to the surfactant is 30-60:15-25.
  • the loading of the active component is 5.01-50.1 wt %.
  • the upper limit of the loading amount of the active component is selected from 8wt%, 13wt%, 20wt%, 25wt%, 30wt%, 40wt%, or 50.1wt%; the lower limit is selected from 5.01wt% %, 8wt%, 13wt%, 20wt%, 25wt%, 30wt% or 40wt%.
  • the mass ratio of the Fe to the Pd is 5-50:0.01-0.1;
  • the mass ratio of the Cu to the Fe is 0.5-1.5:0.5-1.5.
  • the mass ratio of the Fe to the Pd is 10-30:0.01-0.08.
  • the mass ratio of the Fe to the Pd is 13-25:0.01-0.04.
  • the mass ratio of the Cu to the Fe is 0.8-1.2:0.8-1.2.
  • the mass ratio of the carbon tetrachloride to the first catalyst is 50:1 to 10;
  • the first catalyst is based on the mass of the first catalyst itself.
  • the mass ratio of the carbon tetrachloride to the first catalyst is 50:1-6.
  • the mass ratio of the carbon tetrachloride to the first catalyst is 50:1-4.
  • the mass ratio of the carbon tetrachloride to the first catalyst is 50:3-6.
  • the second catalyst includes at least one of phosphate and phosphite.
  • the phosphate ester includes at least one of tributyl phosphate, trimethyl phosphate, triethyl phosphate, triphenyl phosphate, and dibutyl phosphate;
  • the phosphite includes tributyl phosphite.
  • the mass ratio of the second catalyst to the first catalyst is 1.25-5:1-6;
  • the second catalyst is based on the mass of the second catalyst itself
  • the first catalyst is based on the mass of the first catalyst itself.
  • the mass ratio of the second catalyst to the first catalyst is 1.25-3:1-6.
  • the mass ratio of the second catalyst to the first catalyst is 1.25-2:3-6.
  • the preparation method includes: putting the carbon tetrachloride, the first catalyst and the second catalyst into a reactor, feeding the ethylene, and reacting to obtain the 1,1, 1,3-Tetrachloropropane.
  • the feeding of the ethylene is specifically: feeding ethylene to replace the air in the reactor for more than 2 times before the reaction, and then continuously feeding ethylene to carry out the reaction.
  • reaction conditions include: a pressure of 0.04-0.08 MPa.
  • the upper limit of the pressure is selected from 0.05, 0.06, 0.07, 0.08MPa; the lower limit is selected from 0.04, 0.05, 0.06, 0.07MPa.
  • the reaction conditions include: the temperature is 60-140°C.
  • the upper temperature limit is selected from 80, 100, 120, 140°C; the lower limit is selected from 60, 80, 100, 120°C.
  • reaction conditions include: the time is 2-10 hours.
  • the upper limit of time is selected from 3, 5, 8, and 10 hours; the lower limit is selected from 2, 3, 5, and 8 hours.
  • the reaction conditions include: the reaction is carried out under stirring, and the stirring speed is 800-2000 rpm.
  • the upper limit of the rotation speed is selected from 1000, 1200, 1500, 1800, 2000 rpm; the lower limit is selected from 800, 1000, 1200, 1500, 1800 rpm.
  • the catalyst iron used is nano-particles, and the particle size is smaller than that of commercially available iron powder or inorganic salts and other compound catalysts , the specific surface area is large, and the catalytic effect is better.
  • the carrier is modified, which can better attach the active ingredients, increase the contact area with the nano-zero valent iron, and is conducive to the reaction conduct.
  • the catalyst is selected from the group consisting of Fe/organic bentonite, Pd-Fe/organic bentonite, and Pd-Fe/modified activated carbon.
  • the preparation method of the catalyst comprises the steps:
  • the metal salt is FeCl 2 . 4H 2 O.
  • the carrier is modified activated carbon.
  • the reducing agent is KBH 4 .
  • the second metal component is K 2 PdCl 6 .
  • the solvent is an aqueous solution.
  • the second aspect of the present invention provides a method for the reaction of carbon tetrachloride and ethylene to synthesize 1,1,1,3-tetrachloropropane, the method comprising the steps of: combining the catalyst described in the first aspect above with tetrafluoroethylene The carbon chloride is mixed, and the co-catalyst triethyl phosphite is added to form a catalyst-carbon tetrachloride mixed solution, and ethylene gas is continuously introduced to react at high temperature and high pressure.
  • the co-catalyst is: tributyl phosphate, trimethyl phosphate, tributyl phosphite, triethyl phosphate, triphenyl phosphate, and dibutyl phosphate.
  • reaction is carried out in a closed reactor.
  • the mass ratio of the catalyst (calculated as nano zero-valent iron) to carbon tetrachloride is 0.0025-0.04:1.
  • the feeding ratio of the triethyl phosphite to the catalyst (calculated as nano zero-valent iron): 1.25-5.
  • reaction temperature is 80-140°C.
  • reaction time is 2-7 hours.
  • the pressure during the reaction is 0.04-0.08 MPa.
  • the rotational speed of stirring is 1200 rpm.
  • the reaction is repeated twice to observe the conversion rate and selectivity.
  • 1,1,1,3-tetrachloropropane As a specific embodiment, the preparation method of 1,1,1,3-tetrachloropropane provided by this application is:
  • the present application provides a catalyst for the reaction of carbon tetrachloride and ethylene to synthesize 1,1,1,3-tetrachloropropane
  • the main catalyst is nano-Fe/organic bentonite or nano-Pd-Fe/organic Bentonite or nano-Pd-Fe/activated carbon, co-catalyst: triethyl phosphite.
  • the present application provides a method for preparing a catalyst for the synthesis of 1,1,1,3-tetrachloropropane by carbon tetrachloride and ethylene, the method comprising the steps of:
  • cetyl trimethyl ammonium bromide (i) cetyl trimethyl ammonium bromide (CTMAB) reacts with bentonite, thereby obtaining the organobentonite of CTMAB modification;
  • ethanol-water is preferably used as the solvent to dissolve the ferrous salt.
  • ethanol-water is preferably used as the solvent to dissolve the ferrous salt.
  • ethanol is used as the solvent, which has the effect of eliminating air bubbles.
  • the newly prepared catalyst avoids prolonged exposure to air and is easily oxidized.
  • the present application provides a method for the reaction of carbon tetrachloride and ethylene to synthesize 1,1,1,3-tetrachloropropane, the method comprising the steps of: combining the catalyst of the present invention with a cocatalyst , carbon tetrachloride is mixed, put into a stainless steel autoclave with mechanical stirring, pass ethylene gas, and heat to react.
  • Said reaction generates hydrogen chloride, which is very easy to corrode equipment.
  • a reaction kettle that is resistant to corrosion and high temperature and pressure is used.
  • the co-catalyst/main catalyst feeding ratio is 3-4 (molar ratio).
  • the main catalyst/carbon tetrachloride feeding ratio is 0.006-0.01 (molar ratio).
  • the reactor needs to be replaced with ethylene gas three times to remove the residual air in the reactor. During the reaction, ethylene was continued until the end of the reaction.
  • the reaction temperature of the reaction is 80-120°C. More preferably, the temperature of the reaction is 100-110°C.
  • the preferred reaction time is 3-6 hours.
  • the present application provides a method for recovering a catalyst for the synthesis of 1,1,1,3-tetrachloropropane from carbon tetrachloride and ethylene.
  • the method comprises the steps of: using the catalyst of the present invention to catalyze the reaction After completion, filter, separate the reaction solution from the catalyst, add a co-catalyst, and conduct the reaction again.
  • conversion rate (addition amount of carbon tetrachloride-residual amount of carbon tetrachloride)/addition amount of carbon tetrachloride*100%;
  • organobentonite was added to 250mL, 0.162mol/L FeCl 2 .
  • 4H 2 O ethanol-water mixed solution, (ethanol:water 5:1) stirred for 6h; PH ⁇ 3 was adjusted with 1mol/L HCl; 250mL, 0.316mol/L NaBH4 aqueous solution of 250mL, 0.316mol /L NaBH4 aqueous solution was dripped into the above solution, stirred for 2h, the whole process was nitrogen, isolated from the air, to prevent the nano-zero valent iron from being oxidized by oxygen in the air. Filter, wash with deionized water and alcohol. Dry in a vacuum oven.
  • organobentonite was added to 250mL, 0.162mol/L FeCl 2 .
  • 4H 2 O ethanol-water mixed solution, (ethanol:water 5:1) stirred for 6h; PH ⁇ 3 was adjusted with 1mol/L HCl; 250 mL of 0.316 mol/L NaBH 4 aqueous solution of 0.316 mol/L was added dropwise to the above solution, stirred for 2 h, then 0.071 g of K 2 PdCl 4 was added, and the stirring was continued for 1 h.
  • the whole process is filled with nitrogen to isolate the air and prevent the nano-zero valent iron from being oxidized by oxygen in the air. Filter, wash with deionized water and alcohol. Dry in a vacuum oven.
  • activated carbon (20% H 3 PO 4 treatment) was added to 250mL, 0.06mol/L FeCl 2 .
  • the preparation method of 4# catalyst is only different in that the activated carbon treated with 20% H 3 PO 4 is replaced by the activated carbon treated with 20% HCl, and other preparation conditions are the same.
  • the preparation method of 5# catalyst is only different in that the activated carbon treated with 20% H 3 PO 4 is replaced by the activated carbon treated with 20% HNO 3 , and other preparation conditions.
  • the Fe-Pd/activated carbon (20% H3PO4 treatment) catalyst was obtained by drying in a vacuum drying oven, which was denoted as 7# catalyst.
  • the modified method of the carrier activated carbon is carried out according to the following steps:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种1,1,1,3‐四氯丙烷的制备方法,包括:在第一催化剂和第二催化剂存在下,将含有四氯化碳和乙烯的原料反应,获得所述1,1,1,3‐四氯丙烷;所述第一催化剂包括载体和负载在所述载体上的活性组分;所述活性组分包括纳米零价铁;所述第二催化剂包括酯类化合物。所述制备方法采用负载型铁催化剂,可以显著改善单纯市售铁粉做催化剂时容易团聚的问题,同时增大了铁的比表面积,有利于反应的进行。

Description

一种1,1,1,3‐四氯丙烷的制备方法 技术领域
本申请涉及一种1,1,1,3‐四氯丙烷的制备方法,属于化工技术领域。
背景技术
四氯化碳是甲烷氯化物装置的副产物,四氯化碳是《蒙特利尔议定书》规定的消耗臭氧层受控物质,简称:CTC。除原料用途、试剂用途和特殊豁免用途外,完全停止CTC的生产和消费。近年来,中国甲烷氯化物发展迅猛,依靠原料用途市场难以消化生产的CTC,焚烧处理四氯化碳约需3000~4000元/吨的成本。因此,CTC综合利用具有十分重要的现实意义,关系到整个产业链的生存和安全。
文献报道中报道的金属和助催化剂主要有:有机铜化合物和有机腈类化合物;铁或其化合物、有机磷化合物类。
目前所用的铁或其化合物、有机磷化合物类催化剂中铁粉为市售铁粉;市售铁粉作为主催化剂时,容易在反应釜釜底团聚,市由于长时间接触空气,表面形成一层氧化膜,使得反应活性降低。
综上所述,本领域尚缺乏一种比市售铁粉分散性更好、与反应物接触面积更大、选择性更高的四氯化碳合成1,1,1,3‐四氯丙烷反应催化剂。
发明内容
根据本申请的一个方面,提供一种1,1,1,3‐四氯丙烷的制备方法,所述制备方法采用负载型铁主催化剂,可以显著改善市售铁粉容易团聚的问题,同时增大了铁的比表面积,同时添加第二种纳米金属组分,有效解决新鲜制备的纳米铁催化剂暴露于空气中容易被氧化的问题,有利于反应的进行。
一种1,1,1,3‐四氯丙烷的制备方法,所述制备方法包括:
在第一催化剂和第二催化剂存在下,将含有四氯化碳和乙烯的原料反应,获得所述1,1,1,3‐四氯丙烷;
所述第一催化剂包括载体和负载在所述载体上的活性组分;
所述活性组分包括纳米零价铁;
所述第二催化剂包括酯类化合物。
可选地,所述活性组分还包括铂、铜中的至少一种。
可选地,所述活性成分选自零价铁纳米粒子、Pd‐Fe双金属纳米粒子、Cu‐Fe双金属纳米粒子中的任一种。
可选地,所述载体包括多孔材料中的至少一种
可选地,所述多孔材料包括膨润土和/或活性炭。
可选地,所述膨润土经过表面活性剂改性处理得到;
所述活性炭经过酸改性处理得到。
可选地,所述表面活性剂包括季铵盐中的至少一种;
所述酸包括HCl、H 3PO 4、HNO 3中的任一种。
可选地,所述季铵盐包括十六烷基三甲基溴化铵。
可选地,所述酸改性处理为:将活性炭与酸溶液混合,80~100℃下回流3~8h。
可选地,所述酸溶液的浓度为10~30%。
可选地,所述活性炭与所述酸溶液的质量体积比为5~15:80~120g/mL。
可选地,所述表面活性剂改性处理为:将膨润土水溶液与表面活性剂混合,调节pH值至酸性,50~80℃下,搅拌,洗涤。
可选地,所述膨润土与所述表面活性剂的质量比为30~60:15~25。
可选地,所述表面活性剂改性处理更具体地为:膨润土50g配制10%泥浆;加入19.2g十六烷基三甲基溴化铵。PH=5;70℃,搅拌2h,抽滤,去离子水洗涤3次;分析:2%AgNO 3检测不出溴。100℃烘箱过夜。
可选地,所述第一催化剂中,所述活性组分的负载量为5.01~50.1wt%。
可选地,所述第一催化剂中,所述活性组分的负载量上限选自8wt%、13wt%、20wt%、25wt%、30wt%、40wt%、或50.1wt%;下限选自5.01wt%、8wt%、13wt%、20wt%、25wt%、30wt%或40wt%。
可选地,所述Pd‐Fe双金属纳米粒子中,所述Fe和所述Pd的质量比为5~50:0.01~0.1;
所述Cu‐Fe双金属纳米粒子中,所述Cu和所述Fe的质量比为0.5~1.5:0.5~1.5。
可选地,所述Pd‐Fe双金属纳米粒子中,所述Fe和所述Pd的质量比为10~30:0.01~0.08。
可选地,所述Pd‐Fe双金属纳米粒子中,所述Fe和所述Pd的质量比为13~25:0.01~0.04。
可选地,所述Cu‐Fe双金属纳米粒子中,所述Cu和所述Fe的质量比为0.8~1.2:0.8~1.2。
可选地,所述四氯化碳与所述第一催化剂的质量比为50:1~10;
其中,第一催化剂以第一催化剂自身的质量计。
可选地,所述四氯化碳与所述第一催化剂的质量比为50:1~6。
可选地,所述四氯化碳与所述第一催化剂的质量比为50:1~4。
可选地,所述四氯化碳与所述第一催化剂的质量比为50:3~6。
可选地,所述第二催化剂包括磷酸酯、亚磷酸酯中的至少一种。
可选地,所述磷酸酯包括磷酸三丁酯、磷酸三甲酯、磷酸三乙酯、磷酸三苯酯、磷酸二丁酯中的至少一种;
所述亚磷酸酯包括亚磷酸三丁酯。
可选地,所述第二催化剂和所述第一催化剂的质量比为1.25~5:1~6;
其中,第二催化剂以第二催化剂自身的质量计,第一催化剂以第一催化剂自身的质量计。
可选地,所述第二催化剂和所述第一催化剂的质量比为1.25~3:1~6。
可选地,所述第二催化剂和所述第一催化剂的质量比为1.25~2:3~6。
可选地,所述制备方法包括:将所述四氯化碳、所述第一催化剂和所述第二催化剂放入反应器中,通入所述乙烯,反应,获得所述1,1,1,3‐四氯丙烷。
可选地,所述通入所述乙烯具体为:反应前先通入乙烯置换反应器中的空气2次以上,再持续通入乙烯进行反应。
可选地,所述反应的条件包括:压力0.04~0.08MPa。
可选地,所述压力的上限选自0.05、0.06、0.07、0.08MPa;下限选自0.04、0.05、0.06、0.07MPa。
可选地,所述反应的条件包括:温度为60~140℃。
可选地,温度上限选自80、100、120、140℃;下限选自60、80、100、120℃。
可选地,所述反应的条件包括:时间为2~10小时。
可选地,所述时间上限选自3、5、8、10小时;下限选自2、3、5、8小时。
可选地,所述反应的条件包括:在搅拌下反应,搅拌转速为800~2000转/分钟。
可选地,所述转速上限选自1000、1200、1500、1800、2000转/分钟;下限选自800、1000、1200、1500、1800转/分钟。
本申请能产生的有益效果包括:
1)本申请所提供的1,1,1,3‐四氯丙烷的制备方法,将催化剂活性成分铁负载于载体上,可以显著改善单纯市售铁粉做催化剂时容易团聚的问题,催化性能好,且反应结束后催化剂容易从反应釜中脱除。
2)本申请所提供的1,1,1,3‐四氯丙烷的制备方法,所采用的催化剂铁为纳米颗粒,与市售铁粉或者无机盐及其他化合物催化剂相比,颗粒度更小,比表面积大,催化效果更佳。
3)本申请所提供的1,1,1,3‐四氯丙烷的制备方法,载体经过改性,可以更好地附着活性成分,增大了与纳米零价铁的接触面积,有利于反应的进行。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
如无特别说明,本申请的实施例中的原料均通过商业途径购买。
其中,市售铁粉购于国药集团化学试剂有限公司,CAS:7439‐89‐6。
本申请中,第一催化剂等同于主催化剂;第二催化剂等同于助催化剂。
作为一种具体实施方式,本申请提供了一种四氯化碳与乙烯合成1,1,1,3‐四氯丙烷的方法,所述方法中所采用的催化剂具有利用率高、选择性好的优点。
在本发明的第一方面,提供了一种氯化副产物四氯化碳合成1,1,1,3‐四氯丙烷反应催化剂,所述催化剂包括催化有效量的金属组分:纳米零价铁或纳米Pd‐Fe双金属;和有机膨润土或活性炭载体。
在另一优选例中,所述催化剂选自下组:Fe/有机膨润土、Pd‐Fe/有机膨润土、Pd‐Fe/改性活性炭。
在另一优选例中,所述催化剂的制备方法包括步骤:
(i)用加入有载体(机膨润土)的金属盐(FeSO 4 .7H 2O)乙醇‐水溶液与还原剂(NaBH 4)溶液进行还原反应,从而得到有机膨润土负载的纳米零价铁;继续加入第二金属组分(PdCl 2);继续还原反应;获得的催化剂中Pd含量为:0.04%。抽滤,真空干燥箱干燥。整个反应过程持续通入氮气,隔绝空气。
在另一优选例中,所述的金属盐为FeCl 2 .4H 2O。
在另一优选例中,所述载体为改性的活性炭。
在另一优选例中,所述还原剂为KBH 4
在另一优选例中,所述第二金属组分为K 2PdCl 6
在另一优选例中,所述溶剂为水溶液。
本发明的第二方面,提供了一种四氯化碳与乙烯合成1,1,1,3‐四氯丙烷反应的方法,所述方法包括步骤:将上述第一方面所述的催化剂与四氯化碳混合,添加助催化剂亚磷酸三乙酯,形成催化剂‐四氯化碳混合溶液,持续通入乙烯气,高温高压反应。
在另一优选例中,所述助催化剂为:磷酸三丁酯、磷酸三甲酯、亚磷酸三丁酯、磷酸三乙酯、磷酸三苯酯、磷酸二丁酯。
在另一优选例中,所述反应在密闭反应釜中进行。
在另一优选例中,所述催化剂(以纳米零价铁计)与四氯化碳的投料质量比为0.0025~0.04:1。
在另一优选例中,所述亚磷酸三乙酯与所述催化剂(以纳米零价铁计)的投料比:1.25~5。
在另一优选例中,所述反应温度为80~140℃。
在另一优选例中,所述反应的时间为2~7小时。
在另一优选例中,反应过程中压力为0.04~0.08MPa。
在另一优选例中,进行搅拌的转速1200转/分钟。
在另一优选例中,所述的催化剂回收后,继续重复两次反应,观察转化率和选择性。
作为一种具体实施方案,本申请所提供的1,1,1,3‐四氯丙烷的制备方法为:
在带有机械搅拌的100ml不锈钢高压反应釜中加入50g四氯化碳,再加入1~10g的催化剂,铁负载量:5~25%;(铁负载量以投料计)然后通乙烯置换反应釜内残留的空气两次,待此步完成后充入乙烯气体到0.04~0.08MPa,加热升温至60~140℃),反应2~10小时;一直通乙烯至反应结束,反应完成后,自然冷却,取反应液进行气相色谱分析。
作为一种具体实施方式,本申请提供一种四氯化碳与乙烯合成1,1,1,3‐四氯丙烷反应催化剂,所述主催化剂为纳米Fe/有机膨润土或纳米Pd‐Fe/有机膨润土或纳米Pd‐Fe/活性炭,助催化剂为:亚磷酸三乙酯。
作为一种具体实施方式,本申请提供一种四氯化碳与乙烯合成1,1,1,3‐四氯丙烷反应催化剂的制备方法,所述方法包括步骤:
(i)十六烷基三甲基溴化铵(CTMAB)与膨润土进行反应,从而得到CTMAB改性的有机膨润土;
(ii)改性的膨润土浸渍亚铁盐;例如:FeSO 4 .7H 2O或FeCl 2 .4H 2O, 溶剂为乙醇‐水体系或纯水。
(iii)上述亚铁溶液被NaBH 4或KBH 4还原剂还原。整各还原过程持续通入氮气,保持无氧环境。
(iv)继续加入K 2PdCl 4或者PdCl 2,搅拌至完全反应。
(v)真空干燥箱干燥,整个过程避免长时间接触空气,防止制备出的纳米铁被氧化。
其中优选地为乙醇‐水作为溶剂溶解亚铁盐,一方面还原过程中会生成大量的气泡,选用乙醇作为溶剂,有消解气泡的作用。新制备的催化剂避免长时间接触空气,很容易就被氧化。
作为一种具体实施方式,本申请提供一种四氯化碳与乙烯合成1,1,1,3‐四氯丙烷反应的方法,所述方法包括步骤:将本发明所述的催化剂与助催化剂、四氯化碳混合,加入带有机械搅拌的不锈钢高压反应釜中,通入乙烯气,加热进行反应。
所述的反应有氯化氢生成,极易腐蚀设备,优选地,用耐腐蚀耐高温高压的反应釜。
优选地,所述催化剂中,助催化剂/主催化剂投料比为3~4(摩尔比)。
优选地,主催化剂/四氯化碳投料比为0.006~0.01(摩尔比)。投料完毕,需用乙烯气置换反应釜三次,以除去反应釜内残存的空气。反应过程中持续通乙烯直至反应结束。
在优选的实施例中,所述反应的反应温度为80‐120℃。更优选地,所述反应的温度为100‐110℃。优选的反应时间为3‐6小时。
作为一种具体实施方式,本申请一种四氯化碳与乙烯合成1,1,1,3‐四氯丙烷反应催化剂回收方法,所述方法包括步骤:在用本发明所述的催化剂催化反应完毕后,过滤,反应液和催化剂进行分离,加入助催化剂,重新进行反应。
应理解,在本申请范围内,本申请的上述各技术特征和在下文(如具体实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
在本申请中,转化率=(四氯化碳加入量‐四氯化碳剩余量)/四氯化碳加入量*100%;
选择性=(四氯丙烷产率/转化率)*100%;
产率=实际四氯丙烷产量/理论产量。
实施例1催化剂的制备
将5g有机膨润土加入到250mL、0.054mol/L FeSO 4 .7H 2O溶液中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.108mol/L KBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥。
实施例2催化剂的制备
将5g有机膨润土加入到250mL、0.054mol/L FeCl 2 .4H 2O溶液中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.108mol/L KBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥。
实施例3催化剂的制备
将5g有机膨润土加入到250mL、0.162mol/L FeSO 4 .7H 2O乙醇—水混合溶液中,(乙醇:水=5:1)搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.316mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥。
实施例4催化剂的制备
将5g有机膨润土加入到250mL、0.162mol/L FeCl 2 .4H 2O乙醇—水混合溶液中,(乙醇:水=5:1)搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.316mol/L NaBH 4水溶液滴入上述溶液中,搅拌 2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥。
实施例5催化剂的制备
将5g有机膨润土加入到250mL、0.162mol/L FeCl 2 .4H 2O乙醇—水混合溶液中,(乙醇:水=5:1)搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.316mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,后加入0.071gK 2PdCl 4,继续搅拌1h。整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥。
实施例6催化剂的制备
将5g有机膨润土加入到250mL、0.03mol/L FeCl 2 .4H 2O乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.06mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥,得到Fe/膨润土催化剂,记为8#催化剂。XRF测定催化剂中Fe负载量:5wt%。
实施例7催化剂的制备
将5g有机膨润土加入到250mL、0.06mol/L FeCl 2 .4H 2O乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调pH<3;将配制好的250mL、0.12mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥,得到Fe/膨润土催化剂,记为9#催化剂。XRF测定催化剂中Fe负载量:13wt%。
实施例8催化剂的制备
将5g有机膨润土加入到250mL、0.162mol/L FeCl 2 .4H 2O乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调pH<3; 将配制好的250mL、0.316mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h。整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥,得到Fe/膨润土催化剂,记为1#催化剂。XRF测定:Fe负载量:25wt%。
实施例9催化剂的制备
将5g有机膨润土加入到250mL、0.06mol/L FeCl 2 .4H 2O乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.12mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,后加入0.071gK 2PdCl 4,继续搅拌1h。整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥得到Pd‐Fe/膨润土催化剂,记为2#催化剂。XRF测定:Pd负载量:0.04%;Fe负载量:13wt%。
实施例10催化剂的制备
将5g活性炭(20%H 3PO 4处理)加入到250mL、0.06mol/L FeCl 2 .4H 2O乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.12mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥得到Fe/活性炭(20%H 3PO 4处理),记为3#催化剂。XRF测定催化剂中Fe负载量:13wt%。
实施例11催化剂的制备
4#催化剂的制备方法与3#相比,区别仅在于把20%H 3PO 4处理的活性炭换成20%HCl处理的活性炭,其他制备条件相同。
实施例12催化剂的制备
5#催化剂的制备方法与3#相比,区别仅在于把20%H 3PO 4处理的活性炭换成20%HNO 3处理的活性炭,其他制备条件。
实施例13催化剂的制备
将5g活性炭(20%H 3PO 4处理)加入到250mL、0.06mol/L FeCl 2 .4H 2O和相同摩尔量的氯化铜的乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.25mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥,得到Cu‐Fe(Cu:Fe=1:1)/活性炭(20%H 3PO 4处理)催化剂,记为6#催化剂。XRF测定催化剂中Fe负载量:13wt%;Cu负载量:12.8wt%;约为1:1。
实施例14催化剂的制备
将5g活性炭(20%H 3PO 4处理)加入到250mL、0.06mol/L FeCl 2 .4H 2O乙醇—水混合溶液(乙醇:水=5:1)中,搅拌6h;用1mol/L HCl调PH<3;将配制好的250mL、0.12mol/L NaBH 4水溶液滴入上述溶液中,搅拌2h,后加入0.019gK 2PdCl 4,继续搅拌1h。整个过程通氮气,隔绝空气,防止纳米零价铁被空气中氧气氧化。过滤,去离子水洗、醇洗。真空干燥箱干燥得到Fe‐Pd/活性炭(20%H3PO4处理)催化剂,记为7#催化剂。XRF测定:Fe负载量:13wt%;Pd负载量:0.1wt%。
上述3#~7#催化剂的制备中,载体活性炭改性方法按以下步骤进行:
分别配置20%的HCl溶液,20%的H 3PO 4溶液或20%的HNO 3溶液。取10g活性炭样品放入250mL的圆底烧瓶中,并分别加入100mL上述溶液,在100℃下搅拌回流5h。待其冷却后,过滤活性炭样品,并用去离子水洗涤至中性,过滤得到滤饼。将处理后的活性炭滤饼放入烘箱内,在110℃干燥10h。
实施例15 1,1,1,3‐四氯丙烷的制备
在带有机械搅拌的100ml间歇式不锈钢高压反应釜中加入50g 四氯化碳,再加入4g的8#催化剂,亚磷酸三乙酯:1.3g;然后通乙烯置换反应釜内残留的空气两次,待此步完成后充入乙烯气体到0.04MPa,加热升温至60℃,反应3小时;一直通乙烯至反应结束,反应完成后,自然冷却,取反应液进行气相色谱分析。结果表明:四氯化碳单程转化率:63.5%;选择性:87.2%。
实施例16 1,1,1,3‐四氯丙烷的制备
在带有机械搅拌的100ml间歇式不锈钢高压反应釜中加入50g四氯化碳,再加入3g的9#催化剂,亚磷酸三乙酯:1.3g;然后通乙烯置换反应釜内残留的空气两次,待此步完成后充入乙烯气体到0.08MPa,加热升温至100℃,反应6小时;一直通乙烯至反应结束,反应完成后,自然冷却,取反应液进行气相色谱分析。结果表明:四氯化碳单程转化率:96.8%;选择性:98.7%
实施例17 1,1,1,3‐四氯丙烷的制备
在带有机械搅拌的100ml间歇式不锈钢高压反应釜中加入50g四氯化碳,再加入6g的1#催化剂,亚磷酸三乙酯:1.3g;然后通乙烯置换反应釜内残留的空气两次,待此步完成后充入乙烯气体到0.08MPa,加热升温至140℃,反应10小时;一直通乙烯至反应结束,反应完成后,自然冷却,产物均结焦,为黑色固体。
实施例18~24、对比例1 1,1,1,3‐四氯丙烷的制备
实验条件:亚磷酸三乙酯:1.3g、CCl4:50g、温度:100℃、压力:0.08MPa、时间:3h;催化剂添加量:3g;所用催化剂种类及反应结果如表1所示。
表1 13~19所用催化剂种类及反应结果
Figure PCTCN2021074800-appb-000001
Figure PCTCN2021074800-appb-000002
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (18)

  1. 一种1,1,1,3‐四氯丙烷的制备方法,其特征在于,所述制备方法包括:
    在第一催化剂和第二催化剂存在下,将含有四氯化碳和乙烯的原料反应,获得所述1,1,1,3‐四氯丙烷;
    所述第一催化剂包括载体和负载在所述载体上的活性组分;
    所述活性组分包括纳米零价铁;
    所述第二催化剂包括酯类化合物。
  2. 根据权利要求1所述的制备方法,其特征在于,所述活性组分还包括铂、铜中的至少一种。
  3. 根据权利要求1所述的制备方法,其特征在于,所述活性组分选自零价铁纳米粒子、Pd‐Fe双金属纳米粒子、Cu‐Fe双金属纳米粒子中的任一种。
  4. 根据权利要求1所述的制备方法,其特征在于,所述载体包括多孔材料中的至少一种。
  5. 根据权利要求4所述的制备方法,其特征在于,所述多孔材料包括膨润土和/或活性炭。
  6. 根据权利要求5所述的制备方法,其特征在于,所述膨润土经过表面活性剂改性处理得到;
    所述活性炭经过酸改性处理得到。
  7. 根据权利要求6所述的制备方法,其特征在于,所述表面活性剂包括季铵盐中的至少一种;
    所述酸包括HCl、H 3PO 4、HNO 3中的任一种。
  8. 根据权利要求7所述的制备方法,其特征在于,所述季铵盐包括十六烷基三甲基溴化铵。
  9. 根据权利要求1所述的制备方法,其特征在于,所述第一催化剂中,所述活性组分的负载量为5.01~50.1wt%。
  10. 根据权利要求3所述的制备方法,其特征在于,所述Pd‐Fe双金属纳米粒子中,所述Fe和所述Pd的质量比为5~50:0.01~0.1;
    所述Cu‐Fe双金属纳米粒子中,所述Cu和所述Fe的质量比为0.5~1.5:0.5~1.5。
  11. 根据权利要求1所述的制备方法,其特征在于,所述四氯化碳与所述第一催化剂的质量比为50:1~10;
    其中,第一催化剂以第一催化剂自身的质量计。
  12. 根据权利要求1所述的制备方法,其特征在于,所述第二催化剂包括磷酸酯、亚磷酸酯中的至少一种。
  13. 根据权利要求1所述的制备方法,其特征在于,所述磷酸酯包括磷酸三丁酯、磷酸三甲酯、磷酸三乙酯、磷酸三苯酯、磷酸二丁酯中的至少一种;
    所述亚磷酸酯包括亚磷酸三丁酯。
  14. 根据权利要求1所述的制备方法,其特征在于,所述第二催化剂和所述第一催化剂的质量比为1.25~5:1~6;
    其中,第二催化剂以第二催化剂自身的质量计,第一催化剂以第一催化剂自身的质量计。
  15. 根据权利要求1所述的制备方法,其特征在于,所述制备方法包括:将所述四氯化碳、所述第一催化剂和所述第二催化剂放入反应器中,通入所述乙烯,反应,获得所述1,1,1,3‐四氯丙烷。
  16. 根据权利要求1或15所述的制备方法,其特征在于,所述反应的条件包括:压力0.04~0.08MPa。
  17. 根据权利要求1或15所述的制备方法,其特征在于,所述反应的条件包括:温度为60~140℃;时间为2~10小时。
  18. 根据权利要求1或15所述的制备方法,其特征在于,所述反应的条件包括:在搅拌下反应,搅拌转速为800~2000转/分钟。
PCT/CN2021/074800 2021-02-02 2021-02-02 一种1,1,1,3‐四氯丙烷的制备方法 WO2022165623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074800 WO2022165623A1 (zh) 2021-02-02 2021-02-02 一种1,1,1,3‐四氯丙烷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074800 WO2022165623A1 (zh) 2021-02-02 2021-02-02 一种1,1,1,3‐四氯丙烷的制备方法

Publications (1)

Publication Number Publication Date
WO2022165623A1 true WO2022165623A1 (zh) 2022-08-11

Family

ID=82740658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074800 WO2022165623A1 (zh) 2021-02-02 2021-02-02 一种1,1,1,3‐四氯丙烷的制备方法

Country Status (1)

Country Link
WO (1) WO2022165623A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195254A1 (en) * 2018-04-03 2019-10-10 Blue Cube Ip Llc Method for production of a halogenated alkane using an absorber-reactor combination
CN111056913A (zh) * 2019-12-09 2020-04-24 宁波巨化化工科技有限公司 一种1,1,1,3-四氯丙烷的连续生产方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019195254A1 (en) * 2018-04-03 2019-10-10 Blue Cube Ip Llc Method for production of a halogenated alkane using an absorber-reactor combination
CN111056913A (zh) * 2019-12-09 2020-04-24 宁波巨化化工科技有限公司 一种1,1,1,3-四氯丙烷的连续生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENG JIE, ET AL: "Research progress on the characterization and modification of nanoscale zero-valent iron for applications", ENVIRONMENTAL CHEMISTRY, vol. 39, no. 11, 1 November 2020 (2020-11-01), pages 1 - 20, XP055957229 *

Similar Documents

Publication Publication Date Title
Jiang et al. Microwave-assisted synthesis of ultrafine Au nanoparticles immobilized on MOF-199 in high loading as efficient catalysts for a three-component coupling reaction
WO2018209666A1 (zh) 一种单原子分散钯基催化剂的制备方法及其催化应用
CN109999883A (zh) 一种氮掺杂碳负载单原子催化剂的制备方法
So et al. A convenient synthesis of solvated and unsolvated anhydrous metal chlorides via dehydration of metal chloride hydrates with trimethylchlorosilane
CN108273504B (zh) 一种氮掺杂石墨烯负载铁基催化剂及其制备方法和应用
CN112237945B (zh) 一种用于乙炔氢氯化的贵金属原子簇催化剂的制备及应用
CN108671964A (zh) 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法
Xie et al. Carbon supported copper catalyst prepared in situ by one-pot pyrolysis of Bougainvillea glabra: An efficient and stable catalyst for selective oxidation of cyclohexane
CN103143357A (zh) 液相甲醇连续氧化羰基化合成碳酸二甲酯的催化剂及其制法和应用
CN110813356A (zh) 一种CdIn2S4-C3N4复合光催化剂及其制备方法和应用
CN107442180A (zh) 一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用
CN107694563A (zh) 钯炭催化剂及其制备方法和应用
CN106622316B (zh) 一种钒磷氧催化剂,其制备方法及应用
US9844774B2 (en) Process for preparing catalyst loaded polyphenylene particles, the obtained polyphenylene particles and their use as catalysts
CN109364962B (zh) 用于丙酮选择加氢的磷化镍基催化剂及其制法和应用
CN105903473B (zh) 一种水滑石前驱体法制备M-Sn金属间化合物的方法及其应用
CN113402429B (zh) 一种氧气氧化2-硝基-4-甲砜基甲苯生成2-硝基-4-甲砜基苯甲酸的合成方法
Sun et al. Highly Efficient Conversion of Homocoupling and Heterocoupling of Terminal Alkynes Catalyzed by AuCu24/AC‐200
WO2022165623A1 (zh) 一种1,1,1,3‐四氯丙烷的制备方法
CN111701596B (zh) 一种在温和条件下合成氨的原子级活性位点催化剂制备方法
CN110975921B (zh) 具有磁性多孔结构的氮掺杂钴基碳材料的制备方法及应用
CN101157028A (zh) 用于合成香茅醛的铂碳纳米管催化剂及其制备方法
CN114835554A (zh) 一种1,1,1,3-四氯丙烷的制备方法
CN114917905A (zh) 一种高性能双铜结构复合纳米催化材料的制备与应用
JP2015167882A (ja) 光触媒の製造方法、光触媒及び水素生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923653

Country of ref document: EP

Kind code of ref document: A1