WO2022144014A1 - 一种莫来石质微纳孔绝隔热耐火材料及其制备方法 - Google Patents

一种莫来石质微纳孔绝隔热耐火材料及其制备方法 Download PDF

Info

Publication number
WO2022144014A1
WO2022144014A1 PCT/CN2021/144044 CN2021144044W WO2022144014A1 WO 2022144014 A1 WO2022144014 A1 WO 2022144014A1 CN 2021144044 W CN2021144044 W CN 2021144044W WO 2022144014 A1 WO2022144014 A1 WO 2022144014A1
Authority
WO
WIPO (PCT)
Prior art keywords
mullite
agent
refractory material
nano
cellulose ether
Prior art date
Application number
PCT/CN2021/144044
Other languages
English (en)
French (fr)
Inventor
郭会师
李文凤
Original Assignee
郑州轻工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州轻工业大学 filed Critical 郑州轻工业大学
Publication of WO2022144014A1 publication Critical patent/WO2022144014A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/427Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention belongs to the technical field of refractory materials, and in particular relates to a mullite micro-nano-porous insulating and heat-insulating refractory material and a preparation method thereof, in particular to a refractory material with micro-nano pore size, bird's nest-like pore structure, ultra-low thermal conductivity, high The strength and green controllable preparation of mullite micro-nano-porous insulating refractory material.
  • High temperature industry is the main energy-consuming industry in my country's industrial production.
  • the low utilization rate of thermal energy of various types of kilns is the main reason for their large energy consumption. If the average thermal efficiency can be increased by 20% according to the national requirements, it can save energy equivalent to 220 million tons of standard coal, it can be seen that my country's high-temperature industrial energy saving potential is huge.
  • refractory fiber products Although the thermal insulation performance of refractory fiber products is good, they are sensitive to the firing atmosphere and are easy to react with reducing and corrosive gases, causing them to lose their good thermal insulation performance; and they will serve in a high temperature environment for a long time and form particles. It is easy to crystallize and the grains grow, causing stress concentration, resulting in pulverization of the thermal insulation layer and shortening the service life; in addition, ceramic fibers are also harmful to human health, and the European Union has classified them as secondary carcinogens.
  • pore-forming agents used in the preparation process are organic lost-on-burning substances, which makes the cost of raw materials high, and a large amount of toxic and harmful gases are released during firing, such as coal powder, sawdust and coke powder. It can produce a large amount of sulfur oxides, while polystyrene plastic particles produce styrene, toluene, nitrogen/carbon/oxides and dioxins, etc., and also produce a large amount of VOCs fine particles, which seriously pollutes the environment and endangers human health and surrounding areas. the growth of crops. In recent years, with the continuous strengthening of my country's environmental protection management and control, many enterprises have reduced production or stopped work. Therefore, there is an urgent need to research and develop new thermal insulation and refractory materials for high-temperature industrial use with excellent thermal insulation, durability and mechanical properties and green preparation.
  • Mullite is the only stable compound in the A1 2 O 3 -SiO 2 binary system under normal pressure.
  • the chemical formula is 3A1 2 O 3 ⁇ 2SiO 2
  • the theoretical A1 2 O 3 content is 71.8%
  • the melting point is as high as 1870 ° C, and it has thermal expansion.
  • the purpose of the present invention is to provide a kind of mullite micro-nano-porous insulating and thermal insulation refractory material, the refractory material has micro-nano size aperture, bird's nest pore structure, low bulk density, high porosity, ultra-low thermal conductivity and high strength It can effectively reduce thermal conductivity and bulk density while ensuring that the strength meets the requirements, which is conducive to the construction of environmentally friendly light-duty kilns.
  • Another object of the present invention is to provide a method for preparing the above-mentioned mullite micro-nano-porous insulating and insulating refractory material, which is green, pollution-free and easy to accurately control, the structure and performance of the product are easy to accurately control, and the yield is relatively high. High, and can solve the problem that the thermal insulation refractory material obtained by the existing preparation method cannot take into account the ultra-low thermal conductivity, high strength, high yield of the material, and the preparation process is green and pollution-free.
  • the technical scheme adopted by the mullite micro-nano-porous insulating refractory material of the present invention is:
  • a mullite micro-nano-porous insulating and thermal insulating refractory material is made of base material, additives and water; the quality of Al 2 O 3 in the chemical composition of the product is The percentage content is 25-72%, or 35-71.8%, or 40-70%, or 45-68%, or 55-65%, or 58-63%;
  • the base material is composed of the following components in mass fractions: 0-100% of aluminum-silicon raw materials, 0-72% of alumina-based raw materials, and 0-70% of siliceous raw materials;
  • the additives at least include foaming materials, with or without additives; the foaming materials are composed of a foaming agent, an inorganic curing agent, an organic curing agent and a cell regulator, and are foamed based on the quality of the base material.
  • the addition amount of the curing agent, inorganic curing agent, organic curing agent and cell regulator are respectively 0.01-10%, 0.1-20%, 0.1-2%, 0.01-1%; when using additives, the additives are selected from dispersant, One or more combinations of suspending agent, mineralizer and infrared sunscreen agent, based on the quality of the base material, the addition amount of mineralizer is not more than 10%, and the addition amount of infrared sunscreen agent is not more than 10%;
  • the quality of the water is 30-300% of the quality of the base material.
  • the main crystal phase in the product is acicular or columnar mullite, and contains a small amount of quartz, corundum or glass phase by adjusting the components and dosage of the base material; mullite crystals grow on the pore walls of the pores The mullite crystals are intertwined with each other to form a skeleton structure with a three-dimensional network, which plays a role of self-toughening and improves the mechanical strength of the material; at the same time, the size and aspect ratio of mullite crystals are large (the length is 5-200 ⁇ m, and the aspect ratio is ⁇ 5), during the growth process, the pores will be filled in the pores to reduce the pore size to the micro-nano level, which effectively inhibits the convective heat transfer of free gas molecules, and the mullite crystals are mostly point-contact without sintering, which makes the material The heat conduction effect is weak, which constitutes a huge thermal resistance, which further effectively reduces the thermal conductivity of the material.
  • the average pore diameter of the mullite micro-nano-porous insulating refractory material is 0.1-19 ⁇ m, the bulk density is 0.25-1.5 g/cm 3 , the total porosity is 45-95%, and the closed porosity is 35-70% , compressive strength at room temperature is 1 ⁇ 160MPa; thermal conductivity at room temperature is 0.027 ⁇ 0.15W/(m ⁇ K), thermal conductivity at 350°C is 0.03 ⁇ 0.19W/(m ⁇ K), 1100°C The thermal conductivity is 0.05 to 0.28 W/(m ⁇ K). Smaller pore size and higher porosity effectively reduce the bulk density and thermal conductivity of the material. The formation of closed pores can increase the load capacity while improving the thermal insulation effect.
  • the mullite micro-nano-porous insulating refractory material can be used safely in a high temperature environment of 1650°C. Compared with the existing products, the thermal conductivity is lower and the compressive strength is higher under the same bulk density.
  • the final refractory material can not only meet the requirements of low thermal conductivity and light weight, but also ensure high strength by adjusting the amount of each raw material and the process.
  • the mullite micro-nano-porous insulating and insulating refractory material provided by the present invention has the characteristics of low bulk density, low thermal conductivity and high strength, and is the mullite shaped heat insulating material with the best heat insulating performance.
  • Refractory products, with excellent comprehensive performance can be used for hot surface lining, backing and filling sealing and thermal insulation materials of industrial furnaces in metallurgy, petrochemical, building materials, ceramics, machinery and other industries, and can also be used in vehicles, military industry and aerospace, etc. field.
  • the main crystalline phase of mullite generated is optimized.
  • the mass percentage content of Al 2 O 3 in the chemical composition of the alumino-siliceous raw material is: 18-90%, and the mass percentage of SiO 2 is 8-75%.
  • the mass percentage content of Al 2 O 3 in the alumino-silicon raw material is 32-72%, and the mass percentage content of SiO 2 is 25-64%. More preferably, the mass percentage content of Al 2 O 3 in the aluminum-silicon raw material is 38-50%, and the mass percentage content of SiO 2 is 45-58%.
  • the alumino-siliceous raw materials used in the present invention are all existing natural raw materials or artificial synthetic raw materials, preferably, the alumino-siliceous raw materials used are sintered mullite, fused mullite, kaolin, bauxite, homogeneous material, coal Gangue, kyanite, andalusite, sillimanite, pyrophyllite, potassium feldspar, albite, anorthite, barium feldspar, china stone, alkali stone, mica, spodumene, perlite, montmorillonite One or more of stone, illite, halloysite, dicey stone, coke gemstone, clay, Guangxi white clay, Suzhou soil, Mujie soil, and floating beads.
  • the alumino-siliceous raw material is at least two selected from sintered mullite, fused mullite, kaolin, bauxite, coal gangue, kyanite, andalusite, sillimanite, and potassium feldspar .
  • the particle size of the alumino-silicon raw material is less than 1 mm. Further preferably, the particle size of the alumino-silicon raw material is 0.6-1 mm. Ceramic powder particles with higher surface activity are obtained after ball milling in the later stage.
  • the introduction of appropriate alumina raw materials into the base material can effectively supplement the alumina content in the product and increase the amount of mullite generated at high temperatures.
  • the alumina raw material used is an alumina raw material or a raw material that can be decomposed to form Al 2 O 3 at high temperature, and the mass percentage of Al 2 O 3 in the alumina raw material is 65-99.9%, preferably higher than 85%. More preferably, the mass percentage content of Al 2 O 3 is 95-99.9%. More preferably, the mass percentage content of Al 2 O 3 is 98-99%.
  • the above alumina raw materials are specifically industrial alumina, industrial Al(OH) 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3.
  • it is at least one of industrial alumina, ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 and sintered corundum powder.
  • the alumina raw material used in the base material can also be a raw material that can be decomposed to form alumina at high temperature.
  • the mass percentage of Al 2 O 3 in its chemical composition is ⁇ 65%. Further preferably, the mass percentage content of Al 2 O 3 in the chemical composition is 65-87%.
  • the raw materials that can be decomposed to generate alumina under the above-mentioned high temperature are specifically aluminum hydroxide, boehmite, diaspore, aluminum n-butoxide, aluminum isopropoxide, aluminum sec-butoxide, aluminum chloride hexahydrate, aluminum nitrate nonahydrate. one or more of. Preferably, it is aluminum hydroxide.
  • the particle size of the alumina raw material is less than 0.08 mm.
  • the alumina raw material with this particle size has high surface activity, and it is easy to react with the surrounding silica-rich liquid phase at high temperature to form acicular secondary mullite.
  • the siliceous raw material is a silica raw material or a The raw material of silicon dioxide, the mass percentage content of SiO 2 in the raw material of silicon dioxide is higher than 80%. Preferably, the mass percentage content of SiO 2 is 90-99%.
  • silica raw material is specifically ⁇ -quartz, ⁇ -quartz, ⁇ -tridymite, ⁇ -tridymite, ⁇ -cristobalite, ⁇ -cristobalite, vein quartz, sandstone, quartzite, flint, cemented silica, river One or more of sand, sea sand, silica, diatomaceous earth, and microsilica.
  • it is one of cemented silica, diatomaceous earth, and microsilica.
  • the siliceous raw material in the base material can also be a raw material that can be decomposed to generate SiO 2 at high temperature, and the chemical composition of the raw material that can be decomposed to generate silicon dioxide has a mass percentage content of SiO 2 greater than 28%.
  • the above-mentioned raw materials that can be decomposed to generate SiO 2 are one or more of rice husk, carbonized rice husk, rice husk ash, methyl orthosilicate, ethyl orthosilicate, and methyltrimethoxysilane.
  • the particle size of the siliceous raw material is less than or equal to 0.08 mm.
  • the siliceous raw material with this particle size is easy to form a silica-rich glass phase at high temperature, which can react with the surrounding alumina raw material to form secondary mullite.
  • Dispersing agent, suspending agent, mineralizer, infrared light-shielding agent form additives, and foaming agent, inorganic curing agent, organic curing agent, and cell regulator form foaming material. The function and selection of each component are described in detail below.
  • the added amount of dispersant is not more than 1%, and the added amount of suspending agent is not more than 10%.
  • the addition of the dispersant effectively improves the dispersion uniformity of the ceramic powder and additives in the slurry, and avoids their agglomeration in the slurry.
  • the dispersants used in the present invention are polycarboxylic acid dispersants, polycarboxylate ether dispersants, sulfonated melamine polycondensates, naphthalene series dispersants, lignosulfonate dispersants, sodium ethylenediaminetetraacetate, melamine formaldehyde polycondensation one or more of sodium tripolyphosphate, sodium polyacrylate, sodium citrate, sodium phosphate, and sodium carbonate.
  • polycarboxylate dispersant is one of polycarboxylate dispersant, polycarboxylate ether dispersant, sulfonated melamine polycondensate, naphthalene-based high-efficiency dispersant, lignosulfonate dispersant, melamine formaldehyde polycondensate, and sodium phosphate. or more.
  • polycarboxylic acid dispersant is methacrylate type polycarboxylic acid dispersant, allyl ether type polycarboxylic acid dispersant, amide/imide type polycarboxylic acid dispersant, polyamide/polyethylene glycol At least one of the polycarboxylic acid dispersants.
  • the lignosulfonate dispersant is at least one of calcium lignosulfonate, sodium lignosulfonate and potassium lignosulfonate.
  • the suspending agent used in the present invention is bentonite, sepiolite, attapulgite, polyaluminum chloride, polyaluminum sulfate, chitosan, welan gum, agar, polyethylene glycol, polyvinyl alcohol, polyacrylamide, polyacrylamide , one or more of polyvinylpyrrolidone, casein, cetyl alcohol, sucrose, dextrin, microcrystalline cellulose, cellulose fibers, cellulose nanocrystals, and soluble starch.
  • inorganic mineral raw materials such as bentonite, sepiolite, and attapulgite are selected, it is found that they can be rapidly hydrolyzed in the slurry and decomposed into charged ions, which form an electric double layer structure on the surface of the base material particles.
  • the base material particles are suspended in the slurry by electrostatic repulsion, but the dosage is relatively large.
  • the dosage is less than 10%; when polyaluminum chloride, polyaluminum sulfate, chitosan, Welan gum, Agar, polyethylene glycol, polyvinyl alcohol, polyacrylamide, polyacrylamide, polyvinylpyrrolidone, casein, cetyl alcohol, sucrose, dextrin, microcrystalline cellulose, cellulose fiber, cellulose nanocrystals, etc.
  • the suspending agent it is found that adding a small amount can exert a good effect. In the slurry, it can produce a suspension effect through the steric hindrance effect or electrostatic steric hindrance effect, so the addition amount can be relatively small.
  • the introduction of the mineralizer further promotes the nucleation and growth of acicular or columnar mullite crystals, which is beneficial to the improvement of product performance, and at the same time, it can also promote the sintering reaction and effectively reduce the energy consumption during sintering.
  • the mineralizers used in the present invention are ZnO, Fe 2 O 3 , V 2 O 5 , SiF 4 , AlF 3 , AlF 3 ⁇ 3H 2 O, MnO 2 , CuO, CuSO 4 , MgO, SrO, BaO, WO 3 , Er One or more of 2 O 3 , Cr 2 O 3 , La 2 O 3 , YbO, Y 2 O 3 , CeO 2 .
  • it is ZnO, Fe 2 O 3 , V 2 O 5 , SiF 4 , AlF 3 , SrO, BaO, WO 3 , Er 2 O 3 , La 2 O 3 , YbO, Y 2 O 3 , CeO 2 at least two.
  • the heat conduction mechanism of the material is mainly composed of three parts: heat conduction, convection heat transfer and radiation heat transfer. Closed structure, gas circulation is difficult, so convection heat transfer can be basically ignored, and because mullite micro-nano-porous insulating refractory material will be mainly used at high temperature, so the heat transfer mechanism of the material includes heat conduction in addition to heat conduction. Radiant heat transfer.
  • the present invention introduces an infrared sunscreen agent to increase the reflection or absorption of infrared radiation, weaken its penetrability and reduce the thermal conductivity.
  • the infrared sunscreen agents used in the present invention are rutile, TiO 2 , TiC, K 4 TiO 4 , K 2 Ti 6 O 13 , Sb 2 O 3 , Sb 2 O 5 , ZrO 2 , CoO, Co(NO 3 ) 2 , CoCl 2 One or more of , NiCl 2 , Ni(NO 3 ) 2 , ZrSiO 4 , Fe 3 O 4 , B 4 C, and SiC.
  • the infrared sunscreen agent is less than or equal to 5 ⁇ m.
  • the foaming agent used in the present invention is a water-soluble high-performance foaming agent.
  • the foaming agent is a surfactant and/or a protein-based foaming agent.
  • the foaming ratio of the foaming agent is 8 to 60 times.
  • the surfactant is one of cationic surfactant, anionic surfactant, nonionic surfactant, amphoteric surfactant, Gemini surfactant, Bola surfactant, Dendrimer surfactant or more.
  • the amount of surfactant foaming agent is less than or equal to 1%.
  • the cationic surfactant is one or more of amide ester quaternary ammonium salt, polyoxyethylene long-chain amine salt, double long-chain ester quaternary ammonium salt, and triethanolamine stearate quaternary ammonium salt.
  • the anionic surfactant is a sulfonate-based surfactant with a carbon number of 8-20 or a sulfate-based surfactant with a carbon number of 8-18.
  • the nonionic surfactant is one or more of polyoxyethylene type (such as high-carbon fatty alcohol polyoxyethylene ether, fatty alcohol polyoxyethylene ester), fatty alcohol amide type, and polyol type.
  • polyoxyethylene type such as high-carbon fatty alcohol polyoxyethylene ether, fatty alcohol polyoxyethylene ester
  • fatty alcohol amide type such as fatty alcohol amide
  • polyol type such as polyol
  • Amphoteric surfactants are amino acid type or betaine type surfactants.
  • Gemini-type surfactants are one or more of quaternary ammonium salt-type Gemini surfactants, carboxylate-type Gemini surfactants, betaine-type Gemini surfactants, and sulfate-type Gemini surfactants.
  • Bola-type surfactants are semi-cyclic, single-chain or double-chain Bola surfactants.
  • Dendrimer type surfactants are polyether, polyester, polyamide, polyaromatic or polyorganosilicon type Dendrimer surfactants.
  • the protein-based foaming agent is animal protein foaming agent, vegetable protein foaming agent and/or sludge protein foaming agent.
  • the foaming ratio of the protein-based foaming agent is relatively low, the dosage is relatively large, and the dosage is less than or equal to 10%.
  • the foaming agent is selected from quaternary ammonium type Gemini surfactant, semi-cyclic Bola surfactant, carboxylate type Gemini surfactant, lauric acid amidopropyl sulfobetaine, dodecanol poly Sodium oxyethylene ether carboxylate, sodium ⁇ -olefin sulfonate, lauryl dimethyl betaine surfactant, sodium fatty alcohol polyoxyethylene ether carboxylate, sulfate type Gemini surfactant, polyether type Dendrimer surface One of active agent, vegetable protein foaming agent, sludge protein foaming agent, animal protein foaming agent, sodium dodecylbenzene sulfonate, polyamide type Dendrimer surfactant, double chain type Bola surfactant or more.
  • Inorganic curing agent is silica sol, alumina sol, silica alumina sol, silica gel, alumina gel, silica alumina gel, Al 2 O 3 powder, SiO 2 powder, dicalcium silicate, calcium dialuminate , one or more of monocalcium aluminate, tricalcium silicate, tricalcium aluminate, tetracalcium ferric aluminate, dodecacalcium heptaaluminate, aluminum phosphate, water glass, and soft binding clay.
  • silica sol silica gel, alumina gel, silica-alumina gel, Al 2 O 3 micropowder, SiO 2 micropowder, dicalcium silicate, tricalcium silicate, monocalcium aluminate, dialuminum At least one of calcium acid and sodium silicate.
  • the water glass contains sodium silicate, or potassium silicate, or a combination of the two.
  • SiO 2 micropowder not only acts as an inorganic curing agent, but also acts as a siliceous raw material.
  • the Al 2 O 3 micropowder not only acts as an inorganic curing agent, but also acts as an alumina raw material.
  • the mass percentage content of Al 2 O 3 is ⁇ 20%; in the chemical composition of the silica sol, the mass percentage content of SiO 2 is 25-40%; the chemical composition of the silica alumina sol The mass percentage content of Al 2 O 3 is ⁇ 30%, and the mass percentage content of SiO 2 is ⁇ 20%.
  • These inorganic curing agents can penetrate into the gaps of the ceramic powder particles after hydration, and mechanically embed the powder particles to form a good rigid skeleton structure, which increases the strength of the green body.
  • the average particle size of the inorganic curing agent particles is less than or equal to 5 ⁇ m; the inorganic curing agents are all industrially pure.
  • the organic curing agent is selected from water-soluble polymer resin, low methoxy pectin, carrageenan, carrageenan, hydroxypropyl guar gum, locust gum, locust bean gum, gellan gum, keratin gum , one or more of alginate, konjac gum, disperse latex;
  • the water-soluble polymer resin is selected from vinyl acetate and ethylene copolymer, vinyl acetate homopolymer, acrylate polymer, ethylene and acetic acid Vinyl ester copolymer, ethylene and vinyl chloride copolymer, vinyl acetate and tertiary vinyl carbonate copolymer, acrylate and styrene copolymer, vinyl acetate and higher fatty acid vinyl ester copolymer, vinyl acetate and ethylene and vinyl chloride Copolymer, Vinyl Acetate and Ethylene and Acrylate Copolymer, Isobutylene and Maleic Anhydride Copolymer, Ethylene
  • the intermolecular force of the molecules increases the cohesion between the ceramic powder particles, further increases the strength of the green body, and avoids the collision and damage of the green body during the handling process.
  • the organic curing agents are all industrially pure.
  • the inorganic curing agent will produce a liquid phase at a higher temperature, the softening temperature of the product will decrease. Therefore, with the gradual increase of the firing and use temperature, the amount of the inorganic curing agent should be gradually reduced, and the appropriate amount should be increased accordingly.
  • the amount of organic curing agent to enhance the strength of the green body.
  • the cell regulator used in the invention can effectively adjust the size, circularity, uniformity and closedness of the bubbles in the slurry, thereby effectively adjusting the cell structure in the fired product, which is beneficial to the formation of a closed cell structure.
  • the cell regulator is selected from one or more of cellulose ether, starch ether, lignocellulose, and saponin.
  • the cellulose ether is selected from water-soluble cellulose ether, methyl cellulose ether, carboxymethyl cellulose ether, carboxymethyl methyl cellulose ether, carboxymethyl ethyl cellulose ether, carboxymethyl cellulose ether, hydroxymethyl cellulose ether, carboxymethyl hydroxyethyl cellulose ether, carboxymethyl hydroxypropyl cellulose ether, carboxymethyl hydroxybutyl cellulose ether, hydroxymethyl cellulose ether, hydroxyethyl cellulose ether, hydroxyethyl methyl cellulose ether, hydroxyethyl ethyl cellulose ether, ethyl cellulose ether, ethyl methyl cellulose ether, propyl cellulose ether, hydroxypropyl cellulose ether, hydroxypropyl
  • methyl cellulose ether hydroxypropyl ethyl cellulose ether, hydroxypropyl
  • hydroxybutyl cellulose ether hydroxymethyl cellulose ether, hydroxyeth
  • the technical scheme of the preparation method of the mullite micro-nano-porous insulating and insulating refractory material of the present invention is:
  • the preparation method of the above-mentioned mullite micro-nano-porous insulating and heat-insulating refractory material comprises the following steps:
  • the base material and the additive are dispersed in water into a suspension slurry; when the additive is not used, the base material is dispersed in the water into a suspension slurry;
  • the technical key to preparing the lightweight thermal insulation material lies in the introduction of its internal pores.
  • the base material, additives and water are first mixed to form a suspension slurry, and then mixed with a foaming agent, an inorganic curing agent, an organic curing agent and a
  • the functional foaming components (ie foaming material) formed by the foaming agent and the cell regulator are mixed and stirred for foaming, which is conducive to maintaining the integrity of the bubbles and improving the formation rate of closed pores; during the curing process, the bubbles in the slurry are transformed into
  • the spherical pores in the green body the inventor found that the pores also provide space for the growth and development of mullite crystals in the subsequent firing process, so that the mullite crystals can be fully grown.
  • the inventor also accidentally discovered in the long-term research process that because the holes in the green body made by the present invention are tiny micron or nanometer spherical voids, the concave surface of the holes has a very large radius of curvature, which makes the mullite The nucleation and growth driving force of crystals in this hole is further enhanced, so the growth size of mullite crystals is larger.
  • the quality of the water used is 30-300% of the quality of the base material.
  • the mass of water is 70-200% of the mass of the base material.
  • the mass of water is 100-150% of the mass of the base material.
  • the essence of this process technology to prepare thermal insulation and refractory materials is to use water and air in the Refractory materials produce micro- and nano-sized pore structures, so to a certain extent, the volume density, porosity, thermal conductivity and mechanical strength of the product can be adjusted according to the amount of water.
  • components such as dispersing agent, suspending agent, mineralizer, infrared sunscreen agent are used, the above-mentioned components and base material are dispersed into a suspension slurry. If no dispersing agent, suspending agent, mineralizer, infrared sunscreen agent and other components are used, or only one or more of them are used, the corresponding components can be dispersed.
  • the average particle size of the solid particles in the suspension slurry should be controlled to be no higher than 1 mm, preferably, no higher than 74 ⁇ m, or no higher than 44 ⁇ m, or no higher than 30 ⁇ m.
  • one or a combination of two or more means can be used for mixing, such as mechanical stirring, ball milling, and ultrasonication. If the particle size of the raw material is fine and it is easy to disperse into a suspension slurry, it can be stirred by mechanical stirring.
  • the dispersion includes ball milling and ultrasonic dispersion.
  • dispersing agent, suspending agent, mineralizer and infrared shading agent are mixed to obtain an additive, and then the additive is mixed with a base material and a water ball mill to obtain a mixed material, and then ultrasonicated.
  • the aluminum-silicon raw material, the alumina-based raw material and the siliceous raw material in the base material are also preferably mixed uniformly in advance.
  • Dispersing agent, suspending agent, mineralizer and infrared sunscreen agent are mixed and the mixer used for mixing foaming material adopts existing mixers such as three-dimensional mixer, V-type mixer, double cone mixer, planetary mixer, forced mixer, non- Gravity mixer is enough, and the mixing degree is ⁇ 95%.
  • the three raw materials in the base material are preferably premixed uniformly in the same way when used.
  • the weight ratio of material/ball is 1:(0.8 ⁇ 1.5), and the milling time is 0.5 ⁇ 12h.
  • the ball milling efficiency can be greatly improved and the grinding time can be shortened;
  • the materials of the grinding balls used are cobblestone, corundum, mullite, zirconia, zirconia, silicon carbide, One or more of silicon nitride and tungsten carbide;
  • the size of the grinding ball is a large ball middle ball small ball The large ball, medium ball and small ball are combined according to the weight ratio of (1 ⁇ 1.5):(1 ⁇ 3):(6 ⁇ 10).
  • the large ball, the medium ball and the small ball are combined in a weight ratio of (1-1.5):(1-2):(6-8).
  • the average particle size of the solid particles in the slurry can be no higher than 74 ⁇ m.
  • the average particle size of the solid particles is not higher than 50 ⁇ m; further preferably, the average particle size of the solid particles is not higher than 44 ⁇ m; more particularly preferably, the average particle size of the solid particles is not higher than 30 ⁇ m.
  • the inventors of this technology found that these ceramic powder particles have relatively high surface activity after ball milling, and then have excellent hydrophobic properties after being modified by surfactant molecules (foaming agent).
  • Ultrasonic dispersion further improves the mixing uniformity of each component in the slurry, the ultrasonic power is 500-2000W, and the time is 4-15min.
  • Step b) In the preparation process of the foam slurry, depending on the variety of raw materials, if the foaming agent, the inorganic curing agent, the organic curing agent, and the cell regulator are all dry solid raw materials, the dry raw materials are first dry mixed to obtain the foam. Foam the dry mix, then add the foamed dry mix to the suspension slurry and stir to foam. If some of the foaming agents, inorganic curing agents, organic curing agents, and cell regulators are liquid raw materials, preferably dry solid raw materials can be dry mixed, and then the dry mixture and liquid raw materials can be added to suspend the In the slurry, stirring and shearing foaming is carried out.
  • the foaming agent can also be pre-prepared by the foaming machine, and then added to the suspension slurry with the mixture of inorganic curing agent, organic curing agent and cell regulator, and then further stirring and shearing foaming is performed.
  • the stirring and foaming adopts the high-speed stirring and shearing foaming of the stirring blade of a vertical mixer, and the linear velocity of the outer edge of the stirring blade is 20-200 m/s, and the time is 1-30 min. More preferably, the linear velocity is 50-200 m/s; more preferably, the linear velocity is 80-200 m/s; further preferably, the linear velocity is 100-200 m/s; still more preferably, the linear velocity is 150-200 m/s.
  • the stirring paddle quickly stirs and mixes the slurry and introduces a large amount of air, and a large amount of foam is generated under the action of the foaming agent, which makes the volume of the slurry expand rapidly.
  • the air temperature in the curing environment is 1-40° C.
  • the humidity is 50-99.9%
  • the curing time is 0.2-3.5 h.
  • the air temperature of the curing environment is 1-40°C, preferably 5-30°C, more preferably 10-30°C, more preferably 20-30°C, particularly preferably 25-30°C, more particularly preferably 27-30°C;
  • the air humidity is 50 ⁇ 30°C 99.9%, preferably 60-99%, more preferably 70-97%, more preferably 80-95%, particularly preferably 85-93%, more particularly preferably 88-92%.
  • the inorganic and organic curing agents in the green body will accelerate the hydration reaction and solidify and condense, so that the strength of the green body will increase rapidly, and rapid demoulding will be realized.
  • the foam slurry is injected into the mold, and after curing in the above environment for 0.2 to 3.5 hours, the mold is quickly demolded to obtain the green body.
  • the turnover rate of the mold was greatly accelerated, and the overall preparation process was accelerated, and the production efficiency and output were greatly improved, which was difficult to achieve in the past.
  • the mold is selected from one or more of the following, but not limited to: metal mold, plastic mold, resin mold, rubber mold, foam mold, plaster mold, glass mold, glass fiber reinforced plastic mold, wood or bamboo or bamboo gum mold , and the composite mold of the above-mentioned materials.
  • the shape of the mold can be changed according to the design requirements, which is suitable for the preparation of special-shaped products.
  • the drying method used can be selected according to the actual situation. Microwave drying, or a combination of any two or more of them.
  • the drying time is 0.3-48h.
  • the green body is dried until the moisture content of the green body is less than or equal to 3wt%.
  • the green body has high strength after drying, and its compressive strength is ⁇ 0.7MPa, which greatly reduces the damage caused by bumping in the transportation project and increases the yield.
  • the drying heat source can be power heating or hot air
  • the drying temperature is 30-110°C
  • the drying time is 12-48h.
  • the preferred drying system is as follows: first heat up to 30°C at 1-5°C/min, keep at 30°C for 0.5-5h, then heat up to 50°C at 1-5°C/min, keep at 50°C for 2-5h, and then Heat up to 70°C at 1 ⁇ 5°C/min, keep at 70°C for 2 ⁇ 5h, then heat up to 90°C at 2 ⁇ 5°C/min, hold at 90°C for 2 ⁇ 5h, then heat up at 2 ⁇ 5°C/min to 110°C, keep at 110°C for 5-24h;
  • the drying medium is carbon dioxide
  • the carbon dioxide supercritical drying temperature is 31-45°C
  • the pressure of the reaction kettle is controlled at 7-10MPa
  • the drying time is 0.5-3h;
  • the drying temperature of the freeze-drying machine is -180 ⁇ -30°C, and the drying time is 3 ⁇ 6h;
  • the drying temperature in the vacuum drying box is 35 ⁇ 50°C
  • the vacuum pressure is 130 ⁇ 0.1Pa
  • the drying time is 3 ⁇ 8h
  • the wavelength of the infrared rays is 2.5-100 ⁇ m, preferably 2.5-50 ⁇ m, preferably 2.5-30 ⁇ m, more preferably 2.5-15 ⁇ m, more particularly preferably 2.5-8 ⁇ m, and the drying time is 0.5-5h;
  • the microwave frequency is 300-300,000MHz, preferably 300-10,000MHz, preferably 300-3000MHz, more preferably 300-1000MHz, more particularly preferably 600-1000MHz, and the drying time is 0.3-3h;
  • the organic and inorganic curing agents work together to greatly improve the strength of the green body obtained after the foam slurry is cured and dried, and its compressive strength is ⁇ 0.7MPa, which avoids the collapse of the green body and the collision during transportation and kiln installation.
  • the damage greatly improves the yield, and the yield is ⁇ 90%, preferably ⁇ 95%, more preferably ⁇ 98%, more particularly preferably ⁇ 99%, which significantly reduces the production cost and can effectively cut and grind the green body. , drilling and other mechanical processing.
  • the firing in the step c) is optionally fired in a shuttle kiln, a resistance kiln, a high-temperature tunnel kiln or a microwave kiln, specifically: heating to 500°C at 1-5°C/min, and then 5°C/min.
  • the invention has the characteristics of simple process technology, easy control, no harm to the environment, short demoulding and drying cycles of the green body, high green body strength, and high yield, and is very suitable for large-scale, mechanized, modern and intelligent equipment. production work.
  • the mullite micro-nano-porous insulating and insulating refractory material prepared by the present invention has the following characteristics: (1) the appearance is white, light yellow or yellow; (2) the content of Al 2 O 3 in the chemical composition of the fired product 25-72%, preferably 35-71.8%, preferably 40-70%, more preferably 45-68%, particularly preferably 55-65%, more particularly preferably 58-63%; (3)
  • the main crystalline phase of the product is Mo (4)
  • the morphology of mullite crystal is needle-like or columnar, its length is 5-200 ⁇ m, and the aspect ratio is ⁇ 5; (5)
  • the pores in the product A large number of needle-like or columnar mullite crystals grow on the wall, and these crystals are interwoven into a three-dimensional network skeleton structure with a bird's nest shape; (6)
  • This mullite network skeleton structure is an excellent mechanical carrier, which is conducive to the improvement of material strength; ( 7)
  • the spherical pores are filled
  • the mullite micro-nano-porous insulating and heat-insulating refractory material prepared by the invention has a bulk density of 0.25-1.5 g/cm 3 , a porosity of 45-95%, a closed porosity of 35-70%, and a normal temperature compressive strength of 45-95%.
  • thermal conductivity at room temperature is 0.027 ⁇ 0.15W/(m ⁇ K)
  • thermal conductivity at 350°C is 0.03 ⁇ 0.19W/(m ⁇ K)
  • thermal conductivity at 1100°C is 0.05 ⁇ 0.28W/(m ⁇ K), preferably 0.08 ⁇ 0.12W/(m ⁇ K)
  • service temperature ⁇ 1650°C
  • reburning line change rate ⁇ -0.8 % (holding at different temperatures of 1230-1620°C for 24h), preferably ⁇ -0.5%, preferably ⁇ -0.4%, more preferably ⁇ -0.3%, more particularly preferably ⁇ -0.2%, the overall performance is good.
  • the smaller pore diameter, higher porosity and closed pore structure in the product greatly reduce the thermal conductivity of the thermal insulation material.
  • the shape of the internal pores of the insulating and heat insulating material prepared by the invention is close to spherical, and the stress is uniformly dispersed, and the phenomenon of stress concentration can be effectively avoided when being stressed, so that the mechanical properties of the material are greatly improved.
  • Fig. 1 is the macrophotograph of the mullite micro-nano-porous insulating and insulating refractory material of Example 1 of the present invention
  • Example 2 is a SEM image of the pore structure of the mullite micro-nano-porous insulating refractory material of Example 1 of the present invention
  • Fig. 3 is the SEM image of the pore wall of the mullite micro-nano-porous insulating refractory material of Example 1 of the present invention
  • Fig. 4 is the SEM image of the mullite micro-nano-porous insulating refractory material of Example 3 of the present invention.
  • Fig. 5 is the SEM image of the mullite micro-nano-porous insulating refractory material of Example 13 of the present invention.
  • Example 6 is a SEM image of the mullite micro-nano-porous insulating and thermal insulating refractory material of Example 14 of the present invention.
  • Fig. 7 is the XRD pattern of the mullite micro-nano-porous insulating and insulating refractory material of Example 1 of the present invention.
  • FIG. 8 is a pore size distribution diagram of the mullite micro-nano-porous insulating and thermal insulating refractory material according to Example 1 of the present invention.
  • the chemical composition of Al 2 O 3 is 12-13% by mass, SiO 2 is 68-74% by mass, K 2 O is 2-3% by mass, Na 2 O is 100% by mass The content is 4 to 6%, and the particle size is 0.6 to 1 mm.
  • Potassium feldspar the mass percentage of K 2 O in the chemical composition is 9-11%, the mass percentage of Al 2 O 3 is 18-20%, the mass percentage of SiO 2 is 64-66%, and the particle size ⁇ 0.08mm.
  • Diatomite the mass percentage of SiO 2 in the chemical composition is ⁇ 85%, and the particle size is 0.6-1 mm.
  • the chemical composition of Al 2 O 3 is 22-23% by mass, SiO 2 is 68-75% by mass, and the particle size is less than or equal to 0.045mm.
  • Industrial alumina ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , the mass percentage of Al 2 O 3 in the chemical composition ⁇ 98%, particle size ⁇ 0.08mm.
  • the aluminum mass percentage of Al 2 O 3 in the chemical composition is ⁇ 70wt%, and the particle size is ⁇ 0.08mm.
  • the mass percentage content of Al 2 O 3 in the chemical composition is 28-31%, the mass percentage content of SiO 2 is 51-57%, and the particle size is less than or equal to 0.08mm.
  • the mass percentage content of Al 2 O 3 in the chemical composition is 35-38%, the mass percentage content of SiO 2 is 50-53%, and the particle size is less than or equal to 0.08mm.
  • the chemical composition of Al 2 O 3 is 38-41% by mass, the mass percentage of SiO 2 is 56-59%, and the particle size is 0.6-1 mm.
  • the chemical composition of Al 2 O 3 is 42-45% by mass, the mass percentage of SiO 2 is 52-55%, and the particle size is less than or equal to 0.075mm.
  • Sintered corundum powder the mass percentage of Al 2 O 3 in the chemical composition is ⁇ 97%, and the particle size is ⁇ 0.08mm.
  • Fused corundum powder the mass percentage of Al 2 O 3 in the chemical composition is ⁇ 98%, and the particle size is ⁇ 0.08mm.
  • the mass percentage content of Al 2 O 3 is 55-58%
  • the mass percentage content of SiO 2 is 39-41%
  • the particle size is 0.6-1 mm.
  • Sulfate-type Gemini surfactant purchased from Hengmei Technology Co., Ltd., foaming ratio 55. Quaternary ammonium type Gemini surfactant, purchased from Hengmei Technology Co., Ltd., foaming ratio 45. Semi-cyclic Bola surfactant, purchased from Hengmei Technology Co., Ltd., foaming ratio 50. Carboxylate type Gemini surfactant, purchased from Hengmei Technology Co., Ltd., foaming ratio 60. Ethylene and vinyl acetate copolymer, purchased from Wacker Chemicals, Germany,
  • Carboxymethyl methyl cellulose ether and hydroxypropyl hydroxybutyl cellulose ether were purchased from Dow Chemical in the United States.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the shape of mullite is needle-like, its length is 37-45 ⁇ m, and its aspect ratio is 37-62.
  • the mass percentage of alumina in the chemical composition of the product is 25-28%.
  • the product is made of base material, additive and water, wherein the additive is composed of suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 90% of alumino-siliceous raw materials and 10% of siliceous raw materials.
  • the aluminum-silica raw material is composed of perlite, potassium feldspar, and kaolin (in its chemical composition, the mass percentage of Al 2 O 3 is 36-38%, the mass percentage of SiO 2 is 54-57%, and the particle size is 0.6 ⁇ 1mm) is mixed according to the mass ratio of 1:1:7; the siliceous raw material is diatomaceous earth.
  • the dosage of suspending agent, mineralizer and infrared sunscreen agent in the additive is 10%, 0.12% and 3.1% of the total mass of the base material, respectively.
  • the suspending agent is bentonite;
  • the mineralizer is composed of AlF 3 and ZnO in a mass ratio of 3:1;
  • the infrared sunscreen agent is composed of TiO 2 , ZrSiO 4 and B 4 C in a mass ratio of 15:15:1.
  • AlF 3 , ZnO, TiO 2 , ZrSiO 4 and B 4 C are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.6%, 5.1%, 2% and 0.05% of the total mass of the base material, respectively.
  • the foaming agent is composed of quaternary ammonium type Gemini surfactant and semi-cyclic Bola surfactant in a mass ratio of 2:1;
  • the inorganic curing agent is composed of alumina gel and sodium silicate in a mass ratio of 50:1, and the oxidation Aluminum gel and sodium silicate are both industrial pure, particle size ⁇ 5 ⁇ m;
  • organic curing agent is composed of ethylene and vinyl acetate copolymer and vinyl acetate and ethylene copolymer (WACKER CHEMICALS, Germany, ) in a mass ratio of 1:1;
  • the cell regulator is composed of carboxymethyl methyl cellulose ether and hydroxypropyl hydroxybutyl cellulose ether in a mass ratio of 3:2.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite shape is needle-like, its length is 32-43 ⁇ m, and its aspect ratio is 38-64.
  • the mass percentage of alumina in the chemical composition of the product is 25-26%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 25% of alumina raw materials, 5% of aluminum-silicon raw materials, and 70% of siliceous raw materials.
  • the alumina raw material is made by mixing industrial alumina and diaspore according to the mass ratio of 4:1;
  • the aluminum siliceous raw material is composed of alkali stone (the mass percentage of Al 2 O 3 in its chemical composition is 45-48%) , SiO 2 mass percentage content is 45 ⁇ 48%, particle size is 0.6 ⁇ 1mm), pyrophyllite (Al 2 O 3 mass percentage content in its chemical composition is 30 ⁇ 33%, SiO 2 mass percentage content is 60 ⁇ 62%), mica (the mass percentage of Li 2 O is 3 to 5%, the mass percentage of Al 2 O 3 is 27 to 29%, the mass percentage of SiO 2 is 57 to 59%, and the mass of K 2 O is 57 to 59%.
  • the percentage content is 4-6%, the particle size is less than 0.08mm), spodumene (the mass percentage of Al 2 O 3 is 27-29%, the mass percentage of SiO 2 is 63-65%, and the mass percentage of Li 2 O is 63-65%).
  • the percentage content is 8-9%, and the particle size is 0.6-1mm) according to the mass ratio of 1:1:2:1; the siliceous raw materials are vein quartz, cemented silica (SiO 2 mass percentage ⁇ 93%, particle size ⁇ 0.08mm) is mixed in a mass ratio of 1:1.
  • the type and amount of raw materials used in the additive are basically similar to those in Example 1, the only difference being that 0.01% of the dispersant is added on the basis of Example 1 in the additive, and the dispersant is a methacrylate type polycarboxylic acid dispersant. (Hengmei Technology Co., Ltd.).
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite shape is needle-like, its length is 41-53 ⁇ m, and its aspect ratio is 39-72.
  • the mass percentage of alumina in the chemical composition of the product is 31-33%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material, 80% aluminum siliceous raw material, and 10% siliceous raw material.
  • the alumina raw material is ⁇ -Al 2 O 3
  • the aluminum siliceous raw material is composed of fly ash, drift beads, kaolin (the mass percentage of Al 2 O 3 is 32-35%, and the mass percentage of SiO 2 is 61 ⁇ 64%, particle size is 0.6 ⁇ 1mm) according to the mass ratio of 1:5:10;
  • the siliceous raw material is cemented silica (the mass percentage of SiO 2 is ⁇ 93%, the particle size is 0.6 ⁇ 1mm), rice husk, carbonized rice husk, and rice husk ash (the mass percentage of SiO 2 ⁇ 28%, particle size ⁇ 0.08mm) is mixed according to the mass ratio of 16:2:1:1.
  • the dosage of dispersant, suspending agent, mineralizer and infrared sunscreen agent in the additive is 0.02%, 5.3%, 1.2% and 10% of the total mass of the base material, respectively.
  • the dispersant is composed of allyl ether type polycarboxylic acid dispersant (Hengmei Technology Co., Ltd.) and polycarboxylate ether dispersant in a mass ratio of 3:2; suspending agent is composed of bentonite and cellulose fibers in a mass ratio of 50:3
  • the mineralizer is composed of MnO 2 , ZnO and V 2 O 5 according to the mass ratio of 3:2:1; the infrared sunscreen agent is composed of TiC, K 4 TiO 4 , Sb 2 O 3 according to the mass ratio of 5:3:2 than the composition.
  • MnO 2 , ZnO, V 2 O 5 , TiC, K 4 TiO 4 , and Sb 2 O 3 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.5%, 7.5%, 1.5% and 0.1% of the total mass of the base material, respectively.
  • the foaming agent is composed of carboxylate type Gemini surfactant and lauric acid amidopropyl sulfobetaine (foaming ratio 13) according to the mass ratio of 4:1;
  • the inorganic curing agent is composed of silica gel and SiO 2 micropowder According to the mass ratio of 2:1, the silica gel and SiO 2 micropowder are both industrially pure, and the particle size is less than or equal to 5 ⁇ m;
  • the organic curing agent is ethylene, vinyl chloride and vinyl laurate copolymer (Wacker Chem.
  • the cell regulator is composed of carboxymethyl ethyl cellulose ether (Asian Company, USA), carboxymethyl hydroxymethyl cellulose ether, and carboxymethyl hydroxyethyl cellulose ether (Dow Chemical Company, USA) according to The mass ratio of 5:3:2 is mixed.
  • the mullite micro-nano-porous insulating and thermal insulating refractory material in this embodiment has a main crystal phase of mullite, a needle-like morphology, a length of 42-65 ⁇ m, and an aspect ratio of 40-83.
  • the mass percentage of alumina in the chemical composition of the product is 33-35%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material, 80% aluminum siliceous raw material, and 10% siliceous raw material.
  • the alumina raw material is industrial alumina
  • the aluminum siliceous raw material is composed of bauxite (Al 2 O 3 with a mass percentage of 88-90%, SiO 2 with a mass percentage of 8-10%, and a particle size of 0.6-1mm)
  • albite the mass percentage of Na 2 O is 10-12%, the mass percentage of Al 2 O 3 is 19-22%, and the mass percentage of SiO 2 is 66-69% , particle size ⁇ 0.08mm
  • kaolin the mass percentage of Al 2 O 3 is 32-35%, the mass percentage of SiO 2 is 61-64%, and the particle size is less than or equal to 0.08mm
  • the siliceous raw materials are cemented silica, sandstone, quartzite, and flint (the mass percentage of SiO 2 is ⁇ 93%, the particle
  • the dosage of dispersant, suspending agent and mineralizer in the additive is 0.03%, 5.3% and 3% of the total mass of the base material, respectively.
  • the dispersant is an amide-type polycarboxylic acid dispersant (Hengmei Technology Co., Ltd.) and sodium tripolyphosphate in a mass ratio of 1:2;
  • the suspending agent is composed of bentonite and microcrystalline cellulose (Dow Chemical) in a ratio of 50:3
  • the mineralizer is composed of MnO 2 , ZnO and V 2 O 5 according to the mass ratio of 3:1:2.
  • MnO 2 , ZnO and V 2 O 5 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amount of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive is 0.4%, 20%, 1% and 0.16% of the total mass of the base material, respectively.
  • the foaming agent is composed of carboxylate-type Gemini-type surfactant (Hengmei Technology, foaming ratio 60) and sodium dodecyl polyoxyethylene ether carboxylate (foaming ratio 9) in a mass ratio of 1:3; inorganic
  • the curing agent is composed of silica sol (the percentage of SiO 2 in the silica sol is 30%) and SiO 2 micropowder in a mass ratio of 19:1; the organic curing agent is vinyl acetate and tertiary vinyl carbonate copolymer (Anhui province).
  • the cell regulator is composed of hydroxypropyl cellulose ether (US Asialand Company), hydroxypropyl methyl cellulose ether, sulfoethyl cellulose ether (US Dow Chemical Company) company) according to the mass ratio of 2:10:4.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite shape is needle-like, its length is 43-77 ⁇ m, and its aspect ratio is 41-85.
  • the mass percentage of alumina in the chemical composition of the product is 34-36%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 30% of alumina raw materials, 40% of aluminum-silicon raw materials, and 30% of siliceous raw materials.
  • the alumina raw materials are boehmite (Al 2 O 3 mass percentage ⁇ 70%, particle size ⁇ 0.08mm), aluminum n-butoxide, aluminum isopropoxide, aluminum sec-butoxide, and aluminum chloride hexahydrate , Aluminum nitrate nonahydrate is mixed according to the mass ratio of 10 : 1 : 1 :1:1:1.
  • the percentage content is 69-73%, the particle size is 0.6-1mm), and the coke gemstone (the mass percentage of Al 2 O 3 is 32-35%, the mass percentage of SiO 2 is 61-64%, and the particle size is ⁇ 0.08mm) according to the mass ratio of 5:3;
  • the siliceous raw materials are silicon micropowder, methyl orthosilicate, ethyl orthosilicate, methyl trimethoxysilane according to 17:8:3:2 The mass ratio is mixed.
  • the dosage of dispersant, suspending agent and mineralizer in the additive is 0.03%, 5.3% and 3% of the total mass of the base material, respectively.
  • the dispersing agent is an imide-type polycarboxylic acid dispersing agent (Hengmei Technology Co., Ltd.) and sodium tripolyphosphate in a mass ratio of 3:2;
  • the suspending agent is composed of bentonite, chitosan and cellulose nanocrystals (Dow Chemical Co., Ltd., USA).
  • the mineralizer is composed of AlF 3 ⁇ 3H 2 O, BaO, ZnO and V 2 O 5 according to the mass ratio of 3:1:1:1.
  • AlF 3 ⁇ 3H 2 O, BaO, ZnO, and V 2 O 5 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.3%, 20%, 1% and 0.2% of the total mass of the base material, respectively.
  • the foaming agent is composed of carboxylate type Gemini surfactant and sodium dodecanol polyoxyethylene ether carboxylate (foaming ratio 9) in a mass ratio of 1:2;
  • the inorganic curing agent is composed of silica sol (silica sol).
  • the percentage content of SiO 2 is 30%) and SiO 2 micropowder according to the mass ratio of 19:1;
  • the organic curing agent is acrylate and styrene copolymer (American National Starch, FX7000);
  • the cell regulator is composed of hydroxypropyl cellulose ether (Asialand, USA), hydroxypropyl methyl cellulose ether, and ethyl methyl cellulose ether (Dow Chemical, USA) according to 1:5:4 The mass ratio is mixed.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 44-115 ⁇ m, and its aspect ratio is 42-95.
  • the mass percentage of alumina in the chemical composition of the product is 34-36%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material, 80% aluminum siliceous raw material, and 10% siliceous raw material.
  • the alumina raw material is industrial Al(OH) 3 (Al 2 O 3 mass percentage ⁇ 65%, particle size ⁇ 0.08mm)
  • the aluminum siliceous raw material is kyanite (Al 2 O 3 mass percentage content It is 28-33%, the mass percentage of SiO 2 is 63-68%, the particle size is 0.6-1mm), barium feldspar (the mass percentage of BaO is 16-18%, the mass percentage of Al 2 O 3 is 100%
  • the content is 25-28%, the mass percentage of SiO 2 is 54-56%, the particle size is less than or equal to 0.08mm), kaolin (the mass percentage of Al 2 O 3 is 35-37%, the mass percentage of SiO 2 is 100%)
  • the content is 57-61%, and the particle size is 0.6-1mm) according to the mass ratio of 1:1:6; the siliceous raw materials are
  • the dosages of dispersant, suspending agent, mineralizer and infrared sunscreen agent in the additive are 0.03%, 5.1%, 5% and 6% of the total mass of the base material, respectively.
  • the dispersant is a polyamide-type polycarboxylic acid dispersant (BASF, Germany);
  • the suspending agent is composed of attapulgite (mass percentage of SiO 2 is 55-61%, particle size ⁇ 0.045mm) and Welan gum according to 50: The mass ratio of 1;
  • the mineralizer is composed of MnO 2 , ZnO and La 2 O 3 according to the mass ratio of 3:5:2;
  • the infrared sunscreen agent is composed of TiC, K 4 TiO 4 , Sb 2 O 3 according to 15:13: 2 mass ratio composition.
  • MnO 2 , ZnO, La 2 O 3 , TiC, K 4 TiO 4 , and Sb 2 O 3 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.2%, 5%, 0.6% and 0.4% of the total mass of the base material, respectively.
  • the foaming agent is composed of quaternary ammonium type Gemini surfactant and sodium ⁇ -olefin sulfonate (foaming ratio 15) according to the mass ratio of 1:1;
  • the inorganic curing agent is composed of monocalcium aluminate, dicalcium silicate, dialuminate Calcium and tricalcium silicate are composed according to the mass ratio of 2:1:1:1, monocalcium aluminate, dicalcium silicate, calcium dialuminate, and tricalcium silicate are all industrial pure, particle size ⁇ 5 ⁇ m;
  • the agent consists of copolymers of vinyl acetate with ethylene and higher fatty acids (WACKER CHEMICALS, Germany, ) and konjac gum (Shanghai Beilian Technology Co., Ltd.) in a mass ratio
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 45-162 ⁇ m, and its aspect ratio is 44-123.
  • the mass percentage of alumina in the chemical composition of the product is 37-39%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material and 90% aluminum siliceous raw material.
  • the alumina raw materials are ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 according to 1:1:1:1: It is composed of a mass ratio of 1;
  • the aluminum siliceous raw material is composed of andalusite and kaolin (the mass percentage of Al 2 O 3 is 35 to 37%, the mass percentage of SiO 2 is 58 to 61%, and the particle size is 0.6 to 1mm) According to the mass ratio of 1:8.
  • the dosages of dispersant, suspending agent, mineralizer and infrared sunscreen agent in the additive are 0.05%, 5.5%, 5% and 7% of the total mass of the base material, respectively.
  • the dispersing agent is composed of sulfonated melamine polycondensate (Hengmei Technology Co., Ltd.) and sodium polyacrylate in a mass ratio of 3:2;
  • the suspending agent is composed of bentonite (Al 2 O 3 with a mass percentage of 22-23%, SiO
  • the mass percentage of 2 is 71-73%, the particle size is less than or equal to 0.045mm) and chitosan in a mass ratio of 10:1;
  • the mineralizer is composed of MnO 2 , BaO and Er 2 O 3 according to 3:5:2
  • the infrared sunscreen agent is composed of TiC, K 4 TiO 4 and SiC according to the mass ratio of 3:3:1. Among them, MnO 2 , BaO, Er 2 O 3 ,
  • the amount of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive is 0.18%, 6%, 1.5% and 0.7% of the total mass of the base material, respectively.
  • the foaming agent is composed of quaternary ammonium type Gemini surfactant and dodecyl dimethyl betaine surfactant (foaming ratio 17) according to the mass ratio of 1:1;
  • the inorganic curing agent is composed of alumina gel and soft
  • the binding clay is composed of a mass ratio of 5:1, and the particle size of alumina gel and soft binding clay is less than or equal to 5 ⁇ m;
  • the organic curing agent is vinyl acetate and higher fatty acid vinyl ester copolymer (Shanxi Sunway Group Co., Ltd., SWF-04);
  • the cell regulator is composed of hydroxyethyl cellulose ether (Hercules, USA) and hydroxyethyl ethyl cellulose ether (Akzo Nobel, the Netherlands) in a
  • the mullite micro-nano-porous insulating and thermal insulating refractory material of this embodiment has a main crystal phase of mullite, a needle-like morphology, a length of 48-200 ⁇ m, and an aspect ratio of 45-152.
  • the mass percentage of alumina in the chemical composition of the product is 41-43%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material and 90% aluminum siliceous raw material.
  • the alumina raw materials are industrial alumina, ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 , ⁇ -Al 2 O 3 (in the chemical composition of each alumina raw material, the mass percentage of Al 2 O 3 is equal to ⁇ 98%, particle size ⁇ 0.08mm) is mixed in a mass ratio of 5:3:1:1.
  • the aluminosilicate raw material is composed of andalusite, Suzhou soil, and kaolin (the mass percentage of Al 2 O 3 is 37-39%, the mass percentage of SiO 2 is 58-60%, and the particle size is 0.6-1 mm) according to 1: The mass ratio of 3:5 is mixed.
  • the dosage of dispersant, suspending agent, mineralizer and infrared sunscreen agent in the additive is 0.06%, 2.5%, 10% and 3% of the total mass of the base material, respectively.
  • the dispersing agent is a polyamide-type polycarboxylic acid dispersing agent (BASF, Germany) and a naphthalene-based high-efficiency dispersing agent (Hengmei Technology Co., Ltd.) in a mass ratio of 5:1;
  • the suspending agent is composed of bentonite (Al 2 O 3 mass percentage The content is 25-27%, the mass percentage of SiO 2 is 68-71%, the particle size is less than or equal to 0.045mm) and sepiolite in a mass ratio of 4:1;
  • the mineralizer is composed of AlF 3 , WO 3 , Y 2 O 3 and CeO 2 are composed of 2:1:1:1 mass ratio;
  • the infrared sunscreen agent is composed of TiO 2 and ZrSiO 4 according to 2:1 mass ratio.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.16%, 5%, 1.1% and 1% of the total mass of the base material, respectively.
  • the foaming agent is composed of sulfate-type Gemini surfactant and sodium fatty alcohol polyoxyethylene ether carboxylate (Hengmei Technology Co., Ltd., foaming ratio 15) in a mass ratio of 1:1; the inorganic curing agent is alumino-silica gel ;
  • the organic curing agent consists of ethylene, vinyl chloride and vinyl laurate copolymers (Wacker Chemicals, Germany, ), isobutylene and maleic anhydride copolymer (Japan Kuraray Company, ISOBAM-04) and hydroxypropyl guar gum (Renqiu Tiancheng Chemical Co., Ltd.) according to the mass ratio of 5:5:1;
  • the agent is composed of hydroxybutyl methyl cellulose ether (Dow Chemical, USA
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 45-180 ⁇ m, and its aspect ratio is 40-132.
  • the mass percentage of alumina in the chemical composition of the product is 41-43%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, mineralizer, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the basic material used is composed of the following components by mass percentage: 100% aluminum-silicon raw material, the aluminum-silicon raw material is composed of kaolin (Al 2 O 3 The mass percentage content is 38-41%, and the mass percentage content of SiO 2 is 56-59%, with a particle size of 0.6-1mm) and Suzhou soil in a mass ratio of 6:4.
  • the dosage of dispersant and mineralizer in the additive is 0.06% and 8% of the total mass of the base material, respectively.
  • the dispersing agent is a polyethylene glycol type polycarboxylic acid dispersing agent (BASF, Germany) and a naphthalene-based high-efficiency dispersing agent (Hengmei Technology Co., Ltd.) in a mass ratio of 5:1;
  • the mineralizer is composed of AlF 3 , WO 3 , Y 2 O 3 and CeO 2 according to the mass ratio of 1:1:1:1.
  • AlF 3 , WO 3 , Y 2 O 3 , and CeO 2 are all industrial pure, and the particle size is less than or equal to 1 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.15%, 1.5%, 0.5% and 0.6% of the total mass of the base material, respectively.
  • the foaming agent is composed of sulfate-type Gemini surfactant and sodium dodecylbenzenesulfonate (foaming ratio 9) according to the mass ratio of 1:2;
  • the inorganic curing agent is alumino-silica gel;
  • the organic curing agent is composed of ethylene Copolymer with vinyl chloride (WACKER CHEMICALS, Germany, ), vinyl acetate with ethylene and vinyl chloride copolymers (WACKER CHEMICALS, Germany, ) and Kederan gum (Hengmei Technology Co., Ltd.) in a mass ratio of 5:4:1;
  • the cell regulator is composed of hydroxybutyl methyl cellulose ether (Dow Chemical), water-soluble cellulose ether and starch ether ( Hengmei Technology Co.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 36-127 ⁇ m, and its aspect ratio is 32-84.
  • the mass percentage of alumina in the chemical composition of the product is 46-48%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material and 90% aluminum siliceous raw material.
  • the alumina raw material is industrial alumina (the mass percentage of Al 2 O 3 is ⁇ 98%, the particle size is ⁇ 0.025mm);
  • the aluminum siliceous raw material is composed of andalusite and coal gangue (the mass percentage of Al 2 O 3 is 36% by mass). ⁇ 38%, the mass percentage of SiO 2 is 58 to 61%, and the particle size is 0.6 to 1 mm), kaolin (Al 2 O 3 mass percentage of 37 to 39%, SiO 2 The mass percentage of 56% ⁇ 59%, particle size is 0.6 ⁇ 1 mm) according to the mass ratio of 1:3:5.
  • the dosage of dispersant, suspending agent, mineralizer and infrared sunscreen agent in the additive is 0.06%, 3%, 7% and 2% of the total mass of the base material, respectively.
  • the dispersing agent is composed of polycarboxylic acid-based dispersing agent (BASF, Germany) and naphthalene-based high-efficiency dispersing agent (Hengmei Technology Co., Ltd.) in a mass ratio of 5:1; suspending agent is composed of casein, polyvinylpyrrolidone and cellulose nanocrystals according to The mass ratio of 1:1:1;
  • the mineralizer is composed of Fe 2 O 3 , WO 3 and SrO according to the mass ratio of 2: 2: 3;
  • the infrared sunscreen agent is composed of TiO 2 and Sb 2 O 5 according to the mass ratio of 3: 1 mass ratio composition.
  • Fe 2 O 3 , WO 3 , SrO, TiO 2 , and Sb 2 O 5 are all industrial pure, and the particle size is
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 10%, 5%, 0.8% and 0.5% of the total mass of the base material, respectively.
  • the foaming agent consists of polyether type Dendrimer surfactant (Hengmei Technology Co., Ltd., foaming ratio 45), vegetable protein foaming agent (Shandong Xinmao Chemical Co., Ltd., foaming ratio 9) and sludge protein foaming agent (Hengmei Technology Co., Ltd., foaming ratio 9) Technology company, foaming ratio 8) according to the mass ratio of 0.1:1.9:8;
  • inorganic curing agent is composed of silica gel and alumina gel according to the mass ratio of 2:3, silica gel and alumina gel All are industrial pure, particle size ⁇ 5 ⁇ m;
  • the organic curing agent is composed of vinyl acetate, ethylene and vinyl laurate (Wacker Chemicals, Germany, ) with acrylate polymers (American National Starch, Elo
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 24-77 ⁇ m, and its aspect ratio is 25-46.
  • the mass percentage of alumina in the chemical composition of the product is 52-55%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material and 90% aluminum siliceous raw material.
  • the alumina raw material is ⁇ -Al 2 O 3 (the mass percentage of Al 2 O 3 ⁇ 98%, the particle size is less than or equal to 0.025mm)
  • the aluminum siliceous raw material is andalusite (the mass percentage of Al 2 O 3
  • the content is 40 to 45%, the mass percentage of SiO 2 is 51 to 55%, and the particle size is 0.6 to 1 mm)
  • bauxite the mass percentage of Al 2 O 3 is 41 to 47%, and the mass of SiO 2 is 41 to 47%).
  • the percentage content is 49-54%, the particle size is 0.6-1mm), kaolin (the mass percentage of Al 2 O 3 is 56-58%, the mass percentage of SiO 2 is 35-37%, and the particle size is 0.6 ⁇ 1mm) according to the mass ratio of 1:3:5.
  • the additives used are composed of dispersant, suspending agent, mineralizer and infrared sunscreen agent, and the dosage of each component is 0.06%, 2%, 5% and 1% of the total mass of the base material, respectively.
  • the dispersing agent is composed of polycarboxylic acid-based dispersing agent (BASF, Germany) and melamine-formaldehyde polycondensate (Hengmei Technology Co., Ltd.) in a mass ratio of 5:1; suspending agent is composed of casein and microcrystalline cellulose in a mass ratio of 1:1
  • the mineralizer is composed of AlF 3 and SiF 4 according to the mass ratio of 3:2; the infrared sunscreen agent is composed of Sb 2 O 5 and Co(NO 3 ) 2 according to the mass ratio of 1:1.
  • AlF 3 , SiF 4 , Sb 2 O 5 , and Co(NO 3 ) 2 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 8.1%, 5%, 1% and 0.4% of the total mass of the base material, respectively.
  • the foaming agent is composed of double-chain Bola surfactant (Hengmei Technology Co., Ltd., foaming ratio 44) and vegetable protein foaming agent (Shandong Xinmao Chemical Co., Ltd., foaming ratio 9) according to the mass ratio of 0.1:8;
  • the inorganic curing agent is alumina gel, which is industrially pure, and the particle size is less than or equal to 5 ⁇ m; ) in a mass ratio of 1:1;
  • the cell regulator is composed of carboxymethyl hydroxybutyl cellulose ether (Dow Chemical, USA) and propyl cellulose ether (Ashilan, USA) in a mass ratio of 3:1 composition.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the morphology of mullite is needle-like and short-column, its length is 13-56 ⁇ m, and its aspect ratio is 12. ⁇ 33.
  • the mass percentage of alumina in the chemical composition of the product is 59-61%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the base material used is composed of the following components by mass percentage: 5% of alumina-based raw materials and 95% of aluminum-silicon raw materials.
  • the alumina raw material is sintered corundum powder
  • the aluminum siliceous raw material is composed of aluminum-silicon homogeneous material (the mass percentage of Al 2 O 3 is 85-90%, the mass percentage of SiO 2 is 8-10%, The particle size is 0.6-1mm), andalusite (the mass percentage of Al 2 O 3 is 48-51%, the mass percentage of SiO 2 is 44-47%, and the particle size is 0.6-1 mm), kaolin (Al The mass percentage of 2 O 3 is 56-58%, the mass percentage of SiO 2 is 36-39%, and the particle size is 0.6-1 mm) according to the mass ratio of 1:3:5.5.
  • the additives used are composed of dispersant, suspending agent, mineralizer and infrared sunscreen agent, and the dosage of each component is 1%, 1%, 3% and 1.5% of the total mass of the base material, respectively.
  • the dispersant is composed of a polycarboxylic acid-based dispersant (BASF, Germany) and a sulfonated melamine polycondensate (Hengmei Technology Co., Ltd.) in a mass ratio of 5:5;
  • the suspending agent is polyaluminum sulfate;
  • the mineralizer is composed of AlF 3 , YbO is composed according to the mass ratio of 2:1;
  • the infrared sunscreen agent is composed of TiO 2 and K 2 Ti 6 O 13 according to the mass ratio of 2:1.
  • the polymers Al(SO 4 ) 2 , AlF 3 , YbO, TiO 2 , and K 2 Ti 6 O 13 are all industrially pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 5.1%, 5%, 0.5% and 0.3% of the total mass of the base material, respectively.
  • the foaming agent is composed of sulfate-type Gemini surfactant and animal protein foaming agent (Hengmei Technology, foaming ratio 11) in a mass ratio of 1:50;
  • the inorganic curing agent is alumina gel, which is industrial pure, granular Diameter ⁇ 5 ⁇ m;
  • the organic curing agent is vinyl acetate, ethylene and acrylate copolymer (WACKER CHEMICALS, Germany, );
  • the cell regulator is hydroxyethyl ethyl cellulose ether (Netherlands AkzoNobel).
  • the mullite micro-nano-porous insulating and heat-insulating refractory material of this embodiment has a main crystal phase of mullite and a small amount of corundum phase.
  • the aspect ratio is 7.5 to 10.8.
  • the mass percentage of alumina in the chemical composition of the product is 64-66%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, suspending agent, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 10% alumina raw material and 90% aluminum siliceous raw material.
  • the alumina raw material is sintered corundum powder
  • the aluminum siliceous raw material is composed of andalusite (the mass percentage of Al 2 O 3 is 40-45%, the mass percentage of SiO 2 is 52-57%, and the particle size is 0.6-1mm)
  • sintered mullite the mass percentage of Al 2 O 3 is 68-70%, the mass percentage of SiO 2 is 29-31%, the particle size is less than or equal to 0.08mm
  • kaolin Al 2 O 3
  • the mass percentage of SiO 2 is 56-58%, the mass percentage of SiO 2 is 33-39%, and the particle size is 0.6-1 mm) according to the mass ratio of 1:4:4.
  • the dosage of dispersant, suspending agent, mineralizer and infrared sunscreen agent in the additive is 0.05%, 0.1%, 2% and 2% of the total mass of the base material, respectively.
  • the dispersant is a polycarboxylic acid-based dispersant (BASF, Germany); the suspending agent is polyaluminum chloride; the mineralizer is composed of AlF 3 and YbO in a mass ratio of 3:1; the infrared sunscreen agent is composed of TiO 2 , K 2 Ti 6 O 13 is composed in a mass ratio of 1:1.
  • the polymers AlCl 3 , AlF 3 , YbO, TiO 2 , K 2 Ti 6 O 13 are all industrially pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.1%, 1%, 0.8% and 0.1% of the total mass of the base material, respectively.
  • the foaming agent is composed of quaternary ammonium type Gemini surfactant and sodium dodecylbenzene sulfonate (foaming ratio 9) according to the mass ratio of 1:1;
  • the inorganic curing agent is alumina gel;
  • the organic curing agent is vinyl acetate It is composed of ethylene tertiary carbonate and acrylate copolymer (Japan Synthetic Chemical Industry Co., Ltd., Mowinyl-DM2072P) and gellan gum (Jiangsu Gubei Technology Co., Ltd.) in a mass ratio of 1:2;
  • the cell regulator is hydroxybutyl methyl Cellulose ether (The Dow Chemical Company, USA).
  • the mullite micro-nano-porous insulating and thermal insulating refractory material of this embodiment has a main crystal phase of mullite and a small amount of corundum phase.
  • the diameter ratio is 3-7.25, and the mass percentage of alumina in the chemical composition of the product is 67.7-70.5%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersant, mineralizer, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the base material used is composed of the following components by mass percentage: 20% of alumina-based raw materials and 80% of aluminum-silicon-based raw materials.
  • the alumina raw material is composed of ⁇ -Al 2 O 3 (the mass percentage of Al 2 O 3 ⁇ 99%, particle size ⁇ 5 ⁇ m), and fused corundum powder in a mass ratio of 1:1;
  • the raw materials are sillimanite, fused mullite (Al 2 O 3 mass percentage of 68-72%, SiO 2 mass percentage of 24-28%, particle size ⁇ 0.08mm), kaolin (Al 2
  • the mass percentage content of O 3 is 56-58%, the mass percentage content of SiO 2 is 37-40%, and the particle size is 0.6-1mm) mixed according to the mass ratio of 3:4:1;
  • the dosage of dispersant, mineralizer and infrared sunscreen agent in the additive is 1%, 0.01% and 2% of the total mass of the base material, respectively.
  • the dispersant is composed of melamine formaldehyde polycondensate (Hengmei Technology Co., Ltd.) and sodium lignosulfonate in a mass ratio of 1:1;
  • the mineralizer is composed of Y 2 O 3 and BaO in a mass ratio of 1: 1; infrared shading
  • the agent is ZrSiO 4 .
  • Y 2 O 3 , BaO and ZrSiO 4 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.01%, 0.1%, 1% and 0.01% of the total mass of the base material, respectively.
  • the foaming agent is a polyamide-type Dendrimer surfactant (Hengmei Technology Co., Ltd., with a foaming ratio of 55); the inorganic curing agent is silica-alumina gel; the organic curing agent is konjac gum powder (Shanghai Beilian Technology Co., Ltd.) and alginic acid.
  • Sodium (Jiangsu Gubei Technology Co., Ltd.) is composed of 1:1 mass ratio; cell regulator is composed of starch ether (Hengmei Technology Co., Ltd.) and propyl cellulose ether (US Asialand Co., Ltd.) in a mass ratio of 1:1 composition.
  • the mullite micro-nanoporous insulating and thermal insulating refractory material in this embodiment has a main crystal phase of mullite and a small amount of corundum phase.
  • the aspect ratio is 3-5.9, and the mass percentage of alumina in the chemical composition of the product is 68.2-71%.
  • Products are mainly made of base materials, additives and water.
  • the base material used is composed of the following components by mass percentage: 72% of alumina raw materials and 28% of siliceous raw materials.
  • the alumina raw material is composed of ⁇ -Al 2 O 3 (the mass percentage of Al 2 O 3 ⁇ 99%, particle size ⁇ 5 ⁇ m) and fused corundum powder in a mass ratio of 1:1;
  • the siliceous raw materials are composed of ⁇ -quartz, ⁇ -quartz, ⁇ -tridymite, ⁇ -tridymite, ⁇ -cristobalite, ⁇ -cristobalite, vein quartz (the mass percentage of SiO2 in the chemical composition of each siliceous raw material) Content ⁇ 99%, particle size is 0.6 ⁇ 1mm) is mixed according to the mass ratio of 1:1:1:1:1:1:1.
  • the composition and specific dosage of the additives are basically the same as those in Example 14, except that the inorganic curing agent is composed of ⁇ -Al 2 O 3 micropowder and SiO 2 micropowder in a mass ratio of 1:1.
  • the mass percentage of ⁇ -Al 2 O 3 in the ⁇ -Al 2 O 3 micropowder is ⁇ 99%, and the particle size is ⁇ 5 ⁇ m; the mass percentage of SiO 2 in the SiO 2 micropowder is ⁇ 95.0%, and the particle size is ⁇ 5 ⁇ m.
  • the mullite micro-nanoporous insulating and thermal insulating refractory material in this embodiment has a main crystal phase of mullite, a needle-like morphology, a length of 13-25 ⁇ m, and an aspect ratio of 21-37.
  • the mass percentage of alumina in the chemical composition of the product is 53-56%.
  • the product is made of base material, additive and water, wherein the additive is composed of dispersing agent, suspending agent, infrared shading agent, foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the base material used is aluminum-silicon raw material, and the aluminum-silicon raw material is sillimanite.
  • the additives in the additive material are composed of dispersing agent, suspending agent and infrared light shielding agent, and the dosage of each component is 0.06%, 2% and 1% of the total mass of the base material, respectively.
  • the dispersing agent is composed of polycarboxylic acid-based dispersing agent (BASF, Germany) and melamine-formaldehyde polycondensate (Hengmei Technology Co., Ltd.) in a mass ratio of 5:1; suspending agent is composed of casein and microcrystalline cellulose in a mass ratio of 1:1
  • the infrared sunscreen agent is composed of Sb 2 O 5 and Co(NO 3 ) 2 according to the mass ratio of 1:1. Among them, Sb 2 O 5 and Co(NO 3 ) 2 are all industrial pure, and the particle size is less than or equal to 5 ⁇ m.
  • foaming agent inorganic curing agent, organic curing agent and cell regulator in the additive are the same as those in Example 11.
  • the mullite micro-nano-porous insulating and thermal insulating refractory material in this embodiment has a main crystal phase of mullite, a needle-like morphology, a length of 5-16 ⁇ m, and an aspect ratio of 17-20.
  • the mass percentage of alumina in the chemical composition of the product is 25-28%.
  • the product is made of base material, additive and water, wherein the additive is composed of foaming agent, inorganic curing agent, organic curing agent and cell regulator.
  • the used base material is composed of the following components by mass percentage: 90% of alumino-siliceous raw materials and 10% of siliceous raw materials.
  • the aluminum-silicon raw material is made of wood knot soil (in its chemical composition, the mass percentage of Al 2 O 3 is 12-13%, the mass percentage of SiO 2 is 68-74%, and the mass percentage of K 2 O is 2 ⁇ 3%, Na 2 O mass percentage content is 4 ⁇ 6%, particle size is 0.6 ⁇ 1mm), float beads and fly ash are mixed according to the mass ratio of 4:3:2; the siliceous raw material is diatomite.
  • the amounts of foaming agent, inorganic curing agent, organic curing agent and cell regulator in the additive are 0.6%, 5.1%, 2% and 0.05% of the total mass of the base material, respectively.
  • the foaming agent is composed of quaternary ammonium type Gemini surfactant and semi-cyclic Bola surfactant in a mass ratio of 2:1;
  • the inorganic curing agent is silica sol (the percentage of SiO2 in the silica sol is 30%) ;
  • the organic curing agent consists of ethylene and vinyl acetate copolymers and dispersion latex (WACKER CHEMICALS, Germany, ) is mixed in a mass ratio of 1:1;
  • the cell regulator is made of carboxymethyl methyl cellulose ether and hydroxypropyl hydroxybutyl cellulose ether (Dow Chemical, USA) in a mass ratio of 3:2. to make.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 13-27 ⁇ m, and its aspect ratio is 24-38.
  • the mass percentage of alumina in the chemical composition of the product is 34-36%.
  • the types and proportions of the raw materials used in the preparation of the product are basically the same as those in Example 5, the only difference being that no organic curing agent is used in the technical solution of this example.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 1, which specifically includes the following steps:
  • the dry porous body is loaded into the shuttle kiln and fired, and the specific firing process is as follows: from room temperature to 500°C at a heating rate of 1°C/min, then to 1000°C at 5°C/min, keeping the temperature 1.5h, then heat up to 1200°C at 1°C/min, hold for 10h, then cool down to 1100°C at 10°C/min and hold for 1.5h, then cool down to 500°C at 5°C/min and hold for 0.5h, and finally at 1 °C/min is cooled to 50 °C to obtain mullite micro-nano-porous insulating refractory material.
  • This embodiment is the preparation method of the mullite micro-nanoporous insulating and thermal insulating refractory material in the embodiment 2.
  • the specific process is basically similar to the process of the embodiment 19, and the difference is only that: in step (1), 0.25 tons of oxidizing The aluminum raw material, 0.05 tons of aluminum-silicon raw material and 0.7 tons of siliceous raw material are poured into a forced mixer for dry mixing for 15 minutes to obtain the base material; 0.1 kg of dispersant is contained in the step (2); the amount of water added in the step (3) is 2.5 tons; in step (5), the stirring paddle is rapidly mixed for 1 min at a linear speed of 80 m/s to obtain a uniform foam slurry.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 3, comprising the following steps:
  • the dry porous body is loaded into a high-temperature tunnel kiln and fired, and the specific firing process is as follows: from room temperature to 500°C at a heating rate of 2°C/min, then to 1000°C at 8°C/min, keeping the temperature 1h, then heat up to 1250-1260°C at 3°C/min, hold for 3h, then cool down to 1100°C at 10°C/min and hold for 1h, then cool down to 500°C at 6°C/min and hold for 0.5h, and finally at 2 °C/min is cooled to 50 °C to obtain mullite micro-nano-porous insulating refractory material.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 4, comprising the following steps:
  • the dry porous body is loaded into a high-temperature tunnel kiln and fired, and the specific firing process is as follows: from room temperature to 500°C at a heating rate of 3°C/min, and then to 1000°C at 8°C/min, keeping the temperature 1h, then heat up to 1250-1260°C at 3°C/min, hold for 3h, then cool down to 1100°C at 10°C/min and hold for 1h, then cool down to 500°C at 6°C/min and hold for 0.5h, and finally at 2 °C/min is cooled to 50 °C to obtain mullite micro-nano-porous insulating refractory material.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 5, comprising the following steps:
  • the foam slurry is injected into the stainless steel mold, cured for 1.2h in an environment with an air temperature and humidity of 25°C and 80%, respectively, to solidify it, and then demoulded to obtain a green body;
  • the dry porous body is loaded into a high-temperature tunnel kiln and fired, and the specific firing process is as follows: from room temperature to 500°C at a heating rate of 3°C/min, and then to 1000°C at 8°C/min, keeping the temperature 1h, then heat up to 1250-1260°C at 3°C/min, hold for 3h, then cool down to 1100°C at 10°C/min and hold for 1h, then cool down to 500°C at 6°C/min and hold for 0.5h, and finally at 2 °C/min is cooled to 50 °C to obtain mullite micro-nano-porous insulating refractory material.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and thermal insulating refractory material in the embodiment 6, comprising the following steps:
  • the foam slurry is injected into the stainless steel mold, cured for 1 hour in an environment with an air temperature and humidity of 25° C. and 85%, respectively, to cure it, and then demolded to obtain a green body;
  • freeze-drying temperature is -85°C
  • freeze-drying time is 12h, to obtain a dry porous green body
  • the moisture content of the dry porous green body is ⁇ 3wt%
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and thermal insulating refractory material in the embodiment 7, comprising the following steps:
  • the moisture in the green body is removed by freeze-drying method, the drying temperature is -85°C, and the drying is performed for 12 hours to obtain a dry porous green body; the moisture content of the dry porous green body is ⁇ 3wt%, and the compressive strength ⁇ 0.9MPa;
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and thermal insulating refractory material in the embodiment 8, comprising the following steps:
  • the foam slurry is injected into the aluminum alloy mold, cured for 0.7 h in an environment with an air temperature and humidity of 25°C and 92%, respectively, and then demolded to obtain a green body;
  • the moisture in the green body is removed by microwave drying method, the microwave frequency is 915MHz, and the microwave drying time is 2h to obtain a dry porous green body; the moisture content of the dried porous green body is ⁇ 3wt%, and the compressive strength is ⁇ 1.1MPa;
  • the dry porous body is loaded into a high-temperature tunnel kiln and fired, and the specific firing process is as follows: from room temperature to 500°C at a heating rate of 2°C/min, then to 1000°C at 8°C/min, keeping the temperature 1h, then heat up to 1280-1310°C at 3°C/min, hold for 3h, then cool down to 1100°C at 10°C/min and hold for 1h, then cool down to 500°C at 6°C/min and hold for 0.5h, and finally at 2 °C/min is cooled to 50 °C to obtain mullite micro-nano-porous insulating refractory material.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 9, comprising the following steps:
  • the moisture in the green body is removed by microwave drying method, the microwave frequency is 2450MHz, and the microwave drying time is 1h, to obtain a dry porous green body; the moisture content of the dried porous green body is ⁇ 3wt%, and the compressive strength ⁇ 1.0MPa;
  • the dry porous body is loaded into a microwave kiln and fired, and the specific firing process is as follows: from room temperature to 500°C at a heating rate of 5°C/min, then to 1000°C at 30°C/min, keeping the temperature 0.5h, then heat up to 1280-1310°C at 30°C/min, hold for 1h, then cool down to 1100°C at 20°C/min and hold for 0.5h, then cool down to 500°C at 30°C/min and hold for 0.5h, finally The temperature is lowered to 50°C at a rate of 10°C/min to obtain a mullite micro-nanoporous insulating refractory material.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and thermal insulating refractory material in the embodiment 10, comprising the following steps:
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 11, comprising the following steps:
  • the foam slurry is injected into the rubber mold, cured for 0.7h in an environment with an air temperature and humidity of 25°C and 95%, respectively, and then demolded to obtain a green body;
  • the specific conditions are: the control pressure of carbon dioxide is 9MPa, the control temperature is 42 °C, the supercritical drying time is 24h, and the dry porous blank is obtained. body; the moisture content of the dry porous body is less than or equal to 3wt%, and the compressive strength is greater than or equal to 1.2MPa;
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 12, comprising the following steps:
  • the foam slurry is injected into the foam mold, cured for 0.6h in an environment with an air temperature and humidity of 27°C and 97% respectively, and then demolded to obtain a green body;
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and thermal insulating refractory material in the embodiment 13, comprising the following steps:
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 14, comprising the following steps:
  • the specific conditions are: the infrared wavelength is selected from 2.5 to 30 ⁇ m, the drying time is 1 h, and the dried porous green body is obtained. Strength ⁇ 1.2MPa;
  • This example is the preparation method of the mullite micro-nanoporous insulating and thermal insulation refractory material of Example 15, and the process is basically similar to that of Example 31, the difference is only that: in step (1), 0.72 tons of alumina raw material , 0.28 tons of siliceous raw materials are poured into the forced mixer and dry-mixed for 15min to obtain base material; In the step (4), the inorganic curing agent used is 25kg of ⁇ - Al 2 O Micropowder and 25kg SiO Micropowder; In step ( 5 ) The linear velocity of the stirring paddle was 20 m/s.
  • the present embodiment is the preparation method of the mullite micro-nano-porous insulating and insulating refractory material in the embodiment 16, comprising the following steps:
  • the foaming composition will be added to the mixer, and then the stirring paddle is rapidly mixed for 3min at a linear speed of 65m/s to obtain a uniform foam slurry;
  • the foam slurry is injected into the rubber mold, cured for 0.7h in an environment with an air temperature and humidity of 25°C and 95%, respectively, to cure it, and then demoulded to obtain a green body;
  • the present embodiment is the preparation method of mullite micro-nano-porous insulating and insulating refractory material in embodiment 17, and specifically comprises the following steps:
  • the foam slurry is injected into the rubber mold, cured for 1 h in an environment with an air temperature and humidity of 25° C. and 95%, respectively, and then demolded to obtain a green body;
  • This example is the preparation method of the mullite micro-nanoporous insulating and thermal insulation refractory material in Example 18.
  • the preparation process is basically the same as that of Example 23, except that it is in an environment where the air temperature and humidity are 25°C and 80% respectively. It can be cured and demolded only after 24 hours of medium curing, and when the green body is dried by supercritical, the drying time is 7 hours, the drying time is greatly prolonged, and the compressive strength of the green body after drying is only 0.3MPa.
  • the main crystalline phase of the mullite micro-nano-porous insulating refractory material in this embodiment is mullite, the mullite morphology is needle-like, its length is 35-81 ⁇ m, and its aspect ratio is 36-72.
  • the mass percentage of alumina in the chemical composition of the product is 44-46%.
  • (2) 0.6kg of polyamide type polycarboxylic acid dispersant (BASF, Germany) and 25kg of suspending agent are made of bentonite (Al 2 O 3 with a mass percentage content of 25 to 27%, and SiO 2 with a mass percentage content of 68 ⁇ 71%, particle size ⁇ 0.045mm), 40kgAlF 3 , 40kg MnO 2 , 10kgY 2 O 3 and 10kg CeO 2 , 30kgK 4 TiO 4 were poured into a planetary mixer and dry mixed for 5 minutes to obtain the additive combination;
  • the foam slurry is injected into the aluminum alloy mold, cured for 1 hour in an environment with an air temperature and humidity of 25° C. and 92%, respectively, to cure it, and demolded to obtain a green body;
  • Example 26 Drying and firing of the green body are the same as in Example 26, to obtain a mullite micro-nano-porous insulating and insulating refractory material. After drying, the compressive strength of the green body is ⁇ 0.75MPa;
  • AlF 3 , MnO 2 , Y 2 O 3 , CeO 2 , K 4 TiO 4 are all industrially pure, and the particle size is less than or equal to 5 ⁇ m.
  • FIG. 1 The macro photo of the mullite micro-nano-porous insulating and insulating refractory material of Example 1 is shown in Figure 1. It can be seen that the refractory brick is white as a whole, and no obvious variegation appears during the firing process.
  • the microstructure of the mullite micro-nanoporous insulating and thermal insulating refractory material of Example 1 is shown in Figures 2 and 3. It can be seen from Figure 2 that the material contains a large number of micron-sized spherical pores, which is further combined with Figure 3 It can be seen that a large number of acicular mullite crystals grow on the stomata walls of the spherical pores, the lengths of which are 37-45 ⁇ m and the aspect ratios are 37-62.
  • Example 3 The microstructure of the mullite micro-nanoporous insulating and thermal insulating refractory material of Example 3 is shown in FIG.
  • FIG. 5 The microstructure of the mullite micro-nanoporous insulating and thermal insulating refractory material of Example 13 is shown in FIG. 5 , which mainly forms columnar mullite crystals.
  • Example 14 The microstructure of the mullite micro-nanoporous insulating and thermal insulating refractory material of Example 14 is shown in FIG. 6 , which exhibits a columnar morphology similar to that of the refractory material of Example 13.
  • X-ray diffraction (XRD) analysis was performed on the mullite micro-nanoporous insulating and thermal insulating refractory material of Example 1, and the results are shown in FIG. 7 .
  • the main crystal phase of the material is the mullite phase.
  • the mullite micro-nano-porous insulating and insulating refractory materials in Examples 1 to 18 and 37 were subjected to pore structure test, and the average pore size and pore size distribution of the samples were measured by mercury intrusion method.
  • the pore size distribution diagram is shown in Figure 8; GB/T2998-2001 is used to test the total porosity of the material, and the closed porosity of the GB/T2997-2000 test style is used.
  • the test results are shown in Table 1.
  • Example 1 6.2 93 ⁇ 95 63 ⁇ 69
  • Example 2 19 88 ⁇ 91 52 ⁇ 57
  • Example 3 12.3 87 ⁇ 92 58 ⁇ 63
  • Example 4 7.6 86 ⁇ 91 55 ⁇ 58
  • Example 5 6.5 83 ⁇ 89 50 ⁇ 52
  • Example 6 5.7 82 ⁇ 88 45 ⁇ 49
  • Example 7 1.1 80.3 ⁇ 85 44 ⁇ 47
  • Example 8 0.1 79.8 ⁇ 83.2 40 ⁇ 43.2
  • Example 9 1.8 78.6 ⁇ 81.1 39 ⁇ 42.2
  • Example 10 2.4 76.2 ⁇ 79.5 38 ⁇ 41.2
  • Example 11 72. ⁇ 75.4 37 ⁇ 40.4
  • Example 12 4.4 65 ⁇ 69 36.6 ⁇ 39
  • Example 13 6.7 58.6 ⁇ 65.3 36.2 ⁇ 38.7
  • Example 14 9.5 50.3 ⁇ 55.2 35.5 ⁇ 37.6
  • Example 15 14.5 45 ⁇ 49.6 35 ⁇ 37.2
  • Example 16 8.2 71.4 ⁇ 73.7 33.8 ⁇ 35.3
  • Example 17 19.0 88.5 ⁇ 90.4 42 ⁇ 43
  • Example 18 46.2 81
  • the performance test of the mullite micro-nano-porous insulating and insulating refractory materials in Examples 1-18 and 37 is carried out, and the specific test method is as follows: according to the Chinese national standard GB/T2998-2001, the bulk density of the pattern is tested; The strength is tested according to GB/T 3997.2-1998; the rate of change of reburning line is tested according to GB/T 3997.1-1998; the thermal conductivity is tested according to YB/T4130-2005 by the plate heat conduction method. The test results are shown in Table 2.
  • the mullite micro-nano-porous insulating and thermal insulating refractory material of the present invention has the advantages of better micro-nano pore size, ultra-low thermal conductivity and high strength.
  • the material of the grinding ball has a great difference in the grinding efficiency of the base material. Under the condition of achieving the same ball milling effect, the higher the hardness and density of the grinding ball, the shorter the grinding time and the higher the grinding efficiency. Comparing Examples 25 and 28, and 29-30, it can be seen that the particle size of the base material can be effectively refined by appropriately prolonging the time of ball milling. Comparing Examples 5 and 18, and 23 and 36, it can be seen that when the organic curing agent is not added, the required curing time of the green body is greatly extended, and the demoulding can be realized, and the strength of the green body after drying is greatly reduced. The pore diameter of the samples increased significantly, the density and thermal conductivity increased, and the total porosity, closed porosity and strength decreased significantly.
  • the present invention can realize controllable and adjustable in terms of pore structure, mechanics and thermal insulation performance by regulating the amount of each raw material and process, and through the construction of micro-nano size pore structure in the mullite insulating and thermal refractory material. , which can show more excellent mechanical and thermal insulation performance under the condition that the porosity and bulk density of the material are similar to the existing technology, and have better practical significance in practical engineering and technical applications, making it very suitable for Hot surface lining, backing, filling, sealing and thermal insulation materials for industrial furnaces used in metallurgy, petrochemical, building materials, ceramics, machinery and other industries.

Abstract

一种莫来石质微纳孔绝隔热耐火材料及其制备方法,该绝隔热耐火材料主要由基础料、添加料和水制成,制备过程绿色环保无污染,简单易控。该绝隔热耐火材料的主晶相为大尺寸的针、柱状莫来石。制品外观呈白色或淡黄色,气孔孔径分布在0.006~200μm间,平均孔径0.1~19μm,封闭的球状微纳米尺寸气孔结构保证了制品在较低体积密度、高强度下较佳的绝隔热性能。通过调控各原料用量及工艺,可使最终制得的绝隔热耐火材料既满足了低导热和轻量化的需求,还具有较佳的力学性能。

Description

一种莫来石质微纳孔绝隔热耐火材料及其制备方法 技术领域
本发明属于耐火材料技术领域,具体涉及一种莫来石质微纳孔绝隔热耐火材料及其制备方法,特别是涉及一种具有微纳米尺寸孔径、鸟巢状气孔结构、超低导热、高强度并绿色可控制备的莫来石质微纳孔绝隔热耐火材料。
背景技术
高温工业是我国工业生产中的主要耗能产业,各类窑炉的热能利用率低是其能耗大的主要原因,若能按国家要求将平均热效率提高20%,可节约能源相当于2.2亿吨标煤,可见我国高温工业节能潜力巨大。要提高工业窑炉的热效率,最重要的就是发展高效保温技术,采用先进隔热材料,加强窑体保温效果,减少散热损失。
目前,我国隔热材料虽在不断改进和完善,但仍然无法满足高温工业愈来愈苛刻的隔热环境与要求。现在窑炉用保温材料多采用耐火纤维制品或轻质隔热砖。
耐火纤维制品的隔热性能虽然较好,但其对烧成气氛较敏感,易与还原性和腐蚀性气体反应,使其失去良好的隔热性能;且其在高温环境中长期服役,组成颗粒易析晶并且晶粒长大,引起应力集中,导致隔热层的粉化,缩短使用寿命;此外,陶瓷纤维还危害人体健康,欧盟已将其列为二级致癌物。
传统的轻质隔热砖虽可克服耐火纤维制品的上述缺陷,但其多通过添加大量造孔剂(如聚苯乙烯颗粒、锯木屑、木炭、无烟煤、焦炭粉等)的方法制得,这些造孔剂在坯体中占据一定空间,经烧成后,造孔剂离开基体原来位置而形成气孔,从而获得轻质隔热耐火材料,方法简单易控,且生产效率较高,但此法所制制品的气孔率不高、气孔孔径较大、隔热效果较差且易产生应力集中而开裂,使强度较低。另外,其制备过程中采用的造孔剂多为有机烧失物,使原料成本较高,且其烧成时放出大量有毒有害气体,如煤粉、锯木屑及焦炭粉等在较低温度下便可产生大量硫氧化物,聚苯乙烯塑料颗粒则产生苯乙烯、甲苯及氮/碳/氧化物及二噁英等,同时还会产生大量的VOCs微细颗粒物,严重污染环境,危害人体健康及周边农作物的生长。近年来,随着我国环保管控力度的不断加强,不少企业已经减产或停工。因此,迫切需要研究开发隔热性、耐久性和力学性能俱佳且绿色制备的高温工业用新型绝隔热耐火材料。
本课题组在前期已就轻质隔热耐火材料进行了大量应用研究,并形成了微孔蓝晶石基轻质隔热耐火材料(CN103951452A)、微孔轻质硅砖(CN105565850A)等研究成果。莫来 石是A1 2O 3-SiO 2二元系统常压下唯一稳定存在化合物,化学分子式为3A1 2O 3·2SiO 2,理论A1 2O 3含量为71.8%,熔点高达1870℃,具有热膨胀系数和导热系数低(分别为5.3×10 -6/℃、5.46W/m·K)、使用温度和强度高(分别为1700℃、400~600MPa)等优良性能,使莫来石质耐火材料应用非常广泛。在保证强度的前提下,如何进一步有效降低莫来石质耐火材料的体积密度和热导率,对构建轻型环保型窑炉则具有十分重要的意义。
发明内容
本发明的目的在于提供一种莫来石质微纳孔绝隔热耐火材料,该耐火材料具有微纳米尺寸孔径、鸟巢状气孔结构、低体积密度、高气孔率、超低热导率和高强度等特点,可在保证强度满足需求的情况下,有效降低热导率和体积密度,从而利于环保轻型窑炉构建。
本发明的目的还在于提供一种上述莫来石质微纳孔绝隔热耐火材料的制备方法,该制备方法绿色无污染且容易精确控制,制品的结构和性能容易精确控制,且成品率较高,并可解决现有的制备方法所得的隔热耐火材料不能兼顾材料超低导热、高强度、高成品率且制备过程绿色无污染的问题。
为实现上述目的,本发明的莫来石质微纳孔绝隔热耐火材料采用的技术方案为:
一种莫来石质微纳孔绝隔热耐火材料,所述莫来石质微纳孔绝隔热耐火材料由基础料、添加料和水制成;制品化学组成中Al 2O 3的质量百分含量为25~72%,或者为35~71.8%,或者为40~70%,或者为45~68%,或者为55~65%,或者为58~63%;
所述基础料由以下质量分数的组分组成:铝硅质原料0~100%,氧化铝质原料0~72%,二氧化硅质原料0~70%;
所述添加料至少包括发泡料,使用或不使用添加剂;所述发泡料由发泡剂、无机固化剂、有机固化剂和泡孔调节剂组成,以基础料的质量为基准,发泡剂、无机固化剂、有机固化剂、泡孔调节剂的添加量分别为0.01~10%、0.1~20%、0.1~2%、0.01~1%;使用添加剂时,所述添加剂选自分散剂、悬浮剂、矿化剂、红外遮光剂中的一种或两种以上组合,以基础料的质量为基准,矿化剂的添加量不大于10%,红外遮光剂的添加量不大于10%;
所述水的质量为基础料质量的30~300%。
本发明通过调控基础料的组分及用量,使制品中的主晶相为针状或柱状的莫来石,并含有少量的石英、刚玉或玻璃相;莫来石晶体生长在气孔的气孔壁上并相互交织穿插形成具有三维网络状的骨架结构,起到自增韧作用,提高了材料的力学强度;同时莫来石晶体的尺寸以及长径比较大(长度为5~200μm,长径比≧5),在生长过程中会填充在气孔中使得气孔孔径降至微纳米级,有效抑制了自由气体分子的对流传热,且莫来石晶体间多是无烧结的点 接触,使材料的热传导作用较弱,构成了巨大热阻,从而进一步有效降低了材料的热导率。
所述莫来石质微纳孔绝隔热耐火材料的平均孔径为0.1~19μm,体积密度为0.25~1.5g/cm 3,总气孔率为45~95%,闭口气孔率为35~70%,常温下耐压强度为1~160MPa;室温下的热导率为0.027~0.15W/(m·K),350℃时的热导率为0.03~0.19W/(m·K),1100℃时的热导率为0.05~0.28W/(m·K)。较小的气孔孔径、较高的气孔率有效降低了材料的体积密度以及热导率。闭口型气孔的形成可在提高隔热保温效果的同时增大荷载能力。该莫来石质微纳孔绝隔热耐火材料能够在1650℃的高温环境下安全使用。与现有制品相比,在同等体积密度下,热导率更低,耐压强度更高。
可以通过调控各原料用量及工艺使得最终制得的耐火材料,既满足低导热和轻量的需求,还保证了较高的强度。与现有技术相比,本发明提供的莫来石质微纳孔绝隔热耐火材料具有体积密度低、导热系数小、强度高等特点,是隔热性能最好的莫来石质定型隔热耐火制品,综合性能比较优良,可用于冶金、石化、建材、陶瓷、机械等行业用工业窑炉的热面衬里、背衬及填充密封与隔热材料,还可用于车辆、军工及航空航天等领域。又由于其导热系数极低,可在达到环境温度要求的情况下,大大减薄窑炉炉壁的厚度,从而大大减轻窑炉的重量,加快窑炉升温速度,有利新型轻质环保窑炉的构筑。
通过调控所用铝硅质原料中氧化铝及二氧化硅的含量,优化生成的莫来石主晶相,优选的,所述铝硅质原料的化学组成中Al 2O 3的质量百分含量为18~90%,SiO 2的质量百分含量为8~75%。进一步优选的,所述铝硅质原料中Al 2O 3的质量百分含量为32~72%,SiO 2的质量百分含量为25~64%。更进一步优选的,所述铝硅质原料中Al 2O 3的质量百分含量为38~50%,SiO 2的质量百分含量为45~58%。
本发明的所用铝硅质原料均为现有的天然原料或人工合成原料,优选的,所用铝硅质原料为烧结莫来石、电熔莫来石、高岭土、铝矾土、均质料、煤矸石、蓝晶石、红柱石、硅线石、叶蜡石、钾长石、钠长石、钙长石、钡长石、瓷石、碱石、云母、锂辉石、珍珠岩、蒙脱石、伊利石、埃洛石、迪开石、焦宝石、黏土、广西白土、苏州土、木节土、漂珠中的一种或多种。进一步优选的,所述铝硅质原料为烧结莫来石、电熔莫来石、高岭土、铝矾土、煤矸石、蓝晶石、红柱石、硅线石、钾长石中的至少两种。
优选的,所述铝硅质原料的颗粒粒径小于1mm。进一步优选的,所述铝硅质原料的颗粒粒径为0.6~1mm。后期经球磨后获得具有较高表面活性的陶瓷粉体颗粒。
基础料中引入适当的氧化铝质原料可有效补充制品中的氧化铝含量,高温下提高莫来石的生成量。优选的,所用氧化铝质原料为氧化铝原料或高温下可分解生成Al 2O 3的原料, 氧化铝原料中Al 2O 3的质量百分含量为65~99.9%,优选高于85%。进一步优选的,其中Al 2O 3的质量百分含量为95~99.9%。更优选的,其中Al 2O 3的质量百分含量为98~99%。
上述氧化铝原料具体为工业氧化铝、工业Al(OH) 3、β-Al 2O 3、γ-Al 2O 3、δ-Al 2O 3、χ-Al 2O 3、κ-Al 2O 3、ρ-Al 2O 3、θ-Al 2O 3、η-Al 2O 3、α-Al 2O 3、电熔刚玉粉、烧结刚玉粉、板状刚玉粉中的一种或多种。优选的,为工业氧化铝、γ-Al 2O 3、α-Al 2O 3、烧结刚玉粉中的至少一种。
基础料中所用的氧化铝质原料还可以为高温下能够分解生成氧化铝的原料,对于能分解生成Al 2O 3的原料,其化学组成中Al 2O 3的质量百分含量≧65%。进一步优选的,其化学组成中Al 2O 3的质量百分含量为65~87%。上述高温下能够分解生成氧化铝的原料具体为氢氧化铝、勃姆石、水铝石、正丁醇铝、异丙醇铝、仲丁醇铝、六水合氯化铝、九水合硝酸铝中的一种或多种。优选的,为氢氧化铝。
所述氧化铝质原料的颗粒粒径低于0.08mm。此粒度下的氧化铝质原料具有较高表面活性,在高温下易与周围的富二氧化硅液相反应生成针状的二次莫来石。
基础料中适当引入合适的二氧化硅质原料可有效补充制品中的二氧化硅含量,高温下调节莫来石的生成量,优选的,所述二氧化硅质原料为二氧化硅原料或含二氧化硅的原料,二氧化硅原料中SiO 2的质量百分含量高于80%。优选的,其中SiO 2的质量百分含量为90~99%。
上述的二氧化硅原料具体为ɑ-石英、β-石英、ɑ-鳞石英、β-鳞石英、ɑ-方石英、β-方石英、脉石英、砂岩、石英岩、燧石、胶结硅石、河砂、海砂、白炭黑、硅藻土、硅微粉中的一种或多种。优选的,为胶结硅石、硅藻土、硅微粉中的一种。
基础料中的二氧化硅质原料还可以为高温下能够分解生成SiO 2的原料,能分解生成二氧化硅的原料的化学组成中SiO 2的质量百分含量为大于28%。优选的,上述能够分解生成SiO 2的原料为稻壳、碳化稻壳、稻壳灰、正硅酸甲酯、正硅酸乙酯、甲基三甲氧基硅烷中的一种或多种。
所述二氧化硅质原料的颗粒粒径≦0.08mm。此粒度下的二氧化硅质原料在高温下易生成富二氧化硅玻璃相,可与周围的氧化铝质原料反应生成二次莫来石。
分散剂、悬浮剂、矿化剂、红外遮光剂形成添加剂,发泡剂、无机固化剂、有机固化剂、泡孔调节剂形成发泡料。以下对各组分的作用和选择进行详细介绍。
以基础料的质量为基准,分散剂的添加量不大于1%,悬浮剂的添加量不大于10%。
分散剂的加入有效提高了陶瓷粉体及添加剂在料浆中的分散均匀性,避免了其在浆体中的团聚。本发明所用分散剂为聚羧酸分散剂、聚羧酸醚分散剂、磺化蜜胺缩聚物、萘系分散剂、木质素磺酸盐类分散剂、乙二胺四乙酸钠、三聚氰胺甲醛缩聚物、三聚磷酸钠、聚丙 烯酸钠、柠檬酸钠、磷酸钠、碳酸钠中的一种或多种。优选的,为聚羧酸分散剂、聚羧酸醚分散剂、磺化蜜胺缩聚物、萘系高效分散剂、木质素磺酸盐类分散剂、三聚氰胺甲醛缩聚物、磷酸钠中的一种或多种。所述聚羧酸分散剂为甲基丙烯酸酯型聚羧酸分散剂、烯丙基醚型聚羧酸分散剂、酰胺/酰亚胺型聚羧酸分散剂、聚酰胺/聚乙烯乙二醇型聚羧酸分散剂中的至少一种。所述木质素磺酸盐类分散剂为木质素磺酸钙、木质素磺酸钠、木质素磺酸钾中的至少一种。
本发明所用悬浮剂为膨润土、海泡石、凹凸棒、聚合氯化铝、聚合硫酸铝、壳聚糖、韦兰胶、琼脂、聚乙二醇、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺、聚乙烯吡咯烷酮、干酪素、十六醇、蔗糖、糊精、微晶纤维素、纤维素纤维、纤维素纳米晶、可溶性淀粉中的一种或多种。其中当选用膨润土、海泡石、凹凸棒等无机矿物原料时,发现其在料浆中可快速水解,并分解成带电荷的离子,此离子在基础料颗粒的表面形成了双电层结构,基础料颗粒靠静电斥力在料浆中产生了悬浮效果,但其用量相对较多,一般的,用量≦10%;而当选用聚合氯化铝、聚合硫酸铝、壳聚糖、韦兰胶、琼脂、聚乙二醇、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺、聚乙烯吡咯烷酮、干酪素、十六醇、蔗糖、糊精、微晶纤维素、纤维素纤维、纤维素纳米晶等有机悬浮剂时,发现加入很少的量便可以发挥较好的效果,其在料浆中可通过空间位阻效应或静电位阻效应使料浆产生了悬浮效果,因此其加入量可以相对较少,一般的,其用量≦3%,优选≦1%,更优选≦0.5%。
矿化剂的引入进一步促进了针状或柱状莫来石晶体的成核及生长发育,有利制品性能的改善,同时还可促进烧结反应的进行,有效减少烧成时的能源消耗。本发明所用矿化剂为ZnO、Fe 2O 3、V 2O 5、SiF 4、AlF 3、AlF 3·3H 2O、MnO 2、CuO、CuSO 4、MgO、SrO、BaO、WO 3、Er 2O 3、Cr 2O 3、La 2O 3、YbO、Y 2O 3、CeO 2中的一种或多种。优选的,为ZnO、Fe 2O 3、V 2O 5、SiF 4、AlF 3、SrO、BaO、WO 3、Er 2O 3、La 2O 3、YbO、Y 2O 3、CeO 2中的至少两种。
隔热耐火材料的内部存在大量气孔,而空气的导热系数远小于气孔壁的导热系数,因而整个隔热材料对热量的传递速率变慢,具备了隔热性能。材料的导热机制主要由热传导、对流传热和辐射传热三部分组成,在本发明中,由于所制莫来石质微纳孔绝隔热耐火材料中气孔孔径较小,且大部分气孔为封闭型结构,气体流通困难,因此对流传热可基本忽略,又因莫来石质微纳孔绝隔热耐火材料将主要在高温下使用,因此材料的传热机制除存在热传导外,还包括辐射传热。为进一步有效减少隔热耐火材料的辐射传热,本发明引入了红外遮光剂,以增大对红外辐射的反射或吸收,削弱其穿透性,降低热导率。本发明所用红外遮光剂为金红石、TiO 2、TiC、K 4TiO 4、K 2Ti 6O 13、Sb 2O 3、Sb 2O 5、ZrO 2、CoO、Co(NO 3) 2、CoCl 2、 NiCl 2、Ni(NO 3) 2、ZrSiO 4、Fe 3O 4、B 4C、SiC中的一种或多种。进一步优选的,为TiO 2、TiC、K 4TiO 4、K 2Ti 6O 13、Sb 2O 3、Sb 2O 5、Co(NO 3) 2、ZrSiO 4、B 4C、SiC中的至少两种。红外遮光剂的平均粒径≦5μm。
本发明所用发泡剂为水溶性的高性能发泡试剂。优选的,所述发泡剂为表面活性剂和/或蛋白质型发泡剂。发泡剂的发泡倍数为8~60倍。
其中表面活性剂为阳离子型表面活性剂、阴离子型表面活性剂、非离子型表面活性剂、两性表面活性剂、Gemini型表面活性剂、Bola型表面活性剂、Dendrimer型表面活性剂中的一种或多种。其中,表面活性剂发泡剂的用量≦1%。
进一步优选的:
阳离子型表面活性剂为酰胺酯基季铵盐、聚氧乙烯基长链胺盐、双长链酯基季铵盐、硬脂酸三乙醇胺酯季铵盐中的一种或多种。
阴离子型表面活性剂为碳数为8~20的磺酸盐类表面活性剂或碳数为8~18的硫酸盐类表面活性剂。
非离子型表面活性剂为聚氧乙烯型(如高碳脂肪醇聚氧乙烯醚、脂肪醇聚氧乙烯酯)、脂肪醇酰胺型、多元醇型中的一种或多种。
两性表面活性剂为氨基酸型或甜菜碱型表面活性剂。
Gemini型表面活性剂为季铵盐型Gemini表面活性剂、羧酸盐型Gemini表面活性剂、甜菜碱型Gemini表面活性剂、硫酸盐型Gemini表面活性剂中的一种或多种。
Bola型表面活性剂为半环型、单链型或双链型Bola表面活性剂。
Dendrimer型表面活性剂为聚醚、聚酯、聚酰胺、聚芳烃或聚有机硅型Dendrimer表面活性剂。
其中蛋白质型发泡剂为动物蛋白发泡剂、植物蛋白发泡剂和/或污泥蛋白发泡剂。蛋白质型发泡剂的发泡倍数相对较低,用量相对较多,用量≦10%。
进一步优选地,所述发泡剂选自季铵型Gemini表面活性剂、半环型Bola表面活性剂、羧酸盐型Gemini表面活性剂、月桂酸酰胺丙基磺基甜菜碱、十二醇聚氧乙烯醚羧酸钠、ɑ-烯烃磺酸钠、十二烷基二甲基甜菜碱表面活性剂、脂肪醇聚氧乙烯醚羧酸钠、硫酸盐型Gemini表面活性剂、聚醚型Dendrimer表面活性剂、植物蛋白发泡剂、污泥蛋白发泡剂、动物蛋白发泡剂、十二烷基苯磺酸钠、聚酰胺型Dendrimer表面活性剂、双链型Bola表面活性剂中的一种或多种。
无机固化剂为氧化硅溶胶、氧化铝溶胶、硅铝溶胶、氧化硅凝胶、氧化铝凝胶、硅铝凝胶、Al 2O 3微粉、SiO 2微粉、硅酸二钙、二铝酸钙、铝酸一钙、硅酸三钙、铝酸三钙、铁铝酸四钙、七铝酸十二钙、磷酸铝、水玻璃、软质结合黏土中的一种或多种。优选的,为氧化硅溶胶、氧化硅凝胶、氧化铝凝胶、硅铝凝胶、Al 2O 3微粉、SiO 2微粉、硅酸二钙、硅酸三钙、铝酸一钙、二铝酸钙、硅酸钠中的至少一种。水玻璃中包含硅酸钠、或硅酸钾或二者的组合。以上原料中,SiO 2微粉既起到无机固化剂的作用,同时还作为二氧化硅质原料。Al 2O 3微粉既起到无机固化剂的作用,同时还作为氧化铝质原料。所述的氧化铝溶胶的化学组成中Al 2O 3的质量百分含量≧20%;氧化硅溶胶的化学组成中,SiO 2的质量百分含量为25~40%;硅铝溶胶的化学组成中Al 2O 3的质量百分含量≧30%、SiO 2的质量百分含量≧20%。这些无机固化剂水化后可渗透至各陶瓷粉体颗粒的间隙,对粉体颗粒机械嵌固,形成良好的刚性骨架结构,使坯体强度增加。无机固化剂颗粒的平均粒径≦5μm;所述无机固化剂均为工业纯。
一般认为,当采用发泡法制备轻质隔热耐火材料,生坯的强度都非常非常低,导致在运输和干燥的过程中都十分不方便,造成最终的成品率很低,成为了制约此技术发展应用的关键,而发明人在长期的研究过程中偶然发现,配料时在使用无机固化剂的情况下适当引入微少量的有机固化剂可使坯体在室温下的强度得到有效的增强。所述有机固化剂选自水溶性的聚合物树脂、低甲氧基果胶、鹿角菜胶、卡拉胶、羟丙基瓜尔胶、刺槐树胶、刺槐豆胶、结冷胶、可得然胶、海藻酸盐、魔芋胶、分散乳胶中的一种或多种;所述水溶性聚合物树脂选自醋酸乙烯酯与乙烯共聚物、醋酸乙烯酯均聚物、丙烯酸酯聚合物、乙烯与乙酸乙烯酯共聚物、乙烯与氯乙烯共聚物、醋酸乙烯酯与叔碳酸乙烯酯共聚物、丙烯酸酯与苯乙烯共聚物、醋酸乙烯酯与高级脂肪酸乙烯酯共聚物、醋酸乙烯酯与乙烯和氯乙烯共聚物、醋酸乙烯酯与乙烯和丙烯酸酯共聚物、异丁烯与马来酸酐共聚物、乙烯与氯乙烯和月桂酸乙烯酯共聚物、醋酸乙烯酯与乙烯和高级脂肪酸共聚物、醋酸乙烯酯与乙烯和月桂酸乙烯酯共聚物、醋酸乙烯酯与丙烯酸酯及高级脂肪酸乙烯酯共聚物、醋酸乙烯与叔碳酸乙烯酯和丙烯酸酯共聚物、有机硅树脂中的一种或多种。发明人发现少量的有机固化材料分散至陶瓷粉体颗粒的间隙,其水化后在陶瓷粉体颗粒表面形成一连续的高分子薄膜,此薄膜在粉体颗粒间构成柔韧性连接,再通过有机分子的分子间作用力使陶瓷粉体颗粒间的内聚力提高,使生坯强度进一步增加,避免了坯体在搬运过程中产生的碰损破坏。所述有机固化剂均为工业纯。
一般,由于无机固化剂在较高温度下会产生液相,使制品的软化温度降低,因此随着烧成和使用温度的逐渐升高,应逐渐减少无机固化剂的用量,并相应的适量增多有机固化剂的用量,以增强坯体的强度。
本发明所用泡孔调节剂能够有效调节料浆中气泡的尺寸大小、圆形度、均匀度和闭合性等,从而有效调节烧后制品中的气孔结构,有利于闭口型气孔结构的形成。优选的,所述泡孔调节剂选自纤维素醚、淀粉醚、木质纤维素、皂素中的一种或多种。进一步优选的,所述纤维素醚选自水溶性纤维素醚、甲基纤维素醚、羧甲基纤维素醚、羧甲基甲基纤维素醚、羧甲基乙基纤维素醚、羧甲基羟甲基纤维素醚、羧甲基羟乙基纤维素醚、羧甲基羟丙基纤维素醚、羧甲基羟丁基纤维素醚、羟甲基纤维素醚、羟乙基纤维素醚、羟乙基甲基纤维素醚、羟乙基乙基纤维素醚、乙基纤维素醚、乙基甲基纤维素醚、丙基纤维素醚、羟丙基纤维素醚、羟丙基甲基纤维素醚、羟丙基乙基纤维素醚、羟丙基羟丁基纤维素醚、羟丁基甲基纤维素醚、磺酸乙基纤维素醚中的一种或多种。更优选的,为水溶性纤维素醚、甲基纤维素醚、淀粉醚、皂素中至少一种。
本发明的莫来石质微纳孔绝隔热耐火材料的制备方法的技术方案是:
上述莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
a)在使用添加剂时,将基础料、添加剂在水中分散成悬浮料浆;在不使用添加剂时,将基础料在水中分散成悬浮料浆;
b)将发泡剂、无机固化剂、有机固化剂、泡孔调节剂与悬浮料浆进行搅拌剪切发泡,制得泡沫浆料;
c)将泡沫料浆注入模具中养护,脱模后得到坯体;坯体干燥后在1100~1700℃的温度下烧制。
制备轻质隔热材料的技术关键在于其内部孔隙的引入,本发明的制备方法中,先将基础料、添加剂及水混合形成悬浮料浆,然后再与发泡剂、无机固化剂、有机固化剂、泡孔调节剂形成的功能发泡成分(即发泡料)混合并搅拌发泡,有利于气泡保持完整性从而提高闭口型气孔的生成率;固化过程中,浆料中的气泡转变为坯体中的球状气孔,发明人发现此气孔亦为后续烧制过程中莫来石晶体的生长发育提供了空间,使莫来石晶体得到了充分生长。同时,发明人在长期的研究过程中还偶然发现,由于本发明所制坯体中的孔洞为微小的微米或纳米级球状的空隙,此孔洞的凹面具有极大的曲率半径,使得莫来石晶体在此孔洞中的成核和生长驱动力进一步增强,因此莫来石晶体的生长尺寸更大。
本发明的制备方法中,步骤a)中,所用水的质量为基础料质量的30~300%。优选的,水的质量为基础料质量的70~200%。进一步优选的,水的质量为基础料质量的100~150%。当加水量较多时,搅拌过程中绝大部分水可转变成为料浆中气泡的液膜,而少部分没有成为气泡液膜的则以液态水的形式存在,待坯体干燥并烧成后可在试样中留下微小的毛细孔隙, 也就是说,添加的水最终转变成了制品中的微纳米尺寸的气孔,因此,此工艺技术制备绝隔热耐火材料的本质就是利用水和空气在耐火材料中产生微纳米尺寸的气孔结构,所以在一定程度上来说,可以相应的可根据用水量的多少来调控制品中体积密度、气孔率、热导率及力学强度等的大小。该步骤中,如使用了分散剂、悬浮剂、矿化剂、红外遮光剂等成分,则将上述组分与基础料分散成悬浮料浆。如没有使用分散剂、悬浮剂、矿化剂、红外遮光剂等成分,或仅使用了其中一种或几种,则将相应组分进行分散即可。
步骤a)中,为了形成细腻均匀稳定的悬浮料浆,应控制悬浮料浆中固体颗粒的平均粒径不高于1mm,优选的,不高于74μm,或不高于44μm,或不高于30μm。为达到上述混合效果,混合可采用机械搅拌、球磨、超声等手段之一或者两种以上手段的组合。如果原料的粒度较细,且容易分散成悬浮料浆,则通过机械搅的拌方式即可。优选的,所述分散包括进行球磨和超声分散。具体为:分散剂、悬浮剂、矿化剂以及红外遮光剂混合得添加剂,然后将添加剂与基础料、水球磨混合得混合料,然后超声。其中基础料中铝硅质原料、氧化铝质原料以及二氧化硅质原料同样优选预先混合均匀。
分散剂、悬浮剂、矿化剂以及红外遮光剂混合以及发泡物混合所用搅拌机采用现有的搅拌机如三维混合机、V型混合机、双锥混合机、行星式搅拌机、强制式搅拌机、非重力搅拌机即可,混合均匀程度≧95%。同样,基础料中的三种原料在使用时优选用可同样的方法预先混合均匀。
球磨时,料/球重量比为1:(0.8~1.5),球磨时间为0.5~12h。采用高密度和高硬度的研磨球时,可以大大提升球磨效率,缩短研磨时间;所用研磨球的材质为鹅卵石质、刚玉质、莫来石质、氧化锆质、锆刚玉质、碳化硅质、氮化硅质、碳化钨质中的一种或多种;研磨球的尺寸规格为大球
Figure PCTCN2021144044-appb-000001
中球
Figure PCTCN2021144044-appb-000002
小球
Figure PCTCN2021144044-appb-000003
大球、中球、小球按(1~1.5):(1~3):(6~10)的重量比组合。进一步优选的,大球、中球、小球按(1~1.5):(1~2):(6~8)的重量比组合。通过球磨,可使料浆中固体颗粒平均粒径不高于74μm。优选的,固体颗粒的平均粒径不高于50μm;进一步优选的,固体颗粒的平均粒径不高于44μm;更特别优选的,固体颗粒的平均粒径不高于30μm。本技术的发明人发现这些陶瓷粉体颗粒经球磨后具有较的高表面活性,后经表面活性剂分子(发泡剂)修饰后具有优异的疏水特性,在机械搅拌作用下,会不可逆的吸附于气泡液膜上的气-液界面,高能态的气-液界面被低能态的液-固和气-固界面代替,使体系总自由能降低,泡沫稳定性提高,同时还发现部分粉体颗粒在气泡间的Plateau通道累积,有效的阻止了液膜排液,抵制了泡沫的破裂、排液、歧化、奥斯瓦尔德熟化等不稳定因素,从而获得非常稳定的泡沫陶瓷料浆料。
超声分散进一步提高了料浆中各组分的混合均匀性,超声功率为500~2000W,时间为4~15min。
步骤b)泡沫料浆的制备过程中,视原料品种,如果发泡剂、无机固化剂、有机固化剂、泡孔调节剂均为干的固态原料,则先将干原料进行干混制得发泡干混物,然后再将发泡干混物加入悬浮料浆中,再搅拌发泡。如果发泡剂、无机固化剂、有机固化剂、泡孔调节剂中的部分品种为液体状原料,则优选可将干的固态原料进行干混,然后再将干混物和液体状原料加入悬浮料浆中,再进行搅拌剪切发泡。发泡剂也可先由发泡机预制备出泡沫,然后再与无机固化剂、有机固化剂和泡孔调节剂所组成的混合物加入悬浮料浆,再进行进一步的搅拌剪切发泡。
优选的,所述步骤b)中搅拌发泡采用立式搅拌机的搅拌桨叶高速搅拌剪切发泡,搅拌桨外缘的线速度为20~200m/s,时间为1~30min。进一步优选的,线速度为50~200m/s;进一步优选线速度为80~200m/s;进一步优选线速度为100~200m/s;更进一步优选线速度为150~200m/s。搅拌桨对浆体快速搅拌、混合并引入大量空气,在发泡剂作用下产生大量泡沫,使浆体体积快速膨胀,且随搅拌时间的延长,浆体中的气泡逐渐细化且尺寸趋于均匀,大气泡逐渐被剪切分散成尺寸为0.01~200μm间的微小气泡,陶瓷浆体变成了均匀的泡沫陶瓷料浆。一般的,搅拌桨外缘的线速度愈大,则形成的气泡尺寸愈小、且愈均匀并稳定、越有利在所得莫来石质绝隔热耐火材料中形成微纳米级的孔隙,较小尺寸的气孔可有效抑制自由气体分子的传热,使导热系数进一步降低,同时可确保力学性能满足使用需求且隔热耐火性能较好。
步骤c)中,养护环境中的空气温度为1~40℃,湿度为50~99.9%;养护时间为0.2~3.5h。养护环境的空气温度1~40℃,优选5~30℃,更优选10~30℃,更优选20~30℃,特别优选25~30℃,更特别优选27~30℃;空气湿度为50~99.9%,优选60~99%,更优选70~97%,更优选80~95%,特别优选85~93%,更特别优选88~92%。在养护过程中,坯体中的无机和有机固化剂等会加快发生水化反应并固化凝结,使得坯体的强度迅速增加,实现快速脱模。
将泡沫浆料注入模具,在以上环境中养护0.2~3.5h后快速脱模即得坯体。研究过程中发现由于坯体的脱模时间非常短,大大加快了模具的周转速率,并且还使整体的制备工艺加快运行,生产效率和产量大为提高,这在以往是很难实现的。
其中模具选用下列这些中的一种或多种,但不限于:金属模具、塑料模具、树脂模具、橡胶模具、泡沫模具、石膏模具、玻璃模具、玻璃钢模具、木质或竹质或竹胶质模具,和上述几种材质复合的模具。模具形状可根据设计要求改变,适于制备异形制品。
由于坯体养护后的强度迅速增加,因此步骤c)中可实现对坯体的快速脱水干燥,所 用干燥方法根据实际情况任选常压干燥、超临界干燥、冷冻干燥、真空干燥、红外干燥、微波干燥,或它们中任何两种或多种方法的组合。干燥时间为0.3~48h。坯体干燥至坯体含水率≦3wt%。坯体干燥后强度较高,其耐压强度≧0.7MPa,大大减少了其在运输工程中因磕碰造成的破坏,使成品率增加。
其中,采用常压干燥时,干燥热源可为电源加热或热风,干燥温度为30~110℃,干燥时间为12~48h。优选的其干燥制度为:先以1~5℃/min升温至30℃,在30℃保温0.5~5h,再以1~5℃/min升温至50℃,在50℃保温2~5h,再以1~5℃/min升温至70℃,在70℃保温2~5h,再以2~5℃/min升温至90℃,在90℃保温2~5h,再以2~5℃/min升温至110℃,在110℃保温5~24h;
其中,采用超临界干燥技术中,干燥介质为二氧化碳,二氧化碳超临界干燥温度为31~45℃,反应釜压力控制在7~10MPa,干燥时间为0.5~3h;
其中,采用冷冻干燥法时,冷冻干燥机的干燥温度为-180~-30℃,干燥时间为3~6h;
其中,采用真空干燥法时,真空干燥箱中的干燥温度为35~50℃,真空压力为130~0.1Pa,干燥时间为3~8h;
其中,采用红外干燥法时,红外线的波长取2.5~100μm,优选2.5~50μm,优选2.5~30μm,更优选2.5~15μm,更特别优选2.5~8μm,干燥时间为0.5~5h;
其中,采用微波干燥法时,微波频率为300~300000MHz,优选300~10000MHz,优选300~3000MHz,更优选300~1000MHz,更特别优选600~1000MHz,干燥时间为0.3~3h;
坯体快速干燥脱水后,形成了具有较高强度的多孔结构,发现它的重量较干燥前和传统的添加造孔剂法所制的坯体的重量大为减轻,强度大为增加,因此大幅度减轻了工人在运输坯体和装窑作业时的劳动强度,并且非常适合机械化的操作,提高了工作效率,也提高了成品率。
以上过程中,有机、无机固化剂共同作用使得泡沫浆料在固化并干燥后所得坯体的强度大大提高,其耐压强度≧0.7MPa,避免了坯体坍塌以及在搬运和装窑过程中磕碰导致的损坏,使成品率大为提高,成品率≧90%,优选≧95%,更优选≧98%,更特别优选≧99%,使生产成本显著降低,并可对坯体进行有效的切磨、打孔等机械加工处理。
优选的,所述步骤c)中烧制任选在梭式窑、电阻窑炉、高温隧道窑或微波窑炉中烧成,具体为:以1~5℃/min升温至500℃,再5~30℃/min升温至1000℃,保温0.5~1.5h,再以1~30℃/min升温至1200~1700℃,保温1~10h,后以10~20℃/min降温至1100℃,并在1100℃保温0.5~1.5h,再以5~30℃/min降温至500℃,于500℃保温0.5h,最后以1~10℃/min降温 至50~80℃。烧成后的莫来石质微纳孔绝隔热耐火材料可根据实际要求进行切割、磨削或打孔加工成所需形状。
本发明的有益技术效果或优点:
本发明具有工艺技术简单、容易控制、对环境无害、且坯体的脱模和干燥周期较短、坯体强度高、成品率高等特点,非常适合大规模化、机械化、现代化和智能化的生产作业。
另外,本发明所制莫来石质微纳孔绝隔热耐火材料具有以下特征:(1)外观呈白色、淡黄色或黄色;(2)烧后制品的化学组成中Al 2O 3的含量在25~72%间,优选35~71.8%,优选40~70%,更优选45~68%,特别优选55~65%,更特别优选58~63%;(3)制品主晶相为莫来石相,并含有少量方石英、刚玉或玻璃相;(4)莫来石晶体的形貌为针状或柱状,其长度为5~200μm,长径比≧5;(5)制品中气孔壁上生长大量针状或柱状莫来石晶体,这些晶体相互交织穿插成具有鸟巢状的三维网络骨架结构;(6)此莫来石网络骨架结构是优良的力学载体,利于材料强度提高;(7)球状气孔中填充大尺寸、大长径比莫来石晶体,使制品气孔孔径减小,孔径分布在0.006~200μm间,平均孔径为0.1~19μm,优选的为0.1~12μm,优选的为0.1~6.5μm,更优选的为0.1~5μm,更特别优选的为0.1~2μm,如此小的气孔有效抑制了自由气体分子的传热,使热导率进一步降低。
本发明所制莫来石质微纳孔绝隔热耐火材料,体积密度为0.25~1.5g/cm 3,气孔率为45~95%,闭口气孔率为35~70%,常温耐压强度为1~160MPa,室温下的热导率为0.027~0.15W/(m·K),350℃下的热导率为0.03~0.19W/(m·K),优选是0.05~0.12W/(m·K),1100℃下的热导率为0.05~0.28W/(m·K),优选是0.08~0.12W/(m·K),使用温度≦1650℃,重烧线变化率≦-0.8%(在1230~1620℃不同温度下保温24h),优选≦-0.5%,优选≦-0.4%,更优选≦-0.3%,更特别优选≦-0.2%,综合性能较好。制品中较小的气孔孔径、较高的气孔率及封闭型的气孔结构大大减小了隔热材料的导热系数。另外,本发明所制绝隔热材料内部气孔的形貌接近球状,对应力分散均匀,当受到应力时可有效避免产生应力集中现象,使材料力学性能大大改善。
附图说明
图1为本发明实施例1的莫来石质微纳孔绝隔热耐火材料的宏观照片;
图2为本发明实施例1的莫来石质微纳孔绝隔热耐火材料的气孔结构SEM图;
图3为本发明实施例1的莫来石质微纳孔绝隔热耐火材料的气孔壁SEM图;
图4为本发明实施例3的莫来石质微纳孔绝隔热耐火材料的SEM图;
图5为本发明实施例13的莫来石质微纳孔绝隔热耐火材料的SEM图;
图6为本发明实施例14的莫来石质微纳孔绝隔热耐火材料的SEM图;
图7为本发明实施例1的莫来石质微纳孔绝隔热耐火材料的XRD图;
图8为本发明实施例1的莫来石质微纳孔绝隔热耐火材料的孔径分布图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的说明,并非对其保护范围的限制。
以下实施例中所用各原料均为市售常规产品。如无特殊说明,实施例中涉及的主要原料的规格说明如下,具体实施例中对原料规格有进一步说明的,以实施例的说明为准。
珍珠岩,化学组成中Al 2O 3质量百分含量为12~13%,SiO 2质量百分含量为68~74%,K 2O质量百分含量为2~3%,Na 2O质量百分含量为4~6%、粒径为0.6~1mm。钾长石,化学组成中K 2O的质量百分含量为9~11%,Al 2O 3质量百分含量为18~20%,SiO 2质量百分含量为64~66%,粒径≦0.08mm。硅藻土,化学组成中SiO 2质量百分含量≧85%,粒径为0.6~1mm。膨润土,化学组成中Al 2O 3质量百分含量为22~23%,SiO 2质量百分含量为68~75%,粒径≦0.045mm。工业氧化铝、β-Al 2O 3、γ-Al 2O 3、δ-Al 2O 3、χ-Al 2O 3、κ-Al 2O 3,化学组成中Al 2O 3质量百分含量≧98%,粒径≦0.08mm。水铝石,化学组成中Al 2O 3的铝质量百分含量≧70wt%,粒径≦0.08mm。粉煤灰,化学组成中Al 2O 3的质量百分含量为28~31%,SiO 2的质量百分含量为51~57%,粒径≦0.08mm。漂珠,化学组成中Al 2O 3的质量百分含量为35~38%,SiO 2的质量百分含量为50~53%,粒径≦0.08mm。红柱石,化学组成中Al 2O 3质量百分含量为38~41%,SiO 2的质量百分含量为56~59%,粒径为0.6~1mm。苏州土,化学组成中Al 2O 3质量百分含量为42~45%,SiO 2的质量百分含量为52~55%,粒径≦0.075mm。烧结刚玉粉,化学组成中Al 2O 3的质量百分含量≧97%,粒径≦0.08mm。电熔刚玉粉,化学组成中Al 2O 3的质量百分含量≧98%,粒径≦0.08mm。硅线石,化学组成中Al 2O 3的质量百分含量为55~58%,SiO 2的质量百分含量为39~41%,粒径为0.6~1mm。
硫酸盐型Gemini表面活性剂,购自恒美科技有限公司,发泡倍数55。季铵型Gemini表面活性剂,购自恒美科技有限公司,发泡倍数45。半环型Bola表面活性剂,购自恒美科技有限公司,发泡倍数50。羧酸盐型Gemini表面活性剂,购自恒美科技有限公司,发泡倍数60。乙烯与乙酸乙烯酯共聚物,购自德国瓦克化学公司,
Figure PCTCN2021144044-appb-000004
羧甲基甲基纤维素醚、羟丙基羟丁基纤维素醚购自美国陶氏化学。
一、莫来石质微纳孔绝隔热耐火材料的具体实施例
实施例1
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针 状,其长度为37~45μm、长径比为37~62,制品的化学组成中氧化铝的质量百分比为25~28%。制品由基础料、添加料和水制成,其中添加料由悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:90%的铝硅质原料,10%的二氧化硅质原料。其中,铝硅质原料由珍珠岩、钾长石、高岭土(其化学组成中Al 2O 3质量百分含量为36~38%,SiO 2质量百分含量为54~57%,粒径为0.6~1mm)按照1:1:7的质量比混合而成;二氧化硅质原料为硅藻土。
添加料中悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的10%、0.12%以及3.1%。其中悬浮剂为膨润土;矿化剂由AlF 3与ZnO按照3:1的质量比组成;红外遮光剂由TiO 2、ZrSiO 4、B 4C按照15:15:1的质量比组成。其中AlF 3、ZnO、TiO 2、ZrSiO 4、B 4C均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.6%、5.1%、2%以及0.05%。其中发泡剂由季铵型Gemini表面活性剂与半环型Bola表面活性剂按2:1的质量比组成;无机固化剂由氧化铝凝胶与硅酸钠按50:1的质量比组成,氧化铝凝胶与硅酸钠均为工业纯,粒径≦5μm;有机固化剂由乙烯与乙酸乙烯酯共聚物和醋酸乙烯酯与乙烯共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000005
)按照1:1的质量比混合而成;泡孔调节剂由羧甲基甲基纤维素醚、羟丙基羟丁基纤维素醚按照3:2的质量比混合而成。
实施例2
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为32~43μm、长径比为38~64,制品的化学组成中氧化铝的质量百分比为25~26%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:25%的氧化铝质原料,5%的铝硅质原料,70%的二氧化硅质原料。其中,氧化铝质原料为工业氧化铝和水铝石按照4:1的质量比混合而成;铝硅质原料由碱石(其化学组成中Al 2O 3质量百分含量为45~48%,SiO 2质量百分含量为45~48%,粒径为0.6~1mm)、叶腊石(其化学组成中Al 2O 3质量百分含量为30~33%,SiO 2质量百分含量为60~62%)、云母(Li 2O的质量百分含量为3~5%,Al 2O 3质量百分含量为27~29%,SiO 2质量百分含量为57~59%,K 2O质量百分含量为4~6%,粒径≦0.08mm)、锂辉石(Al 2O 3质量百分含量为27~29%,SiO 2质量百分含量为63~65%,Li 2O质量百分含量为8~9%,粒径为0.6~1mm)按照1:1:2:1的质量比混合而成;二氧化硅质原料为脉石英、胶结硅石(SiO 2 质量百分含量≧93%,粒径≦0.08mm)按照1:1的质量比混合而成。
添加料所用原料的种类及用量与实施例1基本相近,区别仅在于其添加料中在实施例1的基础上增加了0.01%的分散剂,分散剂为甲基丙烯酸酯型聚羧酸分散剂(恒美科技有限公司)。
实施例3
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为41~53μm、长径比为39~72,制品的化学组成中氧化铝的质量百分比为31~33%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,80%的铝硅质原料,10%的二氧化硅质原料。其中,氧化铝质原料为γ-Al 2O 3,铝硅质原料由粉煤灰、漂珠、高岭土(Al 2O 3的质量百分含量32~35%,SiO 2的质量百分含量为61~64%,粒径为0.6~1mm)按照1:5:10的质量比混合而成;二氧化硅质原料为胶结硅石(SiO 2的质量百分含量≧93%,粒径为0.6~1mm)、稻壳、碳化稻壳、稻壳灰(SiO 2的质量百分含量≧28%,粒径≦0.08mm)按照16:2:1:1的质量比混合而成。
添加料中的分散剂、悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的0.02%、5.3%、1.2%以及10%。其中分散剂为烯丙基醚型聚羧酸分散剂(恒美科技有限公司)与聚羧酸醚分散剂按3:2的质量比组成;悬浮剂由膨润土与纤维素纤维按照50:3的质量比组成;矿化剂由MnO 2、ZnO与V 2O 5按照3:2:1的质量比组成;红外遮光剂由TiC、K 4TiO 4、Sb 2O 3按照5:3:2的质量比组成。其中MnO 2、ZnO、V 2O 5、TiC、K 4TiO 4、Sb 2O 3均为工业纯,粒径≦5μm。
添加料中的发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.5%、7.5%、1.5%以及0.1%。其中发泡剂由羧酸盐型Gemini表面活性剂与月桂酸酰胺丙基磺基甜菜碱(发泡倍数13)按照4:1的质量比组成;无机固化剂由氧化硅凝胶与SiO 2微粉按照2:1的质量比组成,氧化硅凝胶与SiO 2微粉均为工业纯,粒径≦5μm;有机固化剂为乙烯与氯乙烯和月桂酸乙烯酯共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000006
);泡孔调节剂由羧甲基乙基纤维素醚(美国亚士兰公司)、羧甲基羟甲基纤维素醚、羧甲基羟乙基纤维素醚(美国陶氏化学公司)按照5:3:2的质量比混合而成。
实施例4
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针 状,其长度为42~65μm、长径比为40~83,制品的化学组成中氧化铝的质量百分比为33~35%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,80%的铝硅质原料,10%的二氧化硅质原料。其中,氧化铝质原料为工业氧化铝,铝硅质原料由铝矾土(Al 2O 3质量百分含量为88~90%,SiO 2的质量百分含量为8~10%,粒径为0.6~1mm)、钠长石(Na 2O的质量百分含量为10~12%,Al 2O 3的质量百分含量为19~22%,SiO 2的质量百分含量为66~69%,粒径≦0.08mm)、高岭土(Al 2O 3的质量百分含量为32~35%,SiO 2的质量百分含量为61~64%,粒径≦0.08mm)按照1:2:5的质量比混合而成;二氧化硅质原料为胶结硅石、砂岩、石英岩、燧石(SiO 2的质量百分含量≧93%,粒径为0.6~1mm)按照1:1:1:1的质量比混合而成。
添加料中的分散剂、悬浮剂、矿化剂的用量分别为基础料总质量的0.03%、5.3%、3%。其中分散剂为酰胺型聚羧酸分散剂(恒美科技有限公司)与三聚磷酸钠按1:2的质量比组成;悬浮剂由膨润土与微晶纤维素(美国陶氏化学)按照50:3的质量比组成;矿化剂由MnO 2、ZnO与V 2O 5按照3:1:2的质量比组成。其中MnO 2、ZnO、V 2O 5均为工业纯,粒径≦5μm。
添加料中的发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.4%、20%、1%以及0.16%。其中发泡剂由羧酸盐型Gemini型表面活性剂(恒美科技,发泡倍数60)与十二醇聚氧乙烯醚羧酸钠(发泡倍数9)按照1:3的质量比组成;无机固化剂由氧化硅溶胶(氧化硅溶胶中SiO 2的百分含量为30%)与SiO 2微粉按照19:1的质量比组成;有机固化剂为醋酸乙烯酯与叔碳酸乙烯酯共聚物(安徽皖维集团公司,WWJF-8010);泡孔调节剂由羟丙基纤维素醚(美国亚士兰公司)、羟丙基甲基纤维素醚、磺酸乙基纤维素醚(美国陶氏化学公司)按照2:10:4的质量比混合而成。
实施例5
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为43~77μm、长径比为41~85,制品的化学组成中氧化铝的质量百分比为34~36%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:30%的氧化铝质原料,40%的铝硅质原料,30%的二氧化硅质原料。其中,氧化铝质原料为勃姆石(Al 2O 3质量百分含量≧70%,粒径≦ 0.08mm)、正丁醇铝、异丙醇铝、仲丁醇铝、六水合氯化铝、九水合硝酸铝按照10:1:1:1:1:1的质量比混合而成,铝硅质原料由煤矸石(Al 2O 3质量百分含量为26~28%,SiO 2的质量百分含量为69~73%,粒径为0.6~1mm)、焦宝石(Al 2O 3的质量百分含量32~35%,SiO 2的质量百分含量为61~64%,粒径≦0.08mm)按照5:3的质量比混合而成;二氧化硅质原料为硅微粉、正硅酸甲酯、正硅酸乙酯、甲基三甲氧基硅烷按照17:8:3:2的质量比混合而成。
添加料中的分散剂、悬浮剂、矿化剂的用量分别为基础料总质量的0.03%、5.3%、3%。其中分散剂为酰亚胺型聚羧酸分散剂(恒美科技公司)与三聚磷酸钠按3:2的质量比组成;悬浮剂由膨润土及壳聚糖与纤维素纳米晶(美国陶氏化学)按照50:2:1的质量比组成;矿化剂由AlF 3·3H 2O、BaO、ZnO与V 2O 5按照3:1:1:1的质量比组成。其中AlF 3·3H 2O、BaO、ZnO、V 2O 5均为工业纯,粒径≦5μm。
添加料中的发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.3%、20%、1%以及0.2%。其中发泡剂由羧酸盐型Gemini表面活性剂与十二醇聚氧乙烯醚羧酸钠(发泡倍数9)按照1:2的质量比组成;无机固化剂由氧化硅溶胶(氧化硅溶胶中SiO 2的百分含量为30%)与SiO 2微粉按照19:1的质量比组成;有机固化剂为丙烯酸酯与苯乙烯共聚物(美国国民淀粉,
Figure PCTCN2021144044-appb-000007
FX7000);泡孔调节剂由羟丙基纤维素醚(美国亚士兰公司)、羟丙基甲基纤维素醚、乙基甲基纤维素醚(美国陶氏化学)按照1:5:4的质量比混合而成。
实施例6
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为44~115μm、长径比为42~95,制品的化学组成中氧化铝的质量百分比为34~36%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,80%的铝硅质原料,10%的二氧化硅质原料。其中,氧化铝质原料为工业Al(OH) 3(Al 2O 3质量百分含量≧65%,粒径≦0.08mm),铝硅质原料由蓝晶石(Al 2O 3质量百分含量为28~33%,SiO 2的质量百分含量为63~68%,粒径为0.6~1mm)、钡长石(BaO的质量百分含量为16~18%,Al 2O 3的质量百分含量为25~28%,SiO 2的质量百分含量为54~56%,粒径≦0.08mm)、高岭土(Al 2O 3的质量百分含量为35~37%,SiO 2的质量百分含量为57~61%,粒径为0.6~1mm)按照1:1:6的质量比混合而成;二氧化硅质原料为河砂、海砂、白炭黑(SiO 2的质量百分含量≧92%,粒径为≦88μm)按照2:1:1的质量比混合而成。
添加料中的分散剂、悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的0.03%、5.1%、5%以及6%。其中分散剂为聚酰胺型聚羧酸分散剂(德国巴斯夫);悬浮剂由凹凸棒土(SiO 2的质量百分含量为55~61%,粒径≦0.045mm)与韦兰胶按50:1的质量比组成;矿化剂由MnO 2、ZnO与La 2O 3按照3:5:2的质量比组成;红外遮光剂由TiC、K 4TiO 4、Sb 2O 3按照15:13:2的质量比组成。其中MnO 2、ZnO、La 2O 3、TiC、K 4TiO 4、Sb 2O 3均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.2%、5%、0.6%以及0.4%。其中发泡剂由季铵型Gemini表面活性剂与ɑ-烯烃磺酸钠(发泡倍数15)按照1:1的质量比组成;无机固化剂由铝酸一钙、硅酸二钙、二铝酸钙、硅酸三钙按照2:1:1:1的质量比组成,铝酸一钙、硅酸二钙、二铝酸钙、硅酸三钙均为工业纯,粒径≦5μm;有机固化剂由醋酸乙烯酯与乙烯和高级脂肪酸共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000008
)与魔芋胶(上海北连科技公司)按2:1的质量比组成;泡孔调节剂由羟丙基乙基纤维素醚(美国亚士兰公司)与木质纤维素(德国JRS公司)按1:1的质量比组成。
实施例7
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为45~162μm、长径比为44~123,制品的化学组成中氧化铝的质量百分比为37~39%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,90%的铝硅质原料。其中,氧化铝质原料为β-Al 2O 3、γ-Al 2O 3、δ-Al 2O 3、χ-Al 2O 3、κ-Al 2O 3按照1:1:1:1:1的质量比组成;铝硅质原料由红柱石、高岭土(Al 2O 3的质量百分含量35~37%,SiO 2的质量百分含量为58~61%,粒径为0.6~1mm)按照1:8的质量比组成。
添加料中的分散剂、悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的0.05%、5.5%、5%以及7%。其中分散剂由磺化蜜胺缩聚物(恒美科技有限公司)与聚丙烯酸钠按3:2的质量比组成;悬浮剂由膨润土(Al 2O 3的质量百分含量为22~23%,SiO 2的质量百分含量为71~73%,粒径≦0.045mm)与壳聚糖按照10:1的质量比组成;矿化剂由MnO 2、BaO与Er 2O 3按照3:5:2的质量比组成;红外遮光剂由TiC、K 4TiO 4、SiC按照3:3:1的质量比组成。其中MnO 2、BaO、Er 2O 3、TiC、K 4TiO 4、SiC均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总 质量的0.18%、6%、1.5%以及0.7%。其中发泡剂由季铵型Gemini表面活性剂与十二烷基二甲基甜菜碱表面活性剂(发泡倍数17)按照1:1的质量比组成;无机固化剂由氧化铝凝胶与软质结合黏土按照5:1的质量比组成,氧化铝凝胶与软质结合黏土粒径≦5μm;有机固化剂为醋酸乙烯酯与高级脂肪酸乙烯酯共聚物(山西三维集团公司,SWF-04);泡孔调节剂由羟乙基纤维素醚(美国赫尔克里斯公司)与羟乙基乙基纤维素醚(荷兰阿克苏诺贝尔公司)按5:2的质量比组成。
实施例8
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为48~200μm、长径比为45~152,制品的化学组成中氧化铝的质量百分比为41~43%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,90%的铝硅质原料。其中,氧化铝原料为工业氧化铝、ρ-Al 2O 3、θ-Al 2O 3、η-Al 2O 3(各氧化铝质原料的化学组成中,Al 2O 3质量百分含量均≧98%,粒径≦0.08mm)按照5:3:1:1的质量比混合而成。铝硅质原料由红柱石、苏州土、高岭土(Al 2O 3的质量百分含量37~39%,SiO 2的质量百分含量为58~60%,粒径为0.6~1mm)按照1:3:5的质量比混合而成。
添加料中的分散剂、悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的0.06%、2.5%、10%以及3%。其中分散剂为聚酰胺型聚羧酸分散剂(德国巴斯夫)与萘系高效分散剂(恒美科技有限公司)按5:1的质量比组成;悬浮剂由膨润土(Al 2O 3的质量百分含量为25~27%,SiO 2的质量百分含量为68~71%,粒径≦0.045mm)与海泡石按4:1的质量比组成;矿化剂由AlF 3、WO 3、Y 2O 3与CeO 2按照2:1:1:1的质量比组成;红外遮光剂由TiO 2、ZrSiO 4按照2:1的质量比组成。其中AlF 3、WO 3、Y 2O 3、CeO 2、TiO 2与ZrSiO 4均为工业纯,粒径≦1μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.16%、5%、1.1%以及1%。其中发泡剂由硫酸盐型Gemini表面活性剂与脂肪醇聚氧乙烯醚羧酸钠(恒美科技有限公司,发泡倍数15)按照1:1的质量比组成;无机固化剂为铝硅凝胶;有机固化剂由乙烯与氯乙烯和月桂酸乙烯酯共聚物(德国瓦克化学公司,
Figure PCTCN2021144044-appb-000009
)、异丁烯与马来酸酐共聚物(日本可乐丽公司,ISOBAM-04)与羟丙基瓜尔胶(任丘市天诚化工有限公司)按5:5:1的质量比组成;泡孔调节剂由羟丁基甲基纤 维素醚(美国陶氏化学)、水溶性纤维素醚(恒美科技有限公司)与淀粉醚(德国JRS公司)按3:4:3的质量比组成。
实施例9
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为45~180μm、长径比为40~132,制品的化学组成中氧化铝的质量百分比为41~43%。制品由基础料、添加料和水制成,其中添加料由分散剂、矿化剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:100%的铝硅质原料,铝硅质原料由高岭土(Al 2O 3的质量百分含量为38~41%,SiO 2的质量百分含量为56~59%,粒径为0.6~1mm)、苏州土按照6:4的质量比混合而成。
添加料中的分散剂、矿化剂的用量分别为基础料总质量的0.06%、8%。其中分散剂为聚乙烯乙二醇型聚羧酸系分散剂(德国巴斯夫)与萘系高效分散剂(恒美科技有限公司)按5:1的质量比组成;矿化剂由AlF 3、WO 3、Y 2O 3与CeO 2按照1:1:1:1的质量比组成。其中AlF 3、WO 3、Y 2O 3、CeO 2均为工业纯,粒径≦1μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.15%、1.5%、0.5%以及0.6%。其中发泡剂由硫酸盐型Gemini表面活性剂与十二烷基苯磺酸钠(发泡倍数9)按照1:2的质量比组成;无机固化剂为铝硅凝胶;有机固化剂由乙烯与氯乙烯共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000010
)、醋酸乙烯酯与乙烯和氯乙烯共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000011
)与可得然胶(恒美科技有限公司)按5:4:1的质量比组成;泡孔调节剂由羟丁基甲基纤维素醚(美国陶氏化学)、水溶性纤维素醚与淀粉醚(恒美科技有限公司)按3:2:1的质量比组成。
实施例10
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为36~127μm、长径比为32~84,制品的化学组成中氧化铝的质量百分比为46~48%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,90%的铝硅质原料。其中,氧化铝原料为工业氧化铝(Al 2O 3质量百分含量≧98%,粒径≦0.025mm);铝硅质原料由红柱石、煤矸石(Al 2O 3的质量百分含量36~38%,SiO 2的质量百分含量为58~61%,粒径为0.6~1mm)、高岭土(Al 2O 3的质量百分含量37~39%,SiO 2的质量百分含量为56~59%, 粒径为0.6~1mm)按照1:3:5的质量比组成。
添加料中的分散剂、悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的0.06%、3%、7%以及2%。其中分散剂由聚羧酸系分散剂(德国巴斯夫)与萘系高效分散剂(恒美科技有限公司)按5:1的质量比组成;悬浮剂由干酪素、聚乙烯吡咯烷酮以及纤维素纳米晶按照1:1:1的质量比组成;矿化剂由Fe 2O 3、WO 3与SrO按照2:2:3的质量比组成;红外遮光剂由TiO 2、Sb 2O 5按照3:1的质量比组成。其中Fe 2O 3、WO 3、SrO、TiO 2、Sb 2O 5均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的10%、5%、0.8%以及0.5%。其中发泡剂由聚醚型Dendrimer表面活性剂(恒美科技有限公司,发泡倍数45)、植物蛋白发泡剂(山东鑫茂化工公司,发泡倍数9)与污泥蛋白发泡剂(恒美科技公司,发泡倍数8)按照0.1:1.9:8的质量比组成;无机固化剂由氧化硅凝胶与氧化铝凝胶按照2:3的质量比组成,氧化硅凝胶与氧化铝凝胶均为工业纯,粒径≦5μm;有机固化剂由醋酸乙烯酯与乙烯和月桂酸乙烯酯(德国瓦克化学,
Figure PCTCN2021144044-appb-000012
)与丙烯酸酯聚合物(美国国民淀粉,Elotex
Figure PCTCN2021144044-appb-000013
)按5:3的质量比组成;泡孔调节剂由羟丁基甲基纤维素醚与羟丙基乙基纤维素醚(美国陶氏化学)按照1:1的比例组成。
实施例11
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为24~77μm、长径比为25~46,制品的化学组成中氧化铝的质量百分比为52~55%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,90%的铝硅质原料。其中,氧化铝质原料为α-Al 2O 3(Al 2O 3的质量百分含量≧98%,粒径≦0.025mm),铝硅质原料由红柱石(Al 2O 3的质量百分含量为40~45%,SiO 2的质量百分含量为51~55%,粒径为0.6~1mm)、铝矾土(Al 2O 3的质量百分含量41~47%,SiO 2的质量百分含量为49~54%,粒径为0.6~1mm)、高岭土(Al 2O 3的质量百分含量56~58%,SiO 2的质量百分含量为35~37%,粒径为0.6~1mm)按照1:3:5的质量比组成。
所用添加剂由分散剂、悬浮剂、矿化剂以及红外遮光剂组成,各组分的用量分别为基础料总质量的0.06%、2%、5%以及1%。其中分散剂由聚羧酸系分散剂(德国巴斯夫)与三聚氰胺甲醛缩聚物(恒美科技有限公司)按5:1的质量比组成;悬浮剂由干酪素与微晶纤维素按1:1的质量比组成;矿化剂由AlF 3、SiF 4按照3:2的质量比组成;红外遮光剂由Sb 2O 5、 Co(NO 3) 2按照1:1的质量比组成。其中AlF 3、SiF 4、Sb 2O 5、Co(NO 3) 2均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的8.1%、5%、1%以及0.4%。其中发泡剂由双链型Bola表面活性剂(恒美科技有限公司,发泡倍数44)与植物蛋白发泡剂(山东鑫茂化工公司,发泡倍数9)按照0.1:8的质量比组成;无机固化剂为氧化铝凝胶,为工业纯,粒径≦5μm;有机固化剂由乙烯与乙酸乙烯酯共聚物、醋酸乙烯酯均聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000014
)按1:1的质量比组成;泡孔调节剂由羧甲基羟丁基纤维素醚(美国陶氏化学)与丙基纤维素醚(美国亚士兰公司)按3:1的质量比组成。
实施例12
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状和短柱状,其长度为13~56μm、长径比为12~33。制品的化学组成中氧化铝的质量百分比为59~61%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:5%的氧化铝质原料,95%的铝硅质原料。其中,氧化铝质原料为烧结刚玉粉;铝硅质原料由铝硅系均质料(Al 2O 3的质量百分含量为85~90%,SiO 2的质量百分含量为8~10%,粒径为0.6~1mm)、红柱石(Al 2O 3的质量百分含量为48~51%,SiO 2的质量百分含量为44~47%,粒径为0.6~1mm)、高岭土(Al 2O 3的质量百分含量56~58%,SiO 2的质量百分含量为36~39%,粒径为0.6~1mm)按照1:3:5.5的质量比组成。
所用添加剂由分散剂、悬浮剂、矿化剂以及红外遮光剂组成,各组分的用量分别为基础料总质量的1%、1%、3%以及1.5%。其中分散剂由聚羧酸系分散剂(德国巴斯夫)与磺化蜜胺缩聚物(恒美科技有限公司)按5:5的质量比组成;悬浮剂为聚合硫酸铝;矿化剂由AlF 3、YbO按照2:1的质量比组成;红外遮光剂由TiO 2、K 2Ti 6O 13按照2:1的质量比组成。其中聚合物Al(SO 4) 2、AlF 3、YbO、TiO 2、K 2Ti 6O 13均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的5.1%、5%、0.5%以及0.3%。其中发泡剂由硫酸盐型Gemini表面活性剂与动物蛋白发泡剂(恒美科技,发泡倍数11)按照1:50的质量比组成;无机固化剂为氧化铝凝胶,为工业纯,粒径≦5μm;有机固化剂为醋酸乙烯酯与乙烯和丙烯酸酯共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000015
);泡孔调节剂为羟乙基乙基纤维素醚(荷兰阿克苏诺贝尔公司)。
实施例13
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,还含有少量的刚玉相,莫来石的形貌呈短柱状,其长度为8.9~16.2μm、长径比为7.5~10.8。制品的化学组成中氧化铝的质量百分比为64~66%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:10%的氧化铝质原料,90%的铝硅质原料。其中,氧化铝质原料为烧结刚玉粉;铝硅质原料由红柱石(Al 2O 3的质量百分含量为40~45%,SiO 2的质量百分含量为52~57%,粒径为0.6~1mm)、烧结莫来石(Al 2O 3的质量百分含量68~70%,SiO 2的质量百分含量为29~31%,粒径≦0.08mm)与高岭土(Al 2O 3的质量百分含量56~58%,SiO 2的质量百分含量为33~39%,粒径为0.6~1mm)按照1:4:4的质量比组成。
添加料中的分散剂、悬浮剂、矿化剂、红外遮光剂的用量分别为基础料总质量的0.05%、0.1%、2%及2%。其中分散剂为聚羧酸系分散剂(德国巴斯夫);悬浮剂为聚合氯化铝;矿化剂由AlF 3、YbO按照3:1的质量比组成;红外遮光剂由TiO 2、K 2Ti 6O 13按照1:1的质量比组成。其中聚合物AlCl 3、AlF 3、YbO、TiO 2、K 2Ti 6O 13均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.1%、1%、0.8%以及0.1%。其中发泡剂由季铵型Gemini表面活性剂、十二烷基苯磺酸钠(发泡倍数9)按照1:1的质量比组成;无机固化剂为氧化铝凝胶;有机固化剂由醋酸乙烯与叔碳酸乙烯酯和丙烯酸酯共聚物(日本合成化学工业株式会社,Mowinyl-DM2072P)和结冷胶(江苏古贝科技公司)按照1:2的质量比组成;泡孔调节剂为羟丁基甲基纤维素醚(美国陶氏化学公司)。
实施例14
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,还含有少量的刚玉相,莫来石的形貌呈短柱状,其长度为5~15μm、长径比为3~7.25,制品的化学组成中氧化铝的质量百分比为67.7~70.5%。制品由基础料、添加料和水制成,其中添加料由分散剂、矿化剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:20%的氧化铝质原料、80%的铝硅质原料。其中,氧化铝质原料由α-Al 2O 3(Al 2O 3的质量百分含量≧99%,粒径≦5μm)、电熔刚玉粉按照1:1的质量比混合而成;铝硅质原料由硅线石、电熔莫来石(Al 2O 3质量百分含量68~72%,SiO 2的质量百分含量为24~28%,粒径≦0.08mm)、高岭土(Al 2O 3的质量百分含量56~58%,SiO 2的质量百分含量为37~40%,粒径为0.6~1mm)按照3:4:1的质量比混合而成;
添加料中的分散剂、矿化剂、红外遮光剂的用量分别为基础料总质量的1%、0.01% 以及2%。其中分散剂由三聚氰胺甲醛缩聚物(恒美科技有限公司)与木质素磺酸钠按1:1的质量比组成;矿化剂由Y 2O 3与BaO按照1:1的质量比组成;红外遮光剂为ZrSiO 4。其中Y 2O 3、BaO、ZrSiO 4均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.01%、0.1%、1%以及0.01%。其中发泡剂为聚酰胺型Dendrimer表面活性剂(恒美科技有限公司,发泡倍数55);无机固化剂为硅铝凝胶;有机固化剂由魔芋胶粉(上海北连科技公司)与海藻酸钠(江苏古贝科技公司)按1:1的质量比组成;泡孔调节剂由淀粉醚(恒美科技有限公司)与丙基纤维素醚(美国亚士兰公司)按1:1的质量比组成。
实施例15
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,还含有少量的刚玉相,莫来石的形貌呈短柱状,其长度为6.1~15.7μm、长径比为3~5.9,制品的化学组成中氧化铝质量百分比为68.2~71%。制品主要由基础料、添加剂以及水制成。
所用基础料由以下质量百分比的组分组成:72%的氧化铝质原料、28%的二氧化硅质原料。其中,氧化铝质原料由α-Al 2O 3(Al 2O 3的质量百分含量≧99%,粒径≦5μm)、电熔刚玉粉按照1:1的质量比混合而成;二氧化硅质原料由ɑ-石英、β-石英、ɑ-鳞石英、β-鳞石英、ɑ-方石英、β-方石英、脉石英(各氧化硅质原料的化学组成中SiO 2的质量百分含量≧99%,粒径为0.6~1mm)按照1:1:1:1:1:1:1的质量比混合而成。
添加料的组成以及具体用量与实施例14基本相同,区别仅在于无机固化剂由ɑ-Al 2O 3微粉和SiO 2微粉按1:1的质量比组成。ɑ-Al 2O 3微粉中的ɑ-Al 2O 3质量百分含量为≧99%,粒径≦5μm;SiO 2微粉中SiO 2质量百分含量≧95.0%,粒径≦5μm。
实施例16
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为13~25μm、长径比为21~37,制品的化学组成中氧化铝的质量百分比为53~56%。制品由基础料、添加料和水制成,其中添加料由分散剂、悬浮剂、红外遮光剂、发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料为铝硅质原料,铝硅质原料为硅线石。
添加料中添加剂由分散剂、悬浮剂、以及红外遮光剂组成,各组分的用量分别为基础料总质量的0.06%、2%以及1%。其中分散剂由聚羧酸系分散剂(德国巴斯夫)与三聚氰胺甲醛缩聚物(恒美科技有限公司)按5:1的质量比组成;悬浮剂由干酪素与微晶纤维素按1:1的质量比组成;红外遮光剂由Sb 2O 5、Co(NO 3) 2按照1:1的质量比组成。其中Sb 2O 5、 Co(NO 3) 2均为工业纯,粒径≦5μm。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的种类及用量同实施例11。
实施例17
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为5~16μm、长径比为17~20,制品的化学组成中氧化铝的质量百分比为25~28%。制品由基础料、添加料和水制成,其中添加料由发泡剂、无机固化剂、有机固化剂以及泡孔调节剂组成。
所用基础料由以下质量百分比的组分组成:90%的铝硅质原料,10%的二氧化硅质原料。其中,铝硅质原料由木节土(其化学组成中Al 2O 3质量百分含量为12~13%,SiO 2质量百分含量为68~74%,K 2O质量百分含量为2~3%,Na 2O质量百分含量为4~6%、粒径为0.6~1mm)、漂珠和粉煤灰按照4:3:2的质量比混合而成;二氧化硅质原料为硅藻土。
添加料中发泡剂、无机固化剂、有机固化剂以及泡孔调节剂的用量分别为基础料总质量的0.6%、5.1%、2%以及0.05%。其中发泡剂由季铵型Gemini表面活性剂与半环型Bola表面活性剂按2:1的质量比组成;无机固化剂为氧化硅溶胶(氧化硅溶胶中SiO 2的百分含量为30%);有机固化剂由乙烯与乙酸乙烯酯共聚物和分散乳胶(德国瓦克化学,
Figure PCTCN2021144044-appb-000016
)按照1:1的质量比混合而成;泡孔调节剂由羧甲基甲基纤维素醚、羟丙基羟丁基纤维素醚(美国陶氏化学)按照3:2的质量比混合而成。
实施例18
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为13~27μm、长径比为24~38,制品化学组成中氧化铝的质量百分比为34~36%。制备制品所用原料的种类及配比基本同实施例5,区别仅在于此实施例的技术方案中没有使用有机固化剂。
二、莫来石质微纳孔绝隔热耐火材料的制备方法的实施例
实施例19
本实施例为实施例1中莫来石质微纳孔绝隔热耐火材料的制备方法,具体包括以下步骤:
(1)将0.9吨铝硅质原料以及0.1吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将100kg悬浮剂、1.2kg矿化剂、31kg红外遮光剂倒入行星式搅拌机中干混5min 得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入3吨水,球磨混合12h,得混合料(其中固体颗粒粒径≦30μm),然后超声振荡(超声功率2000W)4min得均匀的悬浮料浆;球磨时采用的研磨球为鹅卵石,其中大球
Figure PCTCN2021144044-appb-000017
中球
Figure PCTCN2021144044-appb-000018
小球
Figure PCTCN2021144044-appb-000019
的重量比为1:1:8,料/球重量比为1:0.8;
(4)将6kg发泡剂、51kg无机固化剂、20kg有机固化剂、0.5kg泡孔调节剂,混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为5m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以200m/s的线速度快速混合1min,得均匀的泡沫料浆;
(6)将泡沫料浆注入不锈钢模具中,在空气温度和湿度分别为1℃、50%的环境中养护3.5h使其固化,然后脱模得坯体;
(7)采用二氧化碳超临界干燥法脱出坯体中的水分,二氧化碳的控制压力为9MPa,温度为42℃,干燥时间为4h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.7MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,具体烧成过程为:从室温以1℃/min的升温速率升至500℃,再以5℃/min升温至1000℃,保温1.5h,再以1℃/min升温至1200℃,保温10h,后以10℃/min降温至1100℃并保温1.5h,再以5℃/min降温至500℃并保温0.5h,最后以1℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例20
本实施例为实施例2中莫来石质微纳孔绝隔热耐火材料的制备方法,其具体过程基本与实施例19的过程相近,区别仅在于:步骤(1)中为将0.25吨氧化铝质原料、0.05吨铝硅质原料以及0.7吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料;步骤(2)中含有0.1kg的分散剂;步骤(3)中加水量为2.5吨;步骤(5)中搅拌桨以80m/s的线速度快速混合1min,得均匀的泡沫料浆。
实施例21
本实施例为实施例3中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.8吨铝硅质原料以及0.1吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.2kg分散剂、53kg悬浮剂、12kg矿化剂、100kg红外遮光剂倒入行星式搅 拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入2吨的水,球磨混合10h,得混合料(其中固体颗粒粒径≦30μm),然后超声振荡(超声功率1500W)6min得均匀的悬浮料浆;球磨时采用的研磨球为刚玉质,其中大球
Figure PCTCN2021144044-appb-000020
中球
Figure PCTCN2021144044-appb-000021
小球
Figure PCTCN2021144044-appb-000022
的重量比为1:1:8,料/球重量比为1:0.9;
(4)将5kg发泡剂、75kg无机固化剂、15kg有机固化剂、1kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为5m/s)后把发泡组合物加入搅拌机,然后搅拌桨以150m/s的线速度快速混合1min,得均匀的泡沫料浆;
(6)将泡沫料浆注入不锈钢模具中,在空气温度和湿度分别为10℃、60%的环境中养护2h使其固化,然后脱模得坯体;
(7)采用二氧化碳超临界干燥法脱去坯体中的水分,二氧化碳的控制压力为9MPa,温度为42℃,干燥时间为4h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.75MPa;
(8)将干燥多孔坯体装入高温隧道窑中烧成,具体烧成过程为:从室温以2℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1250~1260℃,保温3h,后以10℃/min降温至1100℃并保温1h,再以6℃/min降温至500℃并保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例22
本实施例为实施例4中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.8吨铝硅质原料以及0.1吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.3kg分散剂、53kg悬浮剂、30kg矿化剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入2吨的水,球磨混合8h,得混合料(其中固体颗粒粒径≦30μm),然后超声振荡(超声功率1500W)6min得均匀的悬浮料浆;球磨时采用的研磨球为莫来石质,其中大球
Figure PCTCN2021144044-appb-000023
中球
Figure PCTCN2021144044-appb-000024
小球
Figure PCTCN2021144044-appb-000025
的重量比为1:1:8;料/球重量比为1:0.9;
(4)将4kg发泡剂、200kg无机固化剂、10kg有机固化剂、1.6kg泡孔调节剂混合 5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为5m/s)后把发泡组合物加入搅拌机中,然后搅拌桨以150m/s的线速度快速混合1.5min,得均匀的泡沫料浆;
(6)将泡沫料浆注入不锈钢模具中,在空气温度和湿度分别为20℃、70%的环境中养护1.5h使其固化,然后脱模得坯体;
(7)采用二氧化碳超临界干燥法脱去坯体中的水分,二氧化碳的控制压力为9MPa,温度为42℃,干燥时间为4h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.75MPa;
(8)将干燥多孔坯体装入高温隧道窑中烧成,具体烧成过程为:从室温以3℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1250~1260℃,保温3h,后以10℃/min降温至1100℃并保温1h,再以6℃/min降温至500℃并保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例23
本实施例为实施例5中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.3吨氧化铝质原料、0.4吨铝硅质原料以及0.3吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.3kg分散剂、53kg悬浮剂、30kg矿化剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入2吨的水,球磨混合8h,得混合料(其中固体颗粒粒径≦30μm),然后超声振荡(超声功率1500W)6min得均匀的悬浮料浆;球磨时采用的研磨球为莫来石质,其中大球
Figure PCTCN2021144044-appb-000026
中球
Figure PCTCN2021144044-appb-000027
小球
Figure PCTCN2021144044-appb-000028
的重量比为1:1:8;料/球重量比为1:0.9;
(4)将3kg发泡剂、200kg无机固化剂、10kg有机固化剂、2kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为5m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以150m/s的线速度快速混合1.5min,得均匀的泡沫料浆;
(6)将泡沫料浆注入不锈钢模具中,在空气温度和湿度分别为25℃、80%的环境中养护1.2h使其固化,然后脱模得坯体;
(7)采用二氧化碳超临界干燥法脱去坯体中的水分,二氧化碳的控制压力为9MPa,温度为42℃,干燥时间为4h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.8MPa;
(8)将干燥多孔坯体装入高温隧道窑中烧成,具体烧成过程为:从室温以3℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1250~1260℃,保温3h,后以10℃/min降温至1100℃并保温1h,再以6℃/min降温至500℃并保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例24
本实施例为实施例6中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.8吨铝硅质原料以及0.1吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.3kg分散剂、51kg悬浮剂、50kg矿化剂、60kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入2吨的水,球磨混合4h,得混合料(其中固体颗粒粒径≦44μm),然后超声振荡(超声功率1500W)6min得均匀的悬浮料浆;球磨时采用的研磨球为氧化锆质,其中大球
Figure PCTCN2021144044-appb-000029
中球
Figure PCTCN2021144044-appb-000030
小球
Figure PCTCN2021144044-appb-000031
的重量比为1.5:2:6.5;料/球重量比为1:1;
(4)将2kg发泡剂、50kg无机固化剂、6kg有机固化剂、4kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为5m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以140m/s的线速度快速混合3min,得均匀的泡沫料浆;
(6)将泡沫料浆注入不锈钢模具中,在空气温度和湿度分别为25℃、85%的环境中养护1h使其固化,然后脱模得坯体;
(7)利用冷冻干燥法脱除坯体中的水分,冷冻干燥温度为-85℃,冷冻干燥时间为12h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.8MPa;
(8)将干燥多孔坯体装入电阻窑炉中烧成,从室温以3℃/min的升温速率升至500℃,再以10℃/min升温至1000℃,保温1h,再以3℃/min升温至1250℃,保温3h,后以10℃/min降温至1100℃,并在1100℃保温1h,再以6℃/min降温至500℃,于500℃保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例25
本实施例为实施例7中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.9吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.5kg分散剂、55kg悬浮剂、50kg矿化剂、70kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入2吨的水,球磨混合4h得混合料(其中固体颗粒粒径≦44μm),然后超声振荡(超声功率1500W)6min得均匀的悬浮料浆;球磨时采用的研磨球为氧化锆球,其中大球
Figure PCTCN2021144044-appb-000032
中球
Figure PCTCN2021144044-appb-000033
小球
Figure PCTCN2021144044-appb-000034
的重量比为1.5:2:6.5;料/球重量比为1:1;
(4)将1.8kg发泡剂、60kg无机固化剂、15kg有机固化剂、7kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为5m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以100m/s的线速度快速混合5min,得均匀的泡沫料浆;
(6)将泡沫料浆注入不锈钢模具中,在空气温度和湿度分别为25℃、90%的环境中养护0.8h使其固化,然后脱模得坯体;
(7)利用冷冻干燥法脱除坯体中的水分,干燥温度为-85℃,干燥12h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.9MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,从室温以2℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1250℃,保温3h,后以10℃/min降温至1100℃,并在1100℃保温1h,再以6℃/min降温至500℃,于500℃保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例26
本实施例为实施例8中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.9吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.6kg分散剂、25kg悬浮剂、100kg矿化剂、30kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入1吨的水,球磨混合1.5h得混合 料(其中固体颗粒粒径≦44μm),然后超声振荡(超声功率1000W)8min得均匀的悬浮料浆;球磨时采用的研磨球为锆刚玉质,其中大球
Figure PCTCN2021144044-appb-000035
中球
Figure PCTCN2021144044-appb-000036
小球
Figure PCTCN2021144044-appb-000037
的重量比为1.5:2:6.5;料/球重量比为1:1.1;
(4)将1.6kg发泡剂、50kg无机固化剂、11kg有机固化剂、10kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为4m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以120m/s的线速度快速混合5min,得均匀的泡沫料浆;
(6)将泡沫料浆注入铝合金模具中,在空气温度和湿度分别为25℃、92%的环境中养护0.7h使其固化,然后脱模得坯体;
(7)利用微波干燥法脱除坯体中的水分,微波频率为915MHz,微波干燥时间为2h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧1.1MPa;
(8)将干燥多孔坯体装入高温隧道窑中烧成,具体烧成过程为:从室温以2℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1280~1310℃,保温3h,后以10℃/min降温至1100℃并保温1h,再以6℃/min降温至500℃并保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例27
本实施例为实施例9中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将1吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.6kg分散剂、80kg矿化剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入1吨的水,球磨混合1h得混合料(其中固体颗粒粒径≦44μm),然后超声振荡(超声功率1000W)8min得均匀的悬浮料浆;球磨时采用的研磨球为氧化锆球,其中大球
Figure PCTCN2021144044-appb-000038
中球
Figure PCTCN2021144044-appb-000039
小球
Figure PCTCN2021144044-appb-000040
的重量比为1.5:2:6.5;料/球重量比为1:1.2;
(4)将1.5kg发泡剂、15kg无机固化剂、5kg有机固化剂、6kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为4m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以75m/s的线速度快速混合5min,得均匀的泡沫料浆;
(6)将泡沫料浆注入铝合金模具中,在空气温度和湿度分别为25℃、93%的环境中 养护0.6h使其固化,然后脱模得坯体;
(7)利用微波干燥法脱除坯体中的水分,微波频率为2450MHz,微波干燥时间为1h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧1.0MPa;
(8)将干燥多孔坯体装入微波窑炉中烧成,具体烧成过程为:从室温以5℃/min的升温速率升至500℃,再以30℃/min升温至1000℃,保温0.5h,再以30℃/min升温至1280~1310℃,保温1h,后以20℃/min降温至1100℃并保温0.5h,再以30℃/min降温至500℃并保温0.5h,最后以10℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例28
本实施例为实施例10中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.9吨铝硅质原料倒入强制式搅拌机中并干混15min得基础料;
(2)将0.6kg分散剂、30kg悬浮剂、70kg矿化剂、20kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入1吨的水,球磨混合1h得混合料(其中固体颗粒粒径≦44μm),然后超声振荡(超声功率1000W)8min得均匀的悬浮料浆;球磨时采用的研磨球为氧化锆球质,其中大球
Figure PCTCN2021144044-appb-000041
中球
Figure PCTCN2021144044-appb-000042
小球
Figure PCTCN2021144044-appb-000043
的重量比为1.5:2:6.5;料/球重量比为1:1.2;
(4)将100kg发泡剂、50kg无机固化剂、8kg有机固化剂、5kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为4m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以70m/s的线速度快速混合3min,得均匀的泡沫料浆;
(6)将泡沫料浆注入树脂模具中,在空气温度和湿度分别为25℃、95%的环境中养护0.6h使其固化,然后脱模得坯体;
(7)将脱模的坯体采用电源加热常压干燥法脱除其中的水分,具体条件为:先以3℃/min升温至30℃并保温3h,再以2℃/min升温至50℃并保温2h,再以3℃/min升温至70℃并保温4h,再以5℃/min升温至90℃并保温4h,再5℃/min升温至110℃并保温12h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧1.1MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,从室温以4℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1300℃,保温3h,后以10℃/min 降温至1100℃,并在1100℃保温1h,再以6℃/min降温至500℃,于500℃保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例29
本实施例为实施例11中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.9吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.6kg分散剂、20kg悬浮剂、50kg矿化剂、10kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入1吨的水,球磨混合1h得混合料(其中固体颗粒粒径≦50μm),然后超声振荡(超声功率1000W)8min得均匀的悬浮料浆;球磨时采用的研磨球为锆刚玉球,其中大球
Figure PCTCN2021144044-appb-000044
中球
Figure PCTCN2021144044-appb-000045
小球
Figure PCTCN2021144044-appb-000046
的重量比为1.5:2:6.5,料/球重量比为1:1.2;
(4)将81kg发泡剂、50kg无机固化剂、10kg有机固化剂、4kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为4m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以65m/s的线速度快速混合3min,得均匀的泡沫料浆;
(6)将泡沫料浆注入橡胶模具中,在空气温度和湿度分别为25℃、95%的环境中养护0.7h使其固化,然后脱模得坯体;
(7)将脱模后的坯体采用二氧化碳超临界干燥法脱除其中的水分,具体条件为:二氧化碳的控制压力为9MPa,控制温度在42℃,超临界干燥时间为24h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧1.2MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,从室温以3℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1450℃,保温3h,后以10℃/min降温至1100℃,并在1100℃保温1h,再以6℃/min降温至500℃,于500℃保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例30
本实施例为实施例12中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.05吨氧化铝质原料、0.95吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将10kg分散剂、10kg悬浮剂、30kg矿化剂、15kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入1吨的水,球磨混合1h得混合料(其中固体颗粒粒径≦50μm),然后超声振荡(超声功率1000W)8min得均匀的悬浮料浆;球磨时采用的研磨球为碳化硅球,其中大球
Figure PCTCN2021144044-appb-000047
中球
Figure PCTCN2021144044-appb-000048
小球
Figure PCTCN2021144044-appb-000049
的重量比为1.5:2:6.5;料/球重量比为1:1.2;
(4)将51kg发泡剂、50kg无机固化剂、5kg有机固化剂、3kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为4m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以50m/s的线速度快速混合3min,得均匀的泡沫料浆;
(6)将泡沫料浆注入泡沫模具中,在空气温度和湿度分别为27℃、97%的环境中养护0.6h使其固化,然后脱模得坯体;
(7)将脱模的坯体采用二氧化碳超临界干燥法脱除其中的水分,具体条件为:二氧化碳的控制压力为9MPa,控制温度在42℃,超临界干燥时间为24h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧1.0MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,从室温以3℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1550℃,保温3h,后以10℃/min降温至1100℃,并在1100℃保温1h,再以6℃/min降温至500℃,于500℃保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例31
本实施例为实施例13中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.1吨氧化铝质原料、0.9吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将0.5kg分散剂、1kg悬浮剂、20kg矿化剂、20kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入0.7吨的水,球磨混合0.6h得混合料(其中固体颗粒粒径≦74μm),然后超声振荡(超声功率700W)10min得均匀的悬浮料浆;球磨时采用的研磨球为碳化硅球,其中大球
Figure PCTCN2021144044-appb-000050
中球
Figure PCTCN2021144044-appb-000051
小球
Figure PCTCN2021144044-appb-000052
的重量比为1.5:2:6.5;料/球重量比为1:1.4;
(4)将1kg发泡剂、10kg无机固化剂、8kg有机固化剂、1kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为3m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以40m/s的线速度快速混合3min,得均匀的泡沫料浆;
(6)将泡沫料浆注入泡沫模具中,在空气温度和湿度分别为30℃、99%的环境中养护0.5h使其固化,然后脱模得坯体;
(7)将脱模的坯体采用二氧化碳超临界干燥法脱除其中的水分,具体条件为:二氧化碳的控制压力为9MPa,控制温度在42℃,超临界干燥时间为24h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧1.1MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,从室温以4℃/min的升温速率升至500℃,再以8℃/min升温至1000℃,保温1h,再以3℃/min升温至1650℃,保温3h,后以10℃/min降温至1100℃,并在1100℃保温1h,再以6℃/min降温至500℃,于500℃保温0.5h,最后以2℃/min降温至50℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例32
本实施例为实施例14中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.2吨的氧化铝质原料、0.8吨铝硅质原料倒入强制式搅拌机中干混15min得基础料;
(2)将10kg分散剂、0.1kg矿化剂、20kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(3)将基础料与添加剂倒入滚筒球磨机中,并加入0.36吨的水,球磨混合0.5h得混合料(其中固体颗粒粒径≦74μm),然后超声振荡(超声功率500W)荡15min得均匀的悬浮料浆;球磨时采用的研磨球为碳化钨球,其中大球
Figure PCTCN2021144044-appb-000053
中球
Figure PCTCN2021144044-appb-000054
小球
Figure PCTCN2021144044-appb-000055
的重量比为1.5:2:6;料/球重量比为1:1.5;
(4)将0.1kg发泡剂、1kg无机固化剂、10kg有机固化剂、0.1kg泡孔调节剂混合5min,得均匀的发泡组合物;
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为3m/s)后把发泡组合物加入到搅拌机中,然后搅拌桨以30m/s的线速度快速混合10min,得均匀的泡沫料浆;
(6)将泡沫料浆注入玻璃模具中,在空气温度和湿度分别为35℃、99.9%的环境中 养护0.2h使其固化,然后脱模得坯体;
(7)采用远红外干燥法脱除坯体的液态水,具体条件为:红外线波长选取2.5~30μm,干燥时间为1h,得干燥的多孔坯体,坯体的含水率≦3wt%,耐压强度≧1.2MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,从室温以3℃/min的升温速率升至500℃,再以5℃/min升温至1000℃,保温0.5h,再以10℃/min升温至1680~1700℃,保温1h,后以10℃/min降温至1100℃,并在1100℃保温0.5h,再以10℃/min降温至500℃,于500℃保温0.5h,最后以5℃/min降温至80℃,得到莫来石质微纳孔绝隔热耐火材料。
实施例33
本实施例为实施例15的莫来石质微纳孔绝隔热耐火材料的制备方法,其过程与实施例31基本相似,区别仅在于:步骤(1)中将0.72吨的氧化铝质原料、0.28吨氧化硅质原料倒入强制式搅拌机中干混15min得基础料;步骤(4)中所用无机固化剂为25kg的α-Al 2O 3微粉以及25kg SiO 2微粉;步骤(5)中搅拌浆的线速度为20m/s。
实施例34
本实施例为实施例16中莫来石质微纳孔绝隔热耐火材料的制备方法,包括以下步骤:
(1)将0.6kg分散剂、20kg悬浮剂、10kg红外遮光剂倒入行星式搅拌机中干混5min得添加剂;
(2)将1吨铝硅质原料与添加剂倒入搅拌机中,并加入1吨的水,搅拌15min得悬浮料浆;
(3)将81kg发泡剂、50kg无机固化剂、10kg有机固化剂、4kg泡孔调节剂混合5min,得均匀的发泡组合物;
(4)将把发泡组合物加入到搅拌机中,然后搅拌桨以65m/s的线速度快速混合3min,得到均匀的泡沫料浆;
(5)将泡沫料浆注入橡胶模具中,在空气温度和湿度分别为25℃、95%的环境中养护0.7h使其固化,然后脱模得坯体;
(6)将脱模后的坯体采用常压热风干燥法脱除其中的水分,干燥温度控制在40℃~55℃,干燥时间为48h,得干燥多孔坯体;干燥坯体的含水率≦3wt%,耐压强度≧1.0MPa;
(7)将干燥多孔坯体装入梭式窑中烧成,烧成工艺同实施例29,得到莫来石质微纳孔绝隔热耐火材料。
实施例35
本实施例为实施例17中莫来石质微纳孔绝隔热耐火材料的制备方法,具体包括以下 步骤:
(1)将0.9吨铝硅质原料以及0.1吨二氧化硅质原料倒入强制式搅拌机中干混15min得基础料备用;
(2)向搅拌机中加入3吨水,搅拌15min得悬浮料浆;
(3)将6kg发泡剂、20kg有机固化剂、0.5kg泡孔调节剂,混合5min,得均匀的发泡组合物;
(4)把发泡组合物和51kg无机固化剂加入搅拌机中,然后搅拌桨以20m/s的线速度快速混合30min,得均匀的泡沫料浆;
(6)将泡沫料浆注入橡胶模具中,在空气温度和湿度分别为25℃、95%的环境中养护1h使其固化,然后脱模得坯体;
(7)将脱模后的坯体采用常压热风干燥法脱除其中的水分,干燥温度控制在40℃~55℃,干燥时间为48h,得干燥多孔坯体;干燥多孔坯体的含水率≦3wt%,耐压强度≧0.7MPa;
(8)将干燥多孔坯体装入梭式窑中烧成,烧成工艺同实施例19,得到莫来石质微纳孔绝隔热耐火材料。
实施例36
本实施例为实施例18中莫来石质微纳孔绝隔热耐火材料的制备方法,其制备工艺基本同实施例23,区别在于其在空气温度和湿度分别为25℃、80%的环境中养护24h才可固化脱模,且坯体采用超临界干燥时,干燥的时间为7h,干燥时间大大延长,坯体干燥后的耐压强度仅0.3MPa。
实施例37
本实施例的莫来石质微纳孔绝隔热耐火材料,主晶相为莫来石,莫来石的形貌呈针状,其长度为35~81μm、长径比为36~72,制品的化学组成中氧化铝的质量百分比为44~46%。
(1)将0.1吨工业氧化铝(化学组成中Al 2O 3质量百分含量≧98%,粒径≦0.08mm)、0.5吨高岭土(Al 2O 3的质量百分含量37~39%,SiO 2的质量百分含量为58~60%,粒径为0.6~1mm)、0.3吨苏州土、0.1吨蓝晶石倒入强制式搅拌机中干混15min得基础料;
(2)将0.6kg聚酰胺型聚羧酸分散剂(德国巴斯夫)、25kg悬浮剂由膨润土(Al 2O 3的质量百分含量为25~27%,SiO 2的质量百分含量为68~71%,粒径≦0.045mm)、40kgAlF 3、40kgMnO 2、10kgY 2O 3与10kgCeO 2、30kgK 4TiO 4倒入行星式搅拌机中干混5min得添加剂组合;
(3)悬浮料浆的制备同实施例26;
(4)将50kg铝硅凝胶、11kg乙烯与氯乙烯和月桂酸乙烯酯共聚物(德国瓦克化学,
Figure PCTCN2021144044-appb-000056
)、10kg羟丁基甲基纤维素醚(美国陶氏化学)倒入V型混料机混合5min,得均匀混合物;同时将1.6kg硫酸盐型Gemini表面活性剂用发泡机预制成泡沫。
(5)将悬浮料浆注入搅拌机中,预搅拌1min(预搅拌过程中搅拌桨的线速度为4m/s)后将步骤(4)所得混合物和预制泡沫加入搅拌机中,搅拌桨以120m/s线速度快速混合3min,得均匀泡沫料浆;
(6)将泡沫料浆注入铝合金模具,在空气温度和湿度分别为25℃、92%的环境中养护1h使其固化,脱模得坯体;
(7)坯体的干燥和烧成同实施例26,得到莫来石质微纳孔绝隔热耐火材料。干燥后坯体耐压强度≧0.75MPa;
所用原料中AlF 3、MnO 2、Y 2O 3、CeO 2、K 4TiO 4均为工业纯,粒径≦5μm。
三、实验例
实验例1
本实验例观测实施例的莫来石质微纳孔绝隔热耐火材料和宏观形貌和显微结构。
实施例1的莫来石质微纳孔绝隔热耐火材料的宏观照片如图1所示,可以看出,耐火砖整体为白色,烧制过程中无明显杂色出现。
实施例1的莫来石质微纳孔绝隔热耐火材料的显微结构如图2和图3所示,由图2可以看出,材料中含有大量微米级的球状气孔,进一步结合图3可以看出,该球状气孔的气孔壁上生长大量针状莫来石晶体,其长度为37~45μm、长径比为37~62。
实施例3的莫来石质微纳孔绝隔热耐火材料的显微结构如图4所示,其呈现与实施例1的耐火材料基本相似的形貌。
实施例13的莫来石质微纳孔绝隔热耐火材料的显微结构如图5所示,其主要形成柱状的莫来石晶体。
实施例14的莫来石质微纳孔绝隔热耐火材料的显微结构如图6所示,其体现与实施例13的耐火材料相似的柱状形貌。
实验例2
本实验例对实施例1的莫来石质微纳孔绝隔热耐火材料进行X-射线衍射(XRD)分析,结果如图7所示。
由图7可以看出,材料的主晶相为莫来石相。
实验例3
对实施例1~18及37中的莫来石质微纳孔绝隔热耐火材料进行孔结构测试,采用压汞法测定试样的平均孔径及孔径分布,其中实施例1所制耐火材料的孔径分布图如图8所示;采用GB/T2998-2001测试材料的总气孔率,同时采用GB/T2997-2000测试式样的闭口气孔率。测试结果如表1所示。
表1不同实施例的莫来石质微纳孔绝隔热耐火材料的孔结构测试结果
实例编号 平均孔径(μm) 总气孔率(%) 闭口气孔率(%)
实施例1 6.2 93~95 63~69
实施例2 19 88~91 52~57
实施例3 12.3 87~92 58~63
实施例4 7.6 86~91 55~58
实施例5 6.5 83~89 50~52
实施例6 5.7 82~88 45~49
实施例7 1.1 80.3~85 44~47
实施例8 0.1 79.8~83.2 40~43.2
实施例9 1.8 78.6~81.1 39~42.2
实施例10 2.4 76.2~79.5 38~41.2
实施例11 3.5 72.~75.4 37~40.4
实施例12 4.4 65~69 36.6~39
实施例13 6.7 58.6~65.3 36.2~38.7
实施例14 9.5 50.3~55.2 35.5~37.6
实施例15 14.5 45~49.6 35~37.2
实施例16 8.2 71.4~73.7 33.8~35.3
实施例17 19.0 88.5~90.4 42~43
实施例18 46.2 81~85 28~35
实施例37 8.4 82.3~84.1 32~37
实验例4
对实施例1~18及37中的莫来石质微纳孔绝隔热耐火材料进行性能测试,具体测试方法为:根据中国国家标准GB/T2998-2001对式样的体积密度进行测试;耐压强度按照GB/T 3997.2-1998进行测试;重烧线变化率按照GB/T 3997.1-1998进行测试;热导率采用平板导热 法按照YB/T4130-2005进行测试。测试结果如表2所示。
表2不同实施例的莫来石质微纳孔绝隔热耐火材料的性能指标
Figure PCTCN2021144044-appb-000057
Figure PCTCN2021144044-appb-000058
由表1和表2可知,本发明的莫来石质微纳孔绝隔热耐火材料具有较好的微纳米尺寸孔径、超低导热、高强度的优点。
对比实施例1~2及18~19可以看出,分散剂的引入可使用水量显著减少;对比实施例3~5可以看出,红外遮光剂的引入显著减小了试样的高温热导率;对比实施例4~5及7~9可以看出,随着泡孔调节剂量的增多,试样的气孔孔径有效减小;对比实施例7~9可以看出,平均孔径的减小使试样的强度显著增强、热导率显著降低;对比实施例9~11及26~28可以看出,随着有机固化剂引入量的增多,干燥后试样坯体的强度逐渐增大;对比实施例5~7及22~24可以看出,随着搅拌线速度的增大,试样的平均孔径明显减小;对比实施例11和16、28和33可以看出,矿化剂的引入使试样中莫来石的尺寸长及长径比大都增大、平均孔径及热导率减小、密度减小、强度升高;对比实施例19~21、24~25、30~31可以看出,研磨球的材质对基础料的研磨效率差别较大,在达到相同球磨效果的情况下,研磨球的硬度和密度越高,则其研磨时间越短,研磨效率越高。对比实施例25和28、29~30可以看出,适当延长球磨的时间,可使基础料粒度有效细化。对比实施例5和18,及23和36可以看出,没有添加有机固化剂时,坯体所需养护时间大大延长,才可实现脱模,且坯体干燥后的强度大为降低,烧后试样的气孔孔径明显增大,密度和热导率升高,总气孔率、闭口气孔率及强度均显著下降。比实施例8和37可以看出,当对发泡剂采用预发泡时,泡沫料浆的搅拌时间缩短,但坯体的 养护时间延长,且坯体干燥后的强度降低,烧后制品的气孔平均孔径增大,总气孔率和高温热导率升高,闭口气孔率、体积密度和强度下降。
综上,本发明通过调控各原料用量及工艺,在气孔结构、力学和隔热性能方面可实现可控可调,而且通过在莫来石质绝隔热耐火材料中微纳米尺寸气孔结构的构筑,可在保证材料气孔率及体积密度与现有技术相近的情况下,表现出更加优异的力学和绝隔热性能,在实际工程及技术应用中具有更好的实践意义,使其非常适用于冶金、石化、建材、陶瓷、机械等行业用工业窑炉的热面衬里、背衬及填充密封与隔热材料,还可适用于发动机引擎的隔热部件及军工和航空航天等领域。

Claims (18)

  1. 一种莫来石质微纳孔绝隔热耐火材料,其特征在于,所述莫来石质微纳孔绝隔热耐火材料由基础料、添加料和水制成;制品化学组成中Al 2O 3的质量百分含量为25~72%,或者为35~71.8%,或者为40~70%,或者为45~68%,或者为55~65%,或者为58~63%;
    所述基础料由以下质量分数的组分组成:铝硅质原料0~100%,氧化铝质原料0~72%,二氧化硅质原料0~70%;
    所述添加料至少包括发泡料,使用或不使用添加剂;所述发泡料由发泡剂、无机固化剂、有机固化剂和泡孔调节剂组成,以基础料的质量为基准,发泡剂、无机固化剂、有机固化剂、泡孔调节剂的添加量分别为0.01~10%、0.1~20%、0.1~2%、0.01~1%;使用添加剂时,所述添加剂选自分散剂、悬浮剂、矿化剂、红外遮光剂中的一种或两种以上组合,以基础料的质量为基准,矿化剂的添加量不大于10%,红外遮光剂的添加量不大于10%;
    所述水的质量为基础料质量的30~300%。
  2. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述莫来石质微纳孔绝隔热耐火材料的平均孔径为0.1~19μm,体积密度为0.25~1.5g/cm 3,总气孔率为45~95%,闭口气孔率为35~70%,常温下耐压强度为1~160MPa,室温下的热导率为0.027~0.15W/(m·K),350℃下的热导率为0.03~0.19W/(m·K),1100℃下的热导率为0.05~0.28W/(m·K)。
  3. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述莫来石质微纳孔绝隔热耐火材料的主晶相为莫来石相,莫来石晶体的形貌为针状或柱状,长度为5~200μm,长径比≧5。
  4. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述发泡剂为表面活性剂和/或蛋白质型发泡剂,发泡倍数为8~60倍;所述表面活性剂选自阳离子型表面活性剂、阴离子型表面活性剂、非离子型表面活性剂、两性表面活性剂、Gemini型表面活性剂、Bola型表面活性剂、Dendrimer型表面活性剂中的一种或多种;所述蛋白质型发泡剂为动物蛋白发泡剂、植物蛋白发泡剂和/或污泥蛋白发泡剂。
  5. 如权利要求1或4所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述发泡剂选自季铵型Gemini表面活性剂、半环型Bola表面活性剂、羧酸盐型Gemini表面活性剂、月桂酸酰胺丙基磺基甜菜碱、十二醇聚氧乙烯醚羧酸钠、ɑ-烯烃磺酸钠、十二烷基二甲基甜菜碱表面活性剂、脂肪醇聚氧乙烯醚羧酸钠、硫酸盐型Gemini表面活性剂、聚醚型Dendrimer表面活性剂、植物蛋白发泡剂、污泥蛋白发泡剂、动物蛋白发泡剂、十二烷基苯磺酸钠、聚酰胺型Dendrimer表面活性剂、双链型Bola表面活性剂中的一种或多种。
  6. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述无机固化剂为氧化硅溶胶、氧化铝溶胶、硅铝溶胶、氧化硅凝胶、氧化铝凝胶、硅铝凝胶、Al 2O 3微粉、SiO 2微粉、硅酸二钙、二铝酸钙、硅酸三钙、铝酸三钙、铁铝酸四钙、七铝酸十二钙、铝酸一钙、磷酸铝、水玻璃、软质结合黏土中的一种或多种;无机固化剂颗粒的平均粒径≦5μm;
    所述有机固化剂选自水溶性聚合物树脂、低甲氧基果胶、鹿角菜胶、卡拉胶、羟丙基瓜尔胶、刺槐树胶、刺槐豆胶、结冷胶、可得然胶、海藻酸盐、魔芋胶、分散乳胶中的一种或多种;所述水溶性聚合物树脂选自醋酸乙烯酯与乙烯共聚物、醋酸乙烯酯均聚物、丙烯酸酯聚合物、乙烯与乙酸乙烯酯共聚物、乙烯与氯乙烯共聚物、醋酸乙烯酯与叔碳酸乙烯酯共聚物、丙烯酸酯与苯乙烯共聚物、醋酸乙烯酯与高级脂肪酸乙烯酯共聚物、醋酸乙烯酯与乙烯和氯乙烯共聚物、醋酸乙烯酯与乙烯和丙烯酸酯共聚物、异丁烯与马来酸酐共聚物、乙烯与氯乙烯和月桂酸乙烯酯共聚物、醋酸乙烯酯与乙烯和高级脂肪酸共聚物、醋酸乙烯酯与丙烯酸酯及高级脂肪酸乙烯酯共聚物、醋酸乙烯酯与乙烯和月桂酸乙烯酯共聚物、醋酸乙烯与叔碳酸乙烯酯和丙烯酸酯共聚物中的一种或多种。
  7. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述泡孔调节剂选自纤维素醚、淀粉醚、木质纤维素、皂素中的一种或多种。
  8. 如权利要求7所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述纤维素醚选自水溶性纤维素醚、甲基纤维素醚、羧甲基纤维素醚、羧甲基甲基纤维素醚、羧甲基乙基纤维素醚、羧甲基羟甲基纤维素醚、羧甲基羟乙基纤维素醚、羧甲基羟丙基纤维素醚、羧甲基羟丁基纤维素醚、羟甲基纤维素醚、羟乙基纤维素醚、羟乙基甲基纤维素醚、羟乙基乙基纤维素醚、乙基纤维素醚、乙基甲基纤维素醚、丙基纤维素醚、羟丙基纤维素醚、羟丙基甲基纤维素醚、羟丙基乙基纤维素醚、羟丙基羟丁基纤维素醚、羟丁基甲基纤维素醚、磺酸乙基纤维素醚中的一种或多种。
  9. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述矿化剂为ZnO、Fe 2O 3、V 2O 5、SiF 4、AlF 3、AlF 3·3H 2O、MnO 2、TiO 2、CuO、CuSO 4、MgO、SrO、BaO、WO 3、Er 2O 3、Cr 2O 3、La 2O 3、YbO、Y 2O 3、CeO 2中的一种或多种。
  10. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述红外遮光剂为金红石、TiO 2、TiC、K 4TiO 4、K 2Ti 6O 13、Sb 2O 3、Sb 2O 5、ZrO 2、CoO、Co(NO 3) 2、CoCl 2、NiCl 2、Ni(NO 3) 2、ZrSiO 4、Fe 3O 4、B 4C、SiC中的一种或多种。
  11. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,以基础料 的质量为基准,分散剂的添加量不大于1%,悬浮剂的添加量不大于10%;所述分散剂为聚羧酸类分散剂、聚羧酸醚分散剂、磺化蜜胺缩聚物、萘系分散剂、木质素磺酸盐类分散剂、乙二胺四乙酸钠、三聚氰胺甲醛缩聚物、三聚磷酸钠、聚丙烯酸钠、柠檬酸钠、磷酸钠、碳酸钠中的一种或多种;
    所述悬浮剂为膨润土、海泡石、凹凸棒、聚合氯化铝、聚合硫酸铝、壳聚糖、韦兰胶、琼脂、聚乙二醇、聚乙烯醇、聚丙烯酰胺、聚丙烯酸胺、聚乙烯吡咯烷酮、干酪素、十六醇、蔗糖、糊精、微晶纤维素、纤维素纤维、纤维素纳米晶、可溶性淀粉中的一种或多种。
  12. 根据权利要求1所述的莫来石质微纳孔绝隔热耐火材料,其特征在于,所述铝硅质原料为烧结莫来石、电熔莫来石、高岭土、铝矾土、铝硅系均质料、煤矸石、蓝晶石、红柱石、硅线石、叶蜡石、钾长石、钠长石、钙长石、钡长石、瓷石、碱石、云母、锂辉石、珍珠岩、蒙脱石、伊利石、埃洛石、迪开石、焦宝石、黏土、广西白土、苏州土、木节土、粉煤灰、漂珠中的一种或多种;所述铝硅质原料中氧化铝的质量百分含量为18~90%,二氧化硅的质量百分含量为8~75%;
    所述氧化铝质原料为β-Al 2O 3、γ-Al 2O 3、δ-Al 2O 3、χ-Al 2O 3、κ-Al 2O 3、ρ-Al 2O 3、θ-Al 2O 3、η-Al 2O 3、α-Al 2O 3、工业氧化铝、工业Al(OH) 3、电熔刚玉粉、烧结刚玉粉、板状刚玉粉、氢氧化铝、勃姆石、水铝石、正丁醇铝、异丙醇铝、仲丁醇铝、六水合氯化铝、九水合硝酸铝中的一种或多种;所述氧化铝质原料中氧化铝的质量百分含量为65~99.9%;
    所述二氧化硅质原料为ɑ-石英、β-石英、ɑ-鳞石英、β-鳞石英、ɑ-方石英、β-方石英、脉石英、砂岩、石英岩、燧石、胶结硅石、河砂、海砂、白炭黑、硅藻土、硅微粉、稻壳、碳化稻壳、稻壳灰、正硅酸甲酯、正硅酸乙酯、甲基三甲氧基硅烷中的一种或多种;所述二氧化硅质原料中二氧化硅的质量百分含量为28~99%。
  13. 一种如权利要求1~12中任一项所述的莫来石质微纳孔绝隔热耐火材料的制备方法,其特征在于,包括以下步骤:
    a)在使用添加剂时,将基础料、添加剂在水中分散成悬浮料浆;在不使用添加剂时,将基础料在水中分散成悬浮料浆;
    b)将发泡剂、无机固化剂、有机固化剂、泡孔调节剂与悬浮料浆进行搅拌剪切发泡,制得泡沫浆料;
    c)将泡沫料浆注入模具中养护,脱模后得到坯体;坯体干燥后在1100~1700℃的温度下烧制。
  14. 根据权利要求13所述的莫来石质微纳孔绝隔热耐火材料的制备方法,其特征在 于,步骤a)中,所述悬浮料浆中固体颗粒的平均粒径不高于1mm,或不高于74μm,或不高于44μm,或不高于30μm。
  15. 根据权利要求13所述的莫来石质微纳孔绝隔热耐火材料的制备方法,其特征在于,步骤b)中搅拌发泡采用搅拌桨高速搅拌剪切发泡,搅拌桨外缘的线速度为20~200m/s,或50~200m/s,或80~200m/s,或100~200m/s,或150~200m/s。
  16. 根据权利要求13所述的莫来石质微纳孔绝隔热耐火材料的制备方法,其特征在于,步骤c)中,养护环境中的空气温度为1~40℃,湿度为50~99.9%;养护时间为0.2~3.5h。
  17. 根据权利要求13所述的莫来石质微纳孔绝隔热耐火材料的制备方法,其特征在于,步骤c)中,坯体干燥选自常压干燥、超临界干燥、冷冻干燥、真空干燥、红外干燥、微波干燥中的一种或两组以上的组合;坯体干燥至坯体含水率≦3wt%;坯体干燥后的耐压强度≧0.7MPa。
  18. 根据权利要求13~17中任一项所述的莫来石质微纳孔绝隔热耐火材料的制备方法,其特征在于,步骤c)中,所述烧制具体为:以1~5℃/min升温至500℃,再以5~30℃/min升温至1000℃,保温0.5~1.5h,再以1~30℃/min升温至1200~1700℃,保温1~10h,后以10~20℃/min降温至1100℃,并在1100℃保温0.5~1.5h,再以5~30℃/min降温至500℃,于500℃保温0.5h,最后以1~10℃/min降温至50~80℃。
PCT/CN2021/144044 2020-12-31 2021-12-31 一种莫来石质微纳孔绝隔热耐火材料及其制备方法 WO2022144014A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011635588 2020-12-31
CN202011635588.X 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022144014A1 true WO2022144014A1 (zh) 2022-07-07

Family

ID=80381652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/144044 WO2022144014A1 (zh) 2020-12-31 2021-12-31 一种莫来石质微纳孔绝隔热耐火材料及其制备方法

Country Status (2)

Country Link
CN (1) CN114133258A (zh)
WO (1) WO2022144014A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124976A (zh) * 2022-07-19 2022-09-30 淄博众晓新材料科技有限公司 一种复合相变凝胶保温蓄能材料及其制备方法
CN115304386A (zh) * 2022-09-02 2022-11-08 江苏中磊节能科技发展有限公司 一种莫来石复合耐火砖及其加工工艺
CN115594493A (zh) * 2022-10-26 2023-01-13 佛山仙湖实验室(Cn) 利用铝矾土和苏州土制备的太阳能储热复相陶瓷材料及方法
CN115636677A (zh) * 2022-10-26 2023-01-24 中南大学 一种浮法玻璃生产用的锡槽顶盖砖及其制备方法
CN115677327A (zh) * 2022-10-26 2023-02-03 中国地质大学(武汉) 一种内部流道构件用的水溶性氧化钙基支撑型芯及其制备方法
CN115818656A (zh) * 2022-11-10 2023-03-21 李玉杰 一种微波加热煤矸石生产莫来石粉的方法
CN115894015A (zh) * 2022-11-29 2023-04-04 武汉理工大学 一种高强多孔陶瓷燃烧介质及其制造方法
CN116023155A (zh) * 2022-12-16 2023-04-28 巩义通达中原耐火技术有限公司 一种石灰回转窑用矾土基均质莫来石不烧砖及其制备方法
CN116120090A (zh) * 2022-12-12 2023-05-16 武汉科技大学 一种晶须增强莫来石泡沫陶瓷材料及其制备方法
CN116354709A (zh) * 2022-09-29 2023-06-30 内蒙古先进陶瓷设计院有限公司 一种高铝煤矸石合成焦宝石原料及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022144014A1 (zh) * 2020-12-31 2022-07-07 郑州轻工业大学 一种莫来石质微纳孔绝隔热耐火材料及其制备方法
CN114621017B (zh) * 2022-03-24 2022-11-11 武汉钢铁有限公司 一种含微孔的焦罐底闸门用耐火材料衬板及制备方法
CN114605107B (zh) * 2022-04-06 2023-11-10 广州世陶新材料有限公司 一种采用凝胶注模成型法制备的纤维增强气凝胶隔热材料及其制备方法
CN114920570A (zh) * 2022-05-16 2022-08-19 湖南湘钢瑞泰科技有限公司 一种热风管道三岔口组合砖及其制备方法
CN115180932B (zh) * 2022-07-06 2023-05-16 武汉科技大学 基于高钠工业氧化铝原位合成莫来石多孔陶瓷及制备方法
CN115490526B (zh) * 2022-10-20 2023-03-21 山东国材工程有限公司 以煤矸石为原料制备莫来石耐火材料的方法
CN116396095B (zh) * 2023-04-10 2024-04-26 湖南工业大学 一种轻质保温隔热砖及其制备方法
CN116161976B (zh) * 2023-04-24 2023-07-07 淄博富邦元进耐火材料科技有限公司 一种耐火材料及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219873A (zh) * 2007-01-12 2008-07-16 上海船舶工艺研究所 一种纳米孔绝热材料及其制备方法
CN101618968A (zh) * 2009-08-11 2010-01-06 郑州东方炉衬材料有限公司 超微孔轻质隔热保温耐火砖及其制造方法
CN103011856A (zh) * 2012-12-14 2013-04-03 武汉科技大学 一种莫来石轻质隔热砖及其制备方法
JP2014062018A (ja) * 2012-09-24 2014-04-10 National Institute Of Advanced Industrial & Technology 高耐火性及び高断熱性を有するレンガの製造方法及び高耐火性及び高断熱性を有するレンガ
CN103951452A (zh) * 2014-05-06 2014-07-30 郑州大学 一种微孔蓝晶石基轻质隔热耐火材料的制备方法
CN105272189A (zh) * 2015-11-28 2016-01-27 郑州大学 一种微孔莫来石陶瓷分离膜支撑体及其制备方法
CN114133258A (zh) * 2020-12-31 2022-03-04 郑州轻工业大学 一种莫来石质微纳孔绝隔热耐火材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747634B (zh) * 2016-12-05 2020-02-14 武汉科技大学 一种莫来石轻质耐火材料及其制备方法
CN107010968B (zh) * 2017-04-19 2020-07-07 郑州大学 一种高强轻量刚玉莫来石质耐火骨料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219873A (zh) * 2007-01-12 2008-07-16 上海船舶工艺研究所 一种纳米孔绝热材料及其制备方法
CN101618968A (zh) * 2009-08-11 2010-01-06 郑州东方炉衬材料有限公司 超微孔轻质隔热保温耐火砖及其制造方法
JP2014062018A (ja) * 2012-09-24 2014-04-10 National Institute Of Advanced Industrial & Technology 高耐火性及び高断熱性を有するレンガの製造方法及び高耐火性及び高断熱性を有するレンガ
CN103011856A (zh) * 2012-12-14 2013-04-03 武汉科技大学 一种莫来石轻质隔热砖及其制备方法
CN103951452A (zh) * 2014-05-06 2014-07-30 郑州大学 一种微孔蓝晶石基轻质隔热耐火材料的制备方法
CN105272189A (zh) * 2015-11-28 2016-01-27 郑州大学 一种微孔莫来石陶瓷分离膜支撑体及其制备方法
CN114133258A (zh) * 2020-12-31 2022-03-04 郑州轻工业大学 一种莫来石质微纳孔绝隔热耐火材料及其制备方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124976B (zh) * 2022-07-19 2023-12-05 淄博众晓新材料科技有限公司 一种复合相变凝胶保温蓄能材料及其制备方法
CN115124976A (zh) * 2022-07-19 2022-09-30 淄博众晓新材料科技有限公司 一种复合相变凝胶保温蓄能材料及其制备方法
CN115304386A (zh) * 2022-09-02 2022-11-08 江苏中磊节能科技发展有限公司 一种莫来石复合耐火砖及其加工工艺
CN116354709A (zh) * 2022-09-29 2023-06-30 内蒙古先进陶瓷设计院有限公司 一种高铝煤矸石合成焦宝石原料及制备方法
CN115594493B (zh) * 2022-10-26 2023-09-22 佛山仙湖实验室 利用铝矾土和苏州土制备的太阳能储热复相陶瓷材料及方法
CN115677327B (zh) * 2022-10-26 2023-05-26 中国地质大学(武汉) 一种内部流道构件用的水溶性氧化钙基支撑型芯及其制备方法
CN115677327A (zh) * 2022-10-26 2023-02-03 中国地质大学(武汉) 一种内部流道构件用的水溶性氧化钙基支撑型芯及其制备方法
CN115636677A (zh) * 2022-10-26 2023-01-24 中南大学 一种浮法玻璃生产用的锡槽顶盖砖及其制备方法
CN115636677B (zh) * 2022-10-26 2023-10-24 中南大学 一种浮法玻璃生产用的锡槽顶盖砖及其制备方法
CN115594493A (zh) * 2022-10-26 2023-01-13 佛山仙湖实验室(Cn) 利用铝矾土和苏州土制备的太阳能储热复相陶瓷材料及方法
CN115818656A (zh) * 2022-11-10 2023-03-21 李玉杰 一种微波加热煤矸石生产莫来石粉的方法
CN115894015A (zh) * 2022-11-29 2023-04-04 武汉理工大学 一种高强多孔陶瓷燃烧介质及其制造方法
CN115894015B (zh) * 2022-11-29 2023-08-15 武汉理工大学 一种高强多孔陶瓷燃烧介质及其制造方法
CN116120090A (zh) * 2022-12-12 2023-05-16 武汉科技大学 一种晶须增强莫来石泡沫陶瓷材料及其制备方法
CN116120090B (zh) * 2022-12-12 2024-03-22 武汉科技大学 一种晶须增强莫来石泡沫陶瓷材料及其制备方法
CN116023155A (zh) * 2022-12-16 2023-04-28 巩义通达中原耐火技术有限公司 一种石灰回转窑用矾土基均质莫来石不烧砖及其制备方法

Also Published As

Publication number Publication date
CN114133258A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2022144014A1 (zh) 一种莫来石质微纳孔绝隔热耐火材料及其制备方法
WO2022144013A1 (zh) 一种刚玉质微纳孔绝隔热耐火材料及其制备方法
WO2022144012A1 (zh) 一种钙长石质微纳孔绝隔热耐火材料及其制备方法
CN114149276B (zh) 一种含氧化锆的微纳孔绝隔热耐火材料及其制备方法
CN107010968A (zh) 一种高强轻量刚玉莫来石质耐火骨料及其制备方法
CN100486932C (zh) 含纳米碳酸钙的高纯刚玉质浇注料及其制备方法
Li et al. A simple and efficient way to prepare porous mullite matrix ceramics via directly sintering SiO2-Al2O3 microspheres
CN114133257A (zh) 一种含六铝酸钙的微纳孔绝隔热耐火材料及其制备方法
CN103242051A (zh) 一种轻质刚玉-莫来石浇注料及其制备方法
CN101215158A (zh) 一种轻质镁铝尖晶石原料的制备方法
CN108558418A (zh) 一种轻量高强六铝酸钙耐火材料的制备方法
WO2023159858A1 (zh) 一种轻质多孔吸音陶瓷材料、制备工艺及其应用
Yuan et al. A novel aqueous gel-casting for fabricating Al2O3-bonded fibrous mullite ceramics
CN103030413A (zh) 一种刚玉莫来石坩埚的制备方法
CN110894162A (zh) 一种超高温高强陶瓷辊棒及其制备方法
CN108017379A (zh) 一种氧化铝质轻质隔热砖及其制备方法
CN107973619A (zh) 莫来石-钙长石-刚玉复相微孔隔热材料及其制备方法
CN109320224A (zh) 一种高纯度堇青石结合莫来石的材料及其制备方法
CN109851337A (zh) 一种高温用堇青石-莫来石棚板及其制备方法
CN110040995B (zh) 一种高温用轻质韧性莫来石骨料制备方法
CN111302769A (zh) 一种低铝镁质复合不烧砖及其制备方法
CN110963807A (zh) 一种用于水泥窑过渡带的节能型莫来石质耐火砖及其制备方法
CN115286368A (zh) 一种高强度轻质耐火砖及其制备方法
CN111470879B (zh) 一种常温发泡高温烧制的发泡陶瓷的制备方法
CN113800926A (zh) 一种保温材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914742

Country of ref document: EP

Kind code of ref document: A1