CN107442180A - 一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用 - Google Patents

一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用 Download PDF

Info

Publication number
CN107442180A
CN107442180A CN201710694920.1A CN201710694920A CN107442180A CN 107442180 A CN107442180 A CN 107442180A CN 201710694920 A CN201710694920 A CN 201710694920A CN 107442180 A CN107442180 A CN 107442180A
Authority
CN
China
Prior art keywords
rgo
mil
mofs
catalyst
loads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710694920.1A
Other languages
English (en)
Other versions
CN107442180B (zh
Inventor
鲁福身
王海龙
孟园
胡全钦
付钦瑞
方子林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou University
Original Assignee
Shantou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou University filed Critical Shantou University
Priority to CN201710694920.1A priority Critical patent/CN107442180B/zh
Publication of CN107442180A publication Critical patent/CN107442180A/zh
Application granted granted Critical
Publication of CN107442180B publication Critical patent/CN107442180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用,以NH2‑MIL‑101(Cr)‑rGO为载体,将催化剂活性组分纳米Pd封装到所述载体形成的笼子中,所述NH2‑MIL‑101(Cr)‑rGO中GO所占的重量百分含量为1‑5%,所述纳米Pd的负载量为4‑5wt%。本发明利用MOFs笼子结构特点,以四氯钯酸为钯源利用离子交换法制备出Pd2+负载的MOFs‑rGO,再经过NaBH4还原剂的作用下制备出MOFs‑rGO负载的Pd纳米非均相催化剂。钯纳米粒子主要封装在MOFs‑rGO笼子内,原子密堆积的rGO提高了NH2‑MIL‑101(Cr)‑rGO吸附性能和稳定性能,具有较小的粒径、良好的分散性和稳定性,催化性能大大的提高。将该催化剂应用于对氯苯酚和邻氯苯酚的脱氯反应,具有高的催化活性。而且本发明的催化剂制备方法简单,易操作。

Description

一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用
技术领域
本发明属于催化技术领域,尤其涉及一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用。
背景技术
金属有机框架(metal organic frameworks or porous coordinationpolymers),简称MOFs,是由无机金属阳离子与有机桥联配体通过配位键相互作用形成的新型的一类微孔晶体材料。有机桥联配体与金属离子或者金属簇的配位方式多样性决定了MOFs结构的多样性,更重要的是可以根据需要选择合适的金属离子和配体设计合成具有特定结构和功能的MOFs。MOFs有很多优异的性能,比如超高的孔隙率(大于90%)、高比表面积(有些MOFs的Langmuir面积高达104m2g-1)。MOFs在气体吸附储存、分离、化学传感、质子传导和药物载体等领域的应用。但是化学稳定性差等缺点不利于MOFs在催化领域的应用。
氯酚类化合物是有机合成反应的中间体,也被用作农药,除草剂和消毒水等工业。氯酚类化合物及其衍生物具有致癌性,会在生物体内积累。因为人类不合理的使用和处理,在地下水、表面水、空气和土壤中都已经检测到氯酚类化合物。这些化合物可能转变成毒性更强的二苯并二恶英或多氯代二苯并呋喃,对环境造成更大的危害,所以氯酚类化合物的消除已引起人们的关注。处理这些污染物的方法主要有热处理、超声处理、臭氧处理及电化学处理、氧化降解、生物降解和加入催化剂进行加氢脱氯等,其中利用催化剂使氯酚类化合物加氢脱氯的方法所需能量少、反应条件温和,已成为研究重点。
发明内容
本发明的目的在于一种MOFs-rGO负载的Pd纳米催化剂及其制备,以解决现有的问题。
为了实现上述的目的,采用如下的技术方案:
一种MOFs-rGO负载的Pd纳米催化剂,以NH2-MIL-101(Cr)-rGO为载体,将催化剂活性组分纳米Pd封装到所述载体形成的笼子中,所述NH2-MIL-101(Cr)-rGO中GO所占的重量百分含量为1-5%,所述纳米Pd的负载量为4-5wt%。
NH2是增加水溶性,主要是为了制备的Pd/NH2-MIL-101(Cr)-rGO更好的分散到水体系中,便于氯苯酚的脱氯反应。选用NH2-MIL-101(Cr)的原因是,在水中分散性好,而且有介孔的笼子便于负载和催化反应过程中物质的交换。
NH2-MIL-101(Cr)是由直径分别为3.4nm和2.9nm两种笼子构成的分子筛结构的晶体。它具有两个1.2nm和1.6nm的窗口,可与外界进行物质交换。由于MOFs中含有规则的笼子和窗口,有利于催化剂粒子的封装和稳定。但是NH2-MIL-101(Cr)的稳定性较差。原子密堆积的石墨加入到NH2-MIL-101(Cr)中有利于增加NH2-MIL-101(Cr)比表面积和稳定性,从而拓展NH2-MIL-101(Cr)在催化领域的应用。当GO加入的质量分数为2%时,催化剂Pd/NH2-MIL-101(Cr)-rGO的稳定性和催化活性最佳。
催化性能与Pd负载量、Pd纳米粒子的粒径大小有关,Pd纳米粒子的粒径大小为主要因素。GO的加入量主要影响NH2-MIL-101(Cr)-rGO晶体颗粒大小,并且决定了晶体中rGO的含量。
进一步的,所述纳米Pd的粒径小于5nm。
上述MOFs-rGO负载的Pd纳米催化剂的制备,主要包括以下步骤:
(1)制备NH2-MIL-101(Cr)-rGO;
(2)将步骤(1)制备得到的NH2-MIL-101(Cr)-rGO分散到蒸馏水中,滴加HCl调节溶液pH值;
(3)加入适量的H2PdCl4到溶液中,充分的搅拌4-6h;过滤,充分水洗后乙醇洗涤;
(4)将步骤(3)得到的固体再次分散在水中,在0-5℃下逐滴加入还原剂,继续搅拌2h,过滤干燥。
进一步的,步骤(1)所述NH2-MIL-101(Cr)-rGO的制备主要包括:以九水合硝酸铬为金属盐、2-氨基对苯二甲酸为配体和GO分散在氢氧化钠溶液中,在160℃水热条件下合成,用乙醇进行充分洗涤,并真空干燥。
进一步的,步骤(2)所述pH值为5。
进一步的,步骤(4)所述还原剂为硼氢化物。
在超声条件下将NH2-MIL-101(Cr)-rGO分散蒸馏水中。基于此,步骤(1)加入盐酸使载体上的氨基质子化,形成NH3+-MIL-101(Cr)-rGO。步骤(2)中加入适量的H2PdCl4搅拌的目的是将PdCl4 2+与NH3+-MIL-101(Cr)-rGO上的质子进行交换。步骤(3)中优选在0-5℃下进行还原,因为在低温条件下能减少金属粒子的团聚,有利于形成粒径较小的纳米粒子,从而提高催化效能。
上述MOFs-rGO负载的Pd纳米催化剂的应用,作为卤代苯酚的加氢脱氯催化剂。
进一步的,所述卤代苯酚为对氯苯酚和邻氯苯酚。
与现有技术相比,本发明利用MOFs笼子结构特点,以四氯钯酸为钯源利用离子交换法制备出Pd2+负载的MOFs-rGO,在经过NaBH4还原剂的作用下制备出MOFs-rGO负载的Pd纳米非均相催化剂。钯纳米粒子主要封装在MOFs-rGO笼子内,原子密堆积的rGO提高了NH2-MIL-101(Cr)-rGO吸附性能和稳定性能,具有较小的粒径、良好的分散性和稳定性,催化性能大大的提高。将该催化剂应用于对氯苯酚和邻氯苯酚的脱氯反应,具有高的催化活性。而且本发明的催化剂制备方法简单,易操作。
附图说明
图1为实施例1制备的NH2-MIL-101(Cr)-rGO载体的扫描电子显微镜(SEM)图;其中a为NH2-MIL-101(Cr),b为NH2-MIL-101(Cr)-rGO-1,c为NH2-MIL-101(Cr)-rGO-2,d为NH2-MIL-101(Cr)-rGO-3;
图2为实施例1和2制备的NH2-MIL-101(Cr)-rGO载体与Pd/NH2-MIL-101(Cr)-rGO-2催化剂的XRD图谱;
图3为实施例2制备的Pd/NH2-MIL-101(Cr)-rGO-2催化剂的透射电子显微镜(TEM)图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作进一步地详细描述。
实施例1
NH2-MIL-101(Cr)的制备:分别称量800mg的九水合硝酸铬(2mmol)、360mg的2-氨基对苯二甲酸(2mmol)和200mg的氢氧化钠(5mmol),并加入到15mL的去离子水中。在室温下经过超声处理使其混合均匀,然后转移至50mL的聚四氟反应釜中,在160℃下反应16h,冷却至室温后,使用孔径为0.22μm的水系滤膜抽滤得到草绿色固体。最后在95%乙醇中将草绿色固体回流12h,洗去未反应的2-氨基对苯二甲酸,得到NH2-MIL-101(Cr)。将得到的固体粉末在真空干燥箱中于100℃下进行干燥活化12h后待用。
NH2-MIL-101(Cr)-rGO-1,NH2-MIL-101(Cr)-rGO-2,NH2-MIL-101(Cr)-rGO-3的合成方法与NH2-MIL-101(Cr)的合成方法相同。不同之处在于加入质量比为1%,2%或5%的GO至溶液中,再进行水热合成。四种不同的载体的形貌如图1所示,XRD图如图2所示。从图1和图2可以,由于看出GO上含氧官能团是晶体的成核位点,加入量过多,晶体成核数增多。NH2-MIL-101(Cr)-rGO晶体基本上都在GO的表面生长,形成类似于三明治的结构。且NH2-MIL-101(Cr)-rGO-3中晶体相对难分散一些,因为其中含有的rGO相对较多不易分散。当GO的含量达到5%以后形成的NH2-MIL-101(Cr)-rGO-3形貌与NH2-MIL-101(Cr),NH2-MIL-101(Cr)-rGO-1和NH2-MIL-101(Cr)-rGO-2差别较大。H2-MIL-101(Cr)-rGO-3晶体颗粒比较小并且含有的rGO量较多(达5%),特征峰有一定的减弱,并且rGO一定程度上遮盖了NH2-MIL-101(Cr)-rGO-3的特征峰,因此NH2-MIL-101(Cr)-rGO-3的XRD图谱与NH2-MIL-101(Cr),NH2-MIL-101(Cr)-rGO-1和NH2-MIL-101(Cr)-rGO-2差别较大。
实施例2
将实施例1制备得到的四种载体NH2-MIL-101(Cr),NH2-MIL-101(Cr)-rGO-1,NH2-MIL-101(Cr)-rGO-2,NH2-MIL-101(Cr)-rGO-3制备Pd纳米纳米粒子负载的催化剂载体,以Pd/NH2-MIL-101(Cr)的制备为例,具体步骤如下:称量200mg活化的固体粉末NH2-MIL-101(Cr),超声分散在20mL水中。在搅拌的过程中向溶液中滴加1M的HCl溶液,酸化NH2-MIL-101(Cr)。10min后,再向溶液中滴加10mmol的氯钯酸溶液13mL,常温下搅拌6h。然后用0.22μm孔径的水系滤膜进行抽滤,分别用100ml的水和乙醇洗涤2次至中性,得到Pd2+/NH2-MIL-101(Cr)固体。再将Pd2+/NH2-MIL-101(Cr)分散在20mL水中,冰浴下搅拌均匀。待溶液温度降至2-3℃时,向溶液中滴加过量的5mg/mL的硼氢化钠溶液进行还原,滴加完后再搅拌反应3h。过滤,分别用100mL水和乙醇洗涤2次,在50℃下真空干燥12h。用相似方法制备的Pd/NH2-MIL-101(Cr)-rGO-2催化剂的透射电子显微镜(TEM)图如图3所示。从图3可以看出纳米Pd的粒径大都小于5nm。
实施例3
将实施案例2中制备的催化剂用于对氯苯酚和邻氯苯酚的加氢脱氯反应。具体步骤为:用移液管量取对氯苯酚或者邻氯苯酚溶液(18.36mg/mL,1mmol)至三口烧瓶中,稀释至10mL,加入23mg催化剂,超声使其分散,搅拌10min。后加入15mmol有机碱至反应液中,超声1min后在30℃水浴条件下搅拌反应。混合液用孔径为0.22μm的针头过滤器过滤,滤液通过液相色谱仪分析其产率。所用的反应底物和相应的产率列于表1,相同条件下Pd/NH2-MIL-101(Cr)-rGO-2和Pd/NH2-MIL-101(Cr)-rGO-3催化效果最好。进一步对催化剂稳定性进行探究,反应后Pd/NH2-MIL-101(Cr)-rGO-2中Pd的流失最少,所以优选Pd/NH2-MIL-101(Cr)-rGO-2作为脱氯反应的催化剂。
表1不同催化剂及其产率
实施例4
根据实施例3的结果,选用Pd/NH2-MIL-101(Cr)-rGO-2催化剂进一步探究有机碱(甲酸铵)的用量对反应的影响如表2所示。随着有加碱加入量的增加,30min内对氯苯酚或邻氯苯酚生成苯酚的产率增加。当有机碱为40倍当量时,1mmol反应底物在10min内即反应完。对不同碱用量时催化剂稳定性进行分析,发现15倍碱用量时催化剂的稳定性最高。所以优选了15倍的碱当量作为最优用量。
表2有机碱的用量对反应的影响
以上所揭露的仅为本发明的较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (8)

1.一种MOFs-rGO负载的Pd纳米催化剂,其特征在于,以NH2-MIL-101(Cr)-rGO为载体,将催化剂活性组分纳米Pd封装到所述载体形成的笼子中,所述NH2-MIL-101(Cr)-rGO中加入GO质量百分数为1-5%,所述催化剂Pd的负载量为4-5wt%。
2.根据权利要求1所述MOFs-rGO负载的Pd纳米催化剂,其特征在于,所述纳米Pd的粒径小于5nm。
3.根据权利要求1或2所述MOFs-rGO负载的Pd纳米催化剂的制备,其特征在于,主要包括以下步骤:
(1)制备NH2-MIL-101(Cr)-rGO;
(2)将步骤(1)制备得到的NH2-MIL-101(Cr)-rGO分散到蒸馏水中,滴加HCl调节溶液pH值;
(3)加入适量的H2PdCl4到溶液中,充分的搅拌4-6h;过滤,充分水洗后乙醇洗涤;
(4)将步骤(3)得到的固体再次分散在水中,在0-5℃下逐滴加入还原剂,继续搅拌2h,过滤干燥。
4.根据权利要求3所述制备方法,其特征在于,步骤(1)所述NH2-MIL-101(Cr)-rGO的制备主要包括:以九水合硝酸铬为金属盐、2-氨基对苯二甲酸为配体和GO分散在氢氧化钠溶液中,在160℃水热条件下合成,用乙醇进行充分洗涤,并真空干燥。
5.根据权利要求3所述制备方法,其特征在于,步骤(2)所述pH值为5。
6.根据权利要求3所述制备方法,其特征在于,步骤(4)所述还原剂为硼氢化物。
7.根据权利要求1或2所述MOFs-rGO负载的Pd纳米催化剂的应用,其特征在于,作为卤代苯酚的加氢脱氯催化剂。
8.根据权利要求7所述应用,其特征在于,所述卤代苯酚为对氯苯酚和邻氯苯酚。
CN201710694920.1A 2017-08-15 2017-08-15 一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用 Active CN107442180B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710694920.1A CN107442180B (zh) 2017-08-15 2017-08-15 一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710694920.1A CN107442180B (zh) 2017-08-15 2017-08-15 一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用

Publications (2)

Publication Number Publication Date
CN107442180A true CN107442180A (zh) 2017-12-08
CN107442180B CN107442180B (zh) 2020-05-15

Family

ID=60491995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710694920.1A Active CN107442180B (zh) 2017-08-15 2017-08-15 一种MOFs-rGO负载的Pd纳米催化剂及其制备与应用

Country Status (1)

Country Link
CN (1) CN107442180B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636453A (zh) * 2018-04-08 2018-10-12 浙江工业大学 一种金属有机框架材料封装的纳米贵金属催化剂及其制备方法和应用
CN108816289A (zh) * 2018-06-02 2018-11-16 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN111151301A (zh) * 2020-01-13 2020-05-15 辽宁大学 一种双官能团非均相Pd@MIL-101@SGO复合材料及其制备方法和应用
CN111359670A (zh) * 2020-03-10 2020-07-03 浙江工业大学 一种Au-Pd/NH2-MIL-101(Cr)催化剂及其制备与应用
CN111790377A (zh) * 2019-12-26 2020-10-20 东北石油大学 单原子催化剂及其制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103432982A (zh) * 2013-08-05 2013-12-11 华南理工大学 一种金属有机骨架-氧化石墨烯复合材料的制备方法
US9259724B2 (en) * 2011-07-21 2016-02-16 Nanjing University Supported bimetallic nanocomposite catalyst and the preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9259724B2 (en) * 2011-07-21 2016-02-16 Nanjing University Supported bimetallic nanocomposite catalyst and the preparation method thereof
CN103432982A (zh) * 2013-08-05 2013-12-11 华南理工大学 一种金属有机骨架-氧化石墨烯复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘淑芝,等: ""金属有机骨架 MIL-101 的合成、改性及在催化反应中的应用进展"", 《化工进展》 *
吴艳: ""石墨烯纳米复合材料的合成及其吸附与光催化性能研究"", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636453A (zh) * 2018-04-08 2018-10-12 浙江工业大学 一种金属有机框架材料封装的纳米贵金属催化剂及其制备方法和应用
CN108636453B (zh) * 2018-04-08 2020-11-13 浙江工业大学 一种金属有机框架材料封装的纳米贵金属催化剂及其制备方法和应用
CN108816289A (zh) * 2018-06-02 2018-11-16 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN108816289B (zh) * 2018-06-02 2021-05-07 长春工业大学 氨基功能化的MOFs负载的CrPd纳米催化剂的制备方法及应用
CN111790377A (zh) * 2019-12-26 2020-10-20 东北石油大学 单原子催化剂及其制备方法、应用
CN111151301A (zh) * 2020-01-13 2020-05-15 辽宁大学 一种双官能团非均相Pd@MIL-101@SGO复合材料及其制备方法和应用
CN111151301B (zh) * 2020-01-13 2021-11-30 辽宁大学 一种双官能团非均相Pd@MIL-101@SGO复合材料及其制备方法和应用
CN111359670A (zh) * 2020-03-10 2020-07-03 浙江工业大学 一种Au-Pd/NH2-MIL-101(Cr)催化剂及其制备与应用

Also Published As

Publication number Publication date
CN107442180B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
CN107442180A (zh) 一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用
Le et al. Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions
Ertas et al. Metal-organic framework (MIL-101) stabilized ruthenium nanoparticles: Highly efficient catalytic material in the phenol hydrogenation
Zhang et al. Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation
Rangraz et al. Selenium-doped graphitic carbon nitride decorated with Ag NPs as a practical and recyclable nanocatalyst for the hydrogenation of nitro compounds in aqueous media
Duan et al. Fabrication of carboxymethylated cellulose fibers supporting Ag NPs@ MOF‐199s nanocatalysts for catalytic reduction of 4‐nitrophenol
Yuan et al. Ultra-fine Pd nanoparticles confined in a porous organic polymer: A leaching-and-aggregation-resistant catalyst for the efficient reduction of nitroarenes by NaBH4
CN104324756A (zh) 一种介孔金属有机配合物基复合材料的制备方法和应用
Zhao et al. Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis
CN108607603B (zh) 一种co2合成炔酸催化剂及其制备和应用
CN107252690B (zh) 一种含助剂负载型氧化铜基催化剂及其制备方法
Pei et al. Ultra-small Pd clusters supported by chitin nanowires as highly efficient catalysts
Zhang et al. Natural chrysotile-based nanowires decorated with monodispersed Ag nanoparticles as a highly active and reusable hydrogenation catalyst
Wang et al. Synthesis, characterization, and catalytic performance of highly dispersed Co-SBA-15
Zhong et al. Synthesis of PVP-Bi 2 WO 6 photocatalyst and degradation of tetracycline hydrochloride under visible light
Xu et al. Aminal‐based Hypercrosslinked Polymer Modified with Small Palladium Nanoparticles for Efficiently Catalytic Reduction of Nitroarenes
CN104248979A (zh) 球形介孔二氧化硅复合载体和催化剂及其制备方法和应用以及乙酸乙酯的制备方法
Padervand et al. Hexagonal core–shell SiO 2 [–MOYI] Cl–] Ag nanoframeworks for efficient photodegradation of the environmental pollutants and pathogenic bacteria
Chen et al. Biomass‐Derived N‐doped Carbon Materials with Silica‐Supported Ultrasmall ZnO Nanoparticles: Robust Catalysts for the Green Synthesis of Benzimidazoles
Fan et al. Guanidinium ionic liquid-controlled synthesis of zeolitic imidazolate framework for improving its adsorption property
CN101791568B (zh) 一种热稳定的负载型纳米金属催化剂的制备方法
Bamba et al. Synthesis and characterization of TiO2/C nanomaterials: Applications in water treatment
CN101940945A (zh) 一种用于合成苯甲醛的纳米金催化剂的植物还原制备方法
Zhang et al. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities
CN106607091A (zh) 微孔聚合物‑纳米金属粒子催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant