WO2019182088A1 - 低次酸化チタン粉末の製造方法 - Google Patents

低次酸化チタン粉末の製造方法 Download PDF

Info

Publication number
WO2019182088A1
WO2019182088A1 PCT/JP2019/011997 JP2019011997W WO2019182088A1 WO 2019182088 A1 WO2019182088 A1 WO 2019182088A1 JP 2019011997 W JP2019011997 W JP 2019011997W WO 2019182088 A1 WO2019182088 A1 WO 2019182088A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
tio
titanium oxide
surface area
specific surface
Prior art date
Application number
PCT/JP2019/011997
Other languages
English (en)
French (fr)
Inventor
陽祐 佐野
信一 大森
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2019517442A priority Critical patent/JPWO2019182088A1/ja
Publication of WO2019182088A1 publication Critical patent/WO2019182088A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides

Definitions

  • the present invention relates to a method for producing a low-order titanium oxide powder excellent in conductivity and oxidation resistance.
  • One of the promising methods for producing hydrogen is a method of electrolyzing water using renewable energy (RE).
  • RE renewable energy
  • a solid polymer type (PEM type) water electrolysis apparatus that has high electrolysis efficiency and high hydrogen purity at the time of production is considered promising.
  • a polymer electrolyte fuel cell (PEFC) which has a strength that is easy to introduce in urban areas, is promising because it has a compact device configuration and can generate power at a temperature of 100 ° C. or less.
  • the polymer electrolyte water electrolysis device and the polymer electrolyte fuel cell described above have a problem in that a noble metal catalyst needs to be used inside the device (especially the oxygen electrode), which increases the use cost. Therefore, the effective catalyst surface area is improved by supporting a noble metal catalyst on a catalyst carrier having a large specific surface area and low cost for the purpose of reducing the use cost of the polymer electrolyte water electrolysis device and the polymer electrolyte fuel cell. Attempts have been made to reduce the amount of noble metal catalysts used.
  • the potential is high, oxygen is present, and the strongly acidic condition derived from the ion exchange membrane is severe. It is a corrosive environment. For this reason, in addition to conductivity, oxidation resistance is also required as a characteristic required for the above-described catalyst carrier. Therefore, at present, carbon-based materials such as acetylene black are used as a carrier that is relatively inexpensive and excellent in corrosion resistance.
  • a carbon-based material such as acetylene black is particularly unstable at a high potential of 1.5 V or higher with respect to the standard electrode, and water is generated when the solid polymer fuel cell is started or stopped or by a solid polymer water electrolyzer.
  • the catalyst carrier deteriorates during electrolysis.
  • low-order metal oxides are known as members having excellent electrical conductivity and oxidation resistance that can be used as a catalyst carrier in addition to carbon-based materials.
  • titanium has a relatively large number of Clarkes and is inexpensive, and its oxide is harmless to the human body as it is used for artificial bones.
  • Magneli phase titanium oxide is particularly excellent in conductivity and oxidation resistance, and is suitable as a catalyst carrier.
  • Patent Documents 1-7 disclose various low-order metal oxide powders and methods for producing low-order metal oxide powders.
  • Patent Document 1 Ti 4 O 7, a titanium suboxide powder containing Ti 5 O 9 and Ti 6 O 11, Ti 4 O 7, Ti 5 O 9 and Ti 6 O 11 is 92% of the powder A powder in which Ti 4 O 7 is present in excess of 30% of the total powder has been proposed.
  • Patent Document 2 proposes a reduced titanium oxide synthesis method for synthesizing a reduced titanium oxide by reducing rutile TiO 2 at 400 ° C. or lower.
  • Patent Document 3 in the X-ray profile, there are a plurality of low-valent titanium oxide peaks whose titanium valence is lower than tetravalence, and the primary particle diameter is 50 nm to 1 ⁇ m.
  • a low valence titanium oxide composition has been proposed.
  • Patent Document 4 in the general formula TiO X (where X is the degree of oxidation), X has a composition represented by 1.5 to 1.9, the specific resistance is 100 ⁇ ⁇ cm or less, and the average particle size is 0.
  • a conductive low-order titanium oxide powder characterized by a thickness of 1 to 1 ⁇ m has been proposed.
  • Patent Document 5 proposes a nano-sized non-stoichiometric oxide powder having a high purity and a production method for producing the powder in a short time using thermal plasma.
  • platinum is added to low-order titanium oxide represented by the composition formula TiO X (where X is in the range of 1.5 ⁇ X ⁇ 2) and the specific surface area is 50 m 2 / g or more.
  • a catalyst for an electrode of a fuel cell which carries a metal containing selenium.
  • Patent Document 7 discloses Ti 4 O 7 supporting 20 wt% Pt as a low-order metal oxide supporting a noble metal catalyst.
  • Patent Document 1 when producing titanium suboxide powder containing Ti 4 O 7 , Ti 5 O 9 and Ti 6 O 11 , it is kept at a relatively high temperature of 1180 ° C., There was a possibility that the specific surface area of the manufactured titanium suboxide powder might be small. Further, in Patent Document 2, it is possible to maintain a specific surface area because it is reduced at low temperatures, since it is used CaH 2, etc. as a reducing agent, in a reduced form of titanium oxide produced Impurities such as Ca may be mixed, and the characteristics of the reduced titanium oxide powder may be deteriorated.
  • Patent Document 3 since carbon powder is used as a reducing agent, impurities such as carbon are also mixed into the low-valent titanium oxide composition, and the powder of the low-valent titanium oxide composition There was a risk of deterioration of the characteristics.
  • Patent Document 4 Ti powder is used as a reducing agent. Since this Ti powder is relatively coarse with a particle size of about 50 ⁇ m, it cannot be sufficiently mixed with the raw material titanium oxide powder, the reduction reaction becomes non-uniform, and the conductive low-order titanium oxide with a uniform composition. A powder could not be obtained.
  • Patent Document 5 since the plasma method is used in the manufacturing process, there is a possibility that the specific surface area of the non-stoichiometric oxide powder becomes small because the temperature is locally higher than 6000 ° C.
  • Patent Document 6 low-order titanium oxide is produced by plasma discharge using a titanium electrode in an aqueous medium.
  • magnetic phase titanium oxide having particularly excellent conductivity and oxidation resistance is produced. There was a possibility that it could not be obtained.
  • patent document 7 since it plasma-processed with respect to the aqueous solution containing Ti ion and it reduced at 1100 degreeC in hydrogen, there existed a possibility that the fall of a specific surface area might arise.
  • the conventional method contains a magnetic phase (chemical structural formula Ti n O 2n-1 (4 ⁇ n ⁇ 10)) and is particularly excellent in conductivity and oxidation resistance and has a specific surface area. Large, low-order titanium oxide powder suitable as a catalyst carrier could not be obtained.
  • the present invention has been made in the background as described above, and is capable of producing low-order titanium oxide powder that is excellent in conductivity and oxidation resistance, has a large specific surface area, and is suitable as a catalyst carrier. It aims at providing the manufacturing method of low-order titanium oxide powder.
  • the low-order titanium oxide powder refers to a powder having a chemical composition represented by TiO X (0 ⁇ X ⁇ 2).
  • the method for producing low-order titanium oxide powder of the present invention comprises a powder mixing step of mixing TiO 2 powder and TiH 2 powder, and the obtained mixing A heat treatment step of heat-treating the powder, wherein the specific surface area of the TiO 2 powder is 10 m 2 / g or more, and the mass ratio of the TiO 2 powder and the TiH 2 powder in the mixed powder obtained by the powder mixing step [TiO 2 ] / [TiH 2 ] is in the range of 4 to 20, and the heat treatment temperature in the heat treatment step is in the range of 650 ° C. to 1000 ° C., and in the heat treatment step, the TiO 2 powder It is characterized by forming any one or two of Ti 4 O 7 and Ti 5 O 9 by reducing.
  • the powder forming one or two of Ti 4 O 7 and Ti 5 O 9 is a low-order titanium oxide powder that satisfies the chemical composition TiO X (0 ⁇ X ⁇ 2).
  • the specific surface area of the TiO 2 powder is 10 m 2 / g or more
  • the mass ratio of the TiO 2 powder and the TiH 2 powder [TiO 2 ] / [ TiH 2 ] is in the range of 4 or more and 20 or less, so that TiO 2 powder and TiH 2 powder acting as a reducing agent can be mixed uniformly, and the TiO 2 powder is uniformly reduced in the heat treatment step.
  • any one or two of Ti 4 O 7 and Ti 5 O 9 can be reliably generated.
  • low-order titanium oxides such as Ti 2 O and TiO may be generated in addition to one or two of Ti 4 O 7 and Ti 5 O 9 .
  • the heat treatment temperature in the heat treatment step is set to 650 ° C. or more, the reduction reaction of the TiO 2 powder can be rapidly advanced, and the low-order titanium oxide powder can be efficiently produced. Furthermore, since the heat treatment temperature in the heat treatment step is set to 1000 ° C. or lower, it is possible to suppress a decrease in the specific surface area of the powder during the heat treatment, and it is possible to produce a low-order titanium oxide powder having a large specific surface area. Therefore, a low-order titanium oxide powder containing one or two of Ti 4 O 7 and Ti 5 O 9 , excellent in conductivity and oxidation resistance, having a large specific surface area and suitable as a catalyst support. It can be manufactured.
  • the specific surface area of the TiH 2 powder is within a range of 0.01 to 0.3 times the specific surface area of the TiO 2 powder. Preferably it is.
  • the specific surface area of the TiH 2 powder since the are in the range described above with respect to the specific surface area of the TiO 2 powder, further uniformly mixed and TiH 2 powder acting as a TiO 2 powder and a reducing agent In the heat treatment step, the TiO 2 powder can be reduced more uniformly, and any one or two of Ti 4 O 7 and Ti 5 O 9 can be reliably generated. In addition, it is possible to stably produce a low-order titanium oxide powder having a uniform composition.
  • ADVANTAGE OF THE INVENTION According to this invention, it is excellent in electroconductivity and oxidation resistance, and a specific surface area is large, and the manufacturing method of the low order titanium oxide powder which can manufacture the low order titanium oxide powder suitable as a catalyst support body is provided. it can.
  • the low-order titanium oxide powder of this embodiment is used as a catalyst support for supporting a noble metal catalyst in, for example, a polymer electrolyte (PEM) water electrolysis apparatus and a polymer electrolyte fuel cell (PEFC). It is.
  • PEM polymer electrolyte
  • PEFC polymer electrolyte fuel cell
  • the low-order titanium oxide powder of the present embodiment has a shape as shown in FIGS. 1A and 1B and has a specific surface area of 3 m 2 / g or more.
  • FIG. 1A is an SEM photograph of low-order titanium oxide powder obtained by the method of the present embodiment, observed at a magnification of 4000 using a scanning electron microscope (SEM): Quanta FEG450 manufactured by Thermo Fisher SCIENTIFIC.
  • 1B is an SEM photograph of the low-order titanium oxide powder obtained by the method of the present embodiment, observed at a magnification of 60000 using a scanning electron microscope (SEM): Quanta FEG450 manufactured by Thermo Fisher SCIENTIFIC.
  • the lower limit of the specific surface area of the low-order titanium oxide powder is preferably 5 m 2 / g or more. More preferably, it is 7 m 2 / g or more.
  • the upper limit of the specific surface area of the low-order titanium oxide powder is not particularly specified, but is preferably 14 m 2 / g or less from the viewpoint of manufacturability.
  • the low-order titanium oxide powder of the present embodiment is either one or two of Ti 4 O 7 and Ti 5 O 9 that are in the magnetic phase (chemical structural formula Ti n O 2n-1 (4 ⁇ n ⁇ 10)). It is supposed to contain seeds.
  • Ti 4 O 7 and Ti 5 O 9 are chemically stable and particularly excellent in conductivity and oxidation resistance. Note that Ti 4 O 7 and Ti 5 O 9 can be identified by an X-ray diffraction analysis (XRD) method.
  • Powder mixing step S01 First, TiO 2 powder and TiH 2 powder are mixed to obtain a mixed powder.
  • this powder mixing step S01 as the mass ratio of TiO 2 powder and TiH 2 powder in the mixed powder [TiO 2] / [TiH 2] is in the range of 4 to 20, TiO 2 powder and TiH 2 Mix with powder.
  • a TiO 2 powder having a specific surface area of 10 m 2 / g or more is used.
  • the specific surface area of TiH 2 powder is in the range of less than 0.3 times 0.01 times the specific surface area of the TiO 2 powder (this ratio of the specific surface area :( (Specific surface area of TiH 2 powder) / (specific surface area of TiO 2 powder)).
  • the specific surface areas of the TiO 2 powder and the TiH 2 powder are values obtained by BET measurement.
  • the TiO 2 powder and the TiH 2 powder are mixed as follows. TiO 2 powder and TiH 2 powder weighed with an electronic balance are charged into a sealed container. Then, while applying a physical external force such as a bead mill or a shearing force by stirring in an airtight container, mixing is performed while agglomerating the TiO 2 powder.
  • the mixing time is preferably at least 5 minutes.
  • the mixed powder obtained in the above-described powder mixing step S01 is subjected to heat treatment, and the TiO 2 powder is reduced to form one or two of Ti 4 O 7 and Ti 5 O 9 .
  • the heat treatment temperature in the heat treatment step S02 is in the range of 650 ° C. or higher and 1000 ° C. or lower.
  • the holding time at the heat treatment temperature is set to 70 hours or less.
  • the atmosphere is preferably a vacuum atmosphere (1 Pa or less).
  • low-order titanium oxides such as Ti 2 O and TiO may be generated in addition to any one or two of Ti 4 O 7 and Ti 5 O 9 .
  • the heat treatment step S02 TiO 2 powder is reduced either one or two of Ti 4 O 7 and Ti 5 O 9 is formed, either one or two of Ti 4 O 7 and Ti 5 O 9
  • the contained low-order titanium oxide powder is formed.
  • the specific surface area of 10 m 2 / g or more is used as the TiO 2 powder, the specific surface area of the low-order titanium oxide powder can be 3 m 2 / g or more. That is, the low-order titanium oxide powder of this embodiment can be manufactured by the above-described manufacturing method.
  • the specific surface area of the TiO 2 powder, the mass ratio of TiO 2 powder and TiH 2 powder, the specific surface area of the TiH 2 powder, the conditions of the heat treatment step, described above The reason for this definition will be described below.
  • the specific surface area of the TiO 2 powder that is the raw material of the low-order titanium oxide powder of the present embodiment is less than 10 m 2 / g, either one or two of Ti 4 O 7 and Ti 5 O 9 obtained after the heat treatment It is difficult to increase the specific surface area of the low-order titanium oxide powder containing the. Further, the mixing with the TiH 2 powder acting as a reducing agent becomes non-uniform, the reduction reaction becomes non-uniform in the heat treatment step S02, and either one or two of Ti 4 O 7 and Ti 5 O 9 are sufficiently obtained. There is a possibility that it cannot be formed. From the above, in this embodiment, the specific surface area of the TiO 2 powder is set to 10 m 2 / g or more.
  • the lower limit of the specific surface area of the TiO 2 powder is preferably 30 m 2 / g or more, and more preferably 50 m 2 / g or more.
  • the specific surface area of the TiO 2 powder exceeds 150 meters 2 / g, possibly mixing with TiH 2 powder acting as a reducing agent becomes uneven
  • the heat energy in the heat treatment step S02 is consumed for the shape change of the TiO 2 powder, the reduction reaction does not proceed sufficiently, and either one or two of Ti 4 O 7 and Ti 5 O 9 are sufficiently formed. There is a risk that it will not be possible.
  • the upper limit of the specific surface area of the TiO 2 powder is preferably 150 m 2 / g or less, more preferably 140 m 2 / g or less, and even more preferably 130 m 2 / g or less.
  • Mass ratio of TiO 2 powder and TiH 2 powder When the mass ratio [TiO 2 ] / [TiH 2 ] between the TiO 2 powder and the TiH 2 powder in the mixed powder is smaller than 4 or larger than 20, either Ti 4 O 7 or Ti 5 O 9 There is a possibility that many titanium oxides having compositions other than one or two may be formed. For this reason, in this embodiment, the mass ratio [TiO 2 ] / [TiH 2 ] of the TiO 2 powder and the TiH 2 powder in the mixed powder is set within a range of 4 or more and 20 or less.
  • the lower limit of the mass ratio [TiO 2 ] / [TiH 2 ] of the TiO 2 powder and the TiH 2 powder in the mixed powder is preferably 5 or more, and more preferably 7 or more.
  • the upper limit of the mass ratio [TiO 2 ] / [TiH 2 ] between the TiO 2 powder and the TiH 2 powder in the mixed powder is preferably 19 or less, and more preferably 18 or less.
  • the TiH 2 powder and the TiO 2 powder can be mixed more uniformly. Further, by making the specific surface area of the TiH 2 powder 0.3 times or less of the specific surface area of the TiO 2 powder, the specific surface area of the TiH 2 powder is not increased more than necessary, and the highly reactive TiH 2 powder is altered. Can be suppressed. From the above, in the present embodiment, it is preferable that the specific surface area of the TiH 2 powder be in the range of 0.01 to 0.3 times the specific surface area of the TiO 2 powder.
  • the upper limit of the specific surface area of TiH 2 powder is preferably not more than 0.2 times the specific surface area of the TiO 2 powder, and 0.1 times or less More preferably.
  • the heat treatment temperature in the heat treatment step S02 is set in the range of 650 ° C. or more and 1000 ° C. or less.
  • the lower limit of the heat treatment temperature is preferably 660 ° C. or higher, and more preferably 670 ° C. or higher.
  • the upper limit of heat processing temperature it is preferable to make the upper limit of heat processing temperature into 800 degrees C or less, and it is more preferable to set it as 700 degrees C or less.
  • the holding time at the heat treatment temperature is defined as 70 hours or less.
  • the upper limit of the holding time at the heat treatment temperature is preferably 50 hours or less, and more preferably 30 hours or less. preferable.
  • the lower limit of the holding time at the heat treatment temperature in order to reliably proceed the reduction reaction of the TiO 2 powder, is preferably 2 hours or more, It is more preferably 3 hours or longer, and more preferably 5 hours or longer.
  • the specific surface area of the TiO 2 powder is 10 m 2 / g or more, and further, the TiO 2 powder and the TiH 2 powder
  • the mass ratio of [TiO 2 ] / [TiH 2 ] is in the range of 4 to 20, so that the TiO 2 powder and the TiH 2 powder in which the TiH 2 powder acts as a reducing agent can be mixed uniformly.
  • the TiO 2 powder can be uniformly reduced in the heat treatment step S02, and any one or two of Ti 4 O 7 and Ti 5 O 9 can be reliably generated.
  • TiH 2 powder as the reducing agent, it is possible to suppress the impurity in the low-order titanium oxide powder is mixed.
  • the heat treatment temperature in the heat treatment step S02 is a 650 ° C. or higher, it is possible to proceed rapidly the reduction of TiO 2 powder. Furthermore, since the heat treatment temperature in the heat treatment step S02 is set to 1000 ° C. or lower, it is possible to suppress a decrease in the specific surface area of the low-order titanium oxide powder and to produce a low-order titanium oxide powder having a large specific surface area. Become. Therefore, a low-order titanium oxide powder containing one or two of Ti 4 O 7 and Ti 5 O 9 , excellent in conductivity and oxidation resistance, having a large specific surface area and suitable as a catalyst support. It can be manufactured.
  • the holding time at the heat treatment temperature is limited to 70 hours or less in the heat treatment step S02, it is possible to reliably suppress a decrease in the specific surface area of the low-order titanium oxide powder, and the specific surface area is A large low-order titanium oxide powder can be reliably produced.
  • the specific surface area of the TiH 2 powder because it is in the range of 0.01 times 0.3 times or less of the specific surface area of the TiO 2 powder, and TiO 2 powder and TiH 2 powder
  • the TiH 2 powder acts as a reducing agent, and the TiO 2 powder can be uniformly reduced.
  • Either Ti 4 O 7 or Ti 5 O 9 can be mixed.
  • One or two types can be reliably generated.
  • the low-order titanium oxide powder of this embodiment contains one or two of Ti 4 O 7 and Ti 5 O 9 , it is particularly excellent in conductivity and oxidation resistance.
  • the specific surface area is 3 m 2 / g or more, and the specific surface area is secured. Therefore, it is particularly suitable as a catalyst carrier for a polymer electrolyte (PEM) water electrolysis apparatus and a polymer electrolyte fuel cell (PEFC).
  • PEM polymer electrolyte
  • PEFC polymer electrolyte fuel cell
  • TiO 2 powder and TiH 2 powder shown in Table 1 are prepared. This was mixed at a mixing ratio (mass ratio) shown in Table 1 to obtain a mixed powder. And heat processing was implemented on the conditions shown in Table 1, and the low-order titanium oxide powder was obtained.
  • the obtained low-order titanium oxide powder was subjected to identification of titanium oxide by XRD analysis and measurement of specific surface area as follows. The evaluation results are shown in Table 2.
  • Titanium oxide constituting the low-order titanium oxide powder was identified by X-ray diffraction analysis (XRD).
  • the acceleration voltage was set to 30 keV, and an 8 keV Cu K ⁇ ray was used for the measurement.
  • Ti 4 O 7 is near 21 °, 26 °, 30 °, 32 °, and Ti 5 O 9 is 23 °, 26 °, 29 °, 31 °. The presence or absence of a peak in the vicinity was confirmed.
  • the diffraction chart obtained by the X-ray diffraction analysis is analyzed, and the case where the peak is observed at each diffraction angle 2 ⁇ (°) is shown as “present” in Table 2, and the case where the peak is not observed is shown in Table 2. “-” Is shown.
  • the specific surface area of the low-order titanium oxide powder was measured by BET measurement.
  • the catalyst carrier is composed of one or two of Ti 4 O 7 and Ti 5 O 9 excellent in conductivity and oxidation resistance, and has a large specific surface area. As a result, it was confirmed that low-order titanium oxide powder suitable for the production can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

この低次酸化チタン粉末の製造方法では、TiO粉末とTiH粉末とを混合する粉末混合工程S01と、得られた混合粉末を熱処理する熱処理工程S02と、を有し、前記TiO粉末の比表面積が10m/g以上とされ、粉末混合工程S01によって得られる前記混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4以上20以下の範囲内とされ、熱処理工程S02における熱処理温度が650℃以上1000℃以下の範囲内とされており、熱処理工程S02において、前記TiO粉末を還元することにより、Ti及びTiのいずれか一種又は二種を形成する。

Description

低次酸化チタン粉末の製造方法
 本発明は、導電性及び耐酸化性に優れた低次酸化チタン粉末の製造方法に関する。
 本願は、2018年3月22日に、日本に出願された特願2018-054692号に基づき優先権を主張し、その内容をここに援用する。
 近年、脱CO社会をキーワードに、水素社会の実現に向けた動きが加速している。このため、効率良く水素を製造する技術の開発が求められている。
 水素の製造方法として有望視されている手法の一つに、再生可能エネルギー(RE)を用いて水を電解する手法がある。再生可能エネルギー(RE)を用いた水電解によって得られた水素を、エネルギー大消費地に輸送し、空気と一緒に燃料電池で発電することで、CO排出量を限りなく抑えた電力を、エネルギーが必要な場所で使用することが可能となる。
 このような水素社会の実現のためには、エネルギーロスの少ない、高性能な水電解槽や燃料電池の開発が必要である。
 高性能な水電解装置の候補としては、電解効率及び生成時の水素純度が高い、固体高分子形(PEM形)水電解装置が有望視されている。
 また、燃料電池としては、装置構成がコンパクトであるとともに100℃以下の温度で発電できるため、都市部で導入しやすい強みがある、固体高分子形燃料電池(PEFC)が有望視されている。
 しかしながら、上述の固体高分子形水電解装置及び固体高分子形燃料電池においては、その装置内部(特に酸素極)で貴金属触媒を使用する必要があり、使用コストが高くなるといった問題があった。
 そこで、固体高分子形水電解装置及び固体高分子形燃料電池の使用コスト削減を目的として比表面積が大きく安価な触媒担持体に貴金属触媒を担持させることで、有効な触媒表面積を向上させ、上述の貴金属触媒の使用量を減らすことが試みられている。
 ここで、上述の固体高分子形水電解装置及び固体高分子形燃料電池の酸素極においては、電位が高く、酸素が存在しており、さらにイオン交換膜由来の強酸性条件であり、過酷な腐食環境となっている。このため、上述の触媒担持体に求められる特性として、導電性に加え、耐酸化性も必要になる。そこで、現在は、比較的安価で耐食性に優れた担持体として、アセチレンブラックなどのカーボン系材料が利用されている。
 しかしながら、アセチレンブラックなどのカーボン系材料においては、標準電極に対して1.5V以上の高電位では特に不安定となり、固体高分子形燃料電池の起動停止時や固体高分子形水電解装置による水電解時に、触媒担持体が劣化するといった問題が生じている。
 そこで、カーボン系材料の他に触媒担持体として利用可能な導電性及び耐酸化性に優れる部材として、低次酸化金属が知られている。特に、チタンはクラーク数が比較的多く安価であり、その酸化物は人工骨に用いられるほど人体に無害である。また、チタンの低次酸化物には、マグネリ相(化学構造式Ti2n-1(4≦n≦10))を含む、化学組成の近い多くの安定相が存在する。なお、マグネリ相チタン酸化物は、導電性及び耐酸化性に特に優れており、触媒担持体として適している。
 そこで、例えば特許文献1-7には、様々な低次酸化金属の粉末、及び、低次酸化金属の粉末の製造方法について開示されている。
 特許文献1には、Ti,Ti及びTi11を含有する亜酸化チタン粉末であって、Ti,Ti及びTi11が粉末の92%余を占め、Tiが全粉末の30%を超えて存在する粉末が提案されている。
 特許文献2には、ルチル型TiOを400℃以下で還元することにより還元型チタン酸化物を合成する、還元型チタン酸化物合成方法が提案されている。
 特許文献3には、X線プロファイルにおいて、チタンの原子価が4価より低い複数の低原子価酸化チタンのピークを有し、一次粒子径が50nm~1μmであることを特徴とする、微粒子状の低原子価酸化チタン組成物が提案されている。
 特許文献4には、一般式TiO(但しXは酸化度)において、Xが1.5~1.9で示される組成を有し、比抵抗が100Ω・cm以下でかつ平均粒径が0.1~1μmであることを特徴とする導電性低次酸化チタン粉末が提案されている。
 特許文献5には、純度の高いナノサイズの不定比酸化物粉末と、短時間でこの粉末を得るために熱プラズマを用いて製造する製造方法が提案されている。
 特許文献6には、組成式TiO(式中のXは1.5<X<2の範囲である)で表され、かつ比表面積が50m/g以上である低次酸化チタンに、白金を含む金属を担持してなる、燃料電池の電極用触媒が提案されている。
 特許文献7には、貴金属触媒を担持した低次酸化金属として、Pt20重量%担持Tiが開示されている。
特表2010-536702号公報 特開2012-214348号公報 特開2012-148920号公報 特開昭59-199530号公報 特許第6076105号公報 再公表WO2013/141063号公報 特開2010-272248号公報
 しかしながら、上述の特許文献1においてはTi,Ti及びTi11を含有する亜酸化チタン粉末を製造する際に、1180℃と比較的高温で保持していることから、製造される亜酸化チタン粉末の比表面積が小さくなるおそれがあった。
 また、特許文献2においては、低温で還元しているので比表面積を維持することが可能であるが、還元剤としてCaH等を用いていることから、製造された還元型チタン酸化物内にCa等の不純物が混入してしまい、還元型チタン酸化物粉末の特性が劣化するおそれがあった。
 さらに、特許文献3においては、還元剤としてカーボン粉を用いていることから、やはり、低原子価酸化チタン組成物内にカーボン等の不純物が混入してしまい、低原子価酸化チタン組成物の粉末の特性が劣化するおそれがあった。
 また、特許文献4においては、還元剤としてTi粉末を用いている。このTi粉末は、粒径が50μm程度と比較的粗大なため、原料となる酸化チタン粉末と十分に混合することができず、還元反応が不均一となり、均一な組成の導電性低次酸化チタン粉末を得ることができなかった。
 さらに、特許文献5においては、製造プロセスにおいてプラズマ法を用いているので、局所的に6000℃以上の高温となり、不定比酸化物粉末の比表面積が小さくなるおそれがあった。
 また、特許文献6においては、水系媒体中におけるチタン電極を用いたプラズマ放電によって低次酸化チタンを製造しているが、この製法では、導電性及び耐酸化性に特に優れたマグネリ相酸化チタンを得ることができないおそれがあった。
 さらに、特許文献7においては、Tiイオンを含む水溶液に対してプラズマ処理し、水素中1100℃にて還元しているので、比表面積の低下が生じるおそれがあった。
 以上のように、従来の方法においては、マグネリ相(化学構造式Ti2n-1(4≦n≦10))を含有して導電性及び耐酸化性に特に優れ、かつ、比表面積が大きく、触媒担持体として適した低次酸化チタン粉末を得ることができなかった。
 本発明は、以上のような事情を背景としてなされたものであって、導電性及び耐酸化性に優れ、かつ、比表面積が大きく、触媒担持体として適した低次酸化チタン粉末を製造可能な低次酸化チタン粉末の製造方法を提供することを目的としている。ここで、低次酸化チタン粉末は、化学組成がTiO(0<X<2)で表される粉末を指す。
 このような課題を解決して、前記目的を達成するために、本発明の低次酸化チタン粉末の製造方法は、TiO粉末とTiH粉末とを混合する粉末混合工程と、得られた混合粉末を熱処理する熱処理工程と、を有し、前記TiO粉末の比表面積が10m/g以上とされ、前記粉末混合工程によって得られる前記混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4以上20以下の範囲内とされ、前記熱処理工程における熱処理温度が650℃以上1000℃以下の範囲内とされており、前記熱処理工程において、前記TiO粉末を還元することにより、Ti及びTiのいずれか一種又は二種を形成することを特徴としている。
 Ti及びTiのいずれか一種又は二種を形成する粉末は、化学組成TiO(0<X<2)を満たす低次酸化チタン粉末である。
 この構成の低次酸化チタン粉末の製造方法によれば、TiO粉末の比表面積が10m/g以上とされており、さらにTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4以上20以下の範囲内とされているので、TiO粉末と還元剤として作用するTiH粉末とを均一に混合させることができ、熱処理工程においてTiO粉末を均一に還元することが可能となり、Ti及びTiのいずれか一種又は二種を確実に生成させることができる。また、TiH粉末を還元剤として用いているので、低次酸化チタン粉末に不純物が混入することを抑制できる。なお、熱処理工程において、Ti及びTiのいずれか一種又は二種以外に、TiO、TiO等の低次酸化チタンが生成してもよい。
 また、前記熱処理工程における熱処理温度が650℃以上とされているので、TiO粉末の還元反応を速やかに進行させることができ、効率良く低次酸化チタン粉末を製造することが可能となる。
 さらに、前記熱処理工程における熱処理温度が1000℃以下とされているので、熱処理時に粉末の比表面積が低下することを抑制でき、比表面積が大きな低次酸化チタン粉末を製造することが可能となる。
 よって、Ti及びTiのいずれか一種又は二種を含有し、導電性及び耐酸化性に優れ、かつ、比表面積が大きく、触媒担持体として適した低次酸化チタン粉末を製造することが可能となる。
 ここで、本発明の低次酸化チタン粉末の製造方法においては、前記TiH粉末の比表面積は、前記TiO粉末の比表面積の0.01倍以上0.3倍以下の範囲内とされていることが好ましい。
 この場合、前記TiH粉末の比表面積が、前記TiO粉末の比表面積に対して上述の範囲内とされているので、TiO粉末と還元剤として作用するTiH粉末とをさらに均一に混合させることができ、熱処理工程においてTiO粉末をさらに均一に還元することが可能となり、Ti及びTiのいずれか一種又は二種を確実に生成させることができる。また、均一な組成の低次酸化チタン粉末を安定して製造することが可能となる。
 本発明によれば、導電性及び耐酸化性に優れ、かつ、比表面積が大きく、触媒担持体として適した低次酸化チタン粉末を製造可能な低次酸化チタン粉末の製造方法を提供することができる。
本発明の実施形態の低次酸化チタン粉末の製造方法によって製造される低次酸化チタン粉末の一例を示す観察写真(倍率:4000倍)である。 本発明の実施形態の低次酸化チタン粉末の製造方法によって製造される低次酸化チタン粉末の一例を示す観察写真(倍率:60000倍)である。 本発明の実施形態である低次酸化チタン粉末の製造方法の一例を示すフロー図である。
 以下に、本発明の実施形態の低次酸化チタン粉末の製造方法、及び、低次酸化チタン粉末について、添付した図面を参照して説明する。
 本実施形態の低次酸化チタン粉末は、例えば、固体高分子形(PEM形)水電解装置及び固体高分子形燃料電池(PEFC)等において、貴金属触媒を担持する触媒担持体として使用されるものである。
 本実施形態の低次酸化チタン粉末は、図1A及び図1Bに示すような形状をなしており、比表面積が3m/g以上とされている。図1Aは本実施形態の方法で得られる低次酸化チタン粉末を、Thermo Fisher SCIENTIFIC社製の走査型電子顕微鏡(SEM):Quanta FEG450を用いて、倍率4000倍で観察したSEM写真であり、図1Bは本実施形態の方法で得られる低次酸化チタン粉末をThermo Fisher SCIENTIFIC社製の走査型電子顕微鏡(SEM):Quanta FEG450を用いて、倍率60000倍で観察したSEM写真である。ここで、触媒担持体として使用される低次酸化チタン粉末においては、比表面積が大きいことが好ましいことから、低次酸化チタン粉末の比表面積の下限は、5m/g以上であることが好ましく、7m/g以上であることがさらに好ましい。
 なお、低次酸化チタン粉末の比表面積の上限に特に規定はないが、製造性の観点から、14m/g以下とすることが好ましい。
 また、本実施形態の低次酸化チタン粉末は、マグネリ相(化学構造式Ti2n-1(4≦n≦10))であるTi及びTiのいずれか一種又は二種を含有するものとされている。
 ここで、Ti及びTiは、化学的に安定であり、導電性及び耐酸化性に特に優れている。
 なお、このTi及びTiについては、X線回折分析(XRD)法によって同定することができる。
 次に、本実施形態の低次酸化チタン粉末の製造方法について、図2のフロー図を参照して説明する。
(粉末混合工程S01)
 まず、TiO粉末とTiH粉末とを混合して混合粉末を得る。
 この粉末混合工程S01においては、混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4以上20以下の範囲内となるように、TiO粉末とTiH粉末とを混合する。
  ここで、TiO粉末として、比表面積が10m/g以上のものを用いる。
 なお、TiH粉末については、TiH粉末の比表面積がTiO粉末の比表面積の0.01倍以上0.3倍以下の範囲内とすることが好ましい(これを、比表面積の比:(TiH粉末の比表面積)/(TiO粉末の比表面積)とも示す)。
 ここで、TiO粉末及びTiH粉末の比表面積とはBET測定にて得られる値である。
 この粉末混合工程S01においては、以下のようにして、TiO粉末とTiH粉末とを混合する。
 電子天秤にて秤量したTiO粉末とTiH粉末を密閉容器に装入する。そして、密閉容器内でビーズミル、攪拌によるせん断力などで物理的な外力を加えながら、TiO粉末の凝集を解きつつ混合する。なお、混合時間は少なくとも5分以上とすることが好ましい。
(熱処理工程S02)
 次に、上述の粉末混合工程S01で得られた混合粉末に対して熱処理を施し、TiO粉末を還元してTi及びTiのいずれか一種又は二種を形成する。
 ここで、熱処理工程S02における熱処理温度は650℃以上1000℃以下の範囲内とされている。また、熱処理温度での保持時間が70時間以下とされている。
 さらに、雰囲気は、真空雰囲気(1Pa以下)とすることが好ましい。なお、この熱処理工程S02において、Ti及びTiのいずれか一種又は二種以外に、TiO、TiO等の低次酸化チタンが生成してもよい。
 この熱処理工程S02により、TiO粉末が還元されてTi及びTiのいずれか一種又は二種が形成され、Ti及びTiのいずれか一種又は二種を含有する低次酸化チタン粉末が形成される。また、TiO粉末として、比表面積が10m/g以上のものを用いているので、低次酸化チタン粉末の比表面積を3m/g以上とすることが可能となる。
 すなわち、上述の製造方法により、本実施形態の低次酸化チタン粉末を製造することが可能となる。
 ここで、本実施形態の低次酸化チタン粉末の製造方法において、TiO粉末の比表面積、TiO粉末とTiH粉末との質量比、TiH粉末の比表面積、熱処理工程の条件を、上述のように規定した理由について、以下に説明する。
(TiO粉末の比表面積)
 本実施形態の低次酸化チタン粉末の原料となるTiO粉末の比表面積が10m/g未満の場合には、熱処理後に得られるTi及びTiのいずれか一種又は二種を含有する低次酸化チタン粉末の比表面積を大きくすることが困難となる。また、還元剤として作用するTiH粉末との混合が不均一となって、熱処理工程S02において還元反応が不均一となり、Ti及びTiのいずれか一種又は二種を十分に形成することができないおそれがある。
 以上のことから、本実施形態においては、TiO粉末の比表面積を10m/g以上に設定している。
 なお、TiO粉末の比表面積の下限は、30m/g以上とすることが好ましく、50m/g以上とすることがさらに好ましい。
 また、TiO粉末の比表面積の上限に特に制限はないが、TiO粉末の比表面積が150m/gを超えると、還元剤として作用するTiH粉末との混合が不均一となるおそれがあるとともに、熱処理工程S02における熱エネルギーがTiO粉末の形状変化に消費され、還元反応が十分に進行せず、Ti及びTiのいずれか一種又は二種を十分に形成することができないおそれがある。このため、TiO粉末の比表面積の上限を150m/g以下とすることが好ましく、140m/g以下とすることがさらに好ましく、130m/g以下とすることがより好ましい。
(TiO粉末とTiH粉末との質量比)
 混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4より小さい場合、あるいは、20より大きい場合には、Ti及びTiのいずれか一種又は二種以外の組成のチタン酸化物が多く形成されてしまうおそれがある。
 このため、本実施形態では、混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕を4以上20以下の範囲内に設定している。
 なお、混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕の下限は5以上とすることが好ましく、7以上とすることがさらに好ましい。一方、混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕の上限は19以下とすることが好ましく、18以下とすることがさらに好ましい。
(TiH粉末の比表面積)
 TiH粉末の比表面積を、TiO粉末の比表面積の0.01倍以上とすることにより、TiH粉末とTiO粉末とをさらに均一に混合することが可能となる。
 また、TiH粉末の比表面積を、TiO粉末の比表面積の0.3倍以下とすることにより、TiH粉末の比表面積が必要以上に大きくならず、反応性の高いTiH粉末の変質を抑制することが可能となる。
 以上のことから、本実施形態においては、TiH粉末の比表面積を、TiO粉末の比表面積の0.01倍以上0.3倍以下の範囲内とすることが好ましい。
 ここで、TiH粉末とTiO粉末とをさらに容易に、均一に混合するためには、TiH粉末の比表面積の下限を、TiO粉末の比表面積の0.02倍以上とすることが好ましく、0.03倍以上とすることがさらに好ましい。
 また、TiH粉末の変質をさらに抑制するためには、TiH粉末の比表面積の上限を、TiO粉末の比表面積の0.2倍以下とすることが好ましく、0.1倍以下とすることがさらに好ましい。
(熱処理温度)
 熱処理工程S02における熱処理温度を650℃以上とすることにより、TiO粉末の還元反応が十分に進行し、Ti及びTiのいずれか一種又は二種を効率良く形成することが可能となる。一方、熱処理工程S02における熱処理温度を1000℃以下とすることにより、低次酸化チタン粉末の比表面積が小さくなることを確実に抑制することが可能となる。
 以上のことから、本実施形態では、熱処理工程S02における熱処理温度を650℃以上1000℃以下の範囲内に設定している。
 なお、還元反応をさらに進行させるためには、熱処理温度の下限を660℃以上とすることが好ましく、670℃以上とすることがさらに好ましい。
 また、低次酸化チタン粉末の比表面積が小さくなることをさらに確実に抑制するためには、熱処理温度の上限を800℃以下とすることが好ましく、700℃以下とすることがさらに好ましい。
(保持時間)
 熱処理工程S02において、熱処理温度での保持時間を70時間以下に制限することにより、低次酸化チタン粉末の比表面積が小さくなることを確実に抑制することが可能となる。
 以上のことから、本実施形態では、熱処理温度での保持時間を70時間以下に規定している。
 なお、低次酸化チタン粉末の比表面積が小さくなることをさらに確実に抑制するためには、熱処理温度での保持時間の上限を50時間以下とすることが好ましく、30時間以下とすることがさらに好ましい。
 また、熱処理温度での保持時間の下限に特に制限はないが、TiO粉末の還元反応を確実に進行させるためには、熱処理温度での保持時間の下限を2時間以上とすることが好ましく、3時間以上とすることがさらに好ましく、5時間以上とすることがより好ましい。
 以上のような構成とされた本実施形態の低次酸化チタン粉末の製造方法によれば、TiO粉末の比表面積が10m/g以上とされており、さらにTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4以上20以下の範囲内とされているので、TiO粉末とTiH粉末が還元剤として作用するTiH粉末とを均一に混合させることができ、熱処理工程S02においてTiO粉末を均一に還元することが可能となり、Ti及びTiのいずれか一種又は二種を確実に生成させることができる。また、TiH粉末を還元剤として用いているので、低次酸化チタン粉末に不純物が混入することを抑制できる。
 また、本実施形態においては、熱処理工程S02における熱処理温度が650℃以上とされているので、TiO粉末の還元反応を速やかに進行させることができる。
 さらに、熱処理工程S02における熱処理温度が1000℃以下とされているので、低次酸化チタン粉末の比表面積が低下することを抑制でき、比表面積が大きな低次酸化チタン粉末を製造することが可能となる。
 よって、Ti及びTiのいずれか一種又は二種を含有し、導電性及び耐酸化性に優れ、かつ、比表面積が大きく、触媒担持体として適した低次酸化チタン粉末を製造することが可能となる。
 また、本実施形態では、熱処理工程S02において、熱処理温度での保持時間を70時間以下に制限しているので、低次酸化チタン粉末の比表面積が低下することを確実に抑制でき、比表面積が大きな低次酸化チタン粉末を確実に製造することが可能となる。
 さらに、本実施形態においては、TiH粉末の比表面積が、TiO粉末の比表面積の0.01倍以上0.3倍以下の範囲内とされているので、TiO粉末とTiH粉末とをさらに均一に混合させることができ、熱処理工程S02において、TiH粉末が還元剤として作用し、TiO粉末を均一に還元することが可能となり、Ti及びTiのいずれか一種又は二種を確実に生成させることができる。
 また、本実施形態の低次酸化チタン粉末は、Ti及びTiのいずれか一種又は二種を含有しているので、導電性及び耐酸化性に特に優れている。また、比表面積が3m/g以上とされており、比表面積が確保されている。
 したがって、固体高分子形(PEM形)水電解装置及び固体高分子形燃料電池(PEFC)等の触媒担持体として特に適している。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
 まず、表1に示すTiO粉末とTiH粉末を準備する。これを、表1に示す混合比(質量比)で混合し、混合粉末を得た。
 そして、表1に示す条件で熱処理を実施し、低次酸化チタン粉末を得た。
 得られた低次酸化チタン粉末について、XRD分析によるチタン酸化物の同定、比表面積の測定を、以下のように実施した。評価結果を表2に示す。
(チタン酸化物の同定)
 X線回折分析(XRD)法によって、低次酸化チタン粉末を構成するチタン酸化物を同定した。加速電圧を30keVとし、測定には8keVのCuのKα線を用いた。測定範囲は2θ=15°~70°とした。Ti及びTiの存在の有無については、Tiは21°・26°・30°・32°付近、Tiは23°・26°・29°・31°付近でのピークの有無で確認した。
 TiOの存在の有無については、40°付近でのピークの有無で確認し、TiOの存在の有無については37°・43°・63°付近でのピークの有無で確認し、TiOの存在の有無については25°・27°・36°・38°付近でのピークの有無で確認した。
 X線回折分析で得られた回折チャートを分析し、上記各回折角度2θ(°)にて、ピークが観察された場合を表2において「有」と示し、ピークが観察されない場合は表2において「-」と示した。
(比表面積)
 BET測定により、低次酸化チタン粉末の比表面積を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 TiO粉末の比表面積が8m/gであり、本発明の範囲よりも小さい比較例1においては、製造された低次酸化チタン粉末のチタン酸化物を同定した結果、Ti及びTiのいずれも認められなかった。還元剤として作用するTiH粉末と均一に混合できなかったためと推測される。
 TiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が2であり、本発明の範囲よりも小さい比較例2においては、製造された低次酸化チタン粉末のチタン酸化物を同定した結果、Ti及びTiのいずれも認められなかった。還元剤として作用するTiH粉末が過剰であったためと推測される。
 TiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が40であり、本発明の範囲よりも小さい比較例3においては、製造された低次酸化チタン粉末のチタン酸化物を同定した結果、Ti及びTiのいずれも認められなかった。還元剤として作用するTiH粉末が不足したためと推測される。
 熱処理工程における熱処理温度が1200℃であり、本発明の範囲よりも高温条件とされた比較例4においては、製造された低次酸化チタン粉末のチタン酸化物を同定した結果、Ti及びTiのいずれか一種又は二種が認められたが、低次酸化チタン粉末の比表面積が1m/g未満と非常に小さくなった。
 熱処理工程における熱処理温度が600℃であり、本発明の範囲よりも低温条件とされた比較例5においては、製造された低次酸化チタン粉末のチタン酸化物を同定した結果、Ti及びTiのいずれも認められなかった。還元反応が十分に進行しなかったためと推測される。
 これに対して、本発明例1-15においては、製造された低次酸化チタン粉末のチタン酸化物を同定した結果、Ti及びTiのいずれか一種又は二種が認められた。また、製造された低次酸化チタン粉末の比表面積が3m/g以上であった。
 以上のことから、本発明例によれば、導電性及び耐酸化性に優れたTi及びTiのいずれか一種又は二種からなり、かつ、比表面積が大きく、触媒担持体として適した低次酸化チタン粉末を製造可能であることが確認された。

Claims (2)

  1.  TiO粉末とTiH粉末とを混合する粉末混合工程と、得られた混合粉末を熱処理する熱処理工程と、を有し、
     前記TiO粉末の比表面積が10m/g以上とされ、
     前記粉末混合工程によって得られる前記混合粉末におけるTiO粉末とTiH粉末との質量比〔TiO〕/〔TiH〕が4以上20以下の範囲内とされ、
     前記熱処理工程における熱処理温度が650℃以上1000℃以下の範囲内とされており、
     前記熱処理工程において、前記TiO粉末を還元することにより、Ti及びTiのいずれか一種又は二種を形成することを特徴とする低次酸化チタン粉末の製造方法。
  2.  前記TiH粉末の比表面積は、前記TiO粉末の比表面積の0.01倍以上0.3倍以下の範囲内とされていることを特徴とする請求項1に記載の低次酸化チタン粉末の製造方法。
PCT/JP2019/011997 2018-03-22 2019-03-22 低次酸化チタン粉末の製造方法 WO2019182088A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019517442A JPWO2019182088A1 (ja) 2018-03-22 2019-03-22 低次酸化チタン粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054692 2018-03-22
JP2018-054692 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019182088A1 true WO2019182088A1 (ja) 2019-09-26

Family

ID=67987366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011997 WO2019182088A1 (ja) 2018-03-22 2019-03-22 低次酸化チタン粉末の製造方法

Country Status (2)

Country Link
JP (1) JPWO2019182088A1 (ja)
WO (1) WO2019182088A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039111A1 (ja) * 2020-08-21 2022-02-24 デンカ株式会社 特定の低次酸化チタンの結晶組成を有する粒子、並びにその製造方法
KR20220071590A (ko) * 2020-11-24 2022-05-31 한국과학기술연구원 Ti 산화물의 티타나이징을 이용하여 제조한 Ti 저차 산화물 및 이의 제조방법
WO2022158390A1 (ja) * 2021-01-25 2022-07-28 デンカ株式会社 特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290529A (ja) * 1988-05-16 1989-11-22 Toho Titanium Co Ltd 高純度亜酸化チタンの製造方法
JP2002293541A (ja) * 2001-04-03 2002-10-09 Sony Corp 酸化チタン膜およびその製造方法と光電変換素子
JP2012121783A (ja) * 2010-12-08 2012-06-28 Taiwan Textile Research Inst グラフェン/ナノ二酸化チタン複合物及びその製造方法
JP2013503094A (ja) * 2009-08-28 2013-01-31 南京工▲業▼大学 メソ多孔性複合酸化チタン及びその調製方法
CN104016673A (zh) * 2014-05-28 2014-09-03 长沙沃瑞新材料科技有限公司 一种亚氧化钛导电陶瓷电极的制备工艺
CN104925858A (zh) * 2015-06-09 2015-09-23 四川大学 亚氧化钛粉体的推动式动态连续制备方法与烧结装置
CN104925857A (zh) * 2015-06-09 2015-09-23 四川大学 亚氧化钛粉体的旋转式动态连续制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290529A (ja) * 1988-05-16 1989-11-22 Toho Titanium Co Ltd 高純度亜酸化チタンの製造方法
JP2002293541A (ja) * 2001-04-03 2002-10-09 Sony Corp 酸化チタン膜およびその製造方法と光電変換素子
JP2013503094A (ja) * 2009-08-28 2013-01-31 南京工▲業▼大学 メソ多孔性複合酸化チタン及びその調製方法
JP2012121783A (ja) * 2010-12-08 2012-06-28 Taiwan Textile Research Inst グラフェン/ナノ二酸化チタン複合物及びその製造方法
CN104016673A (zh) * 2014-05-28 2014-09-03 长沙沃瑞新材料科技有限公司 一种亚氧化钛导电陶瓷电极的制备工艺
CN104925858A (zh) * 2015-06-09 2015-09-23 四川大学 亚氧化钛粉体的推动式动态连续制备方法与烧结装置
CN104925857A (zh) * 2015-06-09 2015-09-23 四川大学 亚氧化钛粉体的旋转式动态连续制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022039111A1 (ja) * 2020-08-21 2022-02-24 デンカ株式会社 特定の低次酸化チタンの結晶組成を有する粒子、並びにその製造方法
CN115835912A (zh) * 2020-08-21 2023-03-21 电化株式会社 具有特定的低价氧化钛的晶体组成的粒子及其制造方法
KR20220071590A (ko) * 2020-11-24 2022-05-31 한국과학기술연구원 Ti 산화물의 티타나이징을 이용하여 제조한 Ti 저차 산화물 및 이의 제조방법
KR102452087B1 (ko) * 2020-11-24 2022-10-11 한국과학기술연구원 Ti 산화물의 티타나이징을 이용하여 제조한 Ti 저차 산화물 및 이의 제조방법
WO2022158390A1 (ja) * 2021-01-25 2022-07-28 デンカ株式会社 特定の低次酸化チタンの結晶組成を有する粒子及びその製造方法、並びに分散体
EP4282825A4 (en) * 2021-01-25 2024-07-24 Denka Company Ltd PARTICLES HAVING A SPECIFIC LOWER ORDER TITANIUM OXIDE CRYSTALS COMPOSITION, METHOD FOR PRODUCING THEM, AND DISPERSION

Also Published As

Publication number Publication date
JPWO2019182088A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
Wang et al. Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution
Lei et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni–N x Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics
Chen et al. FeS2 nanoparticles embedded in reduced graphene oxide toward robust, high‐performance electrocatalysts
Wang et al. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution
CN102459085B (zh) 导电的金属氧化物和金属氮化物纳米颗粒
JP6782908B2 (ja) MoSx/カーボンブラックナノコンポジット材料、ならびにその製造方法および適用
WO2019182088A1 (ja) 低次酸化チタン粉末の製造方法
Souza et al. Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER
JP2007257888A (ja) 固体高分子形燃料電池用酸素極触媒およびそれを用いた酸素還元電極およびそれらの製造方法
Ohnishi et al. Titanium nitride nanoparticle electrocatalysts for oxygen reduction reaction in alkaline solution
CN110064428B (zh) 一种g-C3N4/石墨烯复合材料、其制备方法及应用
Chen et al. A high-rate cathode material hybridized by in-site grown Ni–Fe layered double hydroxides and carbon black nanoparticles
Shi et al. Submicron‐sized Sb2O3 with hierarchical structure as high‐performance anodes for Na‐ion storage
Zhang et al. Controllable synthesis of two-dimensional tungsten nitride nanosheets as electrocatalysts for oxygen reduction reaction
WO2019176511A1 (ja) 酸素還元触媒用炭素系複合体ならびにその製造方法および用途
WO2019065284A1 (ja) 金属空気電池用正極触媒及び金属空気電池
Wang et al. Electrochemical and textural characterization of binary Ru–Sn oxides synthesized under mild hydrothermal conditions for supercapacitors
Cheng et al. Rational design of two-dimensional hybrid Co/N-doped carbon nanosheet arrays for efficient bi-functional electrocatalysis
Lu et al. Nb2AlC MAX Nanosheets Supported Ru Nanocrystals as Efficient Catalysts for Boosting pH‐Universal Hydrogen Production
KR20170127167A (ko) 백금-티타늄 금속간 나노입자의 제조방법
Ye et al. Temperature effect on electrochemical properties of Ti 4 O 7 electrodes prepared by spark plasma sintering
CN111229272A (zh) 三元层状碳化物Mo2Ga2C复合花状MoS2纳米颗粒复合材料及其制备方法和应用
KR20210144422A (ko) 수전해 촉매용 몰리브덴 셀레나이드 나노시트 및 이의 제조방법
Chen et al. Ultra-thin carbon-shell coated Ru/RuO 2@ C with rich grain boundaries for efficient and durable acidic water oxidation
Ezeta-Mejía et al. Electrocatalytic properties of bimetallic surfaces for the oxygen reduction reaction

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517442

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19770522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19770522

Country of ref document: EP

Kind code of ref document: A1