WO2022158390A1 - 特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体 - Google Patents

特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体 Download PDF

Info

Publication number
WO2022158390A1
WO2022158390A1 PCT/JP2022/001133 JP2022001133W WO2022158390A1 WO 2022158390 A1 WO2022158390 A1 WO 2022158390A1 JP 2022001133 W JP2022001133 W JP 2022001133W WO 2022158390 A1 WO2022158390 A1 WO 2022158390A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
titanium oxide
mass ppm
particles
low
Prior art date
Application number
PCT/JP2022/001133
Other languages
English (en)
French (fr)
Inventor
拓司 小林
元晴 深澤
拓人 岡部
美満 川越
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020237027920A priority Critical patent/KR20230130118A/ko
Priority to CN202280010932.7A priority patent/CN116783144A/zh
Priority to EP22742512.1A priority patent/EP4282825A4/en
Priority to JP2022576648A priority patent/JPWO2022158390A1/ja
Priority to US18/272,842 priority patent/US20240092652A1/en
Publication of WO2022158390A1 publication Critical patent/WO2022158390A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/043Titanium sub-oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present disclosure relates to particles having a crystal composition of Ti 4 O 7 and ⁇ -Ti 3 O 5 and methods of making the same, and dispersions.
  • Low order titanium oxide also called reduced titanium oxide
  • particles whose surfaces are composed of low-order titanium oxide can be used for various purposes as pigments such as black pigments.
  • Patent Literature 1 discloses a cosmetic using a pigment exhibiting dichroism in which the color tone of the appearance color and the interference color are different by forming a single layer of low-order titanium oxide on plate-like particles.
  • Patent Document 2 discloses a black titanium oxide powder produced using CaH 2 as a reducing agent.
  • Patent Document 3 discloses a titanium oxynitride powder produced by reacting titanium oxide with high-temperature ammonia gas.
  • Black pigments containing low-order titanium oxide are generally called black, but they exhibit different shades of black, such as reddish black and bluish black.
  • the color tone of black varies depending not only on the composition of the low order titanium oxide as described above, but also on the particle size of the pigment (particles). Also, depending on the color tone, the same blackness may appear brighter or darker. For example, bright colors such as red and yellow have the same blackness, but dark colors such as blue and green appear blacker. Therefore, in order to obtain a black pigment with a desired tint, it is conceivable to adjust the physical properties such as the particle size. However, since such physical properties may be restricted depending on, for example, the use of the black pigment, it is preferable that a desired black color be obtained only by adjusting the composition of the low order titanium oxide.
  • one aspect of the present invention aims to obtain low order titanium oxide particles having a novel crystal composition.
  • the present inventors found that when TiH 2 and TiO 2 are heated to produce particles containing low order titanium oxide, by appropriately adjusting the mixing ratio of TiH 2 and TiO 2 and the heating temperature, a novel It has been found that particles having a composition of low order titanium oxide are obtained.
  • the particles have a crystal composition consisting of Ti 4 O 7 and ⁇ -Ti 3 O 5 in specific proportions.
  • one aspect of the present invention comprises heating a mixture comprising TiH 2 and TiO 2 at 700-950° C., wherein the molar ratio of TiO 2 to TiH 2 contained in the mixture is 5.0-6.8.
  • the mixture may be heated under an Ar gas atmosphere.
  • Another aspect of the present invention has a crystal composition consisting of Ti 4 O 7 and ⁇ -Ti 3 O 5 , and the molar ratio of ⁇ -Ti 3 O 5 to Ti 4 O 7 is 0.01 or more. particles.
  • the particles may be particles having an a * value of 0.2 or less and a b * value of 0.0 or less in the L * a * b * color space.
  • the total content of Na, K and P in the particles may be 2000 mass ppm or less.
  • Another aspect of the present invention is a dispersion containing the above particles and a dispersion medium.
  • particles of low order titanium oxide having a novel crystal composition can be obtained. This makes it easy to adjust the black color of the dispersion containing the low-order titanium oxide particles (for example, the resin composition containing the low-order titanium oxide particles and the resin).
  • FIG. 1 shows the measurement results of X-ray diffraction in Examples 1 to 3 and Comparative Example 1.
  • FIG. 4 shows the measurement results of X-ray diffraction in Examples 4 to 7.
  • FIG. 2 shows the results of X-ray diffraction measurements in Examples 8 to 10 and Comparative Example 2.
  • FIG. 1 shows the measurement results of X-ray diffraction in Examples 11-12 and Comparative Examples 3-4.
  • One embodiment of the present invention is a method for producing particles having a specific crystal composition (details will be described later) consisting of Ti 4 O 7 and ⁇ -Ti 3 O 5 (hereinafter also referred to as “low order titanium oxide particles”).
  • This manufacturing method comprises a step of heating a mixture containing TiH 2 and TiO 2 (heating step).
  • the mixture used in the heating step contains, for example, powdered TiH 2 and powdered TiO 2 .
  • the mixture may be, for example, a powder (containing powdered TiH 2 and TiO 2 as they are) that is not formed into pellets or the like.
  • the properties of powdery TiH 2 and TiO 2 can be selected as appropriate.
  • the particle size of powdered TiH 2 and TiO 2 is selected according to the desired particle size of the low order titanium oxide particles.
  • the mixture may contain only TiH 2 and TiO 2 or may contain only TiH 2 , TiO 2 and incidental impurities. Examples of unavoidable impurities include Al 2 O 3 , ZrO 2 and C (carbon).
  • the total amount of TiH 2 and TiO 2 in the mixture may be 90% by weight or more, 95% by weight or more, or 99% by weight or more, based on the total amount of the mixture.
  • the molar ratio of TiO 2 to TiH 2 contained in the mixture (TiO 2 content (mol)/TiH 2 content (mol)) is 5.0 to 6.8. If the molar ratio is less than 5.0, no Ti 4 O 7 is produced in the resulting particles. In this case, the low-order titanium oxide particles tend to exhibit a black bluish purple color. If the molar ratio exceeds 6.8, no ⁇ -Ti 3 O 5 is produced in the resulting particles. In this case, the low-order titanium oxide particles tend to exhibit a light black blue-green color. ⁇ -Ti 3 O 5 alone tends to be reddish, while Ti 4 O 7 alone tends to be less black.
  • the lower limit of the molar ratio is 5.1 or more, 5.2 or more, 5.3 or more, 5.4 or more, 5.5 or more, 5.6 or more, 5.7 or more, 5.8 or more, It may be 9 or more, 6.0 or more, 6.1 or more, or 6.2 or more.
  • the upper limit of the molar ratio is 6.7 or less, 6.6 or less, 6.5 or less, 6.4 or less, 6.3 or less, 6.2 or less, 6.1 or less, 6.0 or less, 5.5. It may be 9 or less, 5.8 or less, 5.7 or less, 5.6 or less, or 5.5 or less.
  • the mixture is heated at 700-950° C. in, for example, an electric furnace. This reduces the titanium dioxide to produce the desired low order titanium oxides (Ti 4 O 7 and ⁇ -Ti 3 O 5 ) in the resulting particles. If the heating temperature is less than 700° C., Ti 4 O 7 and ⁇ -Ti 3 O 5 are not produced in the obtained particles, and for example, Ti n O 2n-1 (n>4) may be produced. . If the heating temperature exceeds 950° C., ⁇ -Ti 3 O 5 is not generated in the obtained particles, and ⁇ -Ti 3 O 5 and ⁇ -Ti 3 O 5 , for example, may be generated.
  • the upper limit of the heating temperature may be 940° C. or lower, 930° C. or lower, 920° C. or lower, 910° C. or lower, or 900° C. or lower.
  • Heating of the mixture is performed, for example, under an inert gas atmosphere or under vacuum.
  • the inert gas may be Ar gas or N 2 gas, which makes it easier to obtain low-order titanium oxide particles having a desired crystal composition (for example, TiO x (x ⁇ 1.0) in low-order titanium oxide particles. 75) can be further suppressed), Ar gas is preferable.
  • the degree of vacuum may be, for example, 500 Pa or less.
  • the heating time may be, for example, 1 hour or longer, 2 hours or longer, or 4 hours or longer, from the viewpoint of allowing the reduction reaction to proceed sufficiently. From the viewpoint of facilitating recovery at 100°C, the time may be, for example, 24 hours or less, 18 hours or less, or 12 hours or less.
  • this manufacturing method may further include a step of washing the low order titanium oxide particles (washing step). Impurities can be removed by the washing process. Washing is performed, for example, with at least one selected from the group consisting of hot water, alcohol and organic acids.
  • the alcohol can be, for example, methanol, ethanol, or mixtures thereof.
  • the organic acid can be, for example, acetic acid. It is preferable to wash with an organic acid from the viewpoint of suppressing contamination of the low order titanium oxide powder with ionic impurities such as halide ions.
  • This manufacturing method preferably further comprises a step of pulverizing the low order titanium oxide particles after the heating step (pulverization step).
  • pulverization step examples include methods using various pulverizers such as a mortar, ball mill, jet mill, and fine mill.
  • the pulverization step may be performed once, or may be performed twice or more. When the grinding step is performed more than once, the grinding method used in each grinding step may be different from each other. By performing the pulverization step, the chromaticity and specific surface area of the low-order titanium oxide particles can be adjusted.
  • this manufacturing method includes a washing step and a crushing step
  • the order of these steps is arbitrary. That is, this manufacturing method may include a heating step, a washing step, and a crushing step in this order, or may include a heating step, a crushing step, and a washing step in this order.
  • a step of drying the low-order titanium oxide particles may be further carried out between the washing step and the pulverizing step.
  • the drying temperature in the drying step may be, for example, 100° C. or higher and 200° C. or lower.
  • the drying time may be, for example, 10 hours or more and 20 hours or less.
  • the low-order titanium oxide particles obtained by the production method described above have a crystal composition consisting of Ti 4 O 7 and ⁇ -Ti 3 O 5 .
  • a crystal composition consisting of Ti 4 O 7 and ⁇ -Ti 3 O 5 means that the crystal composition substantially contains only Ti 4 O 7 and ⁇ -Ti 3 O 5 .
  • the fact that the low-order titanium oxide particles have a crystal composition consisting of Ti 4 O 7 and ⁇ -Ti 3 O 5 can be confirmed by measuring the crystal composition of the low-order titanium oxide particles by an X-ray diffraction method (XRD). In general, it is confirmed by observing only diffraction peaks attributable to Ti 4 O 7 and ⁇ -Ti 3 O 5 respectively.
  • the low-order titanium oxide particles may be composed of a mixed phase consisting of two crystal phases of Ti 4 O 7 and ⁇ -Ti 3 O 5 in one particle.
  • the molar ratio of ⁇ -Ti 3 O 5 to Ti 4 O 7 is greater than or equal to 0.01.
  • the molar ratio may be 0.05 or more, 0.20 or more, 0.70 or more, or 1.0 or more, and may be 99 or less, 50 or less, 20 or less, 10 or less, or 5 or less. good.
  • the molar ratio is calculated by the following formula.
  • Molar ratio ( ⁇ -Ti 3 O 5 /Ti 4 O 7 ) (M1/F1)/(M2/F2)
  • M1 represents the mass fraction of ⁇ -Ti 3 O 5 in the low-order titanium oxide particles
  • M2 represents the low-order oxidation.
  • the mass fraction (M1) of ⁇ -Ti 3 O 5 and the mass fraction (M2) of Ti 4 O 7 in the low-order titanium oxide particles are calculated by Rietveld analysis of the X-ray diffraction pattern.
  • Rietveld method software for example, integrated powder X-ray analysis software PDXL2 manufactured by Rigaku
  • the crystal structure is obtained from the crystal structure database (Pearson's Crystal Data) as Ti 4 O 7 1250094 (Journal of Solid State Chemistry 3, 340 (1971)) and 1900755 (Journal of Solid State Chemistry 20, 29 (1977)) as ⁇ -Ti 3 O 5 to calculate the mass fraction.
  • the low-order titanium oxide particles exhibit a black color with a predetermined chromaticity due to the crystal composition described above.
  • the L * value in the L * a * b * color space of the low order titanium oxide particles is preferably 13.0 or less, more preferably 12.0 or less, still more preferably 11.0 or less, for example 4.0. or more, 5.0 or more, or 6.0 or more.
  • the a * value in the L * a * b * color space of the low order titanium oxide particles is preferably ⁇ 3.0 or more, more preferably ⁇ 2.0 or more, preferably 0.2 or less, and still more preferably 0. .0 or less.
  • the b * value in the L * a * b * color space of the low order titanium oxide particles is preferably ⁇ 8.0 or more, more preferably ⁇ 6.0 or more, still more preferably ⁇ 4.0 or more, and preferably It is 0.0 or less, more preferably -2.0 or less.
  • a colorimetric color difference meter for example, ZE-2000 (manufactured by Nippon Denshoku Industries Co., Ltd.)
  • the specific surface area of the low-order titanium oxide particles may be 0.25 m 2 /g or more, 1 m 2 /g or more, 2 m 2 /g or more, 3 m 2 /g or more, or 4 m 2 /g or more, and may be 20 m 2 /g or more. g or less, 10 m 2 /g or less, or 8 m 2 /g or less.
  • the Al content in the low-order titanium oxide particles may preferably be 200 mass ppm or less, 50 mass ppm or less, or 20 mass ppm or less.
  • the content of B in the low-order titanium oxide particles may preferably be 50 mass ppm or less, 30 mass ppm or less, or 10 mass ppm or less.
  • the content of Ba in the low-order titanium oxide particles may preferably be 50 mass ppm or less, 10 mass ppm or less, or 5 mass ppm or less.
  • the content of Ca in the low-order titanium oxide particles may preferably be 100 mass ppm or less, 50 mass ppm or less, or 10 mass ppm or less.
  • the content of Cd in the low order titanium oxide particles may preferably be 10 mass ppm or less, 5 mass ppm or less, or 2 mass ppm or less.
  • the Co content in the low-order titanium oxide particles may preferably be 10 mass ppm or less, 5 mass ppm or less, or 2 mass ppm or less.
  • the Cr content in the low-order titanium oxide particles may preferably be 100 mass ppm or less, 10 mass ppm or less, or 5 mass ppm or less.
  • the content of Cu in the low-order titanium oxide particles may preferably be 200 mass ppm or less, 50 mass ppm or less, or 10 mass ppm or less.
  • the content of Fe in the low-order titanium oxide particles may preferably be 200 mass ppm or less, 50 mass ppm or less, or 10 mass ppm or less.
  • the K content in the low-order titanium oxide particles may preferably be 100 mass ppm or less, 5 mass ppm or less, or 1 mass ppm or less.
  • the content of Li in the low-order titanium oxide particles may preferably be 20 mass ppm or less, 2 mass ppm or less, or 0.5 mass ppm or less.
  • the content of Mg in the low order titanium oxide particles may preferably be 100 mass ppm or less, 10 mass ppm or less, or 1 mass ppm or less.
  • the content of Mn in the low-order titanium oxide particles may preferably be 10 mass ppm or less, 5 mass ppm or less, or 2 mass ppm or less.
  • the content of Mo in the low-order titanium oxide particles may preferably be 10 mass ppm or less, 5 mass ppm or less, or 2 mass ppm or less.
  • the content of Na in the low-order titanium oxide particles may preferably be 50 mass ppm or less, 10 mass ppm or less, 5 mass ppm or less, or 2 mass ppm or less.
  • the content of Ni in the low-order titanium oxide particles may preferably be 50 mass ppm or less, 20 mass ppm or less, or 10 mass ppm or less.
  • the content of P in the low-order titanium oxide particles may preferably be 200 mass ppm or less, 30 mass ppm or less, 10 mass ppm or less, or 5 mass ppm or less.
  • the content of Pb in the low-order titanium oxide particles may preferably be 50 mass ppm or less, 5 mass ppm or less, or 2 mass ppm or less.
  • the content of Sb in the low-order titanium oxide particles may preferably be 100 mass ppm or less, 20 mass ppm or less, 10 mass ppm or less, or 2 mass ppm or less.
  • the Si content in the low-order titanium oxide particles may preferably be 1000 mass ppm or less, 100 mass ppm or less, 30 mass ppm or less, 20 mass ppm or less, or 2 mass ppm or less.
  • the content of Zn in the low-order titanium oxide particles may preferably be 100 mass ppm or less, 10 mass ppm or less, or 2 mass ppm or less.
  • the content of Zr in the low-order titanium oxide particles may preferably be 100 mass ppm or less, 20 mass ppm or less, or 2 mass ppm or less.
  • the total content of Na, K and P in the low order titanium oxide particles may preferably be 2000 mass ppm or less, 1000 mass ppm or less, 500 mass ppm or less, or 100 mass ppm or less.
  • the total content of Pb, Cd and Cr may preferably be 200 mass ppm or less, 100 mass ppm or less, 50 mass ppm or less, or 30 mass ppm or less.
  • the amount of impurities in the low order titanium oxide particles is measured by Agilent 5110ICP-OES (manufactured by Agilent Technologies).
  • the low-order titanium oxide particles described above are suitably used as pigments (colored fillers) such as black pigments.
  • pigments (coloring fillers) are suitably used as colorants, for example, in cosmetics, electronic components such as semiconductors, and paints such as paints and inks.
  • the low-order titanium oxide particles are dispersed, for example, in a dispersion medium. That is, another embodiment of the present invention is a dispersion containing the above low-order titanium oxide particles and a dispersion medium for dispersing the low-order titanium oxide particles.
  • the dispersion medium is appropriately selected according to the application of the dispersion, and may be, for example, water, alcohol, ketone, ester, resin, or the like.
  • resins include epoxy resins, silicone resins, phenolic resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamideimides, polyetherimides, polybutylene terephthalates, polyethylene terephthalates, polyphenylene sulfides, and wholly aromatic resins.
  • Polyester polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide-modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, AES (acrylonitrile-ethylene-propylene-diene-rubber-styrene) It may be resin or the like.
  • the content of the low-order titanium oxide particles in the dispersion is appropriately selected according to the use of the dispersion, and may be, for example, 5% by mass or more and 90% by mass or less based on the total amount of the dispersion. good.
  • the content of the dispersion medium in the dispersion is appropriately selected according to the use of the dispersion, and may be, for example, 10% by mass or more and 95% by mass or less based on the total amount of the dispersion.
  • Eirich mixer manufactured by Eirich Japan Co., Ltd.
  • Examples 2 to 10 In the same manner as in Example 1, except that the amount of TiH 2 powder was changed so that the molar ratio of TiO 2 to TiH 2 (TiO 2 /TiH 2 ) was as shown in Table 1, a black low-order Titanium oxide particles were obtained.
  • Example 11 Black low-order titanium oxide particles were obtained in the same manner as in Example 6, except that the heating time was changed to 4 hours.
  • Example 12 Black low order titanium oxide particles were obtained in the same manner as in Example 6, except that the heating temperature was changed as shown in Table 1.
  • Powder X-ray diffraction measurement was performed on each of the particles of the above Examples and Comparative Examples. Specifically, a sample horizontal multipurpose X-ray diffractometer (RINT-Ultima IV, manufactured by Rigaku Corporation) was used to measure diffraction patterns under the following measurement conditions. The resulting X-ray diffraction patterns are shown in FIGS. 1-4.
  • the mass fractions (% by mass) of Ti 4 O 7 and ⁇ -Ti 3 O 5 in the obtained particles were measured using Rietveld method software (integrated powder X-ray analysis software PDXL2 manufactured by Rigaku). calculated by From the crystal structure database (Pearson's Crystal Data), the crystal structure is 1250094 as Ti 4 O 7 (Journal of Solid State Chemistry 3, 340 (1971)), 1900755 as ⁇ -Ti 3 O 5 (Journal of Solid State Chemistry 20, 29 (1977)) was used.
  • Example 1 to 12 were also subjected to elemental analysis using Agilent 5110ICP-OES (manufactured by Agilent Technologies). Specifically, 0.1 g of particles was weighed into a platinum crucible, 1 ml each of HF and HCl was added, and pressurized acid decomposition was performed at 150° C. for 4 hours. After that, the volume was adjusted to 6 ml, and after confirming that there was no unnecessary residue, ICP emission spectroscopic analysis was performed. Table 2 shows the results. In addition, in Table 2, "ND" means that it was below the lower limit of detection, and the numerical value in parenthesis means that it was below the lower limit of determination.
  • the lower limit of detection and the lower limit of quantification are as follows. (lower limit of detection) Li, Na, Mg, K and Ca: 0.5 mass ppm P: 5 mass ppm Elements other than the above: 2 mass ppm (lower limit of determination) Li, Na, Mg, K and Ca: 2 mass ppm P: 10 mass ppm Elements other than the above: 5 mass ppm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、新規な結晶組成を有する低次酸化チタンの粒子を得ることを目的とする。 本発明は、TiH2及びTiO2を含む混合物を700~950℃で加熱する工程を備え、混合物に含まれるTiH2に対するTiO2のモル比が5.0~6.8である、粒子の製造方法を含む。

Description

特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体
 本開示は、Ti及びγ-Tiの結晶組成を有する粒子及びその製造方法、並びに分散体に関する。
 二酸化チタンを還元することによって得られる低次酸化チタン(還元型酸化チタンとも呼ばれる)は、構成元素であるチタンと酸素との比率に応じて異なる色を示し、当該比率を適切に調整することにより黒色となることが知られている。そのため、表面が低次酸化チタンで構成される粒子は、黒色顔料等の顔料として種々の用途に利用することができる。例えば特許文献1には、板状粒子上に低次酸化チタンの単層を形成させることで外観色と干渉色の色調が異なる二色性を呈する顔料を用いた化粧料が開示されている。また、黒色顔料などの用途として、特許文献2では、還元剤にCaHを用いて作製した黒色酸化チタン粉末が開示されている。特許文献3では、酸化チタンを高温のアンモニアガスと反応させて作製した酸窒化チタン粉末が開示されている。
特開2010-280607号公報 特開2012-214348号公報 特開2010-30842号公報
 低次酸化チタンを含む黒色顔料は、一口に黒色と言っても、赤みが強い黒色、青みが強い黒色といったように、異なる色味の黒色を呈する。黒色の色味は、上述したように低次酸化チタンの組成によって変化するだけでなく、顔料(粒子)の粒子径などによっても変化し得る。また、色味によっては同じ黒さであっても明るく見えたり、暗く見えたりすることがある。例えば、赤色や黄色のような明るい色味では同じ黒さであっても、青色や緑色といった暗く見える色味の方が黒く見える。したがって、所望の色味の黒色顔料を得るためには、粒子径などの物理的特性を調整することも考えられる。しかし、そのような物理的特性は、例えば黒色顔料の用途によって制約を受ける場合があるため、低次酸化チタンの組成の調整のみによって所望の色味の黒色を得られることが好ましい。
 そこで、本発明の一側面は、新規な結晶組成を有する低次酸化チタンの粒子を得ることを目的とする。
 本発明者らは、TiH及びTiOを加熱して低次酸化チタンを含む粒子を製造する際に、TiH及びTiOの配合比と加熱温度とを適切に調整することにより、新規な低次酸化チタンの組成を有する粒子が得られることを見出した。この粒子は、特定の割合のTi及びγ-Tiで構成される結晶組成を有している。
 すなわち、本発明の一側面は、TiH及びTiOを含む混合物を700~950℃で加熱する工程を備え、混合物に含まれるTiHに対するTiOのモル比が5.0~6.8である、粒子の製造方法である。当該工程において、Arガス雰囲気下で混合物を加熱してよい。
 本願発明の他の一側面は、Ti及びγ-Tiからなる結晶組成を有し、Tiに対するγ-Tiのモル比が0.01以上である、粒子である。この粒子は、L色空間において、a値が0.2以下であり、b値が0.0以下である粒子であってよい。粒子中のNa、K及びPの含有量の合計は、2000質量ppm以下であってよい。
 本発明の他の一側面は、上記の粒子と、分散媒と、を含有する分散体である。
 本発明の一側面によれば、新規な結晶組成を有する低次酸化チタンの粒子を得ることができる。これにより、低次酸化チタンの粒子を含有する分散体(例えば、低次酸化チタンの粒子及び樹脂を含有する樹脂組成物)の黒色の調整が容易となる。
実施例1~3及び比較例1におけるX線回折の測定結果である。 実施例4~7におけるX線回折の測定結果である。 実施例8~10及び比較例2におけるX線回折の測定結果である。 実施例11~12及び比較例3~4におけるX線回折の測定結果である。
 本発明の一実施形態は、Ti及びγ-Tiからなる特定の結晶組成(詳細は後述)を有する粒子(以下「低次酸化チタン粒子」ともいう)の製造方法である。この製造方法は、TiH及びTiOを含む混合物を加熱する工程(加熱工程)を備える。
 加熱工程で用いられる混合物は、例えば、粉末状のTiHと、粉末状のTiOとを含んでいる。混合物は、例えば、ペレット状等に成形されていない(粉末状のTiH及びTiOをそのままの状態で含む)粉体であってよい。粉末状のTiH及びTiOの性状は、それぞれ適宜選択できる。例えば、粉末状のTiH及びTiOの粒径は、所望の低次酸化チタン粒子の粒径に応じて選択される。混合物は、TiH及びTiOのみを含んでいてよく、TiH、TiO及び不可避的不純物のみを含んでいてよい。不可避的不純物としては、例えば、Al、ZrO、及びC(カーボン)が挙げられる。混合物中のTiH及びTiOの合計量は、混合物全量を基準として、90質量%以上、95質量%以上、又は99質量%以上であってよい。
 混合物に含まれるTiHに対するTiOのモル比(TiOの含有量(モル)/TiHの含有量(モル))は、5.0~6.8である。当該モル比が5.0未満であると、得られる粒子中にTiが生成しない。この場合、低次酸化チタン粒子が黒青紫色を呈する傾向にある。当該モル比が6.8を超えると、得られる粒子中にγ-Tiが生成しない。この場合、低次酸化チタン粒子が薄い黒青緑色を呈する傾向にある。γ―Tiだけでは赤味が混じり、Tiだけでは黒味が薄くなるという傾向がある。
 上記モル比が大きいほど、得られる粒子中のTiの割合が高くなり、γ-Tiの割合が低くなる。当該モル比の下限値は、5.1以上、5.2以上、5.3以上、5.4以上、5.5以上、5.6以上、5.7以上、5.8以上、5.9以上、6.0以上、6.1以上、又は6.2以上であってもよい。当該モル比の上限値は、6.7以下、6.6以下、6.5以下、6.4以下、6.3以下、6.2以下、6.1以下、6.0以下、5.9以下、5.8以下、5.7以下、5.6以下、又は5.5以下であってもよい。
 加熱工程では、例えば電気炉において、混合物を700~950℃で加熱する。これにより、二酸化チタンが還元されて、得られる粒子中に所望の低次酸化チタン(Ti及びγ-Ti)が生成する。加熱温度が700℃未満であると、得られる粒子中に、Ti及びγ-Tiが生成せず、例えばTi2n-1(n>4)が生成するおそれがある。加熱温度が950℃を超えると、得られる粒子中に、γ-Tiが生成せず、例えばα-Ti及びβ-Tiが生成するおそれがある。加熱温度の上限値は、940℃以下、930℃以下、920℃以下、910℃以下、又は900℃以下であってもよい。
 混合物の加熱は、例えば不活性ガス雰囲気下又は真空下で行われる。不活性ガスは、Arガス又はNガスであってよく、所望の結晶組成を有する低次酸化チタン粒子が更に得られやすくなる(例えば、低次酸化チタン粒子中のTiO(x≧1.75)の生成を更に抑制できる)観点から、好ましくはArガスである。混合物の加熱が真空下で行われる場合、真空度は、例えば500Pa以下であってよい。
 加熱時間は、還元反応を充分に進行させる観点から、例えば、1時間以上、2時間以上、又は4時間以上であってよく、低次酸化チタン粒子の成長を適度に抑えて、粉体の状態で回収しやすくなる観点から、例えば、24時間以下、18時間以下、又は12時間以下であってよい。
 この製造方法は、一実施形態において、低次酸化チタン粒子を洗浄する工程(洗浄工程)を更に備えていてよい。洗浄工程により、不純物を除去することができる。洗浄は、例えば、熱水、アルコール及び有機酸からなる群より選ばれる少なくとも一種によって行われる。アルコールは、例えば、メタノール、エタノール、又はこれらの混合物であってよい。有機酸は、例えば酢酸であってよい。ハロゲン化物イオンなどのイオン性不純物の低次酸化チタンの粉末への混入を抑制できる観点から、有機酸で洗浄することが好ましい。
 この製造方法は、好ましくは、加熱工程後の低次酸化チタン粒子を粉砕する工程(粉砕工程)を更に備えている。粉砕工程における粉砕方法は、乳鉢、ボールミル、ジェットミル、ファインミルなどの各種粉砕機を用いた方法が挙げられる。粉砕工程は、一回行われてよく、二回以上行われてもよい。粉砕工程が二回以上行われる場合、各粉砕工程で用いられる粉砕方法は、互いに異なっていてよい。粉砕工程を行うことにより、低次酸化チタン粒子の色度及び比表面積を調整することができる。
 この製造方法が洗浄工程及び粉砕工程を備える場合、これらの工程の順序は任意である。すなわち、この製造方法は、加熱工程と、洗浄工程と、粉砕工程とをこの順で備えていてよく、加熱工程と、粉砕工程と、洗浄工程とをこの順で備えていてもよい。前者の場合、洗浄工程と粉砕工程の間に、低次酸化チタン粒子を乾燥する工程(乾燥工程)を更に実施してもよい。乾燥工程における乾燥温度は、例えば、100℃以上であってよく、200℃以下であってよい。乾燥時間は、例えば、10時間以上であってよく、20時間以下であってよい。
 以上説明した製造方法により得られる低次酸化チタン粒子は、Ti及びγ-Tiからなる結晶組成を有している。Ti及びγ-Tiからなる結晶組成とは、結晶組成が、実質的に、Ti及びγ-Tiのみを含むことを意味する。低次酸化チタン粒子がTi及びγ-Tiからなる結晶組成を有していることは、低次酸化チタン粒子の結晶組成をX線回折法(XRD)により測定し、実質的に、Ti及びγ-Tiのそれぞれに起因する回折ピークのみが観測されることで確認される。この低次酸化チタン粒子は、一粒子中において、Ti及びγ-Tiの二種の結晶相からなる混合相で構成されていてよい。
 低次酸化チタン粒子の上記結晶組成において、Tiに対するγ-Tiのモル比(γ-Tiの含有量(モル)/Tiの含有量(モル))は、0.01以上である。当該モル比は、0.05以上、0.20以上、0.70以上、又は1.0以上であってもよく、99以下、50以下、20以下、10以下、又は5以下であってもよい。当該モル比は、以下の式により算出される。
 モル比(γ-Ti/Ti)=(M1/F1)/(M2/F2)
式中、M1は低次酸化チタン粒子中のγ-Tiの質量分率を表し、F1はγ-Tiの式量(=223.60)を表し、M2は低次酸化チタン粒子中のTiの質量分率を表し、F2はTiの式量(=303.46)を表す。
 低次酸化チタン粒子中のγ-Tiの質量分率(M1)及びTiの質量分率(M2)は、X線回折パターンをリートベルト解析することにより算出される。具体的には、リートベルト法ソフトウェア(例えば、リガク社製、統合粉末X線解析ソフトウェアPDXL2)を使用し、結晶構造は、結晶構造データベース(Pearson's Crystal Data)より、Tiとして1250094(Journal of Solid State Chemistry 3, 340(1971))、γ-Tiとして1900755(Journal of Solid State Chemistry 20, 29(1977))を使用することにより、上記質量分率が算出される。
 低次酸化チタン粒子は、上記の結晶組成を有することにより、所定の色度を有する黒色を呈する。低次酸化チタン粒子のL色空間におけるL値は、好ましくは13.0以下、より好ましくは12.0以下、更に好ましくは11.0以下であり、例えば、4.0以上、5.0以上、又は6.0以上であってもよい。低次酸化チタン粒子のL色空間におけるa値は、好ましくは-3.0以上、より好ましくは-2.0以上であり、好ましくは0.2以下、更に好ましくは0.0以下である。低次酸化チタン粒子のL色空間におけるb値は、好ましくは-8.0以上、より好ましくは-6.0以上、更に好ましくは-4.0以上であり、好ましくは0.0以下、より好ましくは-2.0以下である。
 L色空間におけるL値、a値及びb値は、測色色差計(例えばZE-2000(日本電色工業株式会社製))により測定される。より具体的には、暗視野用の円筒で零点補正をした後、標準白色板(X=91.71、Y=93.56、Z=110.52)で標準合わせを行う。次いで、35φ×15Hの丸セルに約3gの低次酸化チタン粒子を入れて測定する。
 低次酸化チタン粒子の比表面積は、0.25m/g以上、1m/g以上、2m/g以上、3m/g以上、又は4m/g以上であってよく、20m/g以下、10m/g以下、又は8m/g以下であってよい。低次酸化チタン粒子の比表面積は、比表面積測定器(例えば、Macsorb HM model-1201、Mountech社製)を用いて、脱気は、窒素ガスフロー(大気圧)により200℃で10分間行われ、窒素ガス吸着で平衡相対圧約0.3によりn=2の条件で測定される。
 低次酸化チタン粒子中の不純物量は少ないほど好ましい。低次酸化チタン粒子中のAlの含有量は、好ましくは、200質量ppm以下、50質量ppm以下、又は20質量ppm以下であってよい。低次酸化チタン粒子中のBの含有量は、好ましくは、50質量ppm以下、30質量ppm以下、又は10質量ppm以下であってよい。低次酸化チタン粒子中のBaの含有量は、好ましくは、50質量ppm以下、10質量ppm以下、又は5質量ppm以下であってよい。低次酸化チタン粒子中のCaの含有量は、好ましくは、100質量ppm以下、50質量ppm以下、又は10質量ppm以下であってよい。低次酸化チタン粒子中のCdの含有量は、好ましくは、10質量ppm以下、5質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のCoの含有量は、好ましくは、10質量ppm以下、5質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のCrの含有量は、好ましくは、100質量ppm以下、10質量ppm以下、又は5質量ppm以下であってよい。低次酸化チタン粒子中のCuの含有量は、好ましくは、200質量ppm以下、50質量ppm以下、又は10質量ppm以下であってよい。低次酸化チタン粒子中のFeの含有量は、好ましくは、200質量ppm以下、50質量ppm以下、又は10質量ppm以下であってよい。低次酸化チタン粒子中のKの含有量は、好ましくは、100質量ppm以下、5質量ppm以下、又は1質量ppm以下であってよい。低次酸化チタン粒子中のLiの含有量は、好ましくは、20質量ppm以下、2質量ppm以下、又は0.5質量ppm以下であってよい。
 低次酸化チタン粒子中のMgの含有量は、好ましくは、100質量ppm以下、10質量ppm以下、又は1質量ppm以下であってよい。低次酸化チタン粒子中のMnの含有量は、好ましくは、10質量ppm以下、5質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のMoの含有量は、好ましくは、10質量ppm以下、5質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のNaの含有量は、好ましくは、50質量ppm以下、10質量ppm以下、5質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のNiの含有量は、好ましくは、50質量ppm以下、20質量ppm以下、又は10質量ppm以下であってよい。低次酸化チタン粒子中のPの含有量は、好ましくは、200質量ppm以下、30質量ppm以下、10質量ppm以下、又は5質量ppm以下であってよい。低次酸化チタン粒子中のPbの含有量は、好ましくは、50質量ppm以下、5質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のSbの含有量は、好ましくは、100質量ppm以下、20質量ppm以下、10質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のSiの含有量は、好ましくは、1000質量ppm以下、100質量ppm以下、30質量ppm以下、20質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のZnの含有量は、好ましくは、100質量ppm以下、10質量ppm以下、又は2質量ppm以下であってよい。低次酸化チタン粒子中のZrの含有量は、好ましくは、100質量ppm以下、20質量ppm以下、又は2質量ppm以下であってよい。
 低次酸化チタン粒子中のNa、K及びPの含有量の合計は、好ましくは、2000質量ppm以下、1000質量ppm以下、500質量ppm以下、又は100質量ppm以下であってよい。例えば、Pb、Cd及びCrの含有量の合計は、好ましくは、200質量ppm以下、100質量ppm以下、50質量ppm以下、又は30質量ppm以下であってよい。低次酸化チタン粒子中の不純物量は、Agilent5110ICP-OES(アジレントテクノロジー株式会社製)により測定される。
 上述した低次酸化チタン粒子は、黒色顔料等の顔料(着色フィラー)として好適に用いられる。このような顔料(着色フィラー)は、例えば、化粧料、半導体等の電子部品、ペンキやインクなどの塗料をはじめとする着色剤として好適に用いられる。
 低次酸化チタン粒子が上述したような用途で用いられる場合、低次酸化チタン粒子は、例えば分散媒に分散されて用いられる。すなわち、本発明の他の一実施形態は、上述した低次酸化チタン粒子と、低次酸化チタン粒子を分散させる分散媒とを含有する分散体である。
 分散媒は、分散体の用途に応じて適宜選択され、例えば、水、アルコール、ケトン、エステル、樹脂等であってよい。樹脂としては、例えば、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、AAS(アクリロニトリル・アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム・スチレン)樹脂等であってよい。
 分散体中の低次酸化チタン粒子の含有量は、分散体の用途に応じて適宜選択され、分散体全量を基準として、例えば、5質量%以上であってよく、90質量%以下であってよい。分散体中の分散媒の含有量は、分散体の用途に応じて適宜選択され、分散体全量を基準として、例えば、10質量%以上であってよく、95質量%以下であってよい。
 以下、実施例に基づいて本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<低次酸化チタン粒子の作製>
[実施例1]
 TiOの粉末(東邦チタニウム社品、HT0514:純度99.9%)10gとTiHの粉末(トーホーテック社品、TCH450:純度99.8%)1.249g(TiO/TiH=5.0/1(モル比))をアイリッヒミキサー(日本アイリッヒ株式会社製)で混合し、混合物を得た。この混合物をアルミナ坩堝に移し、電気炉(富士電波工業株式会社、ハイマルチ10000)にて、Ar雰囲気下で、10℃/分で900℃まで昇温させた状態で12時間加熱した。加熱後、得られた粉末を乳鉢で5分間粉砕することで、黒色の低次酸化チタン粒子を得た。
[実施例2~10]
 TiHに対するTiOのモル比(TiO/TiH)が表1に示すとおりになるように、TiHの粉末の量を変更した以外は、実施例1と同様にして、黒色の低次酸化チタン粒子を得た。
[実施例11]
 加熱時間を4時間に変更した以外は、実施例6と同様にして、黒色の低次酸化チタン粒子を得た。
[実施例12]
 加熱温度を表1に示すとおりに変更した以外は、実施例6と同様にして、黒色の低次酸化チタン粒子を得た。
[比較例1,2]
 TiHに対するTiOのモル比(TiO/TiH)が表1に示すとおりになるように、TiHの粉末の量を変更した以外は、実施例1と同様にして粒子を得た。
[比較例3,4]
 加熱温度を表1に示すとおりに変更した以外は、実施例6と同様にして粒子を得た。
<X線回折測定>
 上記実施例及び比較例の各粒子について、粉末X線回折測定を行った。具体的には、試料水平型多目的X線回折装置(リガク社製、RINT-UltimaIV)を用い、下記の測定条件で回折パターンを測定した。得られたX線回折パターンを図1~4に示す。
(測定条件)
X線源:Cu―Kα線(λ=1.54184Å)
管電圧:40kV、管電流:40mA
測定時の光学条件:発散スリット=2/3°
散乱スリット:8mm
受光スリット=0.15mm
回折ピークの位置=2θ(回折角)
スキャン速度:4.0°(2θ)/min、連続スキャン
測定範囲:2θ=10°~80°
 続いて、得られた粒子中のTi及びγ-Tiの質量分率(質量%)を、リートベルト法ソフトウェア(リガク社製、統合粉末X線解析ソフトウェアPDXL2)を使用して算出した。結晶構造は、結晶構造データベース(Pearson's Crystal Data)より、Tiとして1250094(Journal of Solid State Chemistry 3, 340(1971))、γ-Tiとして1900755(Journal of Solid State Chemistry 20, 29(1977))を使用した。また、γ-Tiの質量分率M1及びTiの質量分率M2と、γ-Tiの式量F1(=223.60)及びTiの式量F2(=303.46)とから、Tiに対するγ-Tiのモル比(γ-Ti/Ti)を下記式:
 モル比(γ-Ti/Ti)=(M1/F1)/(M2/F2)
により、算出した。結果を表1に示す。
<色度の測定>
 上記実施例及び比較例の各粒子について、測色色差計ZE-2000(日本電色工業株式会社製)を用いて色度(L色空間におけるL値、a値及びb値)を測定した。より具体的には、まず、暗視野用の円筒で零点補正をした後、標準白色板(X=91.71、Y=93.56、Z=110.52)で標準合わせを行った。次いで、35φ×15Hの丸セルに約3gの粒子を入れて、色度を測定した。結果を表1に示す。本試験結果から分かるとおり、Tiに対するγ-Tiのモル比(γ-Ti/Ti)を適切な範囲に制御することにより、様々な色度の黒色に調整することができた。
<元素分析>
 実施例1~12の各粒子については、Agilent5110ICP-OES(アジレントテクノロジー株式会社製)を用いて元素分析も行った。具体的には、粒子0.1gを白金坩堝に秤取り、HF及びHClをそれぞれ1ml添加し、150℃、4時間の条件で加圧酸分解を行った。その後、6mlに定容し、不要残渣が無いことを確認後、ICP発光分光分析を行った。結果を表2に示す。なお、表2中、「ND」は検出下限以下であったこと、括弧書きの数値は定量下限以下であったことを意味する。検出下限及び定量下限は、それぞれ以下のとおりである。
(検出下限)
Li、Na、Mg、K及びCa:0.5質量ppm
P:5質量ppm
上記以外の元素:2質量ppm
(定量下限)
Li、Na、Mg、K及びCa:2質量ppm
P:10質量ppm
上記以外の元素:5質量ppm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  TiH及びTiOを含む混合物を700~950℃で加熱する工程を備え、
     前記混合物に含まれる前記TiHに対する前記TiOのモル比が5.0~6.8である、粒子の製造方法。
  2.  前記工程において、Arガス雰囲気下で前記混合物を加熱する、請求項1に記載の製造方法。
  3.  Ti及びγ-Tiからなる結晶組成を有し、
     前記Tiに対する前記γ-Tiのモル比が0.01以上である、粒子。
  4.  L色空間において、a値が0.2以下であり、b値が0.0以下である、請求項3に記載の粒子。
  5.  前記粒子中のNa、K及びPの含有量の合計が2000質量ppm以下である、請求項3又は4に記載の粒子。
  6.  請求項3~5のいずれか一項の記載の粒子と、分散媒と、を含有する分散体。
PCT/JP2022/001133 2021-01-25 2022-01-14 特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体 WO2022158390A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237027920A KR20230130118A (ko) 2021-01-25 2022-01-14 특정한 저차 산화티타늄의 결정 조성을 갖는 입자 및그 제조 방법, 그리고 분산체
CN202280010932.7A CN116783144A (zh) 2021-01-25 2022-01-14 具有特定的低阶氧化钛的晶体组成的粒子和其制造方法、以及分散体
EP22742512.1A EP4282825A4 (en) 2021-01-25 2022-01-14 PARTICLES HAVING A SPECIFIC LOWER ORDER TITANIUM OXIDE CRYSTALS COMPOSITION, METHOD FOR PRODUCING THEM, AND DISPERSION
JP2022576648A JPWO2022158390A1 (ja) 2021-01-25 2022-01-14
US18/272,842 US20240092652A1 (en) 2021-01-25 2022-01-14 Particles having specific low-order titanium oxide crystal composition, method for producing same, and dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009416 2021-01-25
JP2021009416 2021-01-25

Publications (1)

Publication Number Publication Date
WO2022158390A1 true WO2022158390A1 (ja) 2022-07-28

Family

ID=82548951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001133 WO2022158390A1 (ja) 2021-01-25 2022-01-14 特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体

Country Status (7)

Country Link
US (1) US20240092652A1 (ja)
EP (1) EP4282825A4 (ja)
JP (1) JPWO2022158390A1 (ja)
KR (1) KR20230130118A (ja)
CN (1) CN116783144A (ja)
TW (1) TW202239714A (ja)
WO (1) WO2022158390A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030842A (ja) 2008-07-29 2010-02-12 Mitsubishi Materials Corp 黒色チタン酸窒化物粉末とその製造方法および用途
JP2010272248A (ja) * 2009-05-19 2010-12-02 Univ Of Yamanashi 固体高分子形燃料電池用高電位安定担体および電極触媒
JP2010280607A (ja) 2009-06-04 2010-12-16 Kose Corp 油性化粧料
JP2012214348A (ja) 2011-04-01 2012-11-08 National Institute For Materials Science 還元型チタン酸化物合成方法
WO2014192728A1 (ja) * 2013-05-27 2014-12-04 昭和電工株式会社 触媒粒子、担持型触媒粒子、およびこれらの用途
WO2019182088A1 (ja) * 2018-03-22 2019-09-26 三菱マテリアル株式会社 低次酸化チタン粉末の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301211B2 (ja) * 2008-07-23 2013-09-25 東邦チタニウム株式会社 亜酸化チタンの製造方法
CN107963654A (zh) * 2017-11-29 2018-04-27 攀枝花学院 钛黑电极及其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030842A (ja) 2008-07-29 2010-02-12 Mitsubishi Materials Corp 黒色チタン酸窒化物粉末とその製造方法および用途
JP2010272248A (ja) * 2009-05-19 2010-12-02 Univ Of Yamanashi 固体高分子形燃料電池用高電位安定担体および電極触媒
JP2010280607A (ja) 2009-06-04 2010-12-16 Kose Corp 油性化粧料
JP2012214348A (ja) 2011-04-01 2012-11-08 National Institute For Materials Science 還元型チタン酸化物合成方法
WO2014192728A1 (ja) * 2013-05-27 2014-12-04 昭和電工株式会社 触媒粒子、担持型触媒粒子、およびこれらの用途
WO2019182088A1 (ja) * 2018-03-22 2019-09-26 三菱マテリアル株式会社 低次酸化チタン粉末の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF SOLID STATE CHEMISTRY, vol. 3, 1971, pages 340
See also references of EP4282825A4

Also Published As

Publication number Publication date
EP4282825A1 (en) 2023-11-29
CN116783144A (zh) 2023-09-19
US20240092652A1 (en) 2024-03-21
EP4282825A4 (en) 2024-07-24
JPWO2022158390A1 (ja) 2022-07-28
KR20230130118A (ko) 2023-09-11
TW202239714A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
JP4977967B2 (ja) 鉄系黒色粒子粉末及び該鉄系黒色粒子粉末を用いた黒色塗料、ゴム・樹脂組成物
Li et al. Preparation, characterization, and properties of a Ba2+–Sm3+ co-doped γ-Ce2S3 red pigment
JP2019104651A (ja) 窒化ジルコニウム系黒色フィラー及びその製造方法、そのフィラーを含有する塗料組成物及びその塗膜
KR100818469B1 (ko) 복합 흑색 산화물 입자, 그 제조방법, 흑색 도료 및 블랙매트릭스
CN115003631B (zh) 电磁波吸收粒子、电磁波吸收粒子分散液、电磁波吸收粒子的制造方法
WO2022158390A1 (ja) 特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体
KR100273601B1 (ko) 무기안료의제조방법
EP2799500B1 (en) Composite oxide black pigment and method for producing same
WO2023276761A1 (ja) 粉体及び分散体
JP4685651B2 (ja) 赤色顔料用酸化鉄粉の製造方法
WO2022039111A1 (ja) 特定の低次酸化チタンの結晶組成を有する粒子、並びにその製造方法
JP4182669B2 (ja) 粒状ヘマタイト粒子粉末の製造法
JP4336227B2 (ja) 複合黒色酸化物粒子、その製造方法、黒色塗料及びブラックマトリックス
KR101089954B1 (ko) 코발트 함유 입상 흑색안료
JP2006306710A (ja) 黒色複合酸化物粒子、その製造方法、黒色ペースト及びブラックマトリックス
JP4336224B2 (ja) 複合黒色酸化物粒子、その製造方法、黒色塗料及びブラックマトリックス
JP3552015B2 (ja) 非磁性黒色顔料粉末、該非磁性黒色顔料粉末を用いた非磁性黒色塗料並びに該非磁性黒色顔料粉末を用いた黒色ゴム・樹脂組成物
CN110506081B (zh) 含Al的氧化铁颜料
KR20080104260A (ko) 입상 산화코발트 흑색안료의 제조방법, 및 입상 산화코발트흑색안료
JP3835663B2 (ja) 黄色顔料
WO2023248345A1 (ja) Cu-Cr-Zn-O複合酸化物顔料
Li et al. Preparation and properties of Ba2+–Y3+ co-doped γ-Ce2S3 red pigment
JP2005139063A (ja) 複合黒色酸化物粒子、その製造方法、黒色塗料及びブラックマトリックス
Eticha et al. Effects of doping iron on the colouring properties of copper chromate pigment
Jiang et al. Synthesis and coloring properties of novel stablized green Ni0. 15MgxAl2 (0.85-x) Ti1. 15+ xO5 pigments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576648

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18272842

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280010932.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237027920

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237027920

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022742512

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742512

Country of ref document: EP

Effective date: 20230821