CN108671964A - 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法 - Google Patents

一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法 Download PDF

Info

Publication number
CN108671964A
CN108671964A CN201810242860.4A CN201810242860A CN108671964A CN 108671964 A CN108671964 A CN 108671964A CN 201810242860 A CN201810242860 A CN 201810242860A CN 108671964 A CN108671964 A CN 108671964A
Authority
CN
China
Prior art keywords
mil
catalyst
ruthenium
carrier
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810242860.4A
Other languages
English (en)
Inventor
周立群
陈锰寰
潘亚熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201810242860.4A priority Critical patent/CN108671964A/zh
Publication of CN108671964A publication Critical patent/CN108671964A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种催化产氢的MIL‑53(Al)负载钌钴合金纳米催化剂及制备方法。所述的合金纳米催化剂的组成通式为:Ru0.1Co0.1~0.3@MIL‑53(Al),载体为MIL‑53(Al),活性组分为Ru‑Co合金纳米粒子。载体MIL‑53(Al)的比表面积达到1564.99 m2 g‑1,催化剂的比表面积为738.68 m2 g‑1。所述方法按如下步骤进行:1、水热合成法制备载体MIL‑53(Al);2、悬浊液的制备;3、钌钴合金纳米催化剂的制备。本发明采用一步浸渍法合成出双金属RuCo@MIL‑53(Al) 负载型纳米催化剂,催化剂以MIL‑53(Al)为载体,负载活性组分Ru‑Co合金纳米粒子,能使Ru‑Co纳米粒子在孔洞内外均匀镶嵌,且分散均匀,实现贵金属与过渡金属的协同催化。

Description

一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备 方法
技术领域
本发明涉及到纳米催化剂技术领域,特别涉及到一种催化产氢的MIL-53(Al) 负载钌钴合金纳米催化剂及制备方法。
背景技术
氢能作为一种最为清洁的能源,越来越受到人们的高度关注。氢气的含能量为120MJ·kg-1,是石油的3倍;并且氢气燃烧后的产物是水,不带来污染。但由于氢能的储存和运输问题,使其发展受限,因而寻求储氢材料尤为重要。在储氢材料中,硼氮化合物由于高的质量储氢密度和容易脱氢的特点而备受关注。其中氨硼烷(H3NBH3,简称AB)具有19.6%的质量储氢密度,远远高于美国能源部的5.5%的质量储氢目标。氨硼烷具有高的稳定性和环境友好性,是一种极具潜力的储氢材料。氨硼烷的水溶液在没有催化剂存在下非常稳定,室温下在空气中可以最多保存67天。氨硼烷的水解是最方便的一种脱氢方式,1mol AB能够在室温下短时间内释放出3mol H2,该水解反应只有在催化剂的条件下才能发生,因此寻求高活性、高稳定性、价廉的催化剂是开发AB产氢的关键。
用于氨硼烷水解产氢的催化剂,主要是过渡金属纳米粒子,包括贵金属和非贵金属催化剂。尽管贵金属具有很高的催化活性,但是实际应用的成本相对较高,为了降低催化剂成本和提高催化活性,在贵金属中掺杂非贵金属是一种最佳选择。由于金属纳米粒子具有高的表面能容易发生聚集,从而造成催化活性的降低,为了提高催化剂的催化活性和稳定性,寻找比表面积大、稳定性好的支撑体非常关键,而目前研究热点的MOFs材料具有上述特点,并能大幅度提高金属纳米粒子的催化活性和循环稳定性,其中MIL-53(Al)具有较好的孔洞结构、大的比表面积以及性能稳定而备受关注(J Porous Mater, 2010, 17:523-528)。将MIL-53(Al)作为载体用于AB水解产氢最近有过报道(Int J Hydrogen Energy,2016, 41:6300- 6309),但由于只单独使用贵金属,成本较高,而且循环稳定性较差,不利于工业化应用。
专利申请号为201410056196.6,专利名称为一种用于氨硼烷水解制氢的碳负载Ni3B 复合催化剂,其主要特点是碳源载体负载Ni3B 活性物质组成的复合催化剂,化学式表示为Ni3B/C ,碳源载体为 VulcanXC-72;专利申请号 201610105568.9,专利名称为一种氮掺杂多孔碳负载钴催化剂的制备方法和应用,其主要特点是将N ,N-双水杨醛乙二胺合钴(II )或二( 3-甲氧基水杨醛 )缩乙二胺氯化钴加入坩埚内, 然后放入管式炉中,在氢氩混合气氛围下,加热煅烧,待反应结束后,冷却至室温,制得氮掺杂多孔碳负载钴催化剂,命名为Co@N-C纳米复合催化剂。上述两种专利给出的技术方案均存在有在室温下用于催化氨硼烷水解产氢不具有好的催化活性和循环稳定性,TOF值不高,催化活性较低的缺陷。
发明内容:
本发明的目的在于提供一种催化产氢的 MIL-53(Al)负载钌钴合金纳米催化剂及制备方法。
本发明的设计思想为:本发明采用一步浸渍法合成出双金属RuCo@MIL-53(Al)负载型纳米催化剂,方法简单,易操作,成本低,在室温下用于催化氨硼烷水解产氢具有很好的催化活性和循环稳定性,TOF值提高4-5倍,催化活性大大提高。
为实现上述目的,本发明的技术方案为:
一种催化产氢的 MIL-53(Al)负载钌钴合金纳米催化剂,所述的合金纳米催化剂中纳米催化剂的组成通式为:Ru0.1Co0.1~0.3@MIL-53(Al),所述载体为MIL-53(Al),所述活性组分为Ru-Co合金纳米粒子。
所述的合金纳米催化剂中载体MIL-53(Al)的比表面积达到1564.99 m2 g-1,催化剂的比表面积为738.68 m2 g-1
所述的合金纳米催化剂中Ru/Co摩尔比为0.1:0.1-0.3,Ru-Co合金纳米粒子的粒径为0.7-1.5 nm。
所述的合金纳米催化剂在催化氨硼烷水解产氢时TOF值达到6258.6 mL min-1 (gRu)-1, 活化能为34.32 kJ mol-1
一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂的制备方法,所述方法按如下步骤进行:
1、水热合成法制备载体MIL-53(Al):取2.60 g的Al(NO3)3·9H2O、0.576 g的对苯二甲酸(H2BDC)和10 mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
2、悬浊液的制备:将50 mg载体MIL-53(Al)与10 mL无水乙醇混合,依次加入10 mL0.01M的可溶性钌盐、1-3 mL 0.1M的可溶性钴盐和9 mL的去离子水混合,超声15分钟得到悬浊液,转移至圆底烧瓶中,磁力搅拌4小时,其中钌和钴的摩尔比为0.1:0.1-0.3;
3、钌钴合金纳米催化剂的制备:将1mmol NaBH4固体(37.8 mg)溶于10 mL去离子水中,并逐滴加入到步骤2所获的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到纳米催化剂 Ru0.1Co0.1~0.3@MIL-53(Al) 成品。
所述方法步骤2中的可溶性钌盐为三氯化钌,可溶性钴盐为硝酸钴,步骤3中的NaBH4为还原剂。
与现有技术相比,本发明的积极效果为:
1、本发明采用一步浸渍法合成出双金属RuCo@MIL-53(Al)负载型纳米催化剂,催化剂以MIL-53(Al)为载体,负载活性组分Ru-Co合金纳米粒子,由于MIL-53(Al)具有多孔特性和较大的比表面积,能使Ru-Co纳米粒子在孔洞内外均匀镶嵌,且分散均匀,实现贵金属与过渡金属的协同催化;
2、本发明中的Ru-Co合金纳米粒子与载体MIL-53(Al)之间的双功能作用,有效提高了Ru催化剂的抗毒性和稳定性,既降低生产成本,又能提高催化氨硼烷水解释氢的催化活性和优良的稳定性;
3、本发明提供的技术方案由于工艺简单,原料易得,对设备要求低,价格低廉,易于实施,适合于工业化生产。
附图说明
图1、为实施例一所制备的Ru0.1Co0.1@MIL-53(Al)催化剂的TEM图;
图2、为实施例一所制备的载体MIL-53(Al)、Ru0.1Co0.1@MIL-53(Al)催化剂和5次循环后的Ru0.1Co0.1@MIL-53(Al)催化剂的XRD图;
图3、为实施例一所制备的Ru0.1Co0.1@MIL-53(Al)催化剂中Ru的XPS图;
图4、为实施例一所制备的Ru0.1Co0.1@MIL-53(Al)催化剂中Co的XPS图;
图5、为实施例1至5所制备的MIL-53(Al)载体以及Ru0.1Co0.1@MIL-53(Al)、Ru0.1Co0.2@MIL-53(Al)、Ru0.1Co0.3@MIL-53(Al)、Ru@MIL-53(Al)、Co@MIL-53(Al)和RuCo NPs催化剂,分别在室温下催化氨硼烷水解产氢的速率图;
图6、为实施例1和实施例6所制备的Ru0.1Co0.1@MIL-53(Al)和RuCo NPs催化剂在室温下经过5次催化循环后的催化活性图。
具体实施方式
下面结合附图和实施例进一步对本发明的技术方案进行清楚、完整的描述。
实施例一:
载体MIL-53(Al)和负载型纳米催化剂Ru0.1Co0.1@MIL-53(Al)的制备
1、水热合成法制备载体MIL-53(Al):2.60 g的Al(NO3)3·9H2O,0.576 g的H2BDC和10mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
2、悬浊液的制备:取50 mg所制备的MIL-53(Al)与10 mL无水乙醇混合,依次加入10 mL0.01M的RuCl3溶液、1 mL 0.1M的Co(NO3)2溶液和9 mL去离子水,超声15 分钟,得到的悬浊液转移至圆底烧瓶中,混合均匀,磁力搅拌4小时;其中钌和钴的摩尔比为0.1:0.1;
3、钌钴合金纳米催化剂的制备:将1mmol NaBH4固体(37.8 mg)溶于10 mL去离子水中,并逐滴加入到上述步骤2的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到所述纳米催化剂Ru0.1Co0.1@MIL-53(Al)。
实施例二:
Ru0.1Co0.2@MIL-53(Al)催化剂的制备
1、水热合成法制备载体MIL-53(Al):2.60 g的Al(NO3)3·9H2O,0.576 g的H2BDC和10mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
2、悬浊液的制备:将50 mg所制备的MIL-53(Al)与10 mL无水乙醇混合,依次加入10 mL0.01M的RuCl3溶液、2 mL 0.1M的Co(NO3)2溶液和9 mL去离子水,超声15 分钟,得到的悬浊液转移至圆底烧瓶中,混合均匀,磁力搅拌4小时,其中钌和钴的摩尔比为0.1:0.2;
3、钌钴合金纳米催化剂的制备:将1mmol NaBH4固体溶于10 mL去离子水中,并逐滴加入到上述步骤2的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到所述催化剂Ru0.1Co0.2@MIL-53(Al)。
实施例三
Ru0.1Co0.3@MIL-53(Al)催化剂的制备
1、水热合成法制备载体MIL-53(Al):2.60 g的Al(NO3)3·9H2O,0.576 g的H2BDC和10mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
2、悬浊液的制备:将50 mg所制备的MIL-53(Al)与10 mL无水乙醇混合,依次加入10 mL0.01M的RuCl3溶液、3 mL 0.1M的Co(NO3)2溶液和9 mL去离子水,超声15 分钟,得到的悬浊液转移至圆底烧瓶中,混合均匀,磁力搅拌4小时,其中钌和钴的摩尔比为0.1:0.3;
3、钌钴合金纳米催化剂的制备:将1mmol NaBH4固体溶于10 mL去离子水中,并逐滴加入到上述步骤2的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到所述催化剂Ru0.1Co0.3@MIL-53(Al)。
实施例四
Ru@MIL-53(Al)催化剂的制备
1、水热合成法制备载体MIL-53(Al):2.60 g的Al(NO3)3·9H2O,0.576 g的H2BDC和10mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
2、悬浊液的制备:将50 mg所制备的MIL-53(Al)与10 mL无水乙醇混合,加入10 mL0.01M的RuCl3溶液和9 mL去离子水,超声15 分钟,得到的悬浊液转移至圆底烧瓶中,混合均匀,磁力搅拌4小时;
3、钌纳米催化剂的制备:将1mmol NaBH4固体溶于10 mL去离子水中,并逐滴加入到上述步骤2的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到所述催化剂Ru@MIL-53(Al)。
实施例五
Co@MIL-53(Al)催化剂的制备
1、水热合成法制备载体MIL-53(Al):2.60 g的Al(NO3)3·9H2O,0.576 g的H2BDC和10mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
2、悬浊液的制备:将50 mg所制备的MIL-53(Al)与10 mL无水乙醇混合,加入1 mL 0.1M的Co(NO3)2溶液和9 mL去离子水,超声15 分钟,得到的悬浊液转移至圆底烧瓶中,混合均匀,磁力搅拌4小时;
3、钌纳米催化剂的制备:将1mmol NaBH4固体溶于10 mL去离子水中,并逐滴加入到上述步骤2的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到所述催化剂Co@MIL-53(Al)。
实施例六
对比催化剂无载体的RuCo NPs催化剂的制备
1、将10 mL无水乙醇与10 mL 0.01M的RuCl3溶液、1 mL 0.1M的Co(NO3)2溶液和9 mL去离子水混合均匀后,得到的悬浊液再转移至圆底烧瓶中,磁力搅拌4小时,其中钌和钴的摩尔比为0.1:0.1;
2、将1mmol NaBH4固体溶于10 mL去离子水中,并逐滴加入到上述步骤1的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到所述RuCo NPs催化剂。
实例检测结果
图1为实施例一所制备的Ru0.1Co0.1@MIL-53(Al)双金属负载型纳米催化剂的TEM图。从图1中可见,Ru-Co合金纳米粒子的粒径为0.7~1.5 nm,平均粒径为1.1 nm,且Ru-Co纳米粒子在MIL-53(Al)的表面分布均匀。
图2为实施例一所制备的MIL-53(Al)载体、Ru0.1Co0.1@MIL-53(Al)催化剂以及5次循环后的Ru0.1Co0.1@MIL-53(Al)催化剂的XRD图;从图2中可以看出,MIL-53(Al)负载双金属Ru-Co合金以后,衍射峰位置和强度几乎不变,说明MIL-53(Al)负载前后结构不变,性能稳定。此外,当Ru0.1Co0.1@MIL-53(Al)催化剂经过5次循环后,其衍射峰位置和强度也没有变化,说明在催化反应过程中,催化剂的结构依然保持稳定。
图3为实施例一所制备的Ru0.1Co0.1@MIL-53(Al)纳米催化剂中Ru的XPS图。从图3中可以看出,Ru0.1Co0.1@MIL-53(Al)催化剂在463.1和485.5eV处出现了Ru 3p信号峰。
图4为实施例一所制备的Ru0.1Co0.1@MIL-53(Al)纳米催化剂中Co的XPS图,从图4中可以看出,在781.5、786.1、797.6和803.1eV处有Co 2p信号峰。由图3和图4充分证实金属元素钌和钴已成功地负载于MIL-53(Al)上。
对实施例一至六制备的催化剂分别进行催化氨硼烷水解释氢的性能测试
将实施例一至实施例六制得的催化剂分别进行催化氨硼烷水解:取18.5 mg氨硼烷,置于50 mL圆底烧瓶中,水浴25 ºC时加入10 mL去离子水,在搅拌条件下加入5 mg催化剂,用排水法测量产生氢气的量,并每隔15秒记录产生氢气的体积。
图5为实施例1至6所制备的MIL-53(Al)载体以及Ru0.1Co0.1@MIL-53(Al)、Ru0.1Co0.2@MIL-53(Al)、Ru0.1Co0.3@MIL-53(Al)、Ru@MIL-53(Al)、Co@MIL-53(Al)和RuCo NPs催化剂,分别在室温下催化氨硼烷水解产氢的速率图。从图5可以看出,载体MIL-53(Al)和Co@MIL-53(Al)催化氨硼烷的水解几乎没有活性;且RuCo NPs的活性低于Ru0.1Co0.1@ MIL-53(Al);当Ru-Co共同负载于MIL-53(Al)时,由于双金属之间强的协同效应,使催化剂RuCo@MIL-53(Al)表现出高的催化活性,且当摩尔比Ru/Co=0.1:0.1时催化活性最高,最大产氢速率达到6258.6 mL min-1 (g Ru)-1,活化能低至34.32 kJ mol-1,可见Ru0.1Co0.1@MIL-53(Al)是一种用于氨硼烷水解产氢的高效催化剂。
对实施例一和例六所制备的Ru0.1Co0.1@MIL-53(Al)和RuCo NPs催化剂进行循环性能测试。
将实施例1和实施例6所制备的Ru0.1Co0.1@MIL-53(Al)和RuCo NPs催化剂进行循环性能测试。采用氨硼烷水解释氢性能测试的方法,在25℃时,当催化氨硼烷水解完全后,再往两口烧瓶中加入等量的氨硼烷(18.5 mg)测试,经过5次循环后,钌钴合金纳米负载型催化剂Ru0.1Co0.1@MIL-53(Al)相对初次活性仍保留77%,而没有载体的RuCo纳米催化剂仅为2%,可见,MIL-53(Al)作为载体对RuCo的催化活性和循环稳定性有巨大的影响,详见图6。
本说明书中公开的所有特征,或公开的所有方法、步骤和掺量,除了互相排斥的特征和/或步骤、掺量以外,均可以以任何方式组合。本说明书(包括权利要求、摘要)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
以上所述仅是发明的非限定实施方式,还可以衍生出大量的实施例,对于本领域的普通技术人员来说,在不脱离本发明创造构思和不作出创造性劳动的前提下,还可以做出若干变形和改进的实施例,这些都属于本发明的保护范围。

Claims (6)

1.一种催化产氢的MIL-53(Al) 负载钌钴合金纳米催化剂,其特征在于:所述的合金纳米催化剂中纳米催化剂的组成通式为:Ru0.1Co0.1~0.3@MIL-53(Al),所述载体为MIL-53(Al),所述活性组分为Ru-Co金纳米粒子。
2.根据权利要求1所述的催化产氢的MIL-53(Al) 负载钌钴合金纳米催化剂,其特征在于:所述的合金纳米催化剂中载体MIL-53(Al)的比表面积达到1564.99 m2 g-1,催化剂的比表面积为738.68 m2 g-1
3.根据权利要求1所述的催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂,其特征在于:所述的合金纳米催化剂中Ru/Co摩尔比为0.1:0.1-0.3,Ru-Co合金纳米粒子的粒径为0.7-1.5 nm。
4.根据权利要求1所述的催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂,其特征在于:所述的合金纳米催化剂在催化氨硼烷水解产氢时TOF值达到6258.6 mL min-1 (g Ru)-1, 活化能为34.32 kJ mol-1
5.根据权利要求1所述的催化产氢的MIL-53(Al) 负载钌钴合金纳米催化剂的制备方法,其特征在于:所述方法按如下步骤进行:
(1)、水热合成法制备载体MIL-53(Al):取2.60 g的Al(NO3)3·9H2O、0.576 g的对苯二甲酸(H2BDC)和10 mL去离子水混合搅拌,再转入50 mL高压反应釜中,210 ℃反应72小时,常温常压下自然冷却,将白色粉末过滤,洗涤干燥,再在马弗炉中330 ℃煅烧72小时,得到载体MIL-53(Al);
(2)、悬浊液的制备:将50 mg载体MIL-53(Al)与10 mL无水乙醇混合,依次加入10 mL0.01M的可溶性钌盐、1-3 mL 0.1M的可溶性钴盐和9 mL的去离子水混合,超声15分钟得到悬浊液,转移至圆底烧瓶中,磁力搅拌4小时,其中钌和钴的摩尔比为0.1:0.1-0.3;
(3)、钌钴合金纳米催化剂的制备:将1mmol NaBH4固体(37.8 mg)溶于10 mL去离子水中,并逐滴加入到步骤(2)所获的悬浊液中,滴加完毕后继续搅拌5小时,将产物过滤,用去离子水和无水乙醇洗涤,80℃真空干燥12小时,得到纳米催化剂 Ru0.1Co0.1~0.3@MIL-53(Al)成品。
6.根据权利要求5所述的催化产氢的MIL-53(Al) 负载钌钴合金纳米催化剂的制备方法,其特征在于:所述方法步骤(2)中的可溶性钌盐为三氯化钌,可溶性钴盐为硝酸钴,步骤(3)中的NaBH4为还原剂。
CN201810242860.4A 2018-03-23 2018-03-23 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法 Pending CN108671964A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810242860.4A CN108671964A (zh) 2018-03-23 2018-03-23 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810242860.4A CN108671964A (zh) 2018-03-23 2018-03-23 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN108671964A true CN108671964A (zh) 2018-10-19

Family

ID=63799653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810242860.4A Pending CN108671964A (zh) 2018-03-23 2018-03-23 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108671964A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999912A (zh) * 2019-03-13 2019-07-12 湘潭大学 一种双功能非均相钌基催化剂及其催化合成3,3,5,5-四甲基联苯二酚的方法
CN110013844A (zh) * 2019-04-23 2019-07-16 武汉科技大学 一种还原态MoO3-x光催化剂及其制备方法和应用
CN110479378A (zh) * 2019-08-26 2019-11-22 湘潭大学 一锅法催化合成tmbp
CN110813311A (zh) * 2019-11-08 2020-02-21 成都理工大学 一种催化NaBH4水解制氢的高效率Ru/Co催化剂的制备方法
CN110975885A (zh) * 2019-12-25 2020-04-10 桂林电子科技大学 一种双金属氧化物负载钌催化材料及其制备方法和应用
CN112295572A (zh) * 2020-12-07 2021-02-02 桂林电子科技大学 一种具有空心结构的碳包覆Co-Ru纳米材料的制备及其应用
CN112946038A (zh) * 2021-01-25 2021-06-11 华南理工大学 一种金纳米颗粒/MIL-53(Fe)复合材料、半胱氨酸传感器及制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN MENGHUAN 等: "RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53(Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999912A (zh) * 2019-03-13 2019-07-12 湘潭大学 一种双功能非均相钌基催化剂及其催化合成3,3,5,5-四甲基联苯二酚的方法
CN109999912B (zh) * 2019-03-13 2021-11-02 湘潭大学 一种双功能非均相钌基催化剂及其催化合成3,3,5,5-四甲基联苯二酚的方法
CN110013844A (zh) * 2019-04-23 2019-07-16 武汉科技大学 一种还原态MoO3-x光催化剂及其制备方法和应用
CN110479378A (zh) * 2019-08-26 2019-11-22 湘潭大学 一锅法催化合成tmbp
CN110479378B (zh) * 2019-08-26 2022-06-07 湘潭大学 一锅法催化合成tmbp
CN110813311A (zh) * 2019-11-08 2020-02-21 成都理工大学 一种催化NaBH4水解制氢的高效率Ru/Co催化剂的制备方法
CN110975885A (zh) * 2019-12-25 2020-04-10 桂林电子科技大学 一种双金属氧化物负载钌催化材料及其制备方法和应用
CN112295572A (zh) * 2020-12-07 2021-02-02 桂林电子科技大学 一种具有空心结构的碳包覆Co-Ru纳米材料的制备及其应用
CN112946038A (zh) * 2021-01-25 2021-06-11 华南理工大学 一种金纳米颗粒/MIL-53(Fe)复合材料、半胱氨酸传感器及制备方法与应用
CN112946038B (zh) * 2021-01-25 2022-03-25 华南理工大学 一种金纳米颗粒/MIL-53(Fe)复合材料、半胱氨酸传感器及制备方法与应用

Similar Documents

Publication Publication Date Title
CN108671964A (zh) 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法
Duan et al. Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges
Sheng et al. MOF-templated fabrication of hollow Co4N@ N-doped carbon porous nanocages with superior catalytic activity
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
Luo et al. Highly efficient and selective Co@ ZIF‐8 nanocatalyst for hydrogen release from sodium borohydride hydrolysis
Gao et al. CrPd nanoparticles on NH2-functionalized metal-organic framework as a synergistic catalyst for efficient hydrogen evolution from formic acid
Liu et al. The development of MOFs-based nanomaterials in heterogeneous organocatalysis
Zhao et al. NiCo alloy decorated on porous N-doped carbon derived from ZnCo-ZIF as highly efficient and magnetically recyclable catalyst for hydrogen evolution from ammonia borane
JP5715726B2 (ja) 実質的に面心立方構造を有するルテニウム微粒子およびその製造方法
Zhang et al. Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion
CN106345524A (zh) 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法
Feng et al. Novel powder catalysts of ferrocene-based metal-organic framework and their catalytic performance for thermal decomposition of ammonium perchlorate
Feng et al. Copper oxide hollow spheres: synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane
Oh et al. Zeolitic imidazolate framework-based composite incorporated with well-dispersed CoNi nanoparticles for efficient catalytic reduction reaction
Xiong et al. One-pot synthesis of ultrafine Ni0. 13Co0. 87P nanoparticles on halloysite nanotubes as efficient catalyst for hydrogen evolution from ammonia borane
CN107486245A (zh) 一种催化氨硼烷水解产氢的nh2‑mil‑125负载银钴合金纳米催化剂
CN107670694A (zh) 一种金属负载型催化剂及其制备方法和应用
Cui et al. Ruthenium Supported on Cobalt‐Embedded Porous Carbon with Hollow Structure as Efficient Catalysts toward Ammonia‐Borane Hydrolysis for Hydrogen Production
Wang et al. Au@ Pt nanotubes within CoZn-based metal-organic framework for highly efficient semi-hydrogenation of acetylene
Yang et al. Cotton-derived carbon fiber-supported Ni nanoparticles as nanoislands to anchor single-atom Pt for efficient catalytic reduction of 4-nitrophenol
Zheng et al. Cu/Ni-NiO x Nanoparticles Distributed on Graphene as Catalysts for the Methanolysis of Ammonia Borane to Produce Hydrogen
CN113634256B (zh) 一种多维度微纳非贵金属复合催化剂及其制备和应用
CN114618551A (zh) 一种负载型纳米合金催化剂及普适性制备方法
Dabiri et al. Pd nanoparticles supported on cubic shaped ZIF-based materials and their catalytic activates in organic reactions
CN114345350A (zh) 一种Co基双金属氧化物催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181019

WD01 Invention patent application deemed withdrawn after publication