WO2018209666A1 - 一种单原子分散钯基催化剂的制备方法及其催化应用 - Google Patents

一种单原子分散钯基催化剂的制备方法及其催化应用 Download PDF

Info

Publication number
WO2018209666A1
WO2018209666A1 PCT/CN2017/084993 CN2017084993W WO2018209666A1 WO 2018209666 A1 WO2018209666 A1 WO 2018209666A1 CN 2017084993 W CN2017084993 W CN 2017084993W WO 2018209666 A1 WO2018209666 A1 WO 2018209666A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
hydrotalcite
based catalyst
semiconductor
chloride
Prior art date
Application number
PCT/CN2017/084993
Other languages
English (en)
French (fr)
Inventor
张法智
郝琳
王红璐
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2018209666A1 publication Critical patent/WO2018209666A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/652Chromium, molybdenum or tungsten

Definitions

  • the invention relates to the technical field of catalyst preparation, in particular to a photo-deposition method for preparing a monoatomic dispersed palladium-based catalyst supported by a hydrotalcite semiconductor and an application thereof for the selective hydrogenation reaction of an alkyne.
  • Styrene polymerization is commonly used in the industry to prepare polystyrene.
  • the styrene raw material contains a small amount of phenylacetylene, which easily poisons the catalyst.
  • the phenylacetylene in the raw material is generally converted to styrene by selective hydrogenation of phenylacetylene.
  • supported palladium-based catalysts are widely used in the reaction because of their high catalytic hydrogenation activity, but when the conversion of phenylacetylene is higher than 95%, the selectivity of styrene is greatly reduced.
  • the palladium active sites are usually modified by means of poisoning and alloying to increase the selectivity of styrene, but this generally sacrifices its reactivity. Therefore, it is of great significance to study palladium-based catalysts with high selectivity and high activity.
  • the active site of the supported nano-palladium-based catalyst is generally that the palladium atom on the surface of the palladium particle acts, and for the monoatomic dispersed palladium-based catalyst, each palladium atom is an active center, and both To the catalytic effect, the atomic utilization efficiency can theoretically reach 100%, thereby increasing the catalytic reaction rate.
  • the monoatomic palladium does not have a subsurface and does not contain subsurface hydrogen, thereby facilitating the selectivity of hydrogenation of an alkyne. Therefore, it is of great significance to find a simple method for preparing a monoatomic dispersed palladium-based catalyst.
  • the present invention provides a monoatomic dispersion palladium-based catalyst, a preparation method thereof and a use method thereof, to solve the problems of low selectivity and low activity of the existing palladium-based catalyst.
  • the preparation method comprises the steps of: adding an appropriate amount of an alcohol solution and a certain amount of H 2 PdCl 4 solution in an aqueous solution in which a hydrotalcite carrier is dissolved, and transferring electrons from a valence band to a conduction band in a hydrotalcite semiconductor under ultraviolet light irradiation; The electrons obtained by the conduction band reduce palladium ions to palladium atoms, and the alcohol molecules in the solution oxidize at the holes to form hydroxyl radicals.
  • a monoatomic palladium catalyst can be obtained by controlling the amount of H 2 PdCl 4 solution added and the irradiation time.
  • Monoatomic Pd does not agglomerate by reduction treatment of the catalyst sample at different temperatures (200 ° C, 300 ° C, 500 ° C).
  • the zinc salt used in the semiconductor hydrotalcite is zinc nitrate or zinc chloride
  • the trivalent salt used is aluminum nitrate, chromium nitrate, iron nitrate, cobalt nitrate, gallium nitrate, or aluminum chloride, and chlorination. Any of chromium, ferric chloride, cobalt chloride, or gallium chloride.
  • the semiconductor hydrotalcite carrier is zinc chromium hydrotalcite, the molar ratio of Zn/Cr is 2/1, and the loading amount of the palladium catalyst on the semiconductor hydrotalcite carrier is 0.1-0.3 wt%.
  • a method for preparing a palladium-based catalyst comprising the steps of:
  • the divalent salt used is zinc nitrate or zinc chloride
  • the trivalent salt used is aluminum nitrate, chromium nitrate, iron nitrate, cobalt nitrate, gallium nitrate, or aluminum chloride or chlorine. Any of chromium, ferric chloride, cobalt chloride, or gallium chloride.
  • the semiconductor hydrotalcite prepared in the step (a) is zinc chromium hydrotalcite, and the molar ratio of Zn/Cr is 2/1.
  • the specific reaction condition of the step (b) is: taking the semiconductor hydrotalcite obtained in the step (a) ultrasonically dispersed in deionized water, adding an alcohol solvent, uniformly dispersing ultrasonically, adding a H 2 PdCl 4 solution, and stirring the ultraviolet radiation.
  • the electrons in the hydrotalcite semiconductor are transferred from the valence band to the conduction band.
  • the electrons obtained from the conduction band reduce the palladium ions to palladium atoms, and the alcohol molecules in the solution oxidize at the holes to form hydroxyl radicals.
  • the mixture was washed by centrifugation, finally washed with absolute ethanol, and dried under vacuum to obtain a monoatomic dispersion of a palladium-based catalyst.
  • the hydrotalcite semiconductor is 1 g of zinc chromium hydrotalcite
  • the alcohol solvent is ethylene glycol
  • the amount is 10-30 mL
  • ultraviolet irradiation is performed for 10-30 min using a xenon lamp steady flow power lamp.
  • the monoatomic dispersed palladium-based catalyst prepared by the above method is subjected to high-temperature reduction and then applied to the phenylacetylene hydrogenation reaction;
  • the high-temperature reduction condition is: under hydrogen atmosphere, the reduction is carried out at 200 ° C - 500 ° C for 3-8 h, and the heating rate is 5- 10 ° C / min.
  • the specific operation of the palladium-based catalyst prepared by the above method for the hydrogenation reaction of phenylacetylene is: 1 ml of phenylacetylene substrate, 5-15 ml of ethanol as solvent, and the monoatomic dispersion of palladium-based catalyst or the amount of product after high-temperature reduction is 0.005. -0.1 g, the reaction temperature is 20-50 ° C, and the H 2 pressure is 0.1 MPa - 0.5 MPa.
  • the present invention utilizes a photodeposition method to prepare a monoatomic dispersed palladium-based catalyst using a semiconductor hydrotalcite as a carrier. It exhibits excellent catalytic activity and selectivity for the selective hydrogenation of phenylacetylene.
  • the above monoatomic dispersed palladium-based catalyst is calcined at 500 ° C to change the interaction between the carrier and the active component, and is applied to the hydrogenation reaction of phenylacetylene to further improve the selectivity and activity.
  • the present invention has also found that by controlling the photoreduction process, a monoatomic palladium-based catalyst can be obtained by controlling the amount of the catalyst and the ultraviolet light irradiation time. By heat-treating the sample at 500 ° C, the palladium atoms do not aggregate, have good stability, and exhibit higher catalytic activity and selectivity for the hydrogenation of phenylacetylene.
  • Example 1 is a scanning electron micrograph of ZnCrLDH obtained in Example 1.
  • FIG. 2 is a high-resolution dark-field image high-resolution transmission electron micrograph of aberration correction of the monoatomic dispersed Pd catalyst prepared in Example 1.
  • FIG. 3 is a high-resolution dark-field image high-resolution transmission electron micrograph of aberration correction of a catalyst sample obtained by reduction of a monoatomic dispersed Pd catalyst prepared in Example 1 at 500 ° C.
  • FIG. 3 is a high-resolution dark-field image high-resolution transmission electron micrograph of aberration correction of a catalyst sample obtained by reduction of a monoatomic dispersed Pd catalyst prepared in Example 1 at 500 ° C.
  • FIG. 4 is a graph showing changes in selectivity with conversion of a monoatomic dispersed Pd catalyst and a supported nano Pd catalyst prepared in Example 1.
  • FIG. 4 is a graph showing changes in selectivity with conversion of a monoatomic dispersed Pd catalyst and a supported nano Pd catalyst prepared in Example 1.
  • ZnCr-LDH is prepared by a double drop method.
  • the molar ratio of Zn/Cr is 2/1; firstly, 0.66 mol of Zn(NO 3 ) 2 ⁇ 6H 2 O, 0.33 mol of Cr(NO 3 ) 3 ⁇ 9H 2 O is weighed, and 60 ml of deionized water is weighed by a measuring cylinder. It was thoroughly mixed with the so-called metal salt and placed in an ultrasonic cleaner for 10 minutes to achieve sufficient dissolution.
  • the obtained slurry was centrifuged at 4000 rpm for 5 minutes, first washed with deionized water several times, and then washed once with absolute ethanol, and the obtained paste product was placed in an electric constant temperature vacuum drying oven at 30 ° C.
  • the mixture was dried and ground to a fine powder with an agate mortar to obtain a zinc-chromium hydrotalcite carrier, which was designated as Zn 2 Cr-LDH.
  • the ground catalyst was divided into 4 parts, one of which was not treated, and the other three were placed in a hydrogen atmosphere furnace at 200 ° C, 300 ° C, 500 ° C for 5 h, and the heating rate was 5 ° C / min.
  • the compare supported nanometer palladium-based catalysts 1wt% theoretical loading preparation, which carrier is ZnCr-LDH, theoretical loading of palladium is 1wt%, except that the amount added H 2 PdCl 4 solution was The rest of the preparation process is the same as that described above for the preparation of the monoatomic dispersion palladium-based catalyst.
  • the palladium-based catalyst prepared by the above method is applied to the selective hydrogenation reaction of phenylacetylene, and the process conditions are as follows: 0.01 g of the prepared monoatomic dispersed palladium-based catalyst or its high-temperature reduction product or supported nano-palladium-based catalyst is used in 50 ml of high pressure. In the reaction vessel, 1 ml of phenylacetylene substrate was weighed, 9 ml of ethanol was used as a solvent, and the reaction vessel was sealed, and N 2 was charged therein to remove air. After repeating three times, H 2 was charged into the reaction vessel three times and discharged.
  • the process should be carried out quickly to avoid affecting the reaction results, then pass H 2 to bring the pressure to 0.5 MPa, set the reaction temperature to 30 ° C, stir the stirring speed to 1000 r / min, sample once every certain time, and the product is characterized by gas chromatography. And quantitative analysis.
  • the TOF (Time of Flight, TOF) value of the monoatomic dispersed palladium-based catalyst and the supported nano-palladium-based catalyst prepared in Example 1 was calculated, 0.1% Pd/ZnCr-LDH (R500), 0.1% Pd/ZnCr. -LDH and 1% Pd/ZnCr-LDH are 64.5s -1 , 31.2s -1 and 6.6s -1 , respectively ; that is, the TOF value is: 0.1% Pd / ZnCr - LDH (R500) > 0.1% Pd / ZnCr - LDH>1% Pd/ZnCr-LDH.
  • FIG. 4 is a graph showing changes in selectivity with conversion of a monoatomic dispersed palladium-based catalyst and a supported nano-palladium-based catalyst prepared in Example 1.
  • FIG. 4 It can be seen from Fig. 4 that the selectivity from large to small is: 0.1% R500 > 0.1% > 1%.
  • the selectivity can be maintained at 92% at a conversion of 100%.

Abstract

一种单原子分散钯基催化剂的制备方法及其催化应用。所述单原子分散钯基催化剂的制备方法采用光沉积法,以含锌水滑石为载体,制备了单原子分散的钯基催化剂。即在溶有水滑石载体的水溶液中,加入醇溶液和H 2PdCl 4溶液,在紫外光照射下,水滑石半导体内会发生电子从价带到导带的转移,导带得到的电子将钯离子还原成钯原子,溶液中的醇分子则在空穴处发生氧化反应生成羟基自由基。通过对光沉积过程的研究发现通过控制加入H2PdCl4溶液的量和光照时间,能够制得单原子钯催化剂。通过对催化剂样品在不同温度下还原处理,此时单原子钯不产生聚集,单原子分散钯基催化剂对于苯乙炔加氢反应具有优异的催化活性和选择性。

Description

一种单原子分散钯基催化剂的制备方法及其催化应用 技术领域
本发明涉及催化剂制备技术领域,尤其涉及一种光沉积法制备以水滑石半导体为载体的单原子分散钯基催化剂及其催化炔烃选择加氢反应的应用。
背景技术
工业上通常使用苯乙烯聚合反应来制备聚苯乙烯。但是苯乙烯原料中含有少量的苯乙炔,容易使催化剂中毒。为了提高苯乙烯单体的纯度,一般通过苯乙炔选择性加氢反应,使原料中的苯乙炔转化为苯乙烯。目前,负载型钯基催化剂由于具有较高的催化加氢活性被广泛地应用于该反应,但是当苯乙炔的转化率高于95%的时候,苯乙烯的选择性会很大程度的降低。目前通常利用毒化作用和合金化的手段对钯活性位来进行修饰以提高苯乙烯的选择性,但是这一般会牺牲其反应活性。因此研究兼有高选择性和高活性的钯基催化剂具有重要的意义。
目前全球贵金属钯的储量极低,因此在化学工业中要避免钯的浪费,提升钯的利用率。对于催化加氢反应,负载型纳米钯基催化剂的活性位点一般是钯颗粒表面的钯原子在起作用,而对于单原子分散的钯基催化剂,每个钯原子都是活性中心,都能起到催化作用,原子利用效率理论上可以达到100%,进而提高催化反应速率。并且单原子钯不存在次表面,不含有次表面氢,因此有利于提高炔烃加氢的选择性。因此寻找简易制备单原子分散钯基催化剂的方法具有重要的意义。
发明内容
为解决上述问题,本发明提供一种单原子分散钯基催化剂及其制备方法和使用方法,以解决现有的钯基催化剂选择性低以及活性低的问题。该制备方法是在溶有水滑石载体的水溶液中,加入适量的醇溶液和一定量的H2PdCl4溶液,在紫外光照射下,水滑石半导体内会发生电子从价带到导带的转移,导带得到的电子将钯离子还原成钯原子,溶液中的醇分子则在空穴处发生氧化反应生成羟基自由基。通过对光沉积过程的研究发现通过控制加入H2PdCl4溶液的量和光照时间,能够制得单原子钯催化剂。通过对催化剂样品在不同温度(200℃,300℃,500℃) 下还原处理,单原子Pd不产生聚集。
一种钯基催化剂,单原子钯分散在半导体水滑石载体表面上。
优选的,所述半导体水滑石所使用的锌盐是硝酸锌或者氯化锌,所使用的三价盐是硝酸铝、硝酸铬、硝酸铁、硝酸钴、硝酸镓、或者氯化铝、氯化铬、氯化铁、氯化钴、或氯化镓中的任意一种。
优选的,所述半导体水滑石载体是锌铬水滑石,Zn/Cr的摩尔比为2/1,所述半导体水滑石载体上的钯催化剂的负载量为0.1-0.3wt%。
一种钯基催化剂的制备方法,包括以下步骤:
(a)双滴法制备半导体水滑石;
(b)采用光沉积法,半导体水滑石内从价带转移到导带的电子将钯离子还原成钯原子。
优选的,步骤(a),所使用的二价盐是硝酸锌或者氯化锌,所使用的三价盐是硝酸铝、硝酸铬、硝酸铁、硝酸钴、硝酸镓、或者氯化铝、氯化铬、氯化铁、氯化钴、或氯化镓中的任意一种。
优选的,步骤(a)所制备的半导体水滑石是锌铬水滑石,Zn/Cr的摩尔比为2/1。
优选的,步骤(b)具体反应条件为:取步骤(a)得到的半导体水滑石超声分散在去离子水中,加入醇溶剂,超声分散均匀后,加入H2PdCl4溶液,搅拌条件下紫外线辐照,使得水滑石半导体内发生电子从价带到导带的转移,导带得到的电子将钯离子还原成钯原子,溶液中的醇分子则在空穴处发生氧化反应生成羟基自由基,产物离心洗涤,最后经无水乙醇离心洗涤,真空干燥即得单原子分散钯基催化剂。
优选的,步骤(b)中,所述的水滑石半导体为1g的锌铬水滑石,醇溶剂为乙二醇,用量为10-30mL,使用氙灯稳流电源灯进行紫外线辐照10-30min。
将上述方法制备得到的单原子分散钯基催化剂催化苯乙炔加氢反应的应用。
将上述方法制备得到的单原子分散钯基催化剂高温还原后应用于苯乙炔加氢反应;所述的高温还原条件为:氢气气氛下,200℃-500℃还原3-8h,升温速率为5-10℃/min。
将上述方法制备得到的钯基催化剂应用于苯乙炔加氢反应的具体操作为:1ml苯乙炔底物,5-15ml乙醇做溶剂,单原子分散钯基催化剂或其高温还原后的产物用量为0.005-0.1g,反应温度为20-50℃,H2压力为0.1MPa-0.5MPa。
本发明具有下述有益效果:
本发明利用光沉积法,以半导体性质的水滑石为载体,制备了单原子分散的钯基催化剂。其对于苯乙炔选择加氢反应,表现出优异的催化活性和选择性。将上述单原子分散钯基催化剂在500℃的条件下焙烧,改变载体和活性组分的相互作用力,将其应用于苯乙炔加氢反应中,可进一步提高其选择性和活性。本发明通过对光还原过程的研究,还发现通过控制催化剂的量和紫外光照时间,能够制得单原子钯基催化剂。通过对样品进行500℃的热处理,钯原子不产生聚集,具有很好的稳定性,对于苯乙炔加氢反应表现出更高的催化活性和选择性。
附图说明
图1为实施例1所制得的ZnCrLDH的扫描电镜图。
图2为实施例1所制得的单原子分散Pd催化剂的像差校正的高角度暗场像高分辨透射电镜图。
图3为实施例1所制得的单原子分散Pd催化剂在500℃下还原后所得催化剂样品的像差校正的高角度暗场像高分辨透射电镜图。
图4为实施例1所制得的单原子分散Pd催化剂和负载型纳米Pd催化剂选择性随转化率的变化图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的单原子分散钯基催化剂的制备方法进行详细描述。
实施例1
本实施例采用双滴法制备ZnCr-LDH。Zn/Cr的摩尔比为2/1;首先称得0.66mol的Zn(NO3)2·6H2O,0.33mol Cr(NO3)3·9H2O,并用量筒量取60ml的去离子水与所称金属盐进行充分的混合,并放入超声波清洗器中搁置10min以达到充分的溶解。另外称取0.30mol的NaOH和0.25mol的Na2CO3放入洗净的烧杯中,并用80ml去离子水搅拌使其溶解,也放入超声波清洗器中超声10min使其充分的溶解;三口烧瓶中的先加入150ml去离子水溶液;随后将超声好的碱溶液和盐溶液分别加入两个恒压滴液漏斗中,并向三口烧瓶中的先加入150ml去二氧化碳水溶液中滴加,控制混合溶液的pH稳定在10,随后将所得混合溶液在60℃的水浴 锅中搅拌,并晶化36小时。所得浆液在4000转/分钟的离心机下离心5分钟,先用去离子水洗涤数次,再用无水乙醇离心洗涤一次,将所得膏状产物放入电热恒温真空干燥箱内在30℃条件下干燥,并用玛瑙研钵将所得产物研磨至细小的粉体,即得锌铬水滑石载体,记为Zn2Cr-LDH。
称量1g锌铬水滑石载体加入到300ml的石英烧杯中,并向其中加入200ml的去离子水,在超声清洗器中分散至均匀,再加入10ml的牺牲剂乙二醇,搅拌并超声5min;搅拌条件下,用移液枪移取理论负载量为0.1wt%的H2PdCl4溶液加入石英烧杯,用氙灯稳流电源灯对石英烧杯光照10min;反应后的溶液进行离心水洗,最后用乙醇洗涤,在30℃真空烘箱干燥,之后将其研磨可以直接使用。
将研磨后的催化剂分成4部分,其中一份不做处理,其它三份,分别放入氢气气氛炉中于200℃,300℃,500℃下还原5h,升温速率为5℃/min。
为了比较样品的催化性能,制备了负载型纳米钯基催化剂作对比,其载体为ZnCr-LDH,钯的理论负载量为1wt%,除了加入H2PdCl4溶液的量为1wt%的理论负载量,其余制备过程与上述制备单原子分散钯基催化剂的过程相同。
将上述方法制备得到的钯基催化剂应用于苯乙炔选择加氢反应,其工艺条件是:称取0.01g制备的单原子分散钯基催化剂或其高温还原产物或负载型纳米钯基催化剂于50ml高压反应釜中,量取1ml苯乙炔底物,9ml乙醇做溶剂,将反应釜密封,向其中充入N2以排除空气,反复进行三次后,向反应釜中充入H2三次并排出,此过程要快速进行,以免对反应结果造成影响,然后通入H2使压力达到0.5MPa,设置反应温度30℃,搅拌速度为1000r/min,每隔一定时间取样一次,产物利用气相色谱来进行定性和定量分析。
计算了实施例1所制得的单原子分散钯基催化剂和负载型纳米钯基催化剂的TOF(Time of Flight,简称TOF)值,0.1%Pd/ZnCr-LDH(R500),0.1%Pd/ZnCr-LDH和1%Pd/ZnCr-LDH分别为64.5s-1,31.2s-1和6.6s-1;即TOF值比较为:0.1%Pd/ZnCr-LDH(R500)>0.1%Pd/ZnCr-LDH>1%Pd/ZnCr-LDH。
图4为实施例1所制得的单原子分散钯基催化剂和负载型纳米钯基催化剂的选择性随转化率的变化图。由图4可以看出选择性从大到小依次为:0.1%R500>0.1%>1%。对于0.1%R500的样品,其在转化率达到100%时,选择性可以维持在92%。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性 实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

  1. 一种单原子分散钯基催化剂,其特征在于,单原子钯分散在半导体水滑石载体表面上。
  2. 根据权利要求1所述的单原子分散钯基催化剂,其特征在于,所述半导体水滑石所使用的锌盐是硝酸锌或者氯化锌,所使用的三价盐是硝酸铝、硝酸铬、硝酸铁、硝酸钴、硝酸镓、或者氯化铝、氯化铬、氯化铁、氯化钴、或氯化镓中的任意一种。
  3. 根据权利要求1或2所述的单原子分散钯基催化剂,其特征在于,所述半导体水滑石载体是锌铬水滑石,Zn/Cr的摩尔比为2/1,所述半导体水滑石载体上的钯催化剂的负载量为0.1-0.3wt%。
  4. 一种单原子分散钯基催化剂的制备方法,其特征在于,包括以下步骤:
    (a)双滴法制备半导体水滑石;
    (b)采用光沉积法,半导体水滑石内从价带转移到导带的电子将钯离子还原成钯原子。
  5. 根据权利要求4所述的单原子分散钯基催化剂的制备方法,其特征在于,步骤(a),所使用的二价盐是硝酸锌或者氯化锌,所使用的三价盐是硝酸铝、硝酸铬、硝酸铁、硝酸钴、硝酸镓、或者氯化铝、氯化铬、氯化铁、氯化钴、或氯化镓中的任意一种。
  6. 根据权利要求5所述的单原子分散钯基催化剂的制备方法,其特征在于,步骤(a)所制备的半导体水滑石是锌铬水滑石,Zn/Cr的摩尔比为2/1。
  7. 根据权利要求4所述的单原子分散钯基催化剂的制备方法,其特征在于,步骤(b)具体反应条件为:取步骤(a)得到的半导体水滑石超声分散在去离子水中,加入醇溶剂,超声分散均匀后,加入H2PdCl4溶液,搅拌条件下紫外线辐照,使得水滑石半导体内发生电子从价带到导带的转移,导带得到的电子将钯离子还原成钯原子,溶液中的醇分子则在空穴处发生氧化反应生成羟基自由基,产物离心洗涤,最后经无水乙醇离心洗涤,真空干燥即得单原子分散钯基催化剂。
  8. 根据权利要求7所述的单原子分散钯基催化剂的制备方法,其特征在于,所述的水滑石半导体为1g的锌铬水滑石,醇溶剂为乙二醇,用量为10-30mL,使用氙灯稳流电源灯进行紫外线辐照10-30min。
  9. 将权利要求4-8所述的方法制备得到的单原子分散钯基催化剂催化苯乙炔加氢反应的应用。
  10. 将权利要求4-8所述的方法制备得到的单原子分散钯基催化剂高温还原后应用于苯乙炔加氢反应;所述的高温还原条件为:氢气气氛下,200℃-500℃还原3-8h,升温速率为5-10℃/min。
PCT/CN2017/084993 2017-05-19 2017-05-19 一种单原子分散钯基催化剂的制备方法及其催化应用 WO2018209666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710354344.6A CN107008290B (zh) 2017-05-19 2017-05-19 一种单原子分散钯基催化剂的制备方法及其催化应用
CN201710354344.6 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018209666A1 true WO2018209666A1 (zh) 2018-11-22

Family

ID=59450642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084993 WO2018209666A1 (zh) 2017-05-19 2017-05-19 一种单原子分散钯基催化剂的制备方法及其催化应用

Country Status (2)

Country Link
CN (1) CN107008290B (zh)
WO (1) WO2018209666A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107570146B (zh) * 2017-09-08 2020-01-14 河北工业大学 一种在金属填料上直接负载活性金属的催化剂
CN107570149A (zh) * 2017-09-19 2018-01-12 青岛科技大学 一种以介孔二氧化钛为载体的单原子催化剂制备方法
CN107715876B (zh) * 2017-10-27 2020-06-09 天津理工大学 一种去除苯乙烯中微量苯乙炔的催化剂的制备方法及应用
CN108777309A (zh) * 2018-05-15 2018-11-09 北京化工大学 一种负载型单原子Pd催化剂及其制备方法和催化应用
CN109012694B (zh) * 2018-08-09 2020-07-10 厦门大学 一种核壳结构钯铜催化剂及其制备方法与催化应用
CN109225253B (zh) * 2018-08-09 2020-07-17 厦门大学 一种原子级分散钯铜催化剂及其制备方法与催化应用
CN110947428B (zh) * 2018-09-26 2022-12-02 国家纳米科学中心 一种UiO@Pd@UiO催化剂及其制备方法和用途
CN109201048B (zh) * 2018-10-19 2021-02-09 清华大学深圳研究生院 一种单原子催化剂及其制备方法
CN110449176B (zh) * 2019-08-16 2021-01-29 江南大学 一种非贵金属单原子催化剂的制备方法及应用
CN110681381B (zh) * 2019-09-27 2021-06-08 北京化工大学 一种反马氏氢胺化催化剂及其制备方法和应用
CN111135841A (zh) * 2019-12-20 2020-05-12 北京化工大学 一种PtCu单原子合金纳米催化剂的制备方法及应用
CN111054333B (zh) * 2020-02-14 2022-11-01 郑州轻工业大学 用于苯乙炔选择加氢制苯乙烯的水滑石负载钯催化剂及其制备方法和应用
CN113996312B (zh) * 2020-07-27 2023-02-28 中国科学院大连化学物理研究所 一种铁掺杂镁铝尖晶石负载贵金属催化剂及制备和应用
CN115724435A (zh) * 2022-12-15 2023-03-03 深圳先进电子材料国际创新研究院 一种二氧化硅粉体及其制备方法和应用
CN115845840A (zh) * 2022-12-23 2023-03-28 辽宁大学 一种石墨烯负载原子级分散钯基催化剂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822097A (zh) * 2010-03-09 2012-12-12 马克斯-普朗克科学促进学会 钯改性水滑石及其作为催化剂前体的用途
WO2014169373A1 (en) * 2013-04-19 2014-10-23 Khashayar Ghandi Process for generating hydrogen using photo-catalytic composite material
CN104148120A (zh) * 2014-06-19 2014-11-19 北京化工大学 一种使用助剂控制催化剂金属中心高度分散的方法
CN104338546A (zh) * 2013-07-31 2015-02-11 中国科学院大连化学物理研究所 一种基于层状结构半导体材料光催化剂及其产氢应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129034A1 (en) * 2007-04-20 2008-10-30 Euro Support Catalyst Group Bv Hydrotalcite-like layered double hydroxide (ldh) composition and process of making same
CN103203231B (zh) * 2013-04-12 2014-12-03 北京化工大学 一种水滑石负载的不同形貌的Pd纳米晶催化剂的原位可控合成方法及其催化Heck反应的应用
CN103263915A (zh) * 2013-05-10 2013-08-28 北京化工大学 一种水滑石负载纳米铂催化剂及其制备方法和应用
CN103230805A (zh) * 2013-05-16 2013-08-07 黑龙江省科学院石油化学研究院 一种磁性水滑石负载纳米钯催化剂的制备方法
CN103691431B (zh) * 2013-12-24 2016-07-06 湘潭大学 一种钯碳催化剂及制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102822097A (zh) * 2010-03-09 2012-12-12 马克斯-普朗克科学促进学会 钯改性水滑石及其作为催化剂前体的用途
WO2014169373A1 (en) * 2013-04-19 2014-10-23 Khashayar Ghandi Process for generating hydrogen using photo-catalytic composite material
CN104338546A (zh) * 2013-07-31 2015-02-11 中国科学院大连化学物理研究所 一种基于层状结构半导体材料光催化剂及其产氢应用
CN104148120A (zh) * 2014-06-19 2014-11-19 北京化工大学 一种使用助剂控制催化剂金属中心高度分散的方法

Also Published As

Publication number Publication date
CN107008290B (zh) 2020-01-21
CN107008290A (zh) 2017-08-04

Similar Documents

Publication Publication Date Title
WO2018209666A1 (zh) 一种单原子分散钯基催化剂的制备方法及其催化应用
Bibi et al. Hybrid BiOBr/UiO-66-NH 2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation
CN107694592B (zh) 超声辅助置换反应制备的单原子贵金属催化剂及其方法
CN107008484B (zh) 一种二元金属硫化物/氮化碳复合光催化材料及其制备方法
WO2022012098A1 (zh) 一种加氢催化剂及其制备方法和应用
WO2020082410A1 (zh) 一种负载型双金属核壳结构催化剂及其制备方法
CN109201102B (zh) 一种Z型异质结M-C3N4/CdS复合光催化剂的制备方法
CN112337509B (zh) 一种碳-碳三键选择性加氢用mof基过渡金属单原子催化剂及其制备方法
CN103316694A (zh) 一种Zn0.8Cd0.2S和石墨烯复合材料的制备方法
Jiang et al. Oxygen deficient Pr 6 O 11 nanorod supported palladium nanoparticles: highly active nanocatalysts for styrene and 4-nitrophenol hydrogenation reactions
JP2013111562A (ja) 組成物及び該組成物を用いたアンモニア製造方法
Tan et al. Fabrication of NH 2-MIL-125 nanocrystals for high performance photocatalytic oxidation
CN106582634A (zh) 一种过渡金属原子改性的高活性钌碳催化剂及其制备方法
CN107511159B (zh) 有机-无机杂化路线制备镍钨双金属碳化物催化剂的制备方法及其应用
CN107827709B (zh) 一种光催化乙醇转化合成巴豆醇的方法
Zhou et al. Precise control of selective hydrogenation of α, β-unsaturated aldehydes in water mediated by ammonia borane
CN105903473B (zh) 一种水滑石前驱体法制备M-Sn金属间化合物的方法及其应用
CN112275283A (zh) 一种金属负载催化体系用于光催化氧化乙烷脱氢和乙烷直接脱氢制乙烯
CN113663671A (zh) 一种三元金属催化剂及其制备方法与应用
CN109731573A (zh) 一种苯甲醇氧化制苯甲醛高活性Au/纳米碳催化剂的制备方法及应用
Guterman et al. Synthesis of nanostructured Pt/C electrocatalysts and effects of ambient atmosphere composition and an intermediate support on their microstructure
CN111054384B (zh) 有机液体储氢材料脱氢的催化剂及其制备方法
Chen et al. Ultrafast charge separation in a WC@ C/CdS heterojunction enables efficient visible-light-driven hydrogen generation
RU2394849C1 (ru) Металл-углеродный нанокомпозит и способ его получения
Zhang et al. Acid-tolerant intermetallic cobalt–nickel silicides as noble metal-like catalysts for selective hydrogenation of phthalic anhydride to phthalide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910484

Country of ref document: EP

Kind code of ref document: A1