CN106345524A - 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法 - Google Patents

一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法 Download PDF

Info

Publication number
CN106345524A
CN106345524A CN201610613243.1A CN201610613243A CN106345524A CN 106345524 A CN106345524 A CN 106345524A CN 201610613243 A CN201610613243 A CN 201610613243A CN 106345524 A CN106345524 A CN 106345524A
Authority
CN
China
Prior art keywords
catalyst
ternary
mil
preparation
ammonia borane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610613243.1A
Other languages
English (en)
Inventor
周立群
杨坤洲
熊星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201610613243.1A priority Critical patent/CN106345524A/zh
Publication of CN106345524A publication Critical patent/CN106345524A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/068Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents the hydrogen being generated from the water as a result of a cyclus of reactions, not covered by groups C01B3/063 or C01B3/105
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法。该催化剂以金属有机骨架材料MIL‑101为载体,以硼氢化钠为还原剂,通过还原前驱体钌盐、铜盐、钴盐得到多元催化剂RuCuCo@MIL‑101。本发明的制备方法合成的多元负载型催化剂比表面积高达2868 m2/g,晶粒尺寸在6.9nm左右,在室温下催化氨硼烷水解释氢表现出优异的催化活性,转化频率(TOF)为241.2 mol H2 min‑1(mol Ru)‑1,活化能(Ea)为48 kJ mol‑1。该催化剂经过5次循环试验后仍表现出优良的稳定性。这种掺入非贵金属的三元纳米负载型催化剂,具有金属粒子分布均匀、比表面积大、催化活性位点多等特征,与传统的贵金属催化剂相比,具有成本低廉、制备简单,原料易得,适合工业化生产,是一种很有应用前景的催化剂。

Description

一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法
技术领域
本发明属于储氢材料领域,涉及一种高效催化氨硼烷水解释氢的三金属负载型催化剂及其制备方法。
背景技术
随着全球性环境恶化和能源危机,急需一种清洁、高效、可再生能源来替代化石能源。在众多的新型能源中,氢能是一种较为理想的能源。在已经问世的诸多储氢材料中,含氢量高并且释氢速率快的氨硼烷(NH3BH3 , AB)是一种极具应用潜力的储氢材料。氨硼烷含氢量高达19.6 wt.%,无毒,常温下稳定,环境友好,在无催化剂时,室温下不发生水解释放氢气。因此制备性能优良的催化剂是氨硼烷能否成为具有实用价值储氢材料的核心技术。其中金属催化剂成为催化水解氨硼烷释氢的首选,在各种制备出的金属催化剂中,贵金属和过渡金属均对水解氨硼烷具有催化效果,且一般情况下贵金属催化剂的活性更高,常用的贵金属主要有 Pt、Pd、Rh、Ru等。由于贵金属储量稀少,价格昂贵,阻碍其广泛应用。而非贵金属虽然成本低,但催化性能有待提升。同时金属粒子的大小、组成以及分散的均匀性等因素均对催化活性有较大影响。当催化剂的金属粒子尺寸一旦进入纳米尺度,就会导致比表面积大大增加,也就增大了金属粒子与客体分子的接触面积,从而提高了催化剂的活性,即使在较低的温度下也表现出特别高的催化效率。对于非负载型催化剂则容易使活性组分颗粒较大,易发生烧结和聚集,机械强度较低,而采用MOFs做载体负载金属,由于其多孔结构和巨大的表面积大,能使金属粒子在孔洞内外均匀镶嵌,且分散均匀,因此,开发一种成本低且活性高的用于催化氨硼烷水解释氢的负载型催化剂具有十分重要的意义。
中国专利“一种催化氨硼烷水解的二元过渡金属催化剂的制备方法 专利号201110339872,申请日2011.11.1”采用原位合成的方法合成二元过渡金属FeCo合金作为催化氨硼烷制氢的催化剂,其催化活性较高,反应活化能较低,但是该发明由于金属纳米粒子FeCo具有磁性,相互之间容易聚集,导致其催化性能容易降低和循环使用性能较差。
中国专利申请“一种用于氨硼烷和肼硼烷水解制氢的Cu@mSiO2核壳纳米催化剂及其制备方法,申请号 201410186441.5,申请日 2014.05.06”,采用反胶束法一釜制备,由非贵金属Cu组成内核,介孔二氧化硅mSiO2组成外壳的核壳纳米结构作为催化氨硼烷和肼硼烷制氢的催化剂,催化效果较好,但是该发明所述的金属为单一过渡金属Cu,且负载量不高,以介孔SiO2为外壳,使催化活性位点减少,因而导致催化活性和催化剂寿命下降。
中国专利申请“一种用于氨硼烷水解的三元过渡金属催化剂及其制备方法,申请号201110339881.6,申请日2011.11.1”,提出核壳结构含贵金属的Ag@CoNi 纳米粒子作为催化氨硼烷水解制氢的催化剂,室温下催化氨硼烷水解的最大放氢速率为1627.3 ml·min-1 ·g-1,反应的活化能为28.54 kJ·mol-1。由于核壳结构Ag@CoNi催化剂没有采用载体或者表面活性剂进行分散,金属粒子相互之间容易聚集,因而容易降低其催化性能导致循环使用性能较差,限制其在实际生产中的应用。
发明内容
鉴于现有技术的不足,本发明的目的在于解决现有技术中存在的上述问题,提供一种简单有效的用于氨硼烷水解释氢的三元纳米催化剂及其制备方法,该催化剂与传统的贵金属催化剂相比,以部分非贵金属代替贵金属,不仅可以降低生产成本,且催化剂的性能也能大幅提高。
本发明所提供的用于氨硼烷水解释氢的三元纳米催化剂,其特征在于:以贵金属Ru和非贵金属CuCo为活性组分,以金属有机骨架材料MIL-101为载体,用MIL-101负载三金属RuCuCo纳米粒子,通过还原前驱体钌盐、铜盐、钴盐得到三元纳米催化剂RuCuCo@MIL-101。
上述所述铜盐中的铜、钴盐中的钴以及钌盐中的钌的摩尔比为1:1:0.5。
上述用于氨硼烷水解释氢的三元纳米催化剂的制备方法,其特征在于具体步骤如下:
(1)将硝酸铬、对苯二甲酸、氢氟酸、去离子水搅拌均匀后加入到40mL有聚四氟乙烯内衬的不锈钢反应釜中, 在200℃条件下反应8 小时,将得到的悬浊液,抽滤、洗涤、纯化后干燥, 得到金属有机骨架化合物MIL-101;
(2)将上述步骤(1)所制得MIL-101与铜盐、钴盐以及钌盐混合后加入到30 mL去离子水中,超声10 分钟后再继续搅拌24小时;
(3)将50.0mg的NaBH4固体溶解于10mL去离子水中,将该溶液逐滴加入到上述步骤(2)的溶液中,滴加完毕后继续搅拌6 小时;将产物过滤、洗涤、真空干燥过夜后得到三元RuCuCo@MIL-101催化剂。
所述催化氨硼烷水解释氢的三金属负载型催化剂的制备方法,其中步骤(1)中所述铬盐、对苯二甲酸、氢氟酸、去离子水的摩尔比为1:1:1:280。
所述催化氨硼烷水解释氢的三金属负载型催化剂的制备方法,其中步骤(2)中所述铜盐中的铜、钴盐中的钴以及钌盐中的钌的摩尔比为1:1:0.5。
所述催化氨硼烷水解释氢的三金属负载型催化剂的制备方法,其中步骤(2)中所述铜盐为可溶性铜盐,所述的钴盐为可溶性钴盐。
所述催化氨硼烷水解释氢的三金属负载型催化剂的制备方法,其中步骤(2)中所述钌盐为三氯化钌。
本发明采用金属有机骨架材料MIL-101为载体,以贵金属Ru和非贵金属CuCo为活性组分。目的在于利用贵金属与非贵金属之间的协同作用以及金属粒子和载体间的双功能作用,进一步增强催化剂的活性;同时利用MIL-101巨大的比表面积(3274 m2/g),从而提高三金属纳米粒子的均匀分散性, 负载后的三元催化剂RuCuCo@MIL-101的比表面积也高达2868 m2/g,这有利于增大与氨硼烷的接触面积,从而提高其催化氨硼烷水解的活性,且具有较好的循环稳定性。
附图说明
图1为本发明实施例1所制备的样品Ru的XPS谱图。
图2为本发明实施例1所制备的样品Cu的XPS谱图。
图3为本发明实施例1所制备的样品Co的XPS谱图。
图4为本发明实施例1所制备的样品以及载体MIL-101、实施例2所制备的样品Ru@MIL-101、实施例3所制备的样品CuCo@MIL-101分别催化氨硼烷水解释氢的速率图。
具体实施方式
以下是本发明的具体实施例,说明本发明所提供的催化剂的制备和应用。
实施例1:三元RuCuCo@MIL-101纳米催化剂的制备
称取对苯二甲酸(823.0 mg, 5.0 mmol), Cr(NO3)3·9H2O(2007.0 mg, 5.0 mmol),HF (0.12 mL, 40 wt%)和去离子水(24 mL) 搅拌后加入到50mL有聚四氟内衬的不锈钢反应釜中, 密封, 在恒温200℃条件下反应8 h。待冷却至室温后,得到绿色悬浊液,用孔径为100 um的滤布过滤。再将含有MIL-101颗粒的滤液抽滤,用去离子水洗涤,烘干,分别在乙醇溶液中70ºC搅拌6h和NH4F (30 mM)溶液中60ºC搅拌6h,过滤干燥, 得到MIL-101。
称取200.0 mg上述的MIL-101, 29.0 mgCu(NO3)2•3H2O, 35.0 mg的 Co(NO3)2•6H2O和6 mL 0.01 M RuCl3加入到30 mL去离子水中,超声10 min 得到均匀分散的悬浊液再继续搅拌24h。然后,称取50.0 mg 的NaBH4固体溶解于10 mL去离子水中,将NaBH4溶液逐滴加入到上述悬浊液中还原溶液中的金属离子,滴加完毕后继续搅拌6 h。将产物过滤、洗涤、真空干燥过夜,得到RuCuCo@MIL-101催化剂复合物。
对实施例1制备的RuCuCo@MIL-101催化剂经过XPS谱图分析(参见附图1-3),从图1中可见,存在Ru 3p的信号峰462.0 eV和485.1eV。从图2中可见, 存在Cu 2p信号峰934.9eV、942.3eV、954.6 eV和962.3 eV。从图3中可见,存在Co 2p信号峰781.2 eV、786.2 eV、795.8 eV和803.1 eV。由图1、图2和图3的结果可说明三种元素钌、铜和钴成功地负载到MIL-101载体上。TEM测得负载RuCuCo金属的平均粒径为6.9nm。
实施例2:一元Ru@MIL-101催化剂的制备
称取200.0 mg上述实施例1的MIL-101和6 mL 的0.01 M RuCl3加入到30 mL去离子水中,超声10 min 得到均匀分散的悬浊液再继续搅拌24h。然后,称取50.0 mg 的NaBH4固体溶解于10 mL去离子水中,将该溶液逐滴加入到上述悬浊液中还原溶液中的金属离子,滴加完毕后继续搅拌6 h。将产物过滤、洗涤、真空干燥过夜后即得到Ru@MIL-101催化剂。TEM测得负载金属Ru的平均粒径为1.9nm。
实施例3:二元CuCo@MIL-101催化剂的制备
称取200.0 mg上述实施例1的MIL-101, 29.0 mg的Cu(NO3)2•3H2O和35.0 mg的 Co(NO3)2•6H2O加入到30 mL去离子水中,超声10 min 得到均匀分散的悬浊液再继续搅拌24h。然后,称取50.0 mg 的NaBH4固体溶解于10 mL去离子水中,将该溶液逐滴加入到上述悬浊液中还原溶液中的金属离子,滴加完毕后继续搅拌6 h。将产物过滤、洗涤、真空干燥过夜后即得到CuCo@MIL-101催化剂。TEM测得负载CuCo金属的平均粒径为7.8nm。
实施例4:催化剂对氨硼烷的催化水解释氢试验
为考察本发明制备的多种催化剂对氨硼烷水解释氢的效果,本发明人将制备的催化剂用于催化氨硼烷水解放氢,测试过程如下:
催化实验是在一边连接气体检测装置一边接有恒压漏斗的两颈圆底烧瓶中进行,恒压漏斗中装有20 mL去离子水,烧瓶中装有10.0 mg 的催化剂和18.5 mg 氨硼烷固体。当漏斗中的去离子水加入到烧瓶中时,氨硼烷水解释氢反应即刻发生,此时每间隔30 秒记录一次氢气的体积。采用水浴控制反应温度为25 ºC。经计算,室温下三元RuCuCo@MIL-101纳米催化剂催化氨硼烷水解的TOF值为241.2 mol H2 min-1(mol Ru)-1。分别对实施例1所制备的样品RuCuCo@MIL-101、载体MIL-101、实施例2所制备的样品Ru@MIL-101、实施例3所制备的样品CuCo@MIL-101进行催化氨硼烷水解释氢试验,结果如附图4所示。可见三元RuCuCo@MIL-101纳米催化剂具有最高的催化活性。
实施例5:不同温度下三元纳米催化剂的释氢速率与活化能
在不同的温度下(25、30、35和40 ºC)采用实施例1制备的样品,运用实施例4的方法催化氨硼烷水解释氢,结果如表1所示。可见,温度越高,释氢速率越快,由释氢速率根据阿伦尼乌斯公式计算得到催化反应的活化能为48 kJ mol-1
表1 不同温度下催化氨硼烷水解的释氢速率
温度(ºC) 25 30 35 40
释氢速率(ml H2 min-1 3.7 5.2 7.3 8.0
实施例6:三元纳米催化剂循环催化氨硼烷水解释氢试验
采用实施例1所得的三元RuCuCo@MIL-101纳米催化剂进行循环使用性能测试,运用实施例4的方法催化氨硼烷水解释氢。在25 ºC时,当氨硼烷水解完全后,往两口烧瓶中再加入等量的氨硼烷(18.5 mg)测试,经过五次循环后,催化剂仍具有很高的活性,详见表2。
表2 催化剂循环水解氨硼烷释氢
循环次数 1 2 3 4 5
相对初次活性 100% 77% 68% 58% 54%
由表2可以看出,催化剂催化水解氨硼烷释氢经过五次循环后的相对初次活性仍保留54%。这表明三金属负载型催化剂RuCuCo@MIL-101具有较好的循环稳定性。

Claims (6)

1.一种用于氨硼烷水解释氢的三元纳米催化剂,其特征在于:以贵金属Ru和非贵金属CuCo为活性组分,以金属有机骨架材料MIL-101为载体,用MIL-101负载三金属RuCuCo纳米粒子,通过还原前驱体钌盐、铜盐、钴盐得到三元纳米催化剂RuCuCo@MIL-101。
2.的制备方法,其特征在于按如下步骤制备而成:
(1)将硝酸铬、对苯二甲酸、氢氟酸、去离子水搅拌均匀后加入到40mL有聚四氟乙烯内衬的不锈钢反应釜中, 在200℃条件下反应8 小时;将获到的悬浊液抽滤、洗涤、纯化后干燥, 得到载体MIL-101;
(2)将上述步骤(1)所制得MIL-101与铜盐、钴盐以及钌盐混合后加入到30 mL去离子水中,超声10 分钟后再继续搅拌24小时;
将50.0 mg 的NaBH4固体溶解于10 mL去离子水中,将该溶液逐滴加入到上述步骤(2)的溶液中,滴加完毕后继续搅拌6 小时;将产物过滤、洗涤、真空干燥过夜后得到三金属RuCuCo@MIL-101催化剂。
3.根据权利要求2所述用于氨硼烷水解释氢的三元纳米催化剂的制备方法,其特征在于:步骤(1)中所述铬盐、对苯二甲酸、氢氟酸、去离子水的摩尔比为1:1:1:280。
4.根据权利要求2所述用于氨硼烷水解释氢的三元纳米催化剂的制备方法,其特征在于:步骤(2)中所述铜盐中的铜、钴盐中的钴以及钌盐中的钌的摩尔比为1:1:0.5。
5.根据权利要求2所述用于用于氨硼烷水解释氢的三元纳米催化剂的制备方法,其特征在于:步骤(2)中所述铜盐为可溶性铜盐,所述的钴盐为可溶性钴盐。
6.根据权利要求2所述用于氨硼烷水解释氢的三元纳米催化剂的制备方法,其特征在于:步骤(2)中所述钌盐为三氯化钌。
CN201610613243.1A 2016-07-29 2016-07-29 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法 Pending CN106345524A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610613243.1A CN106345524A (zh) 2016-07-29 2016-07-29 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610613243.1A CN106345524A (zh) 2016-07-29 2016-07-29 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN106345524A true CN106345524A (zh) 2017-01-25

Family

ID=57843399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610613243.1A Pending CN106345524A (zh) 2016-07-29 2016-07-29 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106345524A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376996A (zh) * 2017-06-26 2017-11-24 湖北大学 一种氨硼烷水解释氢用钌钴双金属纳米负载型催化剂及其制备方法
CN107442176A (zh) * 2017-06-26 2017-12-08 湖北大学 一种氨硼烷水解释氢用钌磷合金纳米负载型催化剂及其制备方法
CN107670694A (zh) * 2017-09-08 2018-02-09 浙江大学 一种金属负载型催化剂及其制备方法和应用
CN110813311A (zh) * 2019-11-08 2020-02-21 成都理工大学 一种催化NaBH4水解制氢的高效率Ru/Co催化剂的制备方法
CN112408319A (zh) * 2020-10-10 2021-02-26 三峡大学 Zn-EDTA作为氨硼烷的产氢控制开关
CN113634256A (zh) * 2021-09-16 2021-11-12 浙江大学 一种多维度微纳非贵金属复合催化剂及其制备和应用
CN114377691A (zh) * 2022-01-24 2022-04-22 桂林电子科技大学 一种甜甜圈状空心多孔Pt-Ni纳米粒子负载氧化钛材料及其制备方法
CN115445665A (zh) * 2022-08-29 2022-12-09 江西师范大学 一种用于水合肼分解产氢的复合纳米催化剂及其制备方法和应用
US11890603B2 (en) 2018-08-15 2024-02-06 Tiesheng WANG et al. Nanocomposite materials and methods of manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513125A (zh) * 2011-11-01 2012-06-27 天津天环光伏太阳能有限公司 一种用于氨硼烷水解的三元过渡金属催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513125A (zh) * 2011-11-01 2012-06-27 天津天环光伏太阳能有限公司 一种用于氨硼烷水解的三元过渡金属催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUNZHOU YANG 等: "RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107442176B (zh) * 2017-06-26 2019-06-18 湖北大学 一种氨硼烷水解释氢用钌磷合金纳米负载型催化剂及其制备方法
CN107442176A (zh) * 2017-06-26 2017-12-08 湖北大学 一种氨硼烷水解释氢用钌磷合金纳米负载型催化剂及其制备方法
CN107376996A (zh) * 2017-06-26 2017-11-24 湖北大学 一种氨硼烷水解释氢用钌钴双金属纳米负载型催化剂及其制备方法
CN107670694B (zh) * 2017-09-08 2021-05-14 浙江大学 一种金属负载型催化剂及其制备方法和应用
CN107670694A (zh) * 2017-09-08 2018-02-09 浙江大学 一种金属负载型催化剂及其制备方法和应用
US11890603B2 (en) 2018-08-15 2024-02-06 Tiesheng WANG et al. Nanocomposite materials and methods of manufacture thereof
CN110813311A (zh) * 2019-11-08 2020-02-21 成都理工大学 一种催化NaBH4水解制氢的高效率Ru/Co催化剂的制备方法
CN112408319A (zh) * 2020-10-10 2021-02-26 三峡大学 Zn-EDTA作为氨硼烷的产氢控制开关
CN112408319B (zh) * 2020-10-10 2022-03-18 三峡大学 Zn-EDTA作为氨硼烷的产氢控制开关
CN113634256A (zh) * 2021-09-16 2021-11-12 浙江大学 一种多维度微纳非贵金属复合催化剂及其制备和应用
CN113634256B (zh) * 2021-09-16 2022-05-03 浙江大学 一种多维度微纳非贵金属复合催化剂及其制备和应用
CN114377691A (zh) * 2022-01-24 2022-04-22 桂林电子科技大学 一种甜甜圈状空心多孔Pt-Ni纳米粒子负载氧化钛材料及其制备方法
CN114377691B (zh) * 2022-01-24 2024-04-05 桂林电子科技大学 一种甜甜圈状空心多孔Pt-Ni纳米粒子负载氧化钛材料及其制备方法
CN115445665A (zh) * 2022-08-29 2022-12-09 江西师范大学 一种用于水合肼分解产氢的复合纳米催化剂及其制备方法和应用
CN115445665B (zh) * 2022-08-29 2023-10-13 江西师范大学 一种用于水合肼分解产氢的复合纳米催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106345524A (zh) 一种用于氨硼烷水解释氢的三元纳米催化剂及其制备方法
CN103949286B (zh) 一种用于选择性加氢反应的MOFs贵金属MOFs催化剂、制备方法及其用途
Yao et al. Synergetic catalysis of non-noble bimetallic Cu–Co nanoparticles embedded in SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane
CN108097316B (zh) 一种负载纳米金属颗粒的MOFs纳米材料的制备方法
CN107486245B (zh) 一种催化氨硼烷水解产氢的nh2-mil-125负载银钴合金纳米催化剂
CN107376996A (zh) 一种氨硼烷水解释氢用钌钴双金属纳米负载型催化剂及其制备方法
CN106334566A (zh) 一种核壳结构负载型碳纳米管催化剂及其制备方法
CN104646025B (zh) 一种中空Pt/Ni合金与石墨烯气凝胶复合材料的制备方法
CN110756225A (zh) 一种金属/MOFs纳米催化剂及其制备方法与应用
CA2805381A1 (en) Hollow nanoparticles as active and durable catalysts and methods for manufacturing the same
CN108671964A (zh) 一种催化产氢的MIL-53(Al)负载钌钴合金纳米催化剂及制备方法
CN107224981B (zh) 一种氨硼烷水解释氢的PdNi合金纳米催化剂及其制备方法
CN101157033A (zh) 一种介孔Pt/WO3电催化剂及其制备方法
Fu et al. Layered CuNi-Cu 2 O/NiAlO x nanocatalyst for rapid conversion of p-nitrophenol to p-aminophenol
CN108212189A (zh) 一种微量贵金属修饰的过渡金属催化剂及其制备和应用
CN104148084B (zh) 一种纳米多孔四元合金催化剂的制备及其在氨硼烷水解制氢中的应用
Xiaopeng et al. CoRh nanoparticles supported on ZIF-67 as highly efficient catalysts for hydrolytic dehydrogenation of ammonia boranes for chemical hydrogen storage
CN101239318B (zh) 一种新型肉桂醛加氢催化剂及其制备方法
CN103949254A (zh) 一种用于氨硼烷和肼硼烷水解制氢的 Cu@mSiO2核壳纳米催化剂及其制备方法
CN103007932A (zh) 一种二氧化钛纳米带负载双金属整体式催化剂的制备方法
CN103724174B (zh) 一种制备环己酮的方法
CN107670694A (zh) 一种金属负载型催化剂及其制备方法和应用
CN109772455B (zh) 一种包裹细小高分散钯纳米粒子的多孔聚胺复合材料的制备和应用
CN114345350B (zh) 一种Co基双金属氧化物催化剂及其制备方法
CN105385965B (zh) 一种基于ZIF‑67骨架材料制备CoB非晶态合金的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170125

WD01 Invention patent application deemed withdrawn after publication